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Abstract

Different markets are cleared by different types of prices—seller-
specific prices that are uniform across buyers in some markets, and
personalized prices tailored to the buyer in others. We examine a set-
ting in which buyers and sellers make investments before matching
in a competitive market. We introduce the notion of premuneration
values—the values to the transacting agents prior to any transfers—
created by a buyer-seller match. Personalized price equilibrium out-
comes are independent of premuneration values and exhibit inefficien-
cies only in the event of “coordination failures,” while uniform-price
equilibria depend on premuneration values and in general feature in-
efficient investments even without coordination failures. There is thus
a trade-off between the costs of personalizing prices and the inefficient
investments under uniform prices. We characterize the premuneration
values under which uniform-price equilibria similarly exhibit inefficien-
cies only in the event of coordination failures.
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Pricing and Investments in Matching Markets

1 Introduction

1.1 Investment and Matching Markets

We analyze a model in which agents match to generate a surplus which they
then split. Prior to matching, the agents make investments that will affect
the size of the surplus.

For example, suppose there is a continuum of workers and a continuum
of firms, each with unit mass. Each worker and firm first makes a costly
investment in an attribute—firms invest in technology while workers invest in
human capital. In the second stage, workers and firms match and generate
a surplus. In the absence of any monetary transfers, the firm owns the
output produced by the worker, while the worker bears the cost of the effort
exerted in the course of production and owns the value of the skills learned
in the course of production. We call these costs and benefits the agents’
premuneration values (from pre plus the Latin munerare, to give or to pay).
Both the surplus and its division between buyer and seller premuneration
values depend on the attributes the agents have chosen. The worker’s human
capital may enhance the quality of the output owned by the firm, and the
firm’s technology may enhance the value of on-the-job learning to the worker.
The final division of the surplus between the worker and firm is determined
by the premuneration values and a subsequent monetary transfer.

A large literature examines settings in which agents make investments
before trading in a market. One extreme, discussed by Williamson (1975),
treats the case of a single buyer and seller. The agents’ post-investment mar-
ket power then gives rise to a “hold-up” problem that prompts inefficient in-
vestments. At the other extreme, Cole, Mailath, and Postlewaite (2001) and
Peters and Siow (2002) examine models with competitive post-investment
markets, featuring a continuum of heterogenous buyers and sellers and fric-
tionless trading, showing that equilibria with efficient investments exist.

Our analysis falls between these two. Our post-investment markets again
feature continua of heterogeneous agents, but we introduce a key friction into
the trading process, namely that firms (continuing with our example) cannot
observe workers’ attribute choices.



1.2 Personalized Pricing

The appropriate equilibrium notion in our setting is not obvious, to a large
extent because we must determine the returns to attributes that nobody
chooses. Continuing with our example, it is helpful to first consider the
case in which firms can observe workers’ investments. We refer to this as
personalized pricing, since wages can be conditioned on the chosen attributes
of both the firm and the worker. In this setting, an equilibrium would be
a specification of the attribute chosen by each firm and worker, a wage
function and a matching of firms and workers such that no agent can increase
his utility by changing his decision and such that markets clear, i.e., the
matching is one-to-one.

This equilibrium notion is similar to Walrasian equilibrium, except that
the wage function attaches a value only to pairs of firm and worker attributes
that are chosen in the investment stage, and not to unchosen attributes. In
the language of Walrasian equilibrium, the price vector includes a price for
every good present in the market, but not for nonexistent goods. We address
the latter with a requirement that no firm (say) can unilaterally deviate to
adopting some currently unchosen attribute and then match with a worker
at her existing attribute, while splitting the surplus in such a way as to make
both better off.

Environments in which people must decide which goods to bring to mar-
ket or which investments to make before entering the market readily give
rise to coordination failures. In the extreme, there is an autarkic equilib-
rium in which neither firms nor workers invest because no one expects the
other side to invest. We could preclude such coordination failures by simply
assuming that prices exist for all attributes, in and out of the market. On
the one hand, we find the existence of such prices counterintuitive. More
importantly, like Makowski and Ostroy (1995), we expect coordination fail-
ures to be endemic when people must decide what goods to market, and
hence think it important to work with a model that does not preclude them.

Personalized-price equilibria can be shown to exist using a variant of
the existence argument in Cole, Mailath, and Postlewaite (2001). There
exist coordination-failure equilibria with inefficient investments, but there
also exist exist efficient equilibria in which no worker-firm pair, matched or
unmatched, could be made jointly better off, even if they could commit to
their investments prior to matching. Premuneration values are irrelevant,
in the sense that every personalized price equilibrium outcome remains an
equilibrium outcome irrespective of the allocation of premuneration values.



1.3 Uniform Pricing

We are interested in the case in which firms cannot observe workers’ at-
tribute choices. Wages can then depend only on firms’ attributes, and we
speak of uniform pricing to emphasize that workers who have chosen dif-
ferent attributes must be offered the same wage. Our equilibrium notion
is a specification of the attribute chosen by each firm and worker, a wage
function, and a choice of firm on the part of each worker, such that no agent
can increase his utility by changing his decision and such that markets clear.
Analogous to personalized price equilibrium, the possibility of coordination
failures again arises.

We show that a uniform-price equilibrium exists. However, these equi-
libria are in general inefficient, even if they exhibit no coordination failures.
There exist efficient uniform-price equilibria if, and essentially only if, firms’
premuneration values are independent of workers’ attributes. Hence, pre-
muneration values matter for uniform-price equilibria.

While it may be unrealistic to think that workers’ attributes are literally
unobservable, ascertaining these attributes may nonetheless be quite costly.
Expanding beyond our worker-firm example, estimates from 11 highly selec-
tive liberal arts colleges indicate that they spent about $3,000 on admissions,
i.e., ascertaining students’ attributes, per matriculating student in 2004.!
The cost for identifying whether a foreign high school diploma comes from a
legitimate high school is $100.2 There may thus be substantial savings from
posting uniform prices and letting buyers sort themselves, if the premunera-
tion values are such that uniform prices can do this sorting. Alternatively, if
the premuneration values are such that uniform prices cannot duplicate the
allocation of personalized prices, and if transactions costs or institutional
considerations preclude personalized prices, then market outcomes will be
inefficient.

1.4 Premuneration values

The premuneration values of the firms in our motivating example will typ-
ically depend on their employees’ attributes—better skilled and more pro-
ductive employees will enhance the quality and quantity of a firm’s output.
The business pages are filled with announcements of the good news that a

!Memorandum, Office of Institutional Research and Analysis, University of Pennsyl-
vania, July 2004. We thank Barnie Lentz for his help with these data.

2«Vetting Those Foreign College Applications,” New York Times, September 29, 2004,
page A21.



firm has hired a particularly prized employee. Moving beyond this example,
students are matched with universities after students have incurred substan-
tial preparation costs and universities have hired faculty. Both sides care
about the investments the other side has made. Universities reap benefits
well beyond tuition revenues from talented students, and students clamor
for spots at elite universities. Similarly, an aspiring faculty member cares
about the investments a university has made in facilities and other faculty,
while the university cares about the investment in knowledge and research
capabilities of the potential recruit.

The central message of this paper is that there is a tradeoff between the
costs of personalizing pricing and the inefficiency of uniform pricing. One
might hope to ameliorate this tradeoff by reallocating the premuneration
values. In particular, premuneration values are affected by the explicit and
implicit property rights to the costs and benefits that flow from a match. For
example, one could arrange the premuneration values in a university /student
interaction so that the university owns all of the surplus. This would require
a somewhat unconventional arrangement in which the university shares in
the future income of students to whom it gives degrees. However, income-
contingent loans in a number of countries (including Australia, Sweden and
New Zealand) that effectively give the lender a share of students’ future
income (Johnstone, 2001) attest to the possibility of such an arrangement.?

There are often, however, constraints on the design of premuneration
values. Moral hazard problems loom especially large. If universities owned
a large share of students’ enhanced future income streams, why would the
students exert the effort required to realize this future income? How are we
to measure and collect the increment to income attributable to the university
education? Such an arrangement might also require changes in labor laws
that preclude involuntary servitude. More generally, laws concerning work-
place safety, the (in)ability to surrender legal rights, the division of marital

3In the summer of 2010, the UK debated the possibility of partially fund-
ing higher education though a “graduate tax” levied on college graduates’ income
(http://www.bbc.co.uk/news/education-10649459). Basketball star Yao Ming (Hous-
ton Rockets) has a contract with the China Basketball Association calling for 30%
of his NBA earnings to be paid to the Chinese Basketball Association (in which he
played prior to joining the Rockets), while another 20% will go to the Chinese govern-
ment. Similar arrangements hold for Wang Zhizhi (Dallas Mavericks) and Menk Ba-
teer (Denver Nuggets and San Antonio Spurs). (See the Detroit News, April 26, 2002,
http://www.detnews.com/2002/pistons/0204 /27 /sports-475199.htm/.) We can view the
initial match between Yao Ming and his Chinese team as producing a surplus that includes
the enhanced value of his earnings as a result of developing his basketball skills, and the
contract as setting premuneration values.



assets and the custody and sale of children may constrain the allocation of
premuneration values. Our analysis points to the cost of such constraints or
institutional arrangements, in the form of personalization costs or inefficient
uniform pricing.

1.5 Related Literature

Our model is related to the literature on competitive search (see Guerrieri,
Shimer, and Wright (2010) for a recent contribution and for pointers to the
literature). We depart from a standard competitive search model in three re-
spects. First, we include a first stage at which investments are made, whereas
most competitive search models begin with buyers and sellers with exoge-
nously given attributes. Second, we assume that both buyers and sellers
are “totally heterogeneous,” in the sense that no two buyers or sellers have
the same cost of acquiring attributes. As a consequence of this heterogene-
ity, our equilibria (under either personalized or uniform pricing) perfectly
separate investing agents—no two buyers who make nontrivial investments
choose the same seller at the matching stage. Third, like Guerrieri, Shimer,
and Wright (2010), we introduce a key friction into the competitive search
model, asymmetric information, in the sense that sellers cannot condition
prices on buyers’ characteristics.

Our analysis differs from that of Guerrieri, Shimer, and Wright (2010)
most notably in the nature of the prematching investment choice. In their
model, only sellers make investments, and these consist of paying a fixed cost
to participate in the second stage. Sellers who enter the second stage are
homogenous, making it more difficult to screen buyers than in our model.
Premuneration values play no role in their model and coordination failures
cannot arise. The resulting equilibria are inefficient, and the inefficiencies
arise not at the investment stage but out of constraints on the ability to
screen workers. In contrast, in our model, the continuum of possible in-
vestments available to agents on both sides of the market is the source of
inefficiencies, with the existence and nature of inefficiency depending upon
the nature of the premuneration values.

Variants of competitive search models have been used to accommodate
sources of friction other than asymmetric information. The most obvious
such friction is to assume that buyers and sellers cannot instantly match. In-
stead, buyers must engage in costly search, including the prospects of being
either temporarily or permanently unable to find a seller (e.g., Niederle and
Yariv (2008) and Peters (2010)). We forgo including such considerations in
order to focus on one friction at a time, in our case asymmetric information.



Our focus on creating incentives for efficient investments is shared by a
number of other papers.* Acemoglu and Shimer (1999) analyze a worker-
firm model in which firms (only) make ex ante investments. If wages are
determined by post-match bargaining, then the resulting effective power
gives rise to a standard hold-up problem inducing firms to underinvest. The
hold-up problem disappears if workers have no bargaining power, but then
there is excess entry on the part of firms. Acemoglu and Shimer show that
efficient outcomes can be achieved if the bargaining process is replaced by
wage posting on the part of firms, followed by competitive search. de Meza
and Lockwood (2009) examine an investment and matching model that gives
rise to excess investment. Their overinvestment possibility rests on a dis-
crete set of investment choices and the presence of bargaining power in a
noncompetitive post-investment stage. In contrast, the competitive post-
investment markets of Cole, Mailath, and Postlewaite (2001) and Peters
and Siow (2002) lead to efficient two-sided investments.

Moving from complete-information to incomplete-information matching
models typically gives rise to issues of either screening, as considered here,
or signaling. See Cole, Mailath, and Postlewaite (1995), Hopkins (forthcom-
ing), Hoppe, Moldovanu, and Sela (2009), and Rege (2008) for models that
incorporate signaling into matching models with investments.

2 The Model

2.1 The Market

There is a unit measure of buyers whose types are indexed by 3 and dis-
tributed uniformly on [0, 1], and a unit measure of sellers whose types are
indexed by o and distributed uniformly on [0,1]. For ease of reference,
buyers are female and sellers male.

Buyers and sellers have an outside option (with payoff zero) that pre-
cludes participation in the matching process. If they do not take this option,
they make choices in two stages. First, each buyer simultaneously chooses
an attribute b € Ry and each seller simultaneously chooses an attribute
s € Ry. Second, buyers and sellers match, with each match generating a
surplus to be split between the participating agents.

4Early indications that frictionless, competitive search might create investment incen-
tives appear in Hosios (1990), Moen (1997) and Shi (2001). Eeckhout and Kircher (2010)
provide an extension to asymmetric information, while Masters (2009) examines a model
with two-sided investments.



Attributes are costly, but enhance the surplus generated in the second
stage. To keep the analysis tractable, we assume that agents’ types affect
the first-stage cost of investment but not the second-stage surplus, which
depends only on the attributes chosen by the agents. In particular, the cost
of attribute b € R to buyer 3 is given by c¢p(b, 3) and the cost of attribute
s € R4 to seller o is given by cg(s,0). The total surplus from a match
involving buyer attribute b and seller attribute s is given by v(b, s).

Suppose that a buyer and seller match and create surplus v(b, s), but
(presumably counterfactually) no transfers are made. The surplus is still
divided between the buyer and seller, and it may well be that both receive
some of the surplus. A firm that does not pay its employee may capture
much of the surplus, in the form of the value of the employee’s production.
The employee’s surplus includes the cost of her effort, but may also include
the value of her enhanced human capital stemming from her association with
the firm. We refer to the portions of the surplus that accrue to the agents
in the absence of transfers as their premuneration values. We let hp(b, s)
denote the premuneration value of the buyer and hg(b, s) the premuneration
value of the seller, with

hp(b,s) 4+ hg(b,s) = v(b,s).

The premuneration values depend on the nature of the interaction be-
tween the two agents and the legal and institutional environment in which
that interaction takes place. For example, the law may stipulate that the
employer owns the output produced by an employee and owns any patents
that emerge from the employees work, but that the employee owns the value
of any contacts she makes while on the job.

The important point is that a match creates a surplus, independent
of transfers. Some of this surplus is owned by the seller and the rest by
the buyer, as specified by the premuneration values. Premuneration values
are thus the counterparts of endowments in standard general equilibrium
models.

Transfers alter the division of the surplus. A match between a buyer and
seller with attribute choices (b, s) at a price p yields a gross (i.e., ignoring
investment costs) buyer payoff of

hB(b7 S) - b

and a gross seller payoff of
hS (b7 5) + P



We assume that prices must be uniform, meaning that prices can be
conditioned only on seller attributes. Any buyer who trades with a given
seller does so at the same price, regardless of the buyer’s attribute (though
trades involving different sellers may occur at different prices).

There are several factors that would constrain prices to be uniform.
First, it may be prohibitively expensive for sellers to observe buyers’ char-
acteristics. For example, firms may be unable to observe whether their
potential employees have invested in effective work habits. Second, tailor-
ing prices to buyers’ attribute choices may entail prohibitive menu costs.
A college may prefer to set uniform prices rather than bear the cost of an
admissions department to carefully vet applicants. Similarly, it may be cost-
less to use generic contract forms to make a standard offer to every buyer
who appears, while tailoring offers to buyers’ characteristics requires a costly
legal process. Third, legal restrictions may prescribe uniform pricing. For
example, employers may be prohibited from discriminating against potential
employees whose attributes make them potentially expensive health risks,
or union contracts may prohibit wage discrimination.

In each case, the constraints that give rise to uniform pricing also deter-
mine which of the two parties’ attributes prices can be conditioned on. If
buyer attributes are unobservable, then the only possibility is to condition
prices on seller attributes. It will be convenient to consistently call the side
of the market on which prices can be conditioned sellers. Prices may then
be either positive or negative, and the agent we call a seller may in ordinary
parlance be called either a buyer or seller.

2.2 Example: Basic Structure

We introduce here an example that we carry throughout the analysis. The
premuneration values are such that a fixed share 6 € (0,1] of the surplus
goes to the buyer (Footnote 5 explains why 6 = 0 is excluded), so that

hp(b,s) =0bs and hg(b,s) = (1—6)bs,

where the surplus function is given by v(b, s) = bs and the cost functions by
b 3
cp(b,B) = 33 and cg(s,0) = 3
It is then a straightforward calculation (with details in Appendix A.1)
that the efficient outcome entails attribute-choice functions

b(8) =5 and s(o) =0,



and positive assortative matching, so that seller o matches with buyer 8 = o,
and the pair produces total surplus o2 for a total net surplus %02.

3 Equilibrium

3.1 Assumptions

Assumption 1 (Supermodularity) The premuneration values hp : Ry x
R, — R and hs : Ry x Ry — R are C?, increasing in b and s, and satisfy’

02h 5 92hs
> (.
abos 0 s =Y

There is a simple class of problems for which this assumption holds
that includes our example: premuneration values constitute fixed shares
of the surplus, or hp(b,s) = Ouv(b,s) and hg(b,s) = (1 — 0)v(b, s) for some
6 € (0,1], and the surplus function v : R4 xRy — R is strictly supermodular
(0%v/0bds > 0), as well as (twice continuously) differentiable and increasing
in b and s.

Our next assumption is a “no free surplus” requirement that matches
are not profitable without investments:

Assumption 2 (Essentiality) The premuneration values hp(b,0) and hp(0,s)
are constant in b and s, respectively, and

h5(0,0) + hg(0,0) = 0.

The following single-crossing condition requires that higher-index buyers
and sellers are more productive, in the sense that they have lower investment
costs:

5The asymmetry in this assumption—it requires a strict inequality on the cross partial
of hp, but only a weak inequality on that of hg—reflects our convention that sellers set
prices. If the derivative for buyers is zero, then every buyer will attempt to purchase from
the same seller, destroying all hope of sorting buyers. Peters (2010) illustrates the compli-
cations that arise if buyers’ premuneration values do not depend on sellers’ characteristics.
However, Section 4.2 shows that there exist efficient uniform-price equilibrium outcomes if
and only if seller premuneration values do not depend on buyer attribute choices, making
it important to include the weak inequality for the seller. As will become clear, this zero
second derivative for the seller poses no difficulty. The asymmetry that appears in the
first part of Assumption 2 similarly arises out of the convention that sellers set prices,
though this part of the Assumption is more technical in nature, allowing us to rule out
some troublesome boundary cases.



Assumption 3 (Single-crossing) The cost function cp : Ry x[0,1] — R4
is C2, strictly increasing and convex in b, with cg(0,3) = 0 = dcp(0,3)/0b
and

8263

0bos

The cost function cg satisfies analogous conditions.

< 0.

Our next assumption ensures that efficient attribute choices exist and
are bounded.

Assumption 4 (Boundedness) There exists b such that for all b > b,
seR,, f€]0,1] and o € [0,1],

v(b,s) —ep(b,B) — cs(s,0) < 0.

A similar statement, with an analogous s, applies to sellers.

3.2 Feasible Outcomes

We next define feasible matchings between buyers and sellers. We denote
by b :[0,1] — [0,b] and s : [0,1] — [0, 5] the Lebesgue-measurable functions
describing the attributes chosen by buyers and sellers.

The closures of the sets of attributes chosen by buyers and sellers re-
spectively are denoted by B = cl(b([0,1])) and S = cl(s([0, 1])). We refer to
B and S as the set of marketed attributes. Let Ap and As be the measures
induced on B and S by the agents’ attribute choices: for Borel sets B’ C B
and 8’ C S,

As(B') = MB €[0,1] : b() € B'}
and As(8) = Mo €0,1] : s(0) € §'},

where A is Lebesgue measure. The measures of buyers and of sellers who
choose the zero attribute are denoted by 8 = sup{f : b(8) = 0} and ¢ =
sup{o : s(c) = 0}.

We simplify the analysis by restricting attention to equilibrium attribute-
choice functions that are strictly increasing when positive (i.e., b(3) > 0 and
B > B imply b(8’) > b(f3), and similarly for s) and that assign equal masses
of buyers and sellers to zero attribute choices. We show that equilibria exist
with attribute choice functions satisfying these restrictions. More general
feasible matchings could be defined, but at the cost of considerable technical
complication.

10



Definition 1 Suppose b and s are strictly increasing when positive and
that o = (3. A feasible matching is a pair of measure-preserving functions

b: (S, As) — (B,Ap) and §: (B,A\g) — (S, \g) satisfying

5(b(s)) = s for all s € s((,1]), (1)
and  b(5(b)) = b for all b € b((3,1]). (2)

Given a feasible matching (b, 3), b(s) specifies the buyer attribute matched
to a seller with attribute s, and 5(b) specifies the seller attribute matched
to a buyer with attribute b. Observe that equations (1) and (2) imply that
§ is one-to-one on b((3,1]) and b is one-to-one on s((c,1]). The measure-

preserving requirement on b ensures that the measure of any set of sellers is
equal to the measure of the set of buyers with whom they are matched, i.e.,
A5(b(S") = As(S') for all Borel &’ ¢ S (and similarly for ).

We have simplified the analysis by defining the matching functions b and
5 on the closures S and B of the sets of chosen attributes. In many cases
of interest, efficient attribute-choice functions are discontinuous (see Cole,
Mailath, and Postlewaite (2001, Section 2) for an example of discontinuous
attribute-choice functions with personalized pricing (cf. Section 6.1)). Since
the sets B and S are the closures of the sets of attribute choices, a seller o
(with attribute choice s(0)) may be matched with a buyer attribute choice
b that is not chosen by any buyer. We interpret such a seller as matching
with a buyer whose attribute choice is arbitrarily close to b, while retain-
ing the convenience of saying that s(o) matches with b. Defining feasible
matchings on either the agents directly or on the sets of attributes (rather
than their closures) would avoid this interpretation, at the cost of requiring
the equivalent but more complicated formulation used in Cole, Mailath, and
Postlewaite (2001).

Definition 2 A feasible outcome (b,s, b, 3) is a pair of attribute-choice
functions b and s that are strictly increasing when positive and satisfy o = 3,

along with a feasible matching (l;, 3).

3.3 Uniform Pricing

Sellers post prices that depend on their own attribute choices, but not the
attributes of buyers. We describe these prices by a uniform-price function
py:S — R

11



Given a feasible outcome (b, s, b, §) and a uniform-price function py the
payoffs to a buyer § choosing b € B and a seller ¢ choosing s € S are

(b, ) = hp(b,5(b)) — pu(5(b)) — ¢ (b, B)

and IIs(s,0) = hs(b(s),s) + pu(s) — cs(s, o).

Under uniform pricing, sellers cannot condition on buyer attributes. Conse-
quently, sellers choose only their own attributes. Buyers, on the other hand,
choose attributes and can choose any marketed seller attribute regardless of
their own attribute choice. These choices should maximize payoffs. A buyer
B optimizes (at b) given py if

Iz (b(B),B) = R hp(b,s) — pu(s) — cp(b, B). (3)

Similarly, a seller o optimizes (at s) given py if

Ms(s(0),0) = max hs(b(s), ) +pu(s) — es(s,0). (4)

3.4 Equilibrium

The uniform-price function py determines the payoff to a buyer for any
attribute he chooses and any seller he matches with, since prices do not de-
pend on the buyers’ attribute choices. It also determines the payoff to any
seller who chooses a marketed attribute (i.e., s € §), but not for nonmar-
keted attributes, since such attributes are not priced by the function py;. We
think of a seller who chooses a nonmarketed attribute as naming the price
at which he is willing to trade, and then trading with one of the buyers
willing to trade at this price, if there are any. However, this attribute and
price combination potentially attracts many buyer attributes, all of which
are indistinguishable to the seller. The following definition requires that the
seller’s deviation to (s',p) with s’ € S be profitable irrespective of the buyer
attracted.®

Definition 3 Given (b,s,b, 3, py), there is a profitable seller deviation if
there exists o such that either (i) Ilg(s(o),0) < 0 or (i) there exists an
unmarketed attribute choice s' € S, a price p € R, and at least one buyer
b € B such that

SWe could extend Definition 3 to cover deviations to any seller attribute (rather than
simply unmarketed seller attributes), as well as deviations to other prices at the seller’s
current attribute. Appendix B shows that if buyers optimize given py and sellers have no
profitable deviations in this extended sense, then sellers must also be optimizing given py .
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hp(',s') —p > hp(V',5(b) — pu(5(b)), (5)

and for any such V',
hS(b/7 SI) +p - CS(S,a U) > HS<S(U)7 U)'

If IIs(s(o),0) < 0, the outside option is better for the seller than the
prescribed choice. This part of the definition plays only a technical role in
the analysis, ensuring that we are not inappropriately forcing our agents to
participate in the market. We will make greater use of the second require-
ment, that a profitable seller deviation arises if there is some seller who can
choose an unmarketed attribute and set a price that attracts some buyers,
and then earn a higher payoff from any attracted buyer than in the putative
equilibrium.

Remark 1 (Profitable Deviations) A seller is defined to have a prof-
itable deviation under uniform pricing only if he is better off when matched
with any buyer who is attracted to the deviation. Why make sellers so pes-
simistic? One could alternatively think of requiring only that the seller be
better off given a random draw from the set of attracted buyers. Though
the details of the calculations (and the existence proof) would differ consid-
erably, the qualitative forces behind our results would remain. In particular,
the essence of uniform pricing is that the seller cannot stipulate which buy-
ers he is willing to trade with and which he is not. This inability affects the
seller most starkly when we assume the seller draws the worst buyer from
the set of willing buyers, but the effects remain as long as the seller cannot
select the best buyer.

Adopting the pessimistic formulation that seller deviations must be prof-
itable when matched with the worst willing buyer makes seller deviations
less attractive and hence enlarges the set of uniform-price equilibria. Our
key results (Propositions 1 and 2), establishing conditions under which there
exist efficient uniform price equilibria, are rendered more powerful by such
a permissive definition of equilibrium. ¢

Definition 4 A feasible outcome (b,s,l;7 3) and a uniform-price function
py : S — R constitute a uniform-price equilibrium if all agents optimize
given py and the seller has no profitable deviations.
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Remark 2 The definition of a uniform-price equilibrium is reminiscent of
that of a subgame-perfect equilibrium of a game, but with many of the details
of the game left unspecified. In particular, given a candidate equilibrium, the
deviations in the agents’ choices (attribute choices and matching) that would
preclude this outcome and price from being an equilibrium are identified
without specifying the precise result of the deviations. For example, suppose
that given an outcome (b,s, lNJ, 3), buyer § could get a higher payoff by
deviating and choosing seller attribute s’ rather than the prescribed seller
attribute 5(b(3)). This would result in there being two buyers matched with
seller s’, and if we were to model this as a well-defined game we would have
to specify which buyer ends up matched with the seller. One could provide
such specificity, but doing so gives rise to a number of arbitrary choices
and technical issues that obscure the underlying economics. Analogous to
the definition of Walrasian equilibrium, we simply say that an outcome and
price is an equilibrium when no such deviations exist. ¢

Remark 3 (Complete Pricing) By altering Definition 4 to require py to
have domain [0, 5], thereby setting a price for every seller attribute (whether
marketed or not), and expanding to [0, §] the set of seller attribute choices
over which the buyer optimizes, we obtain a complete uniform-price equi-
librium. Notice, however, that the matching function is still restricted to
marketed attributes, and hence the seller’s payoff when choosing an unmar-
keted attribute is still separately defined as in Definition 3. ¢

Remark 4 (Hedonic Pricing) In a uniform-price equilibrium, each buyer
faces prices over seller attributes, and so it is tempting to interpret the
prices as hedonic prices. However, since sellers care about buyer attributes
and the prices are not a function of these attributes, all payoff-relevant
characteristics are not priced.” Accordingly, a uniform-price equilibrium is
not an equilibrium in hedonic prices. ‘

3.5 Example: A Uniform-Price Equilibrium

Under uniform pricing, buyer (3 faces a uniform-price schedule pyy and chooses
a buyer attribute b and a seller attribute s € S to solve

3
n;ix 0bs — py(s) — ?i)ﬁ

TOf course, in equilibrium, each seller can infer the buyer attribute that is matched
with each marketed attribute at the equilibrium price.
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When choosing an attribute s, the seller is selected by a buyer with attribute
b = b(s) and receives prices py. The seller o thus solves
$3

max (1 —0)b(s)s + pu(s) — i

The uniform-price equilibrium is given by the following collection (the deriva-
tion appears in Appendix A.2):

b(3) = 03(2-0)35, (6)

s(0) = 03(2—0)io, (7)
1/3

we = 5 (50) = 0

~ g \1/3
and b(s) = (2_0> s. (9)

When 6 = 1, this uniform-price equilibrium gives the efficient outcome
calculated in Section 2.2. In this case, the restriction to uniform pricing
imposes no efficiency costs, and giving sellers the ability to condition prices
on buyer attributes would have no effect on behavior or payoffs. Conversely,
when 6 < 1, the uniform-price equilibrium is inefficient, in that the gener-
ated surplus of almost all matched pairs is not maximized. We discuss this
inefficiency further in Section 4.3.

Note that the equilibrium is not unique. In particular, all buyers and
sellers choosing the zero attribute is also an equilibrium outcome.

4 Efficiency

When are uniform-price equilibrium outcomes efficient? Efficiency fails (i.e.,
total surplus is not maximized) when either the wrong agents are matched
or the wrong attributes agents are chosen by matched.

4.1 Efficient Matching

Efficiency requires that the second-stage matching be positively assortative
in attributes. The supermodularity assumptions on premuneration values
guarantee this positive assortativity in equilibrium.

Lemma 1 In any uniform-price equilibrium (b, s, 5, S,pv), b and § are strictly
increasing for strictly positive attributes, and so the matching is positively
assortative in attributes.
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Proof. Suppose b is not strictly increasing. Since b is one-to-one on s((c, 1])
(see Definition 1 and its following comment), there exists 0 < s1 < s3 with
b1 = b(s1) > b(s2) = by. Adding

hp(b1,s1) —pu(s1) > hp(bi,s2) — pu(s2)

and
hp(ba, s2) —pu(s2) > hp(be, s1) — pu(si)

gives
hp(bi,s1) + hp(ba, s2) > hp(b1, s2) + hp(be, s1),

contradicting the strict supermodularity of hp.
Equation (2) then implies that § is strictly increasing. [ |

4.2 Efficient Investments

Efficiency at the investment stage requires that the attribute choice functions
(b, s) satisfy
(b(¢),s(¢)) € argmax W (b, s, ¢),
b,seR ¢

where
W(ba S, ¢) = U(b> 8) - CB(b7 d)) - CS(Sv ¢)

This efficiency is not guaranteed. We begin with some intuition, ap-
propriate when equilibrium is characterized by first-order conditions. Fix a
uniform-price equilibrium. By standard incentive compatibility arguments,
the uniform-price function is differentiable. The first-order conditions im-
plied for the buyer’s choice of attribute b and matching attribute choice s
in a uniform-price equilibrium are

. th(b7 8) N ch(baﬁ)

= 1
0 db db (10)
_ th(b7 3) de(8>
and 0= 5 ds (11)

while the seller’s first-order condition for choosing s is (assuming b is differ-
entiable)

_ dhs(b(s), s) db(s) n dhg(b(s), s) n dpu(s) dcs(s,a).

0 db ds ds ds ds

(12)
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Using (11) to eliminate dpy(s)/ds in (12) and then using the identity v(b, s) =
hp(b,s)+ hs(b,s) in (10) and (12), these three first-order conditions can be
reduced to

_ du(b,s) B dhs(b, s) B deg(b, 3)

0= db db db
_ dhg(b,s) db(s)  dv(b,s) des(s,o)
and =T ds ds ds

Efficiency requires than any matched buyer and seller maximize the differ-
ence between the surplus they generate and their investment costs, giving
rise to the first-order conditions:

_ dv(b,s) B dep(b, B)

0= db db (13)
0= dv(b,s) decg(s,0)
- ds ds

Comparing these, it is immediate that the solution to the first-order condi-
tions for an efficient allocation will be a solution for the first-order conditions
for the uniform-price equilibrium if dhg(b, s)/db = 0, that is, if each seller’s
premuneration value is independent of the attribute choice of the buyer
with whom the seller is matched. Moreover, the same argument shows that
when seller premuneration values are independent of buyer attributes, every
uniform-price equilibrium is constrained efficient, in that no efficiency gains
can be achieved without a simultaneous deviation to unmarketed buyer and
seller attributes. In other words, inefficiency arises only out of coordination
failure.

These arguments are summarized in the following proposition. The proof
follows the preceding intuition (though it requires no differentiability as-
sumptions), and so is relegated to Appendix C.

Proposition 1 Suppose the sellers’ premuneration values do not depend
on the buyer’s attribute. There exist efficient uniform-price equilibria. In
addition, every uniform-price equilibrium outcome (b,s,l;, S) is constrained
efficient:

W(b(0).5(0).¢) = max W(b.s.0)
sER

= gRaf W (b, s, d).
ses([0,1])
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The constancy of hg(b, s) in b is also essentially necessary for personalized-
price equilibria to be achieved via uniform pricing. The “essentially” here
is that this constancy need not hold for pairs (b, s) that are not matched in
equilibrium.®
Proposition 2 Suppose the efficient outcome (b, s, b, 3) can be supported as
a uniform-price equilibrium outcome. Then for all s € S,

dhs(b(s), s)

db =0

Proof. It follows from (10) and (13) (again, without any differentiability
assumptions beyond those placed on the primitives of the model in Assump-
tions 1 and 3), that if (b,s,b,3,pp) is and efficient outcome that can be
supported by uniform prices, then

dhp(b(s),s)  dv(b(s),s)
db db ’

implying dhg(b(s),s)/db = 0. ]

4.3 Example: Efficiency

Suppose first that sellers own none of the surplus (i.e., § = 1, and hence
hs(b,s) = 0 and dhg(b,s)/db = 0). In this case, the uniform-price equilib-
rium of Section 3.5 results in an efficient outcome. Consequently, no seller
would gain by personalizing his price even if he could and the ability to
personalize prices is irrelevant.

In the efficient outcome, the buyer’s equilibrium attribute choice is b(3) =
8. Buyer attributes in the uniform-price equilibria are again a linear func-
tion of the buyer’s index, with slope 92/3(2 —0)'/3. This slope is below 1 for
all § < 1, that is, buyers’ investments are inefficiently low. The inability to
personalize prices prevents sellers from offering buyers lower prices in return
for higher buyer attributes. As a result, the return on buyers’ investments
under uniform pricing is less than the social return, and buyers choose lower
attributes than would be efficient.

The magnitude of the inefficiency decreases as € increases. The smaller
the buyers’ premuneration values, the larger the extent to which their at-
tribute choices fall short of efficient levels.

8 Analogously, the single-crossing condition is essentially necessary for a separating
equilibrium in a signaling model.
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Figure 1: Uniform-price equilibrium attribute choices as a function of 6, the
buyers’ premuneration-value share of the surplus. The lower curved line is
the coefficient of the (linear) buyer attribute-choice function, while the upper
curved line is that of the seller attribute-choice function. Both coefficients
are 1 in the efficient outcome.

Sellers’ attribute choices in the uniform-price equilibrium are similarly
a linear function of index, with slope 0'/3(2 — 0)%/3. Since this exceeds the
buyer coefficient, buyers choose smaller attributes than sellers, with buyers
of attribute choice level b matching with values s > b.

Perhaps surprisingly, the sellers’ investment behavior is not monotonic
in 0, as illustrated in Figure 1. For low levels of —when the sellers’ share
of the surplus is near 1—sellers invest very little. This is to be expected
since the value of their investment depends on buyers’ investment, which is
low in this case. The slope of the seller attribute-choice function initially
increases in @, a consequence of the increase in buyers’ attribute choices and
the increase in the price a seller attribute fetches. When 6 = .38, sellers
make precisely the attribute choices under uniform pricing that they would
in the efficient outcome. The equilibrium is still inefficient, however, as
buyers invest too little. For larger values of 6, uniform pricing leads sellers
to invest more than they do in the efficient outcome.

To understand this seller behavior, notice that a seller would like to
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screen the buyers to whom he sells, but the inability to personalize prices pre-
cludes doing so directly. The key to screening buyers is that high-attribute
buyers have a higher willingness to pay for high-attribute sellers than do
low-attribute buyers. Sellers then have an incentive to choose higher at-
tributes (than the efficient level) and charge higher prices. As 6 increases,
buyer attribute choices increase, making screening all the more valuable to
sellers. As a result, seller attribute choices continue to increase above their
efficient levels as 6 increases above .38.

Once 6 reaches 2/3, sellers’ attribute choices no longer increase (though
seller attribute choices remain above efficient levels). Buyers’ attribute
choices continue to increase as 6 increases, but the decreasing share that
sellers receive makes screening less valuable, and hence investment less at-
tractive.

Sellers’ incentives to screen buyers lead not only to attribute choices
that exceed the efficient investments, but also to attribute choices that are
inefficiently high given the buyers’ (inefficiently low) attribute choices, for
all § < 1. In equilibrium seller ¢ is matched with buyer 8 = o, who makes
attribute choice 8%3(2 — 6)2/3¢. The net surplus (ignoring the cost of b)
from a match of seller o with such a buyer is

$3

s0%/3(2 — ) /3¢ — .
30

The seller attribute maximizing this surplus is
s(o) = a0'/3(2 — )18,
which is smaller than the seller’s equilibrium attribute choice of o'/ 32—
0)1/3,
5 Existence of Equilibrium

Appendix D establishes the existence of uniform-price equilibria, by showing
the existence of complete uniform-price equilibria (see Remark 3).

Proposition 3 If there exists (b,s) € (0,b] x (0, 3] with
hp(b,s) + hs(0,s) —cp(b,1) —ecs(s,1) >0, (14)

then there exists a complete uniform-price equilibrium in which some buyers
and some sellers make strictly positive attribute choices.
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Moreover, if for all ¢ € (0,1], there exists (b, s) € (0,b] x (0, 5]
hp(b,s) + hs(0,s) —cp(b,¢) — cs(s,d) >0, (15)

then there exists a complete uniform-price equilibrium with b(3),s(o) > 0

for B,0 € (0,1].

In general, condition (14) is stronger than the requirement that there be
a positive surplus for the most efficient match (though (14) is implied by
that requirement if hg(b, s) is independent of b, the condition of Proposition
1). Uniform-pricing equilibria are inefficient when hg(b,s) depends on b,
and if this dependence is too extreme, (14) may fail and there may be no
investment on either side.

Two significant complications must be confronted in the proof of ex-
istence of uniform-price equilibria: Equilibrium attribute-choice functions
may be discontinuous, and we must preclude profitable deviations to at-
tributes not in the market. These complications preclude the direct ap-
plication of a fixed point theorem. We proceed indirectly, constructing a
simultaneous-move three-player game whose equilibria capture the relevant
behavior of uniform-price equilibria. The players include a buyer, whose
payoff corresponds to the total buyer payoff in our model, a seller whose
payoff is analogous but who does not set prices, and a price-setter who is
penalized for market imbalance. In constructing this game, we define seller
payoffs in a manner incorporating the pessimism inherent in our definition
of uniform-price equilibrium. Glicksberg’s fixed point theorem establishes
the existence of Nash equilibria in the three-player game when strategies are
constrained to be Lipschitz continuous. We then examine the limit as this
constraint is removed, showing that the result corresponds to a uniform-price
equilibrium of the underlying economy.

6 Discussion

6.1 Comparison with Personalized Pricing
6.1.1 Personalized Price Equilibrium

The obvious point of comparison for a uniform price equilibrium is with
a scenario in which prices can be conditioned on both buyer and seller
characteristics. In such a scenario, there is a personalized-price function
pp: B xS — R, where pp(b, s) is the (possibly negative) price that a seller
with attribute choice s € S receives when selling to a buyer with attribute

21



choice b € B. This gives rise to a personalized price equilibrium, analogous
to that of a uniform price equilibrium except that sellers can charge different
prices to different buyers, and the possibility of a profitable deviation to an
unmarketed attribute is now open to buyers as well as sellers. Appendix E
develops the details, establishing the following results.

e Personalized price equilibria exist, and are, modulo some technical
differences in the specification, equivalent to the ex post contracting
equilibria of Cole, Mailath, and Postlewaite (2001).

e Personalized price equilibria are constrained efficient, in the sense that
there is no alternative, Pareto superior allocation that restricts buyers
and sellers to choosing attributes marketed in the equilibrium. Person-
alized price equilibria may exhibit “coordination failure” inefficiencies,
in which mutual gains could be realized if buyers and sellers both bring
currently unmarketed attributes to the market. There exists an effi-
cient personalized-price equilibrium.

e Premuneration values are irrelevant for personalized-price equilibria.
For a given specification of premuneration values and attendant per-
sonalized price equilibrium, any other specification of premuneration
values admits a personalized-price equilibrium whose outcome, includ-
ing investments, matching function, and payoffs, duplicate that of the
original equilibrium.

e Under the conditions of Proposition 1, uniform and personalized price
equilibria coincide. In this case, the ability to personalize prices is
irrelevant. Personalization brings sellers no advantage, and even the
slightest cost of personalization would suffice to ensure that we see
uniform pricing.

The essence of our results, culminating in Propositions 1 and 2, is to
establish conditions under which personalization is redundant. If these con-
ditions hold, uniform prices also lead to efficient equilibrium outcomes. If
not, uniform prices are inextricably linked to inefficient investments. Under
uniform pricing, premuneration values matter.

6.1.2 Example: Personalized Pricing

Returning to our example, suppose that sellers observe buyers’ attribute
choices and so can personalize their prices. If buyers and sellers optimize
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given the personalized-price function

82

pp(b,s) = 5 (1 —6)bs, (16)
the result is a feasible and efficient outcome.® In particular, given the pricing
function (16), buyer  chooses the attribute b = b() =  and chooses to
match with seller attribute s = b(3). The seller chooses attribute s = s(o) =
0. The resulting matching of buyers and sellers clears the seller attribute
market (in that the distributions of demanded and supplied seller attributes
agree) and the resulting outcome is efficient. Appendix A.3 contains the
details and confirms that this is a personalized-price equilibrium.

If & < 1 in our example, then all buyers receive lower payoffs under
uniform than under personalized prices.!® A natural conjecture is that sellers
are necessarily disadvantaged by the inability to personalize prices. The
seller’s equilibrium payoff in the uniform-price equilibrium is given by

- s(o 3
(1= 0)b(s(0))s(0) + pu(s(0) — 20 = Lpa 202

When 6 = 1, this duplicates the payoff from the personalized-price equilib-
rium. For @ for which sellers’ attributes exceed the personalized-price equi-
librium level, every seller actually earns a higher payoff under the uniform-
price equilibrium. This higher payoff results from the higher prices that
buyers are willing to pay for the higher attributes chosen by sellers when
they cannot personalize prices.

Why don’t we see such higher prices under personalized pricing? Sup-
pose that given a uniform-price equilibrium, a single seller had the ability to
personalize prices. Such a seller could profitably reduce his attribute choice
and the price at which he trades, using personalization to exclude the un-
desirable buyers that render such a deviation unprofitable under uniform
pricing.

6.1.3 Which Prices are Personalized?

Personalizing prices requires a seller to set a price for every buyer attribute
in the market. However, personalized-price outcomes can be achieved with

9Note that for any seller attribute s, the price that a seller would receive in a match
with a buyer with attribute b is decreasing in b—higher values of b are more valuable, and

hence sellers are willing to charge less for them.
%The buyer’s payoff under uniform pricing, 63(b(3)) — pu (5(b(8))) — % =16°(2—
)3, falls short of the buyer’s payoff in the personalized-price equilibrium.
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much simpler pricing schemes. The apparent absence of complicated pricing
schemes thus need not signal the absence of personalized pricing.

The critical feature of personalized pricing is the seller’s ability to exclude
buyers with attribute choices lower than the seller’s equilibrium match. In
particular, by charging a sufficiently high price to specific buyer attribute
choices, a seller can ensure that buyers with those attributes will chose not
to buy. We denote this sufficiently high price by P. A personalized-price
function pp is a uniform-rationing price if it has the form

b,s) =
pr(b,s) P, otherwise,

{m(s), b > b(s),

for some pyr: S — Ry and b:S — B. Under uniform-rationing pricing, a
seller with attribute choice s sets a uniform price p(s) = pygr(s), but then
excludes any buyers with b < bf(s).

Appendix E.4 provides the straightforward argument that any personalized-
price equilibrium outcome can be supported by a uniform-rationing price.
Hence, personalized pricing may be ubiquitous without one observing com-
plete menus of prices. Whenever we observe sellers rejecting some buyers—
colleges denying some applicants, or firms rejecting some workers as unqualified—
we are observing forms of personalized pricing.!!

6.2 Information

Suppose sellers are constrained to set uniform prices because buyers’ at-
tributes are not observable, but that buyers can certify these attributes,
perhaps by taking exams or completing internships that demonstrate their
skills. One might suspect that if the cost to buyers of certifying their at-
tribute is not too high, the uncertainty might “unravel”: high-attribute buy-
ers would reveal themselves, making it optimal for the highest-attribute buy-
ers in the remaining pool to reveal themselves, and so on until all buyers’
attributes are known.'? In addition, it seems that this cascading informa-
tion revelation must make at least lower-ranked buyers worse off, if not
all buyers. Indeed, to avoid such unraveling, Harvard Business School stu-
dents have successfully lobbied for policies that prohibit students’ divulging

HPpeters (2010) examines a model in which personalized prices are achieved via uniform
rationing.

12See Grossman (1981), Milgrom (1981), or Okuno-Fujiwara, Postlewaite, and Suzu-
mura (1990) for analyses of such unraveling.
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their grades to potential employers, while the Wharton student government
adopted a policy banning the release of grades.'3

In contrast, in our example, all buyers may be worse off when infor-
mation about their attributes is suppressed than when it is known. This
result holds no matter what (nonzero) share the buyers own of the surplus,
and holds for all buyers. It is the distorted incentives to invest that ensure
even the lowest attribute buyers would be made worse off if buyer-attribute
information were suppressed.

6.3 Who Should Set Prices?

Suppose we could design the informational or legal context so that one side
of the market can set prices, but cannot observe the characteristics on the
other side of the market. Which should we choose? We return to our
example. When 6 = 0, so the seller owns all of the surplus, the equilibrium
collapses into the trivial equilibrium in which no surplus is generated. In
this case, a buyer’s payoff is solely the price py, which will have to be
negative in order to bring buyers into the market, and buyers will choose
the seller posting the smallest (“largest negative”) price. Because sellers
cannot condition prices on buyer attribute choice, every buyer will choose
b = 0 in equilibrium. Similarly, when 6 is positive but small, the equilibrium
is markedly inefficient, featuring tiny attribute choices. This is an indication
that the “wrong” side of the market is setting prices, that is, the side setting
prices owns little of the surplus. Suppose personalization by a price setter
is precluded for some reason other than informational asymmetries (such as
legal restrictions or transaction costs), but that an alternative market design
would allow buyers to post uniform prices (i.e., prices that only depend on
buyer attributes). While it is more efficient for sellers to be the price setters
for 6 > %, it would be more efficient to have buyers post prices when 6 < %

6.4 Overinvestment or Underinvestment?

The inefficiencies arising in hold-up problems are well understood. The
inefficiencies that arise under uniform pricing are qualitatively different, as
is easily seen from the overinvestment by sellers in our example for some
values of #. The inefficiencies in uniform price equilibria in our model stem
from sellers’ use of attribute choice as an instrument to screen buyers, in
addition to price, and the response of buyers.

130strovsky and Schwarz (2010) investigate the optimal amount of information to dis-
close from the students’ perspective.
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It is unclear whether these inefficiencies lead in general to over- or under-
investment. To provide insight into the nature of the forces involved, it
is useful to analyze why the outcome of a personalized-price equilibrium
(b? s” P, 5P ,pp) is not a uniform-price equilibrium outcome. Consider
the outcome (bPs” b7 5F) with uniform price py(s) = pp(b(s),s). With
this uniform price, buyers who previously matched with low attribute sellers
find sellers with higher attributes more attractive, since the uniform price
does not penalize low attribute buyers. This suggests that in a uniform-
price equilibrium, a seller could discourage low attribute buyers by raising
his price, and to avoid losing the high attribute buyers, also raising his
attribute. The supermodularity in premuneration values ensures that it is
possible to screen buyers in this way.

However, simply altering the seller attributes and py is not sufficient in
general to obtain a uniform price equilibrium. There are two distinct issues.
First, in a personalized-price equilibrium, from the envelope theorem, the
impact on a buyer 3 of a marginal deviation from b” () is given by

8th(b7 S) . 8pp(b’ 8) N aCB(bv/B)
ob ob ob

evaluated at s = 3§(b). In contrast, in a uniform-price equilibrium, the
second term (Op” /0b) is absent. Second, the seller attributes (and prices)
are different than in the personalized-price equilibrium. It is a priori unclear
which effect will dominate. In our running example, the buyers underinvest,
and for 6 not too small, the sellers overinvest.

Characterizing the nature of the investment inefficiencies in uniform-
price equilibria will necessarily depend on the specifics of the premuneration
values and the attribute cost functions. Similarly, little can be said about
whether it would be more efficient for one side or the other to set prices at
a general level; in particular, it will not be a function only of the premuner-
ation values of the two sides.

6.5 Premuneration Values

Our main result is that under uniform pricing, the decomposition of the total
surplus of a match into the buyer and seller premuneration values affects the
efficiency of prematch investments. Appropriately specified premuneration
values can allow us to avoid either the cost (or impossibility) of personalizing
prices or the inefficiencies of uniform pricing.

Premuneration values can sometimes be rearranged by appropriate legal
and institutional innovations. The match of researchers and universities gen-
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erates a surplus that includes the value of marketable patents from faculty
research. Historically, universities have owned these patents, but another
institutional arrangement could grant them to the faculty. The feasibility
of such ownership is reflected in the decisions of many universities to unilat-
erally grant professors shares in the revenues from patents stemming from
their research. Why aren’t all premuneration values specified so as to allow
efficient uniform-pricing outcomes?

Section 1.4 highlighted moral hazard problems. Monitoring consider-
ations may also play a role. Consider a collection of heterogeneous and
risk averse agents who are to be matched with risk neutral principals. One
could ensure that the principal’s premuneration values are independent of
agent characteristics by assigning ownership of the technology to the agents.
Uniform pricing per se would then impose no costs, but the agents would
inefficiently bear all of the risk associated with the match, leading to ineffi-
cient actions and less valuable matches. We could instead let the principal
own some or all of the technology, but now the principal’s premuneration
value will no longer be independent of the characteristics of the agent with
whom he is matched.!* Finally, legal restrictions may be at work.'®

Putting these considerations together, new monitoring and contracting
technologies may be valuable, not only because they can create better in-
centives within a match, but also because they can create more leeway for
designing premuneration values and hence better matching.

1 Even before the incentive-design stage, simply measuring and contracting on the rel-
evant variables may pose difficulties. The University of New Mexico sued a former re-
searcher for rights to patents that he applied for four years after he had left the university,
arguing that the patents stemmed from research that he had done before leaving. (“Uni-
versities Try to Keep Inventions From Going ‘Out the Back Door,” ” Chronicle of Higher
Education, May 17, 2002.) In principle, the owner of the rights to a song is entitled to a
payment each time the song is played on the radio in a bar or health club, but collection
is impractical.

15For example, Bulow and Levin (2006) note that the National Residency Matching
Program matching medical residents and hospitals constrains hospitals to make the same
offers to all residents. They argue that the primary effect is not inefficient matching
but a transfer of surplus to the hospitals (with Niederle and Roth (2003, 2005) offering
an alternative view). However, Nicholson (2003) argues that the result is an inefficient
allocation of residents to specialties. Medical students who do their residency acquire
training that dramatically increases their future earnings. Nicholson argues that this
part of the surplus from the match (which is owned by the student) is so large in some
specialties (such as dermatology, general surgery, orthopedic surgery and radiology) that
if personalized prices were employed, medical students would pay hospitals handsomely
for the opportunity to do their residency in these specialities. This is as compared to their
stipend, which was $44,700 in 2007/8 (Association of American Medical College Survey
of Household Stipends, Benefits and Funding, Autumn 2007 Report).
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Appendix

A Example, Detailed Calculations

A.1 Efficiency

Efficiency requires that for each matched pair # and o, attribute choices b
and s solve

b 83
maxbs — — — —,
)S 35 3o
giving first-order conditions
2 52
3—520 and b—;:O.

Efficiency also requires positive assortative matching in attribute (and so
in index, since the cost functions guarantee that attribute choices will be
increasing in index). We can accordingly solve by setting ¢ = 3, which in
turn implies s = b, giving the efficient attribute-choice functions

b(f) = and s(o)=o0.

A.2 Derivation of (6)—(9)

The buyer chooses an attribute b and a seller attribute s with whom to
match in order to solve

b3
_ %

Assuming py is differentiable, the first-order conditions for the buyer are

max 0bs + py(s)

b2
0s—— =0
B

and 0b — piy(s) = 0.

When choosing an attribute s, the seller is selected by a buyer with attribute
b = b(s). The seller o thus solves

3

max (1-— «9)5(5)8 +pu(s) — ;777
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implying (assuming b is differentiable) the first-order condition

(1= 0)[F'(s)s + b(s)] + ply(s) — — = 0.

Begin by conjecturing that the equilibrium attribute-choice functions are
given by the linear functions

b(B) = Ap (A1)
and s(o) = Bo. (A.2)

Then, assuming that in equilibrium, a buyer of type 8 matches with seller
of type 0 = 3, we have b(s) = As/B. Using this, rewrite the buyer’s second
first-order condition as §As/B — p;(s) = 0 and solve for the price function

0A
pu(s) = ﬁs?

The requirement that low index traders be willing to participate in the
market implies that the constant of integration equals 0. Similarly, rewrite
the buyer’s first first-order condition as §Bb/A — b*/3 = 0 and solve for b,
yielding

0B
b=—5. (A.3)

Turning to the seller, write the first-order condition as 2(1 — 0)As/B +
9As/B — s? /o = 0 and solve for s,
2-6)A
s = (B)a. (A4)
Combining (A.1) with (A.3) and (A.2) with (A.4), yields A = ¢9§(2 - 9)%
and B = 6%(2 — 9)% It is straightforward to verify that the second order
conditions are satisfied, and so the conjecture is verified.

A.3 Personalized Prices

Suppose that sellers observe buyers’ attribute choices and so can personalize
their prices. Consider the candidate personalized-price function

82

pr(b,s) = 5 — (1= 0)bs. (A.5)
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Given the pricing function (A.5), buyer 3 chooses a buyer attribute b and
a seller attribute s (i.e., chooses to match with a seller with that attribute)
to solve

2 3 82 b3

s b
max 0b8—5+(1—6’)bs—£—r(%2>)< bs—;—%.
Hence, buyer (3 chooses the attribute b = b(3) = 8 and chooses to match
with seller attribute s = b(3). The implied distribution of demanded seller
attributes is uniform on [0, 1].
When choosing an attribute s, the seller is selected by a buyer with
attribute b = b(s) = s. The seller o thus solves

2 3 82 53

~ s ~ 5

max (1 —-0)b(s)s+ 5 (1—-6)b(s)s — 35 = Wax o = o,
yielding the attribute choice s = s(¢) = o. The implied distribution of
supplied seller attributes is uniform on [0, 1].

The resulting matching of buyers and sellers clears the seller attribute
market (in that the distributions of demanded and supplied seller attributes
agree). We thus have a personalized-price equilibrium.

Equilibrium payoffs to the seller and buyer are

(s(0))*  (s(0))? _ ot o* = 102

2 3o 2 3o 6
B S U)K O
2 30 2 36 6

B The Absence of Profitable Deviations and Op-
timization given py

Say that a seller has an extended profitable deviation if either he has a
profitable seller deviation in the sense of Definition 3, or there exists an
attribute s € S for which property (ii) of Definition 3 holds. Note that this
includes the possibility of charging a different price for s(o).

Lemma B.1 Fiz a feasible outcome (b, s, b, 3) and a uniform price py. Sup-
pose all buyers optimize at b given py (i.e., (3) holds). If seller o has no
extended profitable deviation, then he is optimizing at s given py.

Proof. Suppose there exists a seller o and attribute choice s’ € S such that

g(s(0),0) <Ilg(s’,0) = hs(b(s'),s") + pu(s’) —cs(s, o).
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Let € = [lIg(s’,0) — IIg(s(c),0)]/4 > 0. Then, there exists § > 0 such that

for all b > b(s') — 6,
hs(b,s') +pu(s') —cs(s',0) > g(s(o), o) + 3. (B.1)

Denote by p” the price for an attribute s” that makes the buyer with at-
tribute b(s’) indifferent between s’ (her equilibrium match) and s”, i.e.,

ha(b(s).5") — 1 = h(b(s). &) — pur(s).
Choose s” > s’ sufficiently close to s’ so that
|hs(b,s") — cs(s",0) — hs(b,s') + cs(s',0)| <&, VbeB, (B.2)
holds and |p” — py(s’)| < /2. From Assumption 1 (Supermodularity),
hp(b(s') —8,5") —p" < hp(b(s') —8,5") — pu(s).
For p < p” sufficiently close to p”, we have p” —p > /2 and
hp(b(s') = 8,5") —p < hp(b(s') — 6,5") — pu(s).

Moreover the buyer with attribute ZN)(S/ ) receives strictly higher payoff from
(s”,p) than from (s',py(s’))). Another application of Assumption 1 shows
that for all b < b(s’) — 4,

hp(b,s") —p < hp(b,s') — pu(s).
From (3), for all b € B,
hp(b,s") —pu(s') < hp(b,3(b)) — pu(3()),

and so no buyer with attribute b < b(s’) — § finds (s”, p) attractive. Thus,
the pair (s”,p) is a profitable deviation for seller o, since

hs(b(s") = 8,5") +p— cs(s”, o) >h5(5(s’) —68,8)+p—cs(s,0)—¢

>T5(s(0), >+3s+( ")+ @" —pu(s))
—HS((

s(0),0) +

where the first inequality follows from (B.2) and the second from (B.1). m

— &
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C Proof of Proposition 1: Efficient Uniform Pric-
ing

Let (b, s, b, 3, pp) be an efficient personalized-price equilibrium (see Section
E; existence is established in Proposition E.1). We first show that the price
function can be altered so that the seller is indifferent over buyer attributes.
In particular, (b,s, b, 3, pp) is a personalized-price equilibrium, where pp is
the personalized-price function given by

pp(b,s) =pp(b(s),s) + hs(b(s),s) — hs(b,s), V(bs)eBxS. (C.1)

Moreover, under pp, the seller is indifferent over all marketed buyer at-
tributes.

To verify this, note that seller indifference is immediate, and it is then
immediate that the seller is optimizing given pp. We then need show only
that the buyer is optimizing given pyr. Suppose (E.1) fails at some 3. Then,
for some (b,s) € B x S and for sufficiently small ¢ > 0,

hp(b,s) — (Pp(b,s) +€) — cp(s, B) > Mp(b(B), B).

Since no buyer has a profitable out-of-market deviation,

hs(b(s),s) + pp(b(s),s) > hg(b,s) + pp(b,s) +¢.

But this, with (C.1), yields a contradiction.

We now notice that if hg(b, s) does not depend on b, then neither does
pp, implying that (b, s, b, 5, py) for py(s) = pp(-, s) is a uniform-price equi-
librium.

The constrained efficiency of uniform-price equilibria when the seller
premuneration values do not depend on buyer attributes follows from the
observation that such equilibria are also personalized price equilibria and
Lemma E.2.

D Proof of Proposition 3: Existence of Equilib-
rium.

The existence proof is involved and indirect. We would like to construct
a game I' whose equilibria induce uniform-price equilibria. However, the
obvious such game I is itself difficult to handle, so we work with an approx-
imating sequence of games I'". We verify that each I'" has an equilibrium,
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take limits, and show that the limiting strategy profile induces a uniform-
price equilibrium. Loosely, the n index allows us to accommodate (in the
limit) the possibility of jumps in the attribute-choice functions (precluded
in game I'").

D.1 Preliminaries

Let P = max{hp(b,35), hs(b,5)}. Then P is sufficiently large that no buyer
would be willing to purchase any seller attribute choice s € [0, 5] at a price
exceeding P, nor would any seller be willing to sell to a buyer b € [0,b] at
price less than —P. We can thus limit prices to the interval [—P, P].

Since buyer premuneration values are C?, there is a Lipschitz constant
A such that for all ¢ > 0, s € [0,5 —¢], and b € [0,b], we have hp(b,s +¢) —
hp(b,s) < Ae. As a result, given a choice between seller s and seller s+¢ at
a price higher by Ae, buyers would always choose the former. Equilibrium
prices will thus never need to increase at a rate faster than A.

D.2 The game [

Each game I' has three players, consisting of a buyer, a seller, and a price-
setter.

D.2.1 Strategy spaces

We begin by defining the strategy spaces for I'".

The buyer chooses a pair of functions, (b,sg), where b : [0,1] — [0, ]
specifies a buyer attribute choice and sp : [0,1] — [0, 5] a seller attribute
with which to match, each as a function of the buyer’s type. We denote
the set of pairs of increasing functions (b, sg) normed by the sum of the L*
norms on the component functions by YT g. In I'", the buyer is restricted to
the subset of Y, denoted by Y7, of functions satisfying (D.1) and (D.2):

(8" =B)/n<b(B) =b(B) <n(s - 8), VB8<p €[0.1], (D.1)

and

(8" = B)/n<sp(f) —sp(B) <n(f' = p), VB<pF €0,1].  (D.2)

The seller chooses an increasing function s, where s : [0,1] — [0, 5]
specifies a seller attribute choice as a function of seller’s type. We denote
the set of increasing functions s endowed with the L' norm by Yg. In I'™,
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the seller is restricted to the subset of Yg, denoted by Y%, of functions
satisfying (D.3),

(0! —0)/n <s(d') —s(o) <n(c' —0), Vo<o €l0,1]. (D.3)

The price-setter chooses an increasing function py : [0,5] — [P, P]
satisfying
pu(s) —pu(s) < 2A(s" — s) (D.4)

for all s < s’ € [0,35]. Denote the set of increasing functions py satisfying
(D.4), endowed with the sup norm, by YTp (note that Yp is not indexed
by n). Every function in Yp is continuous; indeed the collection YT p is
equicontinuous.

The set T = Tp x Tg x Tp, when normed by the sum of the three
constituent norms, is a compact metric space.* It is immediate that T =
T% x T x Tp is a closed subset of T, and so also compact.

D.2.2 Buyer and Price-Setter Payoffs

The buyer. The buyer’s payoff from (b,sg) € T%, when the price-setter
has chosen py € Tp is

/ (hp(b(B).55(8)) — pu(s5(8)) — cn(b(8). 7)) dB.  (D.5)

Note that the buyer’s payoff is independent of seller behavior.
For any sp and s, define

Fp(s) = MB:sp(B) < s}
and Fs(s) = Mo :s(o) < s}.

*It suffices for this conclusion to show that T is sequentially compact, since sequential
compactness is equivalent to compactness for metric spaces (Dunford and Schwartz, 1988,
p.- 20). An argument analogous to that of Helly’s theorem (Billingsley, 1986, Theorem
25.9) shows Y is sequentially compact. In particular, given a sequence {(b™,s%,s™, pi})},
we can choose a subsequence along which each function converges at every rational value
in its domain to a limit {(b*°,s%,s*,pg’)}. Because each function in the sequence
{(b™,s's,s™,p{})} is increasing, so must be each limiting function {(b*°,s%,s*, pg’)}.
This ensures convergence at every continuity point of the limit functions, and hence almost
everywhere for the functions b™, s and s™ and everywhere for the functions pg})}, suffic-
ing (for bounded functions) for L' convergence in the former three cases and convergence
in the sup norm in the latter.
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The price-setter. The price-setter’s payoff from py € Yp, when the
buyer and seller have chosen (b,sg,s) € T x Y% is given by

/0 “pu(s) (Fi(s) — Fs(s)) ds. (D.6)

Hence, the price-setter has an incentive to raise the price of seller attribute
choices in excess demand and lower the price of seller attribute choices in
excess supply.

D.2.3 Seller Payoffs

The specification of the seller’s payoff is complicated by the need to incorpo-
rate incentives arising from the possibility of profitable seller deviations to
attribute choices outside S. Given an attribute choice s, price p, and price
function py, set

B(s,p,pu) = {b € [0,0] : hp(b,s) —p > max {hp(b,s’) —pU(s')}} )

s'€0,3]

(D.7)
Hence, B(s, p, pv) is the set of buyer attributes that find attribute s at price
p (weakly) more attractive than any attribute s’ € [0, §] at price py(s’). Note
that since the buyer is constrained in I' to choose seller attributes so that
(D.2) is satisfied, a maximizing buyer’s payoff from an attribute b (ignoring
costs) need not be given by maxycp s{hp(b,s") — pu(s')}. Note also that
for all s and py € Tp, since there is no a priori restriction on p, B(s, p, pv)
is nonempty for low p (possibly requiring p < —P, e.g., if py = —P), and it
is empty if p > py(s). Indeed, for sufficiently low p, B(s, p,pr) = [0, b].

Lemma D.1 (1) If B(s,p,pu) # 9, then B(s,p,py) = [b1, ba] with by < ba.

(2) For fized s and py, let p(s,py) = sup{p : B(s,p,pu) # @} and
write [by(p),ba2(p)] for B(s,p,py) when p < p(s,py). Denote the set of
discontinuity points in the domain of bj(p) by Dj(s,pv) ( =1,2). The set
{s :Dj(s,pu) # @} has zero Lebesgue measure.

(8) Suppose {(sg,pz,pé)}g is a sequence converging to (s, p, py) with & #
B(sé,pf,pé) = [b%,b%]. Then B(s,p,pu) # @, and so B(s,p,py) = [b1,ba),
where

by < liminf, b{ < limsup, b5 < bo. (D.8)

(4) Moreover,if p & Dj(s,pr) U{p(s,pv)}, then b; = limy bﬁ.
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Proof. (}) Suppose by, by € B(s,p,py) with by < ba, and b ¢ B(s,p,pu)
for some b € (by,by). Then there exists § € [0, 5] such that

hB(Ba S) —p< hB(Bv §) _pU(é)'

If § > s, then Assumption 1 implies

§) — hp(b,s)

hi(ba,8) — hp(ba,s) > hp(b,
é) - D,

> pu(

contradicting by € B(s,p,py). Similarly, § < s contradicts by € B(s,p,pu),
and so § = s. But by € B(s,p,py) then implies py(s) > p while b ¢
B(s,p,py) implies py(s) < p, the final contradiction, and so be B(s,p,pv).
It is immediate that B(s,p,py) is closed.

(2) Since B(s,p',pu) D B(s,p,pu) for p’ < p, bi(p) and ba(p) are mono-
tonic functions of p, and so are continuous except at a countable number of
points. Moreover, we can apply the maximum theorem (since each of the
functions in the maximum are continuous) to conclude that the right side of
the inequality in (D.7) is continuous in b, and so b; and by are left-continuous
functions of p (as (D.7) features a weak inequality bounding p from above).

Suppose p € Di(s,py), and let bf = lim,~,b1(p'). Since by is left-
continuous, by (p) < bf. Then for all b € [by(p),b]],

hp(b,s) —p = max hp(b,s') — py(s). (D.9)
s'€(0,3]
From the envelope theorem (Milgrom and Segal, 2002, Theorem 2), this
implies for all b € (by(p), b7,

Ohp(b,s)  Ohp(b,s' (b))
a b

where s'(b) € argmaxg¢p 5 hp(b,s') — py(s’). Assumption 1 then implies
s = s'(b) for all b € (b1(p),b]), and so p = py(s).
Since b € B(s,pu(s),pu), for all s” > s,

hp(bf,s") — hp(bf,s) < pu(s”) — pu(s)

so that n y
Ohp(bi,5) _ i ing P ~puls)
0s s''>s s’ — s

On the other hand, for all s’ < s,

pu(s) —pu(s’) < hp(bi(p),s) — hp(bi(p), s),
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so that

. /
Jimn sup pu(s) P,U(S) < Ohp(b1(p), 5)
s'<s s$— 5 0s

Consequently, since

Ohp(bi(p), s) 8hB(bp s)
0s 0s ’

the price function py cannot be differentiable at s. Finally, since py is a
monotonic function, it is differentiable almost everywhere (Billingsley, 1986,
Theorem 31.2), and hence {s : Di(s,py) # @} has zero Lebesgue measure.
A similar argument shows that {s : Da(s,py) # @} has zero Lebesgue
measure.

(3) Suppose {(se,pg,pg)}g is a sequence converging to (s, p,py), and let
{b*} be a sequence of attributes with b° € B(s, p’, p¥;) for all £. By taking a
subsequence if necessary, we can assume {be} is a convergent sequence with
limit b. Since

hp(b',s") —p' > m[%x]{th 8 —py(sh}, Ve,
s’€[0,5

taking limits gives

hp(b,s) —p > lg%x]{hB(b .8 —pu(s)}

and so b € B(s,p,py). Hence, from part 2 of the lemma, B(s,p,py) =
[b1, ba], and (D.8) the follows from taking sequences {b’} with limits lim inf, b{
and < lim sup, bj.

(4) Consider by and suppose p € Da(s,pr) U {p(s,pr)} (and so p <
p(s,pv)). Hence, by = bg = limy~ , ba(p'). Consider b € (b],bs). For p’ > p
sufficiently close to p, we have b € B(s,p’, py), and so

s(b.5) ~p > e {h )~ pu(s)).

Consequently, for £ sufficiently large,

hB(b,s) pl > max {hp(b,s') —pu(s)},

s'€[0,3]

b. Slnce this holds for all b € (b}, by) and lim sup, b5 < by, we have lim b5

i.e., b€ B(s",p’, pt;). This implies that b5(p’) > b, and hence lim inf b5(p®) >
ba. The argument for by is an obvious modification of this argument. [ ]
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Fix (s,p,py) and suppose A({# : b(8) € B(s,p,pv)}) > 0. Since b
is strictly increasing and continuous, it then follows from Lemma D.1 that
b([0,1]) N B(s, p,py) = [b},bh] for some 0 < b} < by, < b. The payoff to the
seller from (s, p, b, py) is given by

H(s,p,b,py) = hg(by,s) +p. (D.10)

This function depends upon py and b through the dependence of b} on
B(s,p,py) and b. For later reference, note that for fixed s, b, and py,
the function H (s, p, b, py) is continuous from the left in p (since b satisfies
(D.1) and both b;(p) and ba(p), defined just before Lemma D.1, are left-
continuous).

We set

P(s,b,py) ={p: A({B:b(B) € B(s,p,pv)}) > 0},

and noting that this set is nonempty, define

H(s,b,py) = max {suppep(&b,pU)H(s,p, b,pu), hs(0,s) —i—pU(s)} .

S

A1)
Notice that if p € P(s, b, py) for all p < py(s), then the first term in (D.11)
will be the maximum.

The seller’s payoff from s € TG when the buyer and price-setter have
chosen (b,sp,py) € T x Tp is then

/ (H(s(0), b, py) — cs(s(o), o)) do. (D.12)

Taking the maximum over suppep(&pr)H(s,p, b,py) and hs(0,s) + pu(s)
effectively assumes that the seller can always sell attribute choice s at the
posted price py(s), though perhaps only attracting buyer attribute choice
0.

Note that the seller, when considering the payoff implications of alter-
ing the attribute-choice function over an interval of seller types, can ignore
the seller types outside the interval, since feasibility of buyer responses is
irrelevant (the comparison in B for buyer attributes is always to her payoffs,
which is independent of seller behavior).

P(s,b,py) for all p < py(s). Moreover,

It need not be true that for s € sp([0,1]), p €
+pu(s) (see the discussion just before Lemma

we may have H(s,b,pr) # hs(b(sgl(S)),’S)
D.1).
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D.3 Equilibrium in game I

Our next task is to show that each game I'™ has a Nash equilibrium, and that
the price-setter plays a pure strategy in any such equilibrium. To do this,
we first note that the price-setter’s payoff is concave in py (note that the
buyer’s and sellers’s payoffs need not be even quasiconcave). If the payoff
functions in game '™ are continuous, then Glicksberg’s fixed point theorem,
applied to the game where we allow the buyer and seller to randomize, yields
a Nash equilibrium in which the buyer and seller may randomize, but the
price-setter does not.

Lemma D.2 The buyer, price-setter and seller payoff functions given by
(D.5),(D.6) and (D.12), are continuous functions of (b,sp,s,py) on Y™.

Proof. We first note that for increasing, bounded functions on a compact
set, L' convergence implies convergence almost everywhere.*

Consider first the buyer. The functions b, sp, and py are bounded
functions on compact sets, and hence the absolute value of each of these
functions is dominated by an integrable function. The continuity of the
buyer’s payoff then follows immediately from Lebesgue’s dominated conver-
gence theorem, if we can show that the convergence of b, py, and sp in
the L' norm (and hence almost everywhere) implies the convergence almost
everywhere of hp(b,sp), pu(sp), and cg(b(:),:) (note that we are talking
about sequences of functions within a given game I'™). The first and the
third of these follows from the continuity of hp and cp (from Assumptions
1 and 3), while for the remaining case it suffices to note that the collection
T p is equicontinuous.

Consider now the price-setter. Suppose s’ converges in L', and so almost
everywhere, to s. Then F g converges weakly to Fg (and so a.e.).} Similarly,

4

fSuppose {fa}n, with each f,, increasing, converges in L' norm to an increasing func-
tion f without converging almost everywhere. Then since f is discontinuous on a set of
measure zero, there exists (for example) a continuity point z of f with limsup fn(z) > f(z)
(with the case liminf f,(z) < f(z) analogous). The continuity of f at x then ensures
that for some point y > z, some ¢ > 0, all z € [z,y] and for infinitely many n, we have
fn(2) > fu(z) > f(y)+€ > f(2)+e. Thisin turn ensures that [ |fn(2)—f(2)|dz > (y—z)e
infinitely often, precluding the L' convergence of {f,}52; to f.

$Fix ¢ > 0. By Egoroff’s theorem (Royden, 1988, p.73), s’ converges uniformly to s
on a set E of measure at least 1 — e. Suppose s is a continuity point of Fs. There then
exists § > 0 such that |Fs(s) — Fs(s")| < ¢ for all |s — s’| < §. There exists ¢ such that,
for all ¢ € E, for all £ > ¢', |s°(0) — s(0)| < §. Consequently, F&(s) = Mo :s(0) < s} <
Mo :s(0)—8 < s}+e = Fs(s+0)+e and Fs(s—38)—e < F&(s), and so | F§(s)—Fs(s)| < 2e.
Hence, F& converges weakly to Fs.



Appendix 13

if S% converges in L' to sp, then Fé converges a.e. to Fg. Continuity for the
price-setter’s payoff then follows from arguments analogous to those applied
to the buyer, since we have convergence almost everywhere of py[Fp — Fg].

Finally, we turn to the seller, where the proof of continuity is more
involved. It suffices to argue that H(s,b,py) is continuous in (s, b, py)
for almost all s (since sp is irrelevant in the determination of the seller’s
payoff and the continuity with respect to s is then obvious, at which point
another appeal to Lebesgue’s dominated convergence theorem completes the
argument).

Fix a sequence (s, b’, pf]) converging to some point (3§, b, pu). Since we
need continuity for only almost all s € [0, 5], we can assume Di($,py) U
Ds(8,py) = @ (or, equivalently, that py is differentiable at §, see the proof
of Lemma D.1.2). We thus need only prove the following claim.

Claim 1 limy ., H(s",b’,pt;) = H(3,b, py).

Proof. Since H*(s,b, py) is the maximum of two terms, it suffices to show
that

th sup EP(sl,bE,p{])H(SZJL bz,p@) = sup H(3,p,b,py)
e pEP(5,b,pv)

and  lim hs(0, s + ph(s%) = hs(0,3) + py(3).

The second is immediate from the continuity of hg and py at §.
We accordingly turn to the first. To conserve on notation, we define

SUPye p(s,bpy) H(s,p,b,py) = H(s,b,pu).
‘We first show that

liminf H(s’, be,pU)ZfzI( b, pvr). (D.13)

{—o00

For all € > 0 there exists p € ]3(§, B,ﬁy) such that

~

H(éaﬁvbvﬁU) +€/2 > §(§767]§U)

Since H (8, p, b, prr) is continuous from the left in p, there exists § & D (8, pr)U
Dy (8,pv) U{p(3,pu)} with p < p satisfying

‘H(§7ﬁ) ByﬁU) - H(§7ﬁ/7 BvﬁU)‘ < 8/27
and so

H(3,9,b,py) +¢ > H(3,b,py).
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Since b satisfies (D.1), for sufficiently large ¢, p’ € 15(3[, be,pf]), and so
(applying Lemma D.1.3)

elim H(se,ﬁ’,be,pg) = H(§7ﬁ/767ﬁU)-
—00

Hence, _ _
liminf H(s, b, pt) + ¢ > H(3,b,py), Ve >0,

{—00
yielding (D.13).
We now argue that

H(3,B,py) > limsup H(s", b’ pf)), (D.14)

{—00

which with (D.13) gives continuity. .
Fix € > 0. For each ¢, there exists p’ € P(s, bé,pf}) such that

H(s',p, b, ply) + & > H(s", b, pfy). (D.15)

Without loss of generality, we can assume {pf}g is a convergent sequence,
with limit p. Suppose first that p € P(8,b,py). If p # {p(5,pv)}, it is
immediate that

H(§,ﬁ,f),]§U) + & > limsup E[(SZ, bz,pg), (D.16)

{—00

which (since it holds for all &) implies (D.14).

Suppose now that p ¢ ﬁ(&f),ﬁU) or p = p(8,py). Since py is differ-
entiable at §, there cannot be a nondegenerate interval of buyer attributes
indifferent between (8§, p) and the unconstrained optimal seller attribute un-
der pyy. This implies f)([O, 1)) N B(8,p,pv) = {3} for some b, and so

H(3,b,py) > hs(b, 3) + p.
From Lemma D.1.3,

lim H(s’,p’, b’, pf;) + & = hg(b,8) +p +e¢,

{—o0

and so (taking the limsup of both sides of (D.15))

H(3,b,py) + & > limsup H(s", b’ pf)),

f— 00

which (since it holds for all € > 0) implies (D.14). ] ]
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Allowing the buyer and seller to choose mixed strategies then gives us
a game whose best responses consist of closed, convex sets. As a result, we
can apply Glicksberg (1952) to conclude that we have a Nash equilibrium in
which the price-setter plays a pure strategy, while the buyer and seller may
mix:

Lemma D.3 The gameI'™ has a Nash Equilibrium, (£%,&5,pfr) € A(Tp)x
A(Tg) x Tp.

D.4 The limit n — oo

We now examine the limit as n — co. In particular, let {(£%, &%, pP)}n C
A(Tg) x A(Ts) x Tp be a sequence of Nash equilibria of the games T'™.
Without loss of generality (since the relevant spaces are sequentially com-
pact), we may assume that both the sequence of equilibria converges to some
limit (§3,&5,p;r), and that players’ payoffs also converge.

We examine the limit ({3,£5, pf;). Intuitively, we would like to think of
this profile as the equilibrium of a “limit game.” However, the definition
of this limit game is not straightforward, since the definition of the seller’s
payoffs in the game I'" relies on the strategies b, sp, and s having properties
(such as strict monotonicity and continuity) that need not carry over to their
limits. In establishing properties of (£3,£%5,pf;), we accordingly typically
begin our argument in the limit, and then pass back to the approximating
equilibrium profile (£, £, pfy) to obtain a contradiction. The latter step of
the argument is notationally cumbersome, and we do not always make the
approximation explicit.

Note that while the seller is best responding to &% in choosing s, the
choice of p implicit in (D.11) is made after (b, sp) is realized.

While the L' topology does not distinguish between functions that agree
almost everywhere, it will be important for some of the later developments
that we make the selection indicated in the next lemma from the equivalence
classes of functions that agree almost everywhere.

Lemma D.4 The limit profile (£3,£5,p(;) s pure, which we denote by
(b*,s%,8%,p;;). The limit functions can be (and subsequently are) taken
to be increasing, and the functions b*, s}, and s* can be (and subsequently
are) taken to be continuous from the left.

Proof. Consider the buyer (the case of the seller is analogous). Toward a
contradiction, suppose the buyer’s strategy (£, £) is not pure. Let { , and
& *B, s denote the marginal distributions induced on buyer and seller attributes
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chosen by the buyer. Then define a pair of increasing functions b’ :[0,1] —
[0,b] and s’ : [0,1] — [0, 5] by

b/(8) = int{b: £5,(b) = 5}
and Si3(8) = inf{s : € () > B}.

These functions constitute pure strategies for the buyer giving the same
distribution of buyer and seller attributes chosen by the buyer. (For exam-
ple, for any set [b,b] of buyer attributes with b > 0, EBplbs b =p8"-43,
where b/(8”) = b and b/(3’) = b.) However, the b’ and sy feature positive
assortativity between the buyer’s types and attribute choice, and between
the buyer’s and the seller’s attribute with which the buyer matches, while
§pp and &, being mixed, do not. From Assumptions 1 and 3, this posi-
tive assortativity increases the buyer’s payoff, and so the constructed pure
strategy strictly increases the buyer’s payoff. It then follows from straight-
forward continuity arguments that for sufficiently large n, i.e., for a game in
which the slope requirements on the buyer’s strategy are sufficiently weak
and the equilibrium profile (£, €%, pf;) is sufficiently close to (£3,&5,py;),
there is a pure strategy sufficiently close to b’ and s’; giving the buyer a
payoff higher than his supposed equilibrium payoff in I'" a contradiction.
Hence, the buyer cannot mix.

The conclusion that each function is increasing is an implication of the
observation that if a sequence of increasing functions {f,} converges in L'
to a function f, then that function is increasing. [

It is helpful to keep in mind the nature of convergence in A(Yp) x
A(Ygs) x Tp. Recalling that Tp, Tg, are each endowed with the L' norm
and Yp with the sup norm, and the definition of the Prohorov metric
(which metrizes weak convergence), ({%,£4,pf;) converges to the pure pro-
file (b*,s}%,s*,p;;) if, and only if, the following holds: For all € > 0 there
exists n/ such that for all n > n/,

&% ({(b,sp) € T : [|b(B) —b*(B)|dB < ¢, [Isp(B) —sp(B)|dS < e})
>1-—¢,
& ({s €Y% [Is(0) —s*(o)|ldo <e}) > 1 —c¢,
and
sup ppr(s) — py(s)] <e.

We next restate the nature of convergence in a more useful form:
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Lemma D.5 For alle > 0, there exists a set E C [0,1] with A\(Ef) > 1—¢
and ne such that for all n > n,

£ ({(b,sp) € T : [b(B) —b*(B)| <&, [sp(B) —sp(B)| <&, VB € E})
>1-—¢,

Es({seXs:|s(o) —s"(0)| <e, Voe E°}) > 1 —¢,
and
P (s) —pp(s)] <e, Vs.
Moreover, the sets E° are nested: E€ C E° ife <é.

Proof. Fix € > 0. We prove that there is a set Fg with A\(Eg) > 1 —¢/3
and an integer n'y such that

Es({se€X5:|s(0) —s*(0)| <e, Vo€ Eg}) >1—¢ (D.17)

for all n > n. The same argument implies a set E% and integer n’p for
the function b*, and a E% and n'} for the function s’jg.ql The desired set is
Ef=E5NEZN E‘% and integer is n. = max{n'y, n’z, n's}.

Let {o*} be an enumeration of the discontinuities of s*. Since s* is
bounded, there exists K such that the total size of the discontinuities over
{o*} k> is less than £/6.

Fix L > 2 such that {(¢% — 27 oF + 2_“)}521 is pairwise disjoint and
2= < ¢/6. Defining

By = [0\ [J(o" — 27, 0" + 270
k

yields a set of measure at least 1 — /3.
Let EX be the set given by [0,1] \ UK, (o% — 27K g% + 27FL): clearly
Eg C Eg . The set Eg can be written as the disjoint union of closed intervals

TMore precisely, the sets can be chosen so that, for n > n'g,
£x({(b,sp) € T5 : [b(8) —b"(B)| <&, VB € Ep}) > 1—¢/2,
and, for n > n',
E5({(b,sp) € Th : |sp(B) —sp(B)| <e, VB € ER}) > 1-¢/2,
so that, for n > max{nz,n%},

E5({(b,sp) € Y : [b(8) —b™ ()| <& Is5(8) —sp(B)| <&, Vo€ ERNERY) > 1 -«
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I, k =0,1,..., K. There exists an n > 0 such that for all k¥ and for all
0,0 € I, if |0 — 0’| < n then |s*(0) — s*(0”)| < /3.

Let {x¢} C Ij be an n-grid of Iy, i.e., zp11 —n < xy < 441 for all £.

Consider an increasing function s satisfying [ |s —s*| < en/3. We claim
that for all o € B (and so for all 0 € E%), |[s—s*| < e. Observe that (D.17)
then follows, since n/y can be chosen so that £% ({s € Y% : ['|s — s*| < en/3})
1 — ¢ holds for all n > nls.

The claim follows from two observations:

1. |s(z¢) — s*(xe)| < 2¢/3: Suppose s(xy) > s*(xy) + 2¢/3 (the other
possibility is handled mutatis mutandis). Then, for all o € (xp, x¢41),

s(o) > s(xp) > 8™ (xg) +2¢/3 > s™(0) +¢/3.
But this is impossible, since it would imply [ [s — s*| > en/3.

2. For all ¢ and all o € (zg,xp11), |s(0) — s*(0)| < &: Suppose s(o) >
s*(0) 4 € (the other possibility is handled mutatis mutandis). Then,

s(xp41) > s(o) > s™(0) + e > s™(xpq1) + 2¢/3,
contradicting the previous observation.

The last assertion of Lemma D.5 is immediate from the definition of Ef.
]

Lemma D.6 The profile (b*,s%,s*,p};) balances the market, i.e., Fj(s) =
F§(s) for all s. Hence, sj(v) = s*(x) for almost all x € [0, 1].

Proof. Since F; and F§ are continuous from the right, it suffices to show
that they agree almost everywhere. We first argue that F5(s) — Fg(s) <0
almost everywhere. Suppose this is not the case, so there exists § < § with
F5(8) — F§(5) = € > 0 and with 5 a continuity point of Fj; — F§. Then
there exists s; and sy with § € (s1,52), F5(s) — Fé(s) > €/2 on [s1, s2),
and either s; = 0 or, for every n > 0, there is a value s, € [s1 — 7, s1) with
Fi(sy) — Fé(sy) < €/2 (note that Fj(s,) — F&(sy) may be negative, and
so is bounded below by —1). We consider the case in which s; > 0 and
P} (s1) < pir(s2), with the remaining cases a straightforward simplification.

Since Fj(s) — F&(s) > 0 on [sq,s2], for fixed pj;(s1) and pj;(s2), the
price-setter must be setting prices as large as possible on this interval. If
not, there is a price function py € Yp with py(s) > pf(s) for all s and



Appendix 19

pu(s) > pj;(s) for some s yielding strictly higher payoffs to the price-setter
than py; in I'™ for sufficiently large n, when the buyer and seller choose
(€B,€%). But this contradicts the equilibrium property of (£%,£45, pf)-

Hence, there exists s’ € [s1, so] such that dpj;(s)/ds = 2A on (s1,s") and
p(s) = piy(s2) for s € [s',s9]. That is, prices increase at the maximum
rate possible until hitting pj;(s2) (with s’ = sy possible, but since pj;(s1) <
py(s2), we have s; < §’). Consequently, sg([0,1]) N [s1,s2] C {s1, s2}, i.e.,
buyers demand only seller attribute choices s; and so from this interval.
(Since all seller attribute choices in [s', s3] command the same price, buyers
demand only attribute choice so from this set, while the price of a seller
attribute choice increases sufficiently quickly on [s1,s] that from this set
buyers demand only s;.)

Since for every 1 > 0, there exists s, € [s1—7, s1) with F5(s,)—F&(sy) <
e/2 and yet F5(s1)—F&(s1) > €, the buyer must choose attributes arbitrarily
close to s for some buyer types. This implies that there is a range of seller
attributes just below s; with prices that are not too low, that is, there exists
7’ > 0 such that

py(s) > py(s1) — Alsi — s)

for all s € [s1 — 7/, s1). Consider now the price function pg € Yp given by

(), if s > ¢,
pir(s) = § min{p};(s1 — n) + 2A(s — s1 + 1), pi(s)}, if s e (s1—n,s),
Py (s), if s <s1—n,

and note that p?J = py;. Since pZ > pp, the price-setter’s payoff from
choosing p?] € Tp less the payoff from pj; is bounded below by

/

[ e s ds+ [ 06 —pi(e) e/2ds (D

1—n S1
For n <n' and s € (s1 — 7, s1),
pir(s) = pip(s) < pir(s1—m) +2A(s — s1+n) = piy(s1) + As1 — s)

=py(s1 —n) —py(s1) — A(sy — s) + 247
< 2An.

Moreover, for s € (s1, s1+ (8" —s1)/2), if n is sufficiently close to 0, we have



Appendix 20

U
r(s1) — An+2A(s — s1+ 1) — pr(s)
r(s1) — An+2A(s — s1 + 1) — prr(s1) — 2A(s — s1)

Since pf;(s) > p;;(s) for all s, the expression in (D.18) is bounded below by

51 s1+(s'—s1)/2
—/ 2A77ds+/ Ane/2ds,

1= S1

which is clearly positive for sufficiently small 1. Since the lower bound is
strictly positive, the price-setter has a profitable deviation (in I'" for large
n), a contradiction.

We conclude that Fj5(s) — F&(s) < 0 for almost all s. It remains to
argue that it is not negative on a set of positive measure. Suppose it is.
Then there must exist a seller characteristic § > 0 such that py(s) = —P
for s < 5, Fj5(s) — F&(s) < 0 for a positive-measure subset of [0, 5], and
Fj(s) — F&(s) = 0 for almost all s > 5. But then no seller would choose
attributes in [0, §), a contradiction. ]

We now seek a characterization of the seller’s payoffs. Intuitively, we
would like to use Lemma D.6 and the monotonicity of b* and s} to conclude
that there is positive assortative matching, and indeed that a seller of type
o matches with a buyer of type § = 0. However, these properties may not
hold if b* and s% are not strictly increasing. Moreover, even if we had such
a matching, the specification of the seller’s payoffs given by (D.12) leaves
open the possibility that the (gross) payoff to a seller of type o choosing
attribute s may not be given by hg(b(s), s) + py(s). Hence, the buyers that
sellers are implicitly choosing in their payoff calculations may not duplicate
those whose seller choices balance the market.

Our first step in addressing these issues is to show that the buyer’s
limiting attribute-choice function is indeed strictly increasing. Intuitively, if
a positive measure of buyer types choose the same attribute, by having some
higher types in the pool choose a slightly higher attribute, and some lower
types choose a slightly lower attribute, we can keep the average attribute
unchanged, while saving costs (from Assumption 3).

Lemma D.7 The function b* is strictly increasing when nonzero.
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Proof. By construction, b* is weakly increasing. We show that 8" > 3
and b*(3') > 0 imply b*(3") > b*(3'). Suppose to the contrary that b =
b*() > 0 for two distinct values of 3.

Define 8, = inf{s : b*(8) = b}, By = sup{f : b*(8) = b}, and =
(81 + B3)/2. We assume 0 < 3; and (5 < 1 (if equality holds in either case,
then the argument is modified in the obvious manner). We now define a
new attribute-choice function (as a function of a parameter n > 0) that is
strictly increasing on a neighborhood of [3;, 55] and agrees with b* outside
that neighborhood. First, define

1 =inf{8 < By :b*(B) > b+n(3 - 5)}

and B3 =sup{f > B, : b*(8) < b+n(3 - B)}.
Note that as n — 0, ﬂ? — B, for j = 1,2. Finally, define
b (B), A6l
b"(8) = {b+n(B—0), if 8 [B],5),
b*(8), if 8 < f7.

The difference in payoffs to the buyer under b7 and under b* is given by

B3
/[3 hp("(8),sp(8)) —hp(b™(5),s5(8)) —lcs(b"(8), ) —cs(b™(8), B)] df.

n
1

(D.19)
Now,
Ba
[ ken7(3).5) - env' (). 5) a3
82 T e _
= [ [ e o) a3
B (B2—061)/2 363(575 + ) 803(573 —z)
—77/0 [ o - 5 ] xdx 4 o(n).

From Assumption 3, the integrand is strictly negative, and so the integral
is strictly negative and independent of 7. Since s} is increasing, a similar
argument applied to the difference in the premuneration values shows that

B2
/ﬁ hp(®7(6),85(8))—hp(b*(8),s5(6))~lcs(b"(8), B)—c(b™(B), B)] d3

- /wg—ﬁl)/z [803(6, B—=z) dcp(bB+a)
—Jo

5% 2% xdf + o(n).
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It remains to argue that the contribution to (D.19) from the intervals |37, ;)
and (8, 89] is of order o(n). But this is immediate, since |b"(3) —b*(3)| <7
and ﬂ? — Bjasn — 0 (for j = 1,2). Hence, for n > 0 sufficiently small,
b" gives the buyer a strictly higher payoff under (D.5) than b*. But, then
by a now familiar argument, the buyer has a profitable deviation in I'"
for sufficiently large n, a contradiction. So b* is strictly increasing when
NONZero. [ ]

We next show that the seller’s payoffs converge to the payoff one would
expect the seller to receive by matching with his corresponding buyer type.

Lemma D.8 For almost all o satisfying b*(c) > 0,

i [ 1 (s(0),b.p)  es(s(o). )"
— hs(b*(0)),5"(0)) + pis(s*(0)) — es(s (), ).

The functions s and b on the left side of this expression are strategies in the
game ', and are the objects over which the equilibrium £" mixes.

Proof. Suppose the claim is false. Then, since the limit exists, there exists
n” and 1 > 0 such that for all o in a set G of sellers of measure at least 7
whose “matched” buyers choose positive attributes (i.e., b*(¢) > 0), for all
n>n",

/ H(s(0), b, pit) — cs(s(0), o)dem

is at least ) distant from

hs(b*(0),s™(0)) + ppy(s™(0)) = cs(s”(0), 0).

Since G has positive measure, we may assume that every index in G is
a continuity point of the limit functions (b*,s},s*).

For any ¢ > 0, let E° C [0,1] be the set from Lemma D.5 satisfying
AEf) >1—e.

Fix an index o/ € G N EZ for some &' > 0 (since E° is monotonic in ¢,
o' € GN E® for all smaller ). Since b* is strictly increasing, without loss
of generality, we may assume that, for all { > 0, there is a positive measure
set of buyers with b*(3) € (b*(¢’) — ¢,b*(¢”)). Indeed, a positive measure
set of buyers in £° does so for all € sufficiently small. Formally,

V¢ > 03" Ve <e”, MBeE :b*(8) € (b*(c') — ¢,b*(0"))} > 0. (D.20)
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Consider some ¢ < & and suppose n > max{n.,n”}, where n. is from
Lemma D.5. Let (b,sp,s) € T% x Y% be a triple of functions with the
property that |b(8) — b*(4)| < € and |sg(B) — si(0)| < € for all 8 € E*,
and |s(o) —s*(0)| < ¢ for all o € E°. (Recall that, from Lemma D.5, £"
assigns high probability to such functions for large n.)

By Lemma D.6, s* and sp are equal almost surely, so without loss of
generality, we may assume that s*(z) = sj;(z) for all z € E.

Observe first that if the max in (D.11) is achieved by hg(0,s(o)) +

pir(s(o)), then

H(s(o),b,ppy) — es(s(0),0) = hs(0,8(0)) + prr(s(a)) — cs(s(0), 0)
< hs(b(0),8(0)) + pir(s(0)) — cs(s(a), 0).

We claim that, for sufficiently small € > 0, the set p(s(o), b, p{;) contains
all p < pg;(s(o)). This follows from (D.20) and the observation that buyers
in E° receive a payoff (ignoring costs) arbitrarily close to hg(b*(5),s*(3)) —
Pl (s°(8)).

Consequently, for p sufficiently close to pf;(s(c)), single crossing (As-
sumption 1) implies that a buyer § with attribute satisfying b*(3) < b*(0)
will not be attracted (for sufficiently large n). This implies that

_sup  H(s(9),p,b,py) = hs(b(0),s(0)) + pir(s(a)).
peP(s(o).b.p;)

By choosing e small (or, equivalently, n large), the right side can be made
arbitrarily close to

hs(b1(s),s) + pir(s') = hs(bi(s™(0)),8%(0)) + pis(s7 ().

Hence, the max in (D.11) is achieved by the first term, and we have a
contradiction. n

With this payoff characterization in hand, we can show that seller at-
tribute choices are strictly increasing in types (when positive), as are the
types of sellers with whom buyers attempt to match.

Lemma D.9 The functions s}, and s* are strictly increasing on {3 : b*(3) >
0}.

Proof. From Lemma D.6, s};;(x) = s*(x) for almost all z € [0, 1], and so it
suffices to prove the result for s*. Suppose to the contrary there is a strictly
positive constant § and associated maximal nondegenerate interval (o1, 02)
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with s*(o) = § and b*(0) > 0 for all o € (01,02). From Lemma D.6, we
also have s () = § for all § € (01, 02).

Define by = limg|,, b*(8) and by = limgy,, b*(5).

Define o(n) = inf{o : s*(¢) > 5 + 1}, and notice that lim,_oo(n) = o2.
The seller attribute-choice function s’ given by

/ _ S*(U)7 if o € (0170(77))7
s'(s) = { §+mn, ifoe(o1,0(n)),

is weakly increasing. Consider the price p > pj;(5) for attribute § + 7
satisfying
p=sup{p: B(5+n,p,py) # T}

(This is p(5 4+ 1, p, p{;) from Lemma D.1(1).) The price p is at least as high
as the value p’ satisfying hp(ba, §) — py(8) = hp(be, §+n) —p'. At the price
p for attribute choice § + 7, the seller ensures that attribute choice § 4+ n
is chosen by a buyer at least as high as be (the single-crossing condition
on buyer premuneration values ensures that no lower attribute buyers will
choose § +n). From Lemma D.8, we have then have that the switch to
attribute-choice function s’ increases the seller’s payoff by at least

g2

/02 (hs(bs, § +1) + p) do — / (hs(by, 8) + i (8)) do

1 g1

o(n)
— / (cs(8§+m,0) —cs(s*(0),0)do

> (0'2 — O'1)[h5(bg,§ + 77) — hs(bl,§]
= (o(n) = o1)les(8 +n,01) — cs(8,01)].

The first term after the inequality is bounded away from zero as 77 approaches
zero, while the second approaches zero as does 7, ensuring that there is some
n > 0 for which the payoff difference is positive. Intuitively, each seller in
the interval (01, 09) experiences a discontinuous increase in expected buyer
(at a higher price) when increasing her attribute choice, while sellers in the
interval (o2,0(n)) experience a continuous increase in cost. The attribute-
choice function s’ increases the seller’s payoff for sufficiently small ), yielding
the result. ]

The limiting mass of buyers and seller choosing zero attributes are equal:
Lemma D.10
A{o :87(0) = 0}) = A({B : b*(B) = 0}).
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Proof. First, suppose A({3 : b*(8) = 0}) > A({o : s*(¢0) = 0}). Then
because sj; = s* almost everywhere, there exists a positive mass of buyers
for whom b*(3) = 0 and sj(3) > 0. By Assumption 2, hpg(0,s) is inde-
pendent of s, and so, since pj; is strictly increasing, the buyers choosing
b = 0 can increase their payoff by choosing s = 0. The buyer’s equilibrium
strategy must then be suboptimal in the game I'" for sufficiently large n, a
contradiction.

Now, suppose A({3 : b*(3) = 0}) < A({o : s*(0) = 0}). Then there
exists a positive mass of buyers for whom b*(5) > 0 and sj(8) = 0. By
Lemma D.6, there is then a positive mass of buyers choosing a zero seller
attribute and positive buyer attribute. Since hp(b,0) is independent of b
(Assumption 2) and cp(b, §) is strictly increasing in b, such buyers can in-
crease their payoff by choosing b = 0. The buyer’s equilibrium strategy must
then be suboptimal in the game I'" for sufficiently large n, a contradiction.
]

We now turn to feasible matchings. For b € [0,b*(1)] and s € [0,s%(1)],
we define

b (s) = {b*((s*>1<s>>, s €s"([0.1]).5 > 0,
max {0, supycp{b < b*(inf {o : s* (0) > s})}}, otherwise,
and
() = {s*((b*>1<b>>, be b*([0,1]),b> 0,
| max {0, sup,cg{s < s*(inf{B : b*(8) > b})}}, otherwise.

The maximum in the specification of b* (with §* similar) ensures that b* is
well defined when s* is continuous at inf{c|s*(c) > 0} (in which case, the
supremum is taken over the empty set and so has value —c0).

Lemma D.11 The pair (5*75*) s a feasible matching. In addition, for all
values b > 0 and s > 0, we have

§°(b) =s"((b") "' ())

where
(b")~1(b) = inf{3 : b*(B) > b}, forb <b*(1),
1, for b > b*(1),

and

b*(s) = b*((s") "\ (s)),
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where

o1,y Jinf{o:s%(0) > s}, for s <s*(1),
(577 () = {1, for s > s*(1).

Proof. From Lemma D.10, we can assume that b* and s* share a common
set [0,2] on which they are zero. It is then immediate that (b*,3*) is a
feasible matching.

The final two statements follow immediately from the left continuity of
the attribute-choice functions (see Lemma D.4) and the definitions of §* and
b*. ]

Finally, we show that the seller’s payoff satisfies an optimality condition.

Lemma D.12 For almost all o,

liTILn/lEI(s(U),b,pT(}) —cs(s(o),0)de™

= hs(b*(0),s"(0)) + py(s™(9)) = cs(s*(0), 0)
= max hg(b*(s),s) + pj;(s) — cs(s,0).
s€S
Proof. The first inequality duplicates Lemma D.8.

Single-crossing (Assumption 3) implies that the attribute choices maxi-
mizing hg(b*(s), s)+pj;(s) —cs(s, o) are increasing in o, and so if the second
equality fails, in games I'" for sufficiently large n, the seller has a profitable
deviation. |

D.5 Uniform-Price Equilibria

We finally argue that the profile (b*,s*, b*, §*,p};) induces a uniform-price
equilibrium of the matching market with identical attribute choices and
matching function (but perhaps a vertical shift in the price function).

The first task is to show that equilibrium payoffs are nonnegative, so
that agents would not prefer to be out of the market. Suppose {£'s, €5, (s tn
is the sequence whose limit induces (b*,s};, 5*, 5%, pfr). We have

h5(0,0) = py(0) = hp(0,0) — pr(0) — ¢5(0, 5)
< hp(b(p),8"(b*(8))) — py (5" (b7(8))) — ca(b(S), 5) (D.21)
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and

hs(0,0) + pis (0) = hs(0,0) + pis(0) — e5(0,0)
< hs(B(s(0)).5(0)) + pis(s(0)) — es(s(0). ). (D.22)

Let
k* = hp(0,0) — pi7(0) > —hg(0,0) — pj;(0)

(where the inequality follows from Assumption 2) and replace the price
function pf; with py; 4+ *. Both {3 and £ remain best responses given price
pry + k* and markets still clear in the limit of n — oo. Moreover, replacing
pi; with pf; + £* in (D.21)-(D.22) gives nonnegative payoffs.

It is immediate from the formulation of the buyer’s payoffs in the game
and from Lemma D.12 that almost all buyers and sellers are optimizing
given py;.

It remains to consider deviations by a seller of type ¢ to a value s not
chosen by any seller under s*. If there is a profitable such deviation for
seller o, then there is a price p such that B(s, p, p};) is nonempty and for all

b e B(s,p, ),
IIs(s*(0),0) < hs(b,s) +p —cs(s,0).

But then for all sufficiently large n, B(s,p,p};) is again nonempty for p’
less than but close to p, contradicting the fact that Ig(s*(0), o) is close to

f H(S(U)7 bapZ) - CS(S(U)J U) dgn

D.6 Nontriviality

Partial nontriviality. We now show that under (14), the profile (b*, s*, b*, 5°,00)
is nontrivial. If the equilibrium is trivial, b* and s* are identically zero, so

that there is no agent for whom it is profitable to trade at price py, and
hence for all (b, s) € (0,b] x (0, 5],

hS(()? 8) +pU(S) - CS(Sa 1)
1

0
and hp(b,s) —pu(s) —ecp(b,1) <0,

VANV

where we focus on agents § = 1 = ¢ since they are the most likely to want
to trade. Notice that we are using here the maximum that appears in the
building block (D.11) for the specification of the seller’s payoff, and which
effectively allows the seller to sell any attribute choice s € [0, 5] at price
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pu(s), assuming in the process that he can attract at least a zero-attribute
buyer. For these two inequalities to hold, it must be that

hB(b7 5) + h5(07 S) < CB(b7 1) + 65(57 1)a

contradicting (14).

Full nontriviality. We now assume (15) holds. Suppose that there is
an interval of seller types [0, 0] with ¢/ > 0 who choose zero attributes. By
Lemma D.9, we then have b*(3) = 0 for all 8 € [0,0]. If neither agent of
type ¢ € (0,3') chooses a strictly positive attribute, it must be that

hs(0,8) +pu(s) —cs(s, d)

0
and hp(b,s) = pu(s) — cp(b,¢) <0,

VANVAN

where (b, s) are a pair of attributes satisfying (15). But summing these two
inequalities yields an inequality contradicting (15).

E Personalized Pricing

E.1 Prices

A personalized-price function is a function pp : B x § — R; where pp(b, )
is the (possibly negative) price that seller with attribute choice s € S re-
ceives when selling to a buyer with attribute choice b € B. We emphasize
that a personalized-price function prices only matches between marketed
attributes.

E.2 Equilibrium

Given a feasible outcome (b, s, b, ) and a personalized price pp, the payoffs
to a buyer 8 who chooses b € B and to a seller ¢ who chooses s € S are
given by

HB(bv ﬂ) = hB(b7 '§(b)) - pP(b7 '§(b)) - CB(ba ﬁ)

and s(s,0) = hs(b(s),s) + pp(b(s), s) — cs(s, o).

The specification of equilibrium begins with appropriate modifications
of the notions of buyer and seller optimization given py (i.e., (3) and (4)):
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Definition E.1 Given a feasible outcome (b,s,b, ), buyer 3 is optimizing
at b given pp if

(b(8),35(b(8))) € argmax hp(b, s) — pp(b,s) — cp(b, B). (E.1)
(b,s)EBXS

Seller o is optimizing at s given pp if

(b(s(0)),s(0)) € argmax hg(b,s) + pp(b,s) — cs(s,0). (E.2)
(b,5)eBXS

Since the personalized-price function pp prices only pairs of marketed
attributes, the stipulation that a seller optimize given pp says nothing about
what might happen if this seller chooses an attribute s € S. We require that
no seller can choose an attribute s ¢ S, find a target buyer attribute b € B
with whom to match, and find a way to split the resulting surplus so that
the seller and target buyer are both better off than in equilibrium:|

Definition E.2 Given (b,s,lN), 3,pp), there is a profitable seller deviation
if there exists a seller o such that either (i) Ils(s(o),0) < 0 or (ii) there
exist an unmarketed seller attribute choice s € S, a marketed buyer attribute
b€ B, and a price p € R such that

hp(b,3(b)) —pp(b,5(b)) < hp(b,s) —p (E.3)
and IIs(s(o),0) < hg(b,s)+p—cs(s,0). (E.4)

The definition of a buyer’s profitable deviation is similar:

Definition E.3 Given (b,s,b,3,pp), there is a profitable buyer deviation
if there exists a buyer B such that either (i) Ilg(b(B),5) < 0 or (ii) there
exist an unmarketed buyer attribute choice b & B, a marketed seller attribute
s €S8, and a price p € R such that

HB(b(ﬂ)a 6) < hB(b7 S) —pP—- CB(b713)
and hs(b(s), s) + pp(b(s),s) < hs(b,s) + p.
Definition E.4 A feasible outcome (b, s, b, 3) and a personalized-price func-

tion pp constitute a personalized-price equilibrium if all buyers and sellers
are optimizing given pp and no buyer or seller has a profitable deviation.

ISimilar to footnote 6, Definitions E.2 and E.3 can be extended to cover deviations to
any seller attribute, as well as to prices that differ from the personalized-price function.
See Mailath, Postlewaite, and Samuelson (2010) for details.
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Remark E.1 (Premuneration Values) Since personalized prices can com-
pensate for any alterations of the division of wv(b,s), the decomposition
of the surplus v(b, s) between the buyer’s and seller’s premuneration val-
ues plays no role in the efficiency of a personalized-price equilibrium out-
come. In particular, it is a straightforward calculation that if (b, s, 5, 3,pp)
is a personalized-price equilibrium with premuneration values hp(b, s) and
hs(b, s), then (b,s,b, 3, p'p) is a personalized-price equilibrium with premu-
neration values h’z(b, s) and hy(b, s), where

pp(b,s) = pp(b,s) + hg(b,s) — hp(b,s) = pp(b,s) + hg(b,s) — his(b, s).

¢

Remark E.2 (Ex Post Contracting Equilibrium) Cole, Mailath, and
Postlewaite (2001) study continua of buyers and sellers who first simultane-
ously choose attributes (as here), and then match and bargain to divide the
resulting surplus v(b, s), with the matching/bargaining stage being modeled
as a cooperative game (more specifically, an assignment game). An ex post
contracting equilibrium in Cole, Mailath, and Postlewaite (2001) is a Nash
equilibrium of the noncooperative attribute-choice game, where the payoffs
from the attribute choices are determined by stable (equivalently, core) allo-
cations in the induced assignment game.** The set of outcomes and implied
payoffs are essentially the same under the two notions (modulo some techni-
cal differences). In particular, if all buyers and sellers are optimizing in the
market given pp, then no buyer-seller pair with attributes (b, s) € B x S can
block the equilibrium. Moreover, a seller ¢ has a profitable out-of-market
deviation if and only if there is a blocking pair consisting of that seller (with
some attribute s) and some buyer with an attribute b € B. An analogous
comment applies to buyers. 0

E.3 Efficiency

Lemma E.1 In any personalized-price equilibrium (b,s,b,$,pp), b and §
are strictly increasing for strictly positive attributes.

Proof. We consider only b (since § is almost identical). Suppose b is not
strictly increasing. Since b is one-to-one on s((g, 1]) (see Definition 1 and its

**Consequently, matching is over buyers and sellers, not attributes as here. This differ-
ence results in some technical complications.
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following comment), there exists 0 < s; < s with by = b(s1) > b(s2) = ba.
From (E.1) for the buyer choosing b; and from (E.2) for the seller choosing
S92, we have

hp(b1,s1) —pp(b1,s1) > hp(bi, s2) — pp(b1, s2)
and hs(ba, s2) + pp(ba, s2) > hs(b1, s2) + pp(b1, s2),

and so

hp(bi,s1) + hs(ba, s2) — pp(b1,s1) + pp(ba, s2) > v(b1, s2).

Adding this to the analogous inequality obtained from (E.1) for the buyer
choosing by and from (E.2) for the seller choosing s1, we obtain

’U(bl, 81) + ’U(bg, 82) > U(bl, SQ) + U(bg, 81).

But Assumption 1 requires the reverse (strict) inequality, a contradiction. m

From Lemma FE.1, matching in a personalized-price equilibrium is pos-
itively assortative in attributes. Since the attribute-choice functions are
strictly increasing in index when positive, we can accordingly define the ex
ante surplus for buyer and seller types =0 = ¢ € [0,1] as

W(b,s,¢) = hp(b,s) + hs(b,s) — cp(b, d) — cs(s, @)
=v(b,s) —cp(b,d) — cs(s, @).

An efficient choice of attributes maximizes W (b, s, ¢) for (almost) all ¢.

Personalized-price equilibrium outcomes are constrained efficient in the
sense that no matched pair of agents can increase its net surplus without
both agents deviating to attribute choices outside the sets of marketed at-
tributes B and S:ff

Lemma E.2 Suppose (b, s, b, 3,pp) is a personalized-price equilibrium. Then,
for all p € [0,1], b€ B, s €S and allb' and ¢,

W(b,s',¢) < W(b(¢),s(¢),¢)
and W(b',s,6) < W(b(¢),s(¢), ¢).
' This is essentially Cole, Mailath, and Postlewaite (2001, Lemma 2), which describes

a constrained efficiency property of ex post contracting equilibria (see Remark E.2). The
current formulation allows a more transparent statement and proof.
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Proof. En route to a contradiction, suppose there exists ¢ € [0,1], b € B
and s’ € [0, 5] such that W (b, s’, ¢) > W (b(¢),s(¢), ). The other possibility
is handled analogously.

Let € = [W(b,s',¢) — W(b(¢),s(¢),$)]/3 > 0 and set p = hp(b,s’) —
hp(b,5(b)) + pp(b,5(b)) — . The seller of type o = ¢ can induce a buyer
with attribute choice b to buy from him by choosing s’ and offering a price
p. Moreover, this deviation is strictly preferred by the seller ¢:

hs(b,s") +p—cs(s', d)
= hg(b,s") + hp(b,s') — hp(b,3(b)) + pp(b,5(b)) — e — cs(s', ¢)
> 1s(s(#), ¢) + [hp(b(#),5(¢)) — pp(b(¢),s(¢)) — cB(b(¢), )]
— [hB(b,5(b)) — pp(b, 5(b)) — cp(b, )] +&
> 1ls(s(9), ¢) +e,

where the equality uses the definition of p, the strict inequality follows from
W (b, s, ¢) > W(b(¢),s(¢), p) + 2¢, and the last inequality is an implication
of (E.1). |

Lemma E.2 does not ensure that a personalized-price equilibrium out-
come is efficient. The possibility remains that W (b, s, ¢) may be maximized
by a pair of values b ¢ B and s ¢ S. In this sense, the inefficiency is the
result of a coordination failure. For example, for the premuneration values
hp(b,s) = 0bs and hg(b,s) = (1 — 0)bs, it is an equilibrium for all agents
to choose attribute 0, giving a constrained-efficient outcome that is in fact
quite inefficient. The possible inefficiency of a uniform-price equilibrium can
be viewed as reflecting incomplete markets.

We could ensure efficiency by ensuring that a price exists for every at-
tribute combination, whether marketed or not:

Definition E.5 The feasible outcome (b,S,B, 3) and personalized price pp
is a complete personalized-price equilibrium if there is an extension of pp
to [0,b] x [0, 5] (also denoted by pp) such that for all B and all o,

OSHB(b(ﬁ)7ﬁ): sup hB(b,S)—pP(b,S>—CB(b,6)
(b,5)€[0,b] % [0,3]
and 0 <Ilg(s(o),0) = sup hs(b,s) +pp(b,s) —cs(s, o).

(b,5)€[0,b] % [0,3]

Though the names suggest that every complete personalized-price equi-
librium outcome is indeed a personalized-price equilibrium outcome, this is
not immediate, as we have replaced the prohibition on profitable deviations
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with the requirement that agents be optimizing given pp with respect to all
attribute choices. However, we have:

Lemma E.3

(E.3.1) Every complete personalized-price equilibrium outcome is a personalized-
price equilibrium outcome.

(E.3.2) A complete personalized-price equilibrium outcome is efficient.

Proof. Fix a complete personalized-price equilibrium (b,s,b,3,pp). To
show that this is a personalized-price equilibrium, we must show there are
no profitable deviations. We discuss seller deviations; the buyer case is
analogous. Suppose the seller has a profitable deviation, so there exists a
type o and an attribute choice s’ ¢ S, a price p € R, and b’ € B with

s(s(0),0) < hs(t,s") +p—cs(s',0) (E.5)

and

he',3(") —pp(t/,5()) < hp(¥,s') —p. (E.6)
Since (b, s, b, 5, pp) is a complete personalized-price equilibrium, (E.5) im-
plies p > pp(¥, ).

There exists some 3 € [0,1] for which ¥ = b(3), and so subtracting
cp(V, ) from both sides of (E.6) and again using the assumption that
(b,s, b, 3, pp) is a complete personalized-price equilibrium gives p < pp(V, s'),

a contradiction.

Since every pair of attributes is priced, the efficiency of complete personalized-

price equilibria is a straightforward calculation. [

One route to existence is to note that a personalized-price equilibrium
is essentially equivalent to Cole, Mailath, and Postlewaite (2001) ex post
contracting equilibrium, and then to refer to that paper for conditions for the
existence of an ex post contracting equilibria. We take an alternative route
here, building on the relationship between personalized-price and uniform-
price equilibria.

Proposition E.1 There exists an efficient personalized-price equilibrium.

Proof. Suppose first that hg(b,s) = 0 and hence hp(b,s) = v(b,s) for all
pairs (b, s). Proposition 3 ensures that there exists a complete uniform-price



Appendix 34

equilibrium. Since hg(b,s) = 0, this is also a complete personalized-price
equilibrium. Then, if hg(b, s) # 0, by setting

p;:(b, 5) = pp(b, S) - hS(ba S) = pp(b, 5) + hB(b> 5) - U(ba 5)7

we again have a complete (and hence efficient) personalized-price equilib-
rium. ]

E.4 Uniform Rationing Equilibria

Lemma E.4 Any personalized-price equilibrium outcome is a uniform-rationing
equilibrium outcome.

Proof. Let (b,s, B, 5) be a personalized-price equilibrium outcome and con-
sider its associated uniform-rationing price. The conditions for the latter
to be a personalized-price equilibrium are implied by the former, with the
exception that there may now be profitable deviations by a buyer § with
attribute choice b(3) to match with a seller with s < 5(b(8)) (and hence
b(s) < b(3)). But since hg(b,s) is increasing in b, the seller in question
would welcome such a match. Hence, if this match is a profitable devia-
tion in the uniform-rationing equilibrium, it is a profitable deviation in the
personalized-price equilibrium, a contradiction. [
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