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10 Appendix 2

This Appendix provides proofs of Theorems N2 and N3 of the paper �Nonparametric

inference based on conditional moment inequalities.� It also provides some additional

simulation results to those given in that paper. We let AS1 and AS2 abbreviate Andrews

and Shi (2007a) and Andrews and Shi (2007b), respectively.

10.1 Proofs of Theorems N2 and N3

Proof of Theorem N2. Theorem N2 is analogous to Theorem 3 of AS1. The proof

of Theorem 3 of AS1 that is given in Section 14.2 in Appendix C of AS2 goes through

with a few changes in the present context. First, EF0(�) is replaced by EF0(�jZi = z0) in

m�(g) and elsewhere. Second, n1=2�(g0) is replaced throughout by (nbdz)1=2�(g0): Third,

Assumption NFA(a) is used in place of Assumption FA(a) to obtain the inequality in

(14.28) of AS2. Fourth, the proof uses Lemma AN3, which employs Assumptions NFA(b)

and NFA(c), in place of Lemma A1 of AS2.

Fifth, the second equality of (14.33) of AS2 does not hold. It relies on n�1=2h1;n;F0(��; g)

= m�(g); which in the present context is replaced by (nbdz)�1=2h1;n;F0(��; g; b) = m�(g);

which does not hold. However, we have

(nbdz)�1=2h1;n;F0(��; g; b) = D
�1=2
F0

(��; b)b
�dz=2EF0m(Wi; ��; g; b)

= D
�1=2
F0

(��; z0)EF0m(��; Xi; z0)g(Xi) +O(b2)

= D
�1=2
F0

(��; z0)EF0(m(Wi; ��; g)jZi = z0)f(z0) +O(b2)

= m�(g) + o(1); (10.34)

where the second equality holds by Lemma AN1(b) and (9.12) (which holds for (��; F0) 2
F+); the third equality holds by the same argument as in the proof of Lemma AN4
withm(y; x; z; �; g)m(y; x; z; �; g�)0 replaced bym(y; x; z; �; g) throughout, and the fourth

equality holds by the de�nition of m�(g) and Assumption B(a).

Using (10.34), the second equality of (14.33) of AS2 holds with m�(g)=�(g0) replaced

by m�(g)=�(g0) + o(1):

These are the only changes needed to the proof of Theorem 3 of AS1. �

Proof of Theorem N3. Theorem N3 is analogous to Theorem 4 of AS1. First, we

give an analogue of (14.37) in the proof of Theorem 4 of AS1 given in Section 14.3 of
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Appendix C in AS2. We have

h1;n;Fn(�n;�; g; b)

= n1=2D
�1=2
Fn

(�n;�; b)EFnm(Wi; �n;�; g; b)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n;�; z0)EFnm(�n;�; Xi; z0)g(Xi) + o(1) (10.35)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n;�; z0)EFn(m(Wi; �n;�; g)jZi = z0)fn(z0) + o(1);

where the �rst equality holds by (9.2), the second equality holds by Lemma AN1(b) and

(9.12) because n1=2b2+dz=2 ! 0 if b = o(n�1=(4+dz)); and the third equality holds by the

same argument as in the proof of Lemma AN4 above.

Next, by element-by-element mean-value expansions about �n; we have

D
�1=2
Fn

(�n;�; z0)EFn(m(Wi; �n;�; g)jZi = z0)fn(z0)

= D
�1=2
Fn

(�n; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+�Fn(�n;g; g)(�n;� � �n); (10.36)

using Assumption NLA2, where �n;g may di¤er across rows of �Fn(�n;g; g); �n;g lies

between �n;� and �n; and �n;g ! �0:

Combining (10.35) and (10.36) gives the analogue of (14.37) of AS2:

h1;n;Fn(�n;�; g; b)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+(Ik + o(1))�Fn(�n;g; g)(nb
dz)1=2(�n;� � �n)

! h1(g) + �0(g)�; (10.37)

where h1(g) and �0(g) are de�ned in (7.2) and the convergence uses Assumptions

NLA1(a), NLA1(b), and NLA2.

Now, the proof of Theorem N3 is similar to the proof of Theorem 4 of AS1 given in

AS2 with the following changes:

(i) f(�n;�; Fn) 2 F : n � 1g 2 SubSeq(h2); where h2 = h2;F0(�0) 2 H2;+ by Assump-

tions NLA1(a) and NLA1(c)-(e),

(ii) part (i) and Assumptions B and MN imply that the results of Lemma AN3 hold

under f(�n;�; Fn) 2 F : n � 1g and these results are used in place of Lemma A1 of AS2,
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(iii) equation (14.38) of AS2 is replaced by

��1n D
�1=2
Fn (�n;�; g; b)D

1=2
Fn
(�n;�; b)h1;n;Fn(�n;�; g; b)

= (Ik + o(1))��1n (nb
dz)1=2D

�1=2
Fn (�n; g; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+��1n D
�1=2
F0

(�0; g; z0)D
1=2
F0
(�0; z0)(Ik + o(1))�Fn(�n;g; g)(nb

dz)1=2(�n;� � �n)]

= �1(g) + o(1); (10.38)

where the �rst equality holds by the equality in (10.37) and Lemma AN1(b) and the

second equality holds because (a) the �rst term on the rhs of the �rst equality is �1(g)+

o(1) by Assumption NLA4 and (b) the second term on the rhs of the �rst equality is

o(1) by the convergence of the second term in (10.37) plus ��1n ! 0; and

(iv) in the veri�cation of (14.23) in part (ix) of the proof of Theorem 4 of AS1 given

in Section 14.3 of Appendix C in AS2, (10.37) is used in place of (14.37) of AS2. This

completes the proof. �

10.2 Additional Simulation Results

In this section, we provide some additional simulation results. Tables A1 and A2

report the robustness results for the CvM/Max and KS/Max test statistics in the kinked

and the peaked bound cases, respectively, for the quantile selection model. As in Tables

I-III, the results in Tables A1 and A2 are for the lower endpoints of the identi�ed

intervals. Tables A3 and A4 report the robustness results for the CvM and KS test

statistics in the kinked and tilted bound cases, respectively, for the conditional treatment

e¤ect model.

Both Tables A1 and A2 show that there is little sensitivity to r1; "; the GMS tuning

parameters, and the kernel bandwidth in terms of coverage probabilities. There is some

sensitivity in terms of the FCP�s. The FCP decreases (gets better) with the sample size

for the KS/MAX-GMS/Asy pair and is stable for the CvM/Max-GMS/Asy pair. The

FCP is smaller (better) with (�n; Bn) halved and bigger with (�n; Bn) doubled.

There is quite a bit sensitivity to the kernel bandwidth. With both the kinked

and the peaked bound, doubling the bandwidth reduces the FCP�s for tests with the

KS/Max statistics. The same is true with the kinked bound and the CvM/Max statistic.

However, with the peaked bound, both doubling and halving the bandwidth increases

the FCP�s.
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Tables A1 and A2 show that 0:50 CI�s cover the true value with probability noticeably

higher than 0:50: This indicates that the lower boundary point of the 0:50 CI as an

estimator for the lower end point of the identi�ed set is not median unbiased, but does

not have an inward bias which has been a concern in the literature.

Table A1. Nonparametric Quantile Selection Model with Kinked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .989 .987 .49 .57

" = 0:05; b = b0n�2=7)

n = 100 .988 .991 .48 .59

n = 500 .989 .991 .45 .54

r1 = 2 .988 .987 .50 .53

r1 = 4 .990 .989 .48 .60

(�n; Bn) = 1=2(�n;bc; Bn;bc) .991 .987 .49 .55

(�n; Bn) = 2(�n;bc; Bn;bc) .993 .991 .56 .61

" = 1=100 .989 .987 .47 .57

b = 0:5b0n�2=7 .986 .987 .69 .77

b = 2b0n�2=7 .997 .995 .35 .45

� = :5 .771 .739 .05 .06

� = :5 & n = 500 .787 .753 .05 .06
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Table A2. Nonparametric Quantile Selection Model with Peaked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .991 .991 .49 .53

" = 0:05; b = b0n�2=7)

n = 100 .989 .990 .56 .65

n = 500 .994 .995 .50 .45

r1 = 2 .990 .990 .51 .50

r1 = 4 .992 .991 .48 .58

(�n; Bn) = 1=2(�n;bc; Bn;bc) .992 .990 .47 .52

(�n; Bn) = 2(�n;bc; Bn;bc) .994 .994 .54 .56

" = 1=100 .991 .991 .47 .53

b = 0:5b0n�2=7 .988 .989 .62 .70

b = 2b0n�2=7 .997 .996 .53 .47

� = :5 .803 .761 .04 .05

� = :5 & n = 500 .836 .795 .04 .04

Tables A3 and A4 show the sensitivity results for the nonparametric conditional

treatment e¤ect model with kinked bound and tilted bound, respectively.

Table A3 shows that, with the kinked bound, the test has NRP�s smaller than 0:05 for

all the test con�gurations and sample sizes that we experimented with. This is expected

because with the kinked bound, the conditional moment inequality is only binding at

a measure-zero set of the instrumental variable and Assumption GMS2 is not likely to

hold. The ARP�s are relatively stable as we vary r1, decrease " or decrease (�n; Bn).

Doubling (�n; Bn) makes the ARP�s smaller (worse). Both doubling and halving the

kernel bandwidth reduces ARP�s noticeably.
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Table A3. Nonparametric Conditional Treatment E¤ect Model with Kinked Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .000 .000 .52 .49

" = 0:05; b = b0n�2=7)

n = 100 .000 .000 .65 .55

n = 500 .000 .000 .33 .40

r1 = 2 .000 .000 .52 .53

r1 = 4 .000 .000 .51 .45

(�n; Bn) = 1=2(�n;bc; Bn;bc) .000 .000 .52 .52

(�n; Bn) = 2(�n;bc; Bn;bc) .000 .000 .44 .42

" = 1=100 .000 .000 .52 .44

b = 0:5b0n�2=7 .000 .000 .38 .30

b = 2b0n�2=7 .000 .000 .34 .43

Table A4 shows a new aspect of the sensitivity analysis. The NRP for the CvM test

in the base case is somewhat bigger than 0:05: Halving the bandwidth reduces NRP�s

to below 0:05: while doubling the bandwidth increases the NRP�s to disastrous level.

This is expected because with the tilted bound the unconditional moment formed using

the kernel functions has negative expectation for any �xed bandwidth. The negative

expectation converges to zero as the bandwidth converges to zero. Thus, letting b

converge to zero is central to the theoretical validity of our method. Using a large b

deviates from the asymptotic theory.

The ARP�s in Table A4 are reasonably stable across di¤erent con�gurations and

sample sizes, except that they are somewhat sensitive to the kernel bandwidth.
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Table A4. Nonparametric Conditional Treatment E¤ect Model with Tilted Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .072 .047 .53 .36

" = 0:05; b = b0n�2=7)

n = 100 .085 .042 .49 .34

n = 500 .072 .050 .53 .40

r1 = 2 .074 .059 .52 .38

r1 = 4 .069 .036 .53 .32

(�n; Bn) = 1=2(�n;bc; Bn;bc) .081 .054 .50 .35

(�n; Bn) = 2(�n;bc; Bn;bc) .066 .045 .53 .36

" = 1=100 .071 .040 .52 .31

b = 0:5b0n�2=7 .044 .023 .29 .14

b = 2b0n�2=7 .467 .313 .69 .57
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