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Abstract

Multivariate continuous time models are now widely used in economics and �nance.
Empirical applications typically rely on some process of discretization so that the system
may be estimated with discrete data. This paper introduces a framework for discretizing
linear multivariate continuous time systems that includes the commonly used Euler and
trapezoidal approximations as special cases and leads to a general class of estimators
for the mean reversion matrix. Asymptotic distributions and bias formulae are obtained
for estimates of the mean reversion parameter. Explicit expressions are given for the
discretization bias and its relationship to estimation bias in both multivariate and in
univariate settings. In the univariate context, we compare the performance of the two
approximation methods relative to exact maximum likelihood (ML) in terms of bias and
variance for the Vasicek process. The bias and the variance of the Euler method are
found to be smaller than the trapezoidal method, which are in turn smaller than those of
exact ML. Simulations suggest that when the mean reversion is slow the approximation
methods work better than ML, the bias formulae are accurate, and for scalar models the
estimates obtained from the two approximate methods have smaller bias and variance
than exact ML. For the square root process, the Euler method outperforms the Nowman
method in terms of both bias and variance. Simulation evidence indicates that the Euler
method has smaller bias and variance than exact ML, Nowman�s method and the Milstein
method.

Keywords: Bias; Di¤usion, Euler approximation; Trapezoidal approximation; Milstein
approximation

JEL classi�cation: C15, G12

1 Introduction

Continuous time models, which are speci�ed in terms of stochastic di¤erential equations,

have found wide applications in economics and �nance. Empirical interest in systems of this

type has grown particularly rapidly in recent years with the availability of high frequency
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�nancial data. Correspondingly, growing attention has been given to the development of

econometric methods of inference. In order to capture causal linkages among variables and

allow for multiple determining factors, many continuous systems are speci�ed in multivariate

form. The literature is now wide-ranging. Bergstrom (1990) motivated the use of multivariate

continuous time models in macroeconomics; Sundaresan (2000) provided a list of multivariate

continuous time models, particularly multivariate di¤usions, in �nance; and Piazzesi (2009)

discusses how to use multivariate continuous time models to address various macro-�nance

issues.

Data in economics and �nance are typically available at discrete points in time or over

discrete time intervals and many continuous systems are formulated as Markov processes.

These two features suggest that the log likelihood function can be expressed as the product of

the log transition probability densities (TPD). Consequently, the implementation of maximum

likelihood (ML) requires evaluation of TPD. But since the TPD is unavailable in closed form

for many continuous systems and several methods have been proposed as approximations.

The simplest approach is to approximate the model using some discrete time system.

Both the Euler approximation and the trapezoidal rule have been suggested in the literature.

Sargan (1974) and Bergstrom (1984) showed that the ML estimators (MLEs) based on these

two approximations converge to the true MLE as the sampling interval h! 0, at least under

a linear speci�cation. This property also holds for more general di¤usions (Florens-Zmirou,

1989). Of course, the quality of the approximation depends on the size of h. However, the

advantage of the approximation approach is that it is computationally simple and often works

well when h is small, for example at the daily frequency.

More accurate approximations have been proposed in recent years. The two that have

received the most attention are in-�ll simulations and closed-form approximations. Studies of

in-�ll simulations include Pedersen (1995) and Durham and Gallant (2002). For closed-form

approximations, seminal contributions include Aït-Sahalia (1999, 2002, 2008), Aït-Sahalia

and Kimmel (2007), and Aït-Sahalia and Yu (2006). These approximations have the advan-

tage that they can control the size of the approximation errors even when h is not small.

Aït-Sahalia (2008) provides evidence that the closed-form approximation is highly accurate

and allows for fast repeated evaluations. Since the approximate TPD takes a complicated

form in both these approaches, no closed form expression is available for the MLE. Conse-

quently, numerical optimizations are needed to obtain the MLE.

No matter which of the above methods is used, when the system variable is persistent,

the resulting estimator of the speed of mean reversion can su¤er from severe bias in �nite

samples. This problem is well known in scalar di¤usions (Phillips and Yu, 2005a, 2005b,

2009a, 2009b) but has also been reported in multivariate models (Phillips and Yu, 2005a and

Tang and Chen, 2009). In the scalar case, Tang and Chen (2009) and Yu (2009) give explicit

expressions to approximate the bias. To obtain these explicit expressions, the corresponding

estimators must have a closed-form expression. That is why explicit bias results are presently

available only for the scalar Vasicek model (Vasicek, 1977) and the Cox-Ingersoll-Ross (CIR,
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1985) model.

The present paper focuses on extending existing bias formulae to the multivariate contin-

uous system case. We partly con�ne our attention to linear systems so that explicit formulae

are possible for approximating the estimation bias of the mean reversion matrix. It is known

from previous work that bias in the mean reversion parameter has some robustness to speci-

�cation changes in the di¤usion function (Tang and Chen, 2009), which gives this approach

a wider relevance. Understanding the source of the mean reversion bias in linear systems can

also be helpful in more general situations where there are nonlinearities.

The paper develops a framework for studying estimation in multivariate continuous time

models with discrete data. In particular, we show how the estimator that is based on the

Euler approximation and the estimator based on the trapezoidal approximation can be ob-

tained by taking Taylor expansions to the �rst and second orders. Moreover, the uniform

framework simpli�es the derivation of the asymptotic bias order of the ordinary least squares

estimator and the two stage least squares estimator of Bergstrom (1984). Asymptotic the-

ory is provided under long time span asymptotics and explicit formulae for the matrix bias

approximations are obtained. The bias formulae are decomposed into the discretization bias

and the estimation bias. Simulations reveal that the bias formulae work well in practice.

The results are specialized to the scalar case, giving two approximate estimators of the mean

reversion parameter which are shown to work well relative to the exact MLE when the mean

reversion is slow.

The results con�rm that bias can be severe in multivariate continuous time models for

parameter values that are empirically realistic, just as it is in scalar models. Specializing our

formulae to the univariate case yields some useful alternative bias expressions. Simulations

are reported that detail the performance of the bias formulae in the multivariate setting and

in the univariate setting.

The rest of the paper is organized as follows. Section 2 introduces the model and the

setup and reviews four existing estimation methods. Section 3 outlines our uni�ed frame-

work for estimation, establishes the asymptotic theory, and provides explicit expressions for

approximating the bias in �nite samples. Section 4 discusses the relationship between the

new estimators and two existing estimators in the literature, and derives a new bias formula

in the univariate setting. Section 5 compares the performance of the estimator based on the

Euler scheme relative to that the method proposed by Nowman (1997) in the context of the

square root process and a di¤usion process with a linear drift but a more general di¤usion.

Simulations are reported in Section 6. Section 7 concludes and the Appendix collects together

proofs of the main results.

2 The Model and Existing Methods

We consider an M -dimensional multivariate di¤usion process of the form (cf. Phillips, 1972):

dX(t) = (A(�)X(t) +B(�))dt+ �(dt); X(0) = X0; (2.1)
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where X(t) = (X1(t); � � � ; XM (t))0 is an M -dimensional continuous time process, A(�) and
B(�) are M � M and M � 1 matrices, whose elements depend on unknown parameters
� = (�1; � � � ; �K) that need to be estimated, �(dt) (:= (�1(dt); � � � ; �M (dt))) is a vector ran-
dom process with uncorrelated increments and covariance matrix �dt. The particular model

receiving most attention in �nance is when �(dt) is a vector of Brownian increments (denoted

by dW (t)) with covariance �dt, viz.,

dX(t) = (A(�)X(t) +B(�))dt+ dW (t); X(0) = X0; (2.2)

corresponding to a multivariate version of the Vasicek model (Vasicek, 1977).

Although the process follows a continuous time stochastic di¤erential equation system,

observations are available only at discrete time points, say at n equally spaced points fthgnt=0;
where h is the sampling interval and is taken to be �xed. In practice, h might be very small,

corresponding to high-frequency data. In this paper, we use X(t) to represent a continuous

time process and Xt to represent a discrete time process. When there is no confusion, we

simply write Xth as Xt.

Bergstrom (1990) provided arguments why it is useful for macroeconomists and policy

makers like central bankers to formulate models in continuous time even when discrete obser-

vations only are available. In �nance, early fundamental work by Black and Scholes (1973)

and much of the ensuing literature such as Du¢ e and Kan (1996) successfully demonstrated

the usefulness of both scalar and multivariate di¤usion models in the development of �nancial

asset pricing theory.

Phillips (1972) showed that the exact discrete time model corresponding to (2.1) is given

by

Xt = expfA(�)hgXt�1 �A�1(�)[expfA(�)hg � I]B(�) + "t: (2.3)

where "t = ("1; � � � ; "M )0 is a martingale di¤erence sequence (MDS) with respect to the
natural �ltration and

E("t"
0
t) =

Z h

0
expfA(�)sg�expfA(�)0sgds := G:

Letting F (�) := expfA(�)hg and g(�) := �A�1(�)[expfA(�)hg � I]B(�), we have the system

Xt = F (�)Xt�1 + g(�) + "t; (2.4)

which is a vector autoregression (VAR) model of order 1 with MDS(0; G) innovations.

In general, identi�cation of � from the implied discrete model (2.3) generating discrete

observations fXthg is not automatically satis�ed. The necessary and su¢ cient condition for
identi�ability of � in model (2.3) is that the correspondence between � and [F (�); g(�)] be

one-to-one, since (2.3) is e¤ectively a reduced form for the discrete observations. Phillips

(1973) studied the identi�ability of (A(�);�) in (2.3) in terms of the identi�ability of the

matrix A(�) in the matrix exponential F = exp(A(�)h) under possible restrictions implied

by the structural functional dependence A = A(�) in (2.1). In general, a one-to�one corre-

spondence between A(�) and F , requires the structural matrix A(�) to be restricted. This
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is because if A(�) satis�es expfA(�)hg = F and some of its eigenvalues are complex, A(�)

is not uniquely identi�ed. In fact, adding to each pair of conjugate complex eigenvalues the

imaginary numbers 2ik� and �2ik� for any integer k; leads to another matrix satisfying
expfAhg = F . This phenomenon is well known as aliasing in the signal processing literature.

When restrictions are placed on the structural matrix A(�) identi�cation is possible. Phillips

(1973) gave a rank condition for the case of linear homogeneous relations between the ele-

ments of a row of A. A special case is when A(�) is triangular. Hansen and Sargent (1983)

extended this result by showing that the reduced form covariance structure G > 0 provides

extra identifying information about A, reducing the number of potential aliases.

To deal with the estimation of (2.1) using discrete data and indirectly (because it was

not mentioned) the problem of identi�cation, two approximate discrete time models were

proposed in earlier studies. The �rst is based on the Euler approximation given byZ th

(t�1)h
A(�)X(r)dr � A(�)hXt�1;

which leads to the approximate discrete time model

Xt �Xt�1 = A(�)hXt�1 +B(�)h+ ut: (2.5)

The second, proposed by Bergstrom (1966), is based on the trapezoidal approximationZ th

(t�1)h
A(�)X(r)dr � 1

2
A(�)h(Xt +Xt�1);

which gives rise to the approximate nonrecursive discrete time model

Xt �Xt�1 =
1

2
A(�)h(Xt +Xt�1) +B(�)h+ �t: (2.6)

The discrete time models are then estimated by standard statistical methods, namely OLS

for the Euler approximation and systems estimation methods such as two-stage or three-stage

least squares for the trapezoidal approximation. As explained by Lo (1988) in the univariate

context, such estimation strategies inevitably su¤er from discretization bias. The size of

the discretization bias depends on the sampling interval, h, and does not disappear even if

n ! 1. The bigger is h, the larger is the discretization bias. Sargan (1974) showed that
the asymptotic discretization bias of the two-stage and three-stage least squares estimators

for the trapezoidal approximation is O(h2) as h ! 0. Bergstrom (1984) showed that the

asymptotic discretization bias of the OLS estimator for the Euler approximation is O(h).

For the more general multivariate di¤usion

dX(t) = �(��X(t))dt+�(X(t); )dW (t); X(0) = X0; (2.7)

whereW is standard Brownian motion, two other approaches have been used to approximate

the continuous time model (2.7). The �rst, proposed by Nowman (1997), approximates the

di¤usion function within each unit interval, [(i � 1)h; ih) by its left end point value leading
to the approximate model

dX(t) = �(��X(t))dt+�(X(i�1)h; )dW (t) for t 2 [(i� 1)h; ih): (2.8)
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Since (2.8) is a multivariate Vasicek model within each unit interval, there is a corresponding

exact discrete model as in (2.3). This discrete time model, being an approximation to the

exact discrete time model of (2.7), facilitates direct Gaussian estimation.

To reduce the approximation error introduced by the Euler scheme, Milstein (1978) sug-

gested taking the second order term in a stochastic Taylor series expansion when approxi-

mating the drift function and the di¤usion function. Integrating (2.7) givesZ ih

(i�1)h
dX(t) =

Z ih

(i�1)h
�(��X(t))dt+

Z ih

(i�1)h
�(X(t); )dW (t): (2.9)

By Itô�s lemma, the linearity of the drift function in (2.7), and using tensor summation

notation for repeated indices (p; q) ; we obtain

d�(X(t); �) =
@�(X(t); �)

@Xp
dXp(t),

and

d�(X(t); ) =
@�(X(t); )

@Xp
dXp(t) +

1

2

@2�(X(t); )

@Xp@X 0
q

dXp(t)dXq(t); (2.10)

where �j(X(t); �) is the jth element of the (linear) drift function �(��X(t)), �pq is the (p; q)th

element of � and Xp is the pth element of X. These expressions lead to the approximations

�(X(t); �) ' �(X(i�1)h; �);

and

�(X(t); ) ' �(X(i�1)h; �) +
@�(X(i�1)h; )

@Xp
�pq(X(i�1)h; )

Z t

(i�1)h
dWq(�):

Using these approximations in (2.9) we �nd

Xih �X(i�1)h =
Z ih

(i�1)h
�(��X(t))dt+

Z ih

(i�1)h
�(X(t); )dW (t)

' �(X(i�1)h; �)h+�(X(i�1)h; )

Z ih

(i�1)h
dW (t)

+
@�(X(i�1)h; )

@Xp
�pq(X(i�1)h; )

Z ih

(i�1)h

Z t

(i�1)h
dWq(�)dW (t) : (2.11)

The multiple (vector) stochastic integral in (2.11) reduces as follows:Z ih

(i�1)h

Z t

(i�1)h
dWq(�)dWp (t) =

Z ih

(i�1)h

�
Wq(t)�Wq(i�1)h

�
dWp (t)

=

8<: 1
2

n�
Wqih �Wq(i�1)h

�2 � ho p = qR ih
(i�1)h

�
Wq(t)�Wq(i�1)h

�
dWp (t) p 6= q

: (2.12)

The approximate model under a Milstein second order discretization is then

Xih �X(i�1)h ' �(X(i�1)h; �)h+�(X(i�1)h; )
�
Wih �W(i�1)h

�
+
@�(X(i�1)h; )

@Xp
�pq(X(i�1)h; )

Z ih

(i�1)h

Z t

(i�1)h
dWq(�)dWp (t) : (2.13)
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In view of the calculation (2.12), when the model is scalar the discrete approximation has

the simple form (c.f., Phillips and Yu, 2009)

Xih �X(i�1)h '
�
�(X(i�1)h; �)�

1

2
�0(X(i�1)h; )�(X(i�1)h; )

�
h

+ �(X(i�1)h; )
�
Wih �W(i�1)h

�
+ �0(X(i�1)h; )�(X(i�1)h; )

1

2

�
Wih �W(i�1)h

�2
: (2.14)

Since 1
2

n�
Wqih �Wq(i�1)h

�2 � ho has mean zero, the net contribution to the drift from the

second order term is zero.

In the multivariate Vasicek model, �(X(t); ) = �, and the Milstein approximation (2.13)

reduces to

Xih �X(i�1)h ' �(X(i�1)h; �)h+�(X(i�1)h; )
�
Wih �W(i�1)h

�
:

Thus, for the multivariate Vasicek model, the Milstein and Euler schemes are equivalent.

3 Estimation Methods, Asymptotic Theory and Bias

In this paper, following the approach of Phillips (1972), we estimate � directly from the exact

discrete time model (2.3). In particular, we �rst estimate F (�) and � from (2.3), assuming

throughout that A(�) and � are identi�able and that all the eigenvalues in A(�) have negative

real parts. The latter condition ensures that Xt is stationary and is therefore mean reverting.

The exact discrete time model (2.3) in this case is a simple VAR(1) model which has been

widely studied in the discrete time series literature. We �rst review some relevant results

from this literature.

Let Zt = [X
0
t ; 1]

0
. The OLS estimator of H = [F; g] is

Ĥ = [F̂ ; ĝ] =

"
n�1

nX
t=1

XtZ
0
t�1

#
�
"
n�1

nX
t=1

Zt�1Z
0
t�1

#�1
: (3.1)

If we have prior knowledge that B(�) = 0 and hence g = 0, the OLS estimator of F is:

F̂ =

"
n�1

nX
t=1

XtX
0
t�1

#
�
"
n�1

nX
t=1

Xt�1X
0
t�1

#�1
; (3.2)

for which the standard theory �rst order limit theory (e.g., Fuller (1976, p.340) and Hannan

(1970, p.329)) is well known.

Lemma 3.1 For the stationary VAR(1) model (2.4), if h is �xed and n!1, we have
(a) F̂

p�! F ;

(b)
p
nfV ec(F̂ )� V ec(F )g d�! N(0; (�(0))�1 
G),

where �(0) = V ar(Xt) =
P1
i=0 F

i �G � F 0i and G = E("t"
0
t)

Under di¤erent but related conditions, Yamamoto and Kunitomo (1984) and Nicholls

and Pope (1988) derived explicit bias expressions for the OLS estimator F̂ . The proof of the

following lemma is given in Yamamoto and Kunitomo (1984, theorem 1).
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Lemma 3.2 (Yamamoto and Kunitomo (1984)) Assume:

(A1) Xt is a stationary VAR(1) process whose error term is iid (0; G) with G nonsingular;

(A2) For some s0 � 16, Ej"tijs0 <1, for all i = 1; � � � ;M ;
(A3) E




�n�1Pn
t=1 Zt�1Z

0
t�1
��1


 2 is bounded, where the operator k � k is de�ned by
k Q k= sup

�
(�0Q0Q�)1=2(�0� � 1);

for any vector �;

Under (A1)-(A3) if n ! 1, the bias of OLS estimator of F in the VAR(1) model with an

unknown intercept is

BIAS(F̂ ) = �n�1G
1X
k=0

fF 0k + F
0ktr(F k+1) + F

02k+1gD�1 +O(n�
3
2 ); (3.3)

where

D =

1X
i=0

F iGF
0i;

and the bias of the OLS estimator of F for the VAR(1) model with a known intercept is

BIAS(F̂ ) = � 1
n
G

1X
k=0

fF 0ktr(F k+1) + F
02k+1gD�1 +O(n�

3
2 ): (3.4)

We now derive a simpli�ed bias formulae in the two models which facilitates the calculation

of the bias formulae in continuous time models.

Lemma 3.3 Assume (A1)-(A3) hold, h is �xed and n ! 1: The bias of the least squares
estimator for F in the VAR(1) is given by

Bn = E(F̂ )� F = � b
n
+O(n�

3
2 ): (3.5)

When the model has a unknown intercept,

b = G[(I � C)�1 + C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1; (3.6)

where C = F 0, �(0) = V ar(Xt) =
P1
t=0 F

i � G � F 0i, G = E("t"
0
t), and Spec(C) denotes the

set of eigenvalues of C. When the model has a known intercept,

b = G[C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1: (3.7)

Remark 3.1 The alternative bias formula (3.5) is exactly the same as that given by Nicholls

and Pope (1988) for the Gaussian case, although here the expression is obtained without

Gaussianity and in a simpler way. If the bias is calculated to a higher order, Bao and

Ullah (2009) showed that skewness and excess kurtosis of the error distribution �gure in the

formulae. In a related contribution, Ullah et al (2010) obtain the second order bias in the

mean reversion parameter for a (scalar) continuous time Lévy process.
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We now develop estimators for A. To do so we use the matrix exponential expression

F = eAh =

1X
i=0

(Ah)i

i!
= I +Ah+H = I +Ah+O(h2) as h! 0: (3.8)

Rearranging terms we get

A =
1

h
(F � I)� 1

h
H =

1

h
(F � I) +O(h) as h! 0; (3.9)

which suggest the following simple estimator of A

Â =
1

h
(F̂ � I); (3.10)

where F̂ is the OLS estimator of F . We now develop the asymptotic distribution for Â and

the bias in Â.

Theorem 3.1 Assume Xt follows Model (2.1) and that all characteristic roots of the coe¢ -

cient matrix A have negative real parts. Let fXthgnt=1 be the available data and suppose A is

estimated by (3.10) with F̂ de�ned by (3.1). When h is �xed, as n! +1, we have

Â�A p! 1

h
(F � I �Ah) = 1

h
H = O(h) as h! 0; (3.11)

where H = F � I �Ah; and

h
p
nV ec

�
Â� 1

h
(F � I)

�
d! N(0;�(0)�1 
G); (3.12)

where �(0) = V ar(Xt) =
P1
i=0 F

iGF
0i, G = E("t"

0
t).

Theorem 3.2 Assume that Xt follows Model (2.2) where W (t) is a vector Brownian Motion

with covariance matrix � and that all characteristic roots of the coe¢ cient matrix A have

negative real parts. Let fXthgnt=1 be the available data and suppose A is estimated by (3.10)

with F̂ de�ned by (3.1). When h is �xed and n!1, the bias formula is:

BIAS(Â) = E(Â�A) = 1

h
H +

�b
T
+ o(T�1); (3.13)

where H = F � I �Ah; and T = nh is the time span of the data. If B(�) is unknown, then

b = G[(I � C)�1 + C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1; (3.14)

where �(0) = V ar(Xt) =
P1
i=0 F

i �G �F 0i, G = E("t"
0
t), and Spec(C) is the set of eigenvalues

of C. If B(�) is known, then

b = G[C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1: (3.15)

Remark 3.2 Expression (3.11) extends the result in equation (32) of Lo (1988) to the mul-

tivariate case. According to Theorem 3.2, the bias of the estimator (3.10) can be decomposed

into two parts, the discretization bias and the estimation bias, which take the following forms:

discretization bias =
H

h
=
F � I �Ah

h
= O(h) as h! 0; (3.16)
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estimation bias =
�b
T
+ o(T�1): (3.17)

It is di¢ cult to determine the signs of the discretization bias and the estimation bias in a

general multivariate case. However, in the univariate case, the signs are opposite to each

other as shown in Section 4.2.

Higher order approximations are possible. For example, we may take the matrix expo-

nential series expansion to the second order to produce a more accurate estimate using

F = eAh =

1X
i=0

(Ah)i

i!

= I +Ah+
Ah

2

�
(eAh � I) + �A

2h2

3!
+
�2A3h3
4!

+ : : :+
�(n� 2)An�1hn�1

n!
+ � � �

�
= I +Ah+

Ah

2
[F � I] + �

= I +Ah+
Ah

2
[F � I] +O(h3) as h! 0: (3.18)

Consequently,

A =
2

h
(F � I)(F + I)�1 � 2

h
�(F + I)�1 =

2

h
(F � I)(F + I)�1 + �

=
2

h
(F � I)(F + I)�1 +O(h2) as h! 0: (3.19)

After neglecting terms smaller than O
�
h2
�
, we get the alternative estimator

Â =
2

h
(F̂ � I)(F̂ + I)�1: (3.20)

Theorem 3.3 Assume that Xt follows Model (2.1) and that all characteristic roots of the

coe¢ cient matrix A have negative real parts. Let fXthgnt=1 be the available data and A is

estimated by (3.20) with F̂ de�ned by (3.1). When h is �xed, n! +1, we have

Â�A p! 2

h
(F � I)(F + I)�1 �A = O(h2) as h! 0;

and

h
p
nV ec

�
Â� 2

h
(F � I)(F + I)�1

�
d! N(0;	);

where

	 = 16�[�(0)�1 
G]�0; � = (F 0 + I)�1 
 (F + I)�1:

Theorem 3.4 Assume that Xt follows (2.2) where W (t) is a vector Brownian motion with

covariance matrix � and that all characteristic roots of the coe¢ cient matrix A have negative

real parts. Let fXthgnt=1 be the available data and suppose A is estimated by (3.20) with F̂

de�ned by (3.1). When h is �xed, n!1, and T = hn; the bias formula is:

BIAS(Â) = �� � 4

T
(I + F )�1b(I + F )�1 � 4

h
L(I + F )�1 + o(T�1); (3.21)

where � = A� 2
h(F � I)(F + I)�1, � = [IM 
 (I + F )�1] � �(0)�1 
G � [IM 
 (I + F )�1]0 ,

and L is a M �M matrix whose ijth element is given by

Lij =
1

n

MX
s=1

e0M(s�1)+i �� � eM(j�1)+s; (3.22)
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with ei being a column vector of dimension M2 whose ith element is 1 and other elements

are 0. If B(�) is an unknown vector, then

b = G[(I � C)�1 + C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1:

If B(�) is a known vector, then

b = G[C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1:

Remark 3.3 Theorem 3.4 shows that the bias of the estimator (3.20) can be decomposed

into a discretization bias and an estimation bias as follows:

discretization bias = � � = 2

h
(F � I)(F + I)�1 �A = O(h2) as h! 0; (3.23)

estimation bias = � 4
T
(I + F )�1b(I + F )�1 � 4

h
L(I + F )�1 + o(T�1): (3.24)

As before, it is di¢ cult to determine the signs of the discretization bias and estimation bias

in a general multivariate case. However, in the univariate case, the signs are opposite each

other as reported in Section 4.2.

Remark 3.4 The estimator (3.10) is based on a �rst order Taylor expansion whereas the

estimator (3.20) is based on a second order expansion, so it is not surprising that (3.20)

has a smaller discretization bias than (3.10). It is not as easy to compare the magnitudes of

the two estimation biases. In the univariate case, however, we show in Section 4.2 that the

estimator (3.20) has a larger estimation bias than the estimator (3.10).

4 Relations to Existing Results

4.1 The Euler and Trapezoidal Approximations

The estimators given above include as special cases the two estimators obtained from the

Euler approximation and the trapezoidal approximation. Consequently, both the asymptotic

and the bias properties are applicable to these two approximation models and the simple

framework above uni�es some earlier theory on the estimation of approximate discrete time

models.

The Euler approximate discrete time model is of the form:

Xt �Xt�1 = AhXt�1 +Bh+ ut: (4.1)

The OLS estimator of A is given by

[\I +Ah; cBh] := "n�1 nX
t=1

XtZ
0
t�1

#"
n�1

nX
t=1

Zt�1Z
0
t�1

#�1
=: [F̂ ; ĝ]: (4.2)

11



If B is known apriori and assumed zero without loss of generality, then the OLS estimator of

A is

[\I +Ah] =

"
n�1

nX
t=1

XtX
0
t�1

#"
n�1

nX
t=1

Xt�1X
0
t�1

#�1
=: [F̂ ]; (4.3)

where Zt�1, F̂ , ĝ are de�ned in the same way as before. Hence,

Â =
1

h
[F̂ � I]: (4.4)

This is precisely the estimator given by (3.10) based on a �rst order expansion of the matrix

exponential exp(Ah) in h.

The trapezoidal approximate discrete time model is of the form

Xt �Xt�1 =
1

2
Ah(Xt +Xt�1) +Bh+ �t: (4.5)

If B = 0, the approximate discrete model becomes

Xt �Xt�1 =
1

2
Ah(Xt +Xt�1) + �t: (4.6)

Note that (4.6) is a simultaneous equations model, as emphasized by Bergstrom (1966,1984).

We show that the two stage least squares estimator of A from (4.5) is equivalent to the

estimator given by (3.20) based on a second order expansion of exp(Ah) in h. To save space,

we focus on the approximate discrete time model with known B = 0. The result is easily

extended to the case of unknown B.

The two stage least squares estimator of Bergstrom (1984) takes the form

Â =

"
nX
t=1

1

h
(Xt �Xt�1)V 0t

#"
nX
t=1

1

2
(Xt +Xt�1)V

0
t

#�1
; (4.7)

where

Vt =
1

2
(X�

t +Xt�1); (4.8)

X�
t =

"
nX
t=1

XtX
0
t�1

#"
nX
t=1

Xt�1X
0
t�1

#�1
Xt�1: (4.9)

Theorem 4.1 The two stage least squares estimator suggested in Bergstrom (1984) has the

following form

Â =
2

h
[F̂ � I][F̂ + I]�1; (4.10)

and is precisely the same estimator as that given by (3.20) based on a second order expansion

of exp(Ah) in h.

4.2 Bias in univariate models

The univariate di¤usion model considered in this section is the OU process:

dX(t) = �(��X(t))dt+ �dW (t); X(0) = 0; (4.11)

12



where W (t) is a standard scalar Brownian motion. The exact discrete time model corre-

sponding to (4.11) is

Xt = �Xt�1 + �(1� e��h) + �
r
1� e�2�h

2�
�t; (4.12)

where � = e��h, �t � iid N(0; 1) and h is the sampling interval.

The ML estimator of � (conditional on X0) is given by

�̂ = � ln(�̂)=h; (4.13)

where

�̂ =
n�1�XtXt�1 � n�2�Xt�Xt�1

n�1�X2
t � n�2(�Xt�1)2

; (4.14)

and �̂ exists provided �̂ > 0: Tang and Chen (2009) analyzed the asymptotic properties and

derived the �nite sample variance formula and the bias formula, respectively,

V ar(�̂) =
1� �2
Th�2

+ o(T�1); (4.15)

E(�̂)� � = 1

T

�
5

2
+ e�h +

e2�h

2

�
+ o(T�1): (4.16)

When � is known (assumed to be 0), the exact discrete model becomes

Xt = �Xt�1 + �

r
1� e�2�h

2�
�t; (4.17)

and the ML estimator of � is �̂ = � ln(�̂)=h; where �̂ = �XtXt�1=�X2
t�1: In this case, Yu

(2009) derived the following bias formula under stationary initial conditions

E(�̂)� � = 1

2T
(3 + e2�h)� 2(1� e�2n�h)

Tn(1� e�2�h) + o(T
�1): (4.18)

When the initial condition is X(0) = 0, the bias formula becomes

E(�̂)� � = 1

2T
(3 + e2�h) + o(T�1): (4.19)

Since the MLE is based on the exact discrete time model, there is no discretization bias in

(4.12) and (4.17). The bias in �̂ is induced entirely by estimation and is always positive.

We may link our results for multivariate systems to the univariate model. For example,

� = �A in (4.11) and the �rst order Taylor series expansion (i.e., the Euler method) gives

the estimator b�1 = 1

h
[1� �̂]: (4.20)

In this case the results obtained in Theorems 3.1 and 3.2 may be simpli�ed as in the following

two results.

Theorem 4.2 Assuming � > 0, when h is �xed, and n!1, we have

�̂1 � �
p! �exp(��h)� 1 + �h

h
= O(h) as h! 0; (4.21)
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and

h
p
n

�
�̂1 �

1� exp(��h)
h

�
d! N(0; 1� exp(�2�h)): (4.22)

For the OU process with an unknown mean,

BIAS(�̂1) = �
H

h
+
1 + 3 exp(��h)

T
+ o(T�1); (4.23)

For the OU process with a known mean,

BIAS(�̂1) = �
H

h
+
2 exp(��h)

T
+ o(T�1); (4.24)

where 1+3 exp(��h)
T + o(T�1) and 2 exp(��h)

T + o(T�1) are the estimation biases in the two

models, respectively. In both models, the discretization bias has the following form:

�H
h

= �exp(��h)� 1 + �h
h

: (4.25)

Remark 4.1 From (4.22) the asymptotic variance for �̂1 is

AsyV ar(�̂1) =
1� exp(�2�h)

Th
: (4.26)

Remark 4.2 The estimation bias is always positive in both models. If �h 2 (0; 3] which is
empirically realistic, the discretization bias may be written as

�H
h

= ��2h
1X
i=2

(��h)i�2
i!

(4.27)

= ��2h
X

j=2;4;���

(��h)j�2
(j + 1)!

(j + 1� �h)

< 0:

This means that the discretization bias has sign opposite to that of the estimation bias.

Remark 4.3 For the unknown mean model, if T < h(1 + 3�)=(�h + � � 1), the estimation
bias is larger than the discretization bias in magnitude because this condition is equivalent to

1 + 3 exp(��h)
T

>
�h+ exp(��h)� 1

h
:

Further

h(1 + 3�)=(�h+ �� 1) = h(1 + 3(1� �h+O(h2)))
1
2�
2h2 � 1

6�
3h3 +O(h4)

=
2

�2h
(4� 3�h+O(h2)))

�
1� 1

3
�h+O(h2)

��1
=

2

�2h
(4� 3�h+O(h2)))

�
1 +

1

3
�h+O(h2)

�
=

8

�2h
(1 +O(h)) :

In empirically relevant cases, 8=(�2h) is likely to take very large values, thereby requiring

very large values of T before the estimation bias is smaller than the discretization bias. For

example, if � = 0:1 and h = 1=12; T > 9; 600 years are needed for the bias to be smaller. The

corresponding result for the known mean case is 2h�=(�h + � � 1) =
�
4=(�2h)

�
(1 +O(h))

and again large values of T are required to reduce the relative magnitude of the estimation

bias.
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Similarly, the second order expansion (i.e. the trapezoidal method) gives the estimator

�̂2 = �Â = �
2

h
[F̂ � I][F̂ + I]�1 = 2(1� �̂)

h(1 + �̂)
; (4.28)

for which we have the following result.

Theorem 4.3 Assuming � > 0, when h is �xed, and n!1, we have

�̂2 � �
p! 2(1� exp(��h))
h(1 + exp(��h)) � � = O(h2) as h! 0; (4.29)

and

h
p
n

�
�̂2 �

2(1� exp(��h))
h(1 + exp(��h))

�
d! N

�
0;
16(1� exp(��h))
(1 + exp(��h))3

�
: (4.30)

For the OU process with an unknown mean,

BIAS(�̂2) = � +
8

T (1 + exp(��h)) + o(T
�1): (4.31)

For the OU process with a known mean,

BIAS(�̂2) = � +
4

T (1 + exp(��h)) + o(T
�1); (4.32)

where 8
T (1+exp(��h))+ o(T�1) and 4

T (1+exp(��h)) + o(T�1) are the two estimation biases. In

both models, the discretization bias has the form

� = ��+ 2(1� exp(��h))
h(1 + exp(��h)) = O(h2): (4.33)

Remark 4.4 From (4.30) the asymptotic variance for �̂2 is

AsyV ar(�̂2) =
16(1� exp(��h))
Th(1 + exp(��h))3 : (4.34)

Remark 4.5 The estimation bias is always positive in both models. If �h 2 (0; 2], the

discretization bias may be written as

� = ��+ 2(1� exp(��h))
h(1 + exp(��h)) =

��
1 + exp(��h)

1X
i=3

(i� 2)(��h)i�1
i!

(4.35)

=
��

1 + exp(��h)
X

j=3;5;���

(��h)j�1
(j + 1)!

((j � 2)(j + 1)� �h(j � 1))

< 0:

Hence, the discretization bias has the opposite sign of the estimation bias.

Remark 4.6 For the unknown mean model, if T < 8h= (�h(1 + �)� 2(1� �)), the estima-
tion bias is larger than the discretization bias in magnitude because this condition is equivalent

to
8

T (1 + exp(��h)) > �� 2(1� exp(��h))
h(1 + exp(��h)) :
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Further

8h

�h(1 + �)� 2(1� �) =
8h

�h(2� �h+ 1
2�
2h2 +O(h3))� 2(�h� 1

2�
2h2 + 1

6�
3h3 +O(h4))

= 8h

�
1

6
�3h3 +O(h4)

��1
=

48

�3h2
(1 +O(h))�1

=
48

�3h2
(1 +O(h)) :

Again, in empirically relevant cases, 48=(�3h2) is likely to take very large values thereby

requiring very large values of T before the estimation bias is smaller than the discretization

bias. For example, if � = 0:1 and h = 1=12; T > 6; 912; 000 years are needed for the bias to

be smaller. Hence the estimation bias is inevitably much larger than the discretization bias

in magnitude for all realistic sample spans T .

Remark 4.7 It has been argued in the literature that ML should be used whenever it is

available and the likelihood function should be accurately approximated when it is not available

analytically; see Durham and Gallant (2002) and Aït-Sahalia (2002) for various techniques to

accurately approximate the likelihood function. From the results in Theorems 4.2 and 4.3 we

can show that the total bias of the MLE based on the exact discrete time model is bigger than

that based on the Euler and the trapezoidal approximation. For example, for the estimator

based on the trapezoidal approximation, considering � = O(h2) as h ! 0; when the model is

the OU process with an unknown mean,

jBIAS(�̂ML)j � jBIAS(�̂2)j =
5 + 2e�h + e2�h

2T
�
���� 8

T (1 + e��h)
+ v

����+ o(T�1)
=
5 + 2e�h + e2�h

2T
� 8

T (1 + e��h)
� v + o(T�1)

=
(1� �)2(1 + 5�)
2T�2(1 + �)

� v + o(T�1) (4.36)

> 0:

Using the same method, it is easy to prove the result still holds for the OU process with an

known mean. Similarly, one may show that

jBIAS(�̂ML)j � jBIAS(�̂1)j > 0;

in both models.

Remark 4.8 The two approximate estimators reduce the total bias over the exact ML and

also the asymptotic variance when � > 0. This is because

AsyV ar(�̂ML)�AsyV ar(�̂1) =
1� �2
Th�2

� 1� �
2

Th
> 0: (4.37)

and

AsyV ar(�̂ML)�AsyV ar(�̂2) =
1� �2
Th�2

� 16(1� �)
Th(1 + �)3

(4.38)

=
(1� �)3
Th�2

�
�2 + 6�+ 1

�
(1 + �)3

> 0: (4.39)
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In consequence, the two approximate methods are preferred to the exact ML for estimating

the mean reversion parameter in the univariate setting. Of course, the two approximate

methods do NOT improve the asymptotic e¢ ciency of the MLE. This is because the asymptotic

variance of the MLE is based on large T asymptotics whereas the asymptotic variance of �̂1

and �̂2 is based on large n asymptotics and the two approximate estimators are inconsistent

with �xed h. Nevertheless, equations (4.22) and (4.30) seem to indicate that in �nite (perhaps

very large �nite) samples, the inconsistent estimators may lead to smaller variances than the

MLE, which will be veri�ed by simulations.

Remark 4.9 Comparing Theorem 4.2 and Theorem 4.3, it is easy to see the estimator (4.28)

based on the trapezoidal approximation leads to a smaller discretization bias than the estimator

(4.20) based on the Euler approximation. However, when �h > 0 and hence � = e��h 2 (0; 1);
the gain in the discretization error is earnt at the expense of an increase in the estimation

error. For the OU process with an unknown mean,

estimation bias (�̂2)� estimation bias (�̂1) =
8

T (1 + e��h)
� 1 + 3e

��h

T
+ o(T�1)

=
(1� �)(7 + 3�)

T (1 + �)
+ o(T�1) > 0: (4.40)

Similarly, for the OU process with a known mean,

estimation bias (�̂2)� estimation bias (�̂1) =
4

T (1 + e��h)
� 2e

��h

T
+ o(T�1)

=
(1� �)(4 + 2�)

T (1 + �)
+ o(T�1) > 0: (4.41)

Since the sign of the discretization bias is opposite to that of the estimation bias, and the

trapezoidal rule makes the discretization bias closer to zero than the Euler approximation, we

have the following result in both models.

jBIAS(�̂2)j � jBIAS(�̂1)j > 0:

Remark 4.10 The estimator based on the Euler method leads not only to a smaller bias but

also to a smaller variance than that based on the trapezoidal method when � > 0. This is

because

AsyV ar(�̂2)�AsyV ar(�̂1) =
16(1� �)
Th(1 + �)3

� 1� �
2

Th

=
(1� �)2(3 + �)[4 + (1 + �)2]

Th(1 + �)3
> 0: (4.42)

In consequence, the Euler method is preferred to the trapezoidal method and exact ML for

estimating the mean reversion parameter in the univariate setting.

5 Bias in General Univariate Models

5.1 Univariate square root model

The square root model, also known as the Cox, Ingersoll and Ross (1985, CIR hereafter)

model, is of the form

dX(t) = �(��X(t))dt+ �
p
X(t)dW (t): (5.1)
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If 2��=�2 > 1, Feller (1951) showed that the process is stationary, the transitional distribution

of cXt given Xt�1 is non-central �2�(�) with the degree of freedom � = 2����2 and the non-

central component � = cXt�1e��h, where c = 4���2(1� e��h)�1. Since the non-central �2-

density function is an in�nite series involving the central �2 densities, the explicit expression

of the MLE for � = (�; �; �) is not attainable.

To obtain a closed-form expression for the estimator of �, we follow Tang and Chen (2009)

by using the estimator of Nowman. The Nowman discrete time representation of the square

root model is

Xt = �1Xt�1 + (1� �1)�+ �
r
Xt�1

1� �21
2�

�t; (5.2)

where �1 = e��h, �t � iid N(0; 1) and h is the sampling interval. Hence, Nowman�s estimator

of � is

�̂Nowman = �
1

h
ln(�̂1); (5.3)

where

�̂1 =
n�2

Pn
t=1Xt

Pn
t=1X

�1
t�1 � n�1

Pn
t=1XtX

�1
t�1

n�2
Pn
t=1Xt�1

Pn
t=1X

�1
t�1 � 1

: (5.4)

For the stationary square root process, Tang and Chen (2009) derived explicit expressions to

approximate E(�̂1 � �1) and V ar(�̂1). Using the following relations,

E(�̂Nowman � �) = �
1

h

�
1

�1
E(�̂1 � �1)�

1

2�21
E(�̂1 � �1)2 +O(n�3=2)

�
; (5.5)

and

V ar(�̂Nowman) =
1

h2�21
[V ar(�̂1) +O(n

�2)]; (5.6)

they further obtained the approximations to E(�̂Nowman � �) and V ar(�̂Nowman). With a

�xed h and n!1 they derived the asymptotic distribution of
p
n(�̂Nowman � �). The fact

that the mean of the asymptotic distribution is zero implies that the Nowman method causes

no discretization bias for estimating �.

The estimator of � based on the Euler approximation also has a closed form expression

under the square root model. The Euler discrete time model is

Xt = �2Xt�1 + (1� �2)�+ �
p
Xt�1h�t; (5.7)

where �2 = (1� �h). Hence, the Euler scheme estimator of � is

�̂Euler = �
1

h
(�̂2 � 1); (5.8)

where

�̂2 =
n�2

Pn
t=1Xt

Pn
t=1X

�1
t�1 � n�1

Pn
t=1XtX

�1
t�1

n�2
Pn
t=1Xt�1

Pn
t=1X

�1
t�1 � 1

: (5.9)

Obviously �̂2 = �̂1. Hence, �̂Euler = � 1
h(�̂1 � 1). Considering �1 = e��h = 1 � �h +P1

i=2(��h)i=i!, the �nite sample bias for �̂Euler can be expressed as

E(�̂Euler � �) = �
1

h
E(�̂1 � �1)�

1

h
H; (5.10)
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where

�1
h
H = �1

h

1X
i=2

(��h)i=i! = O(h); as h! 0; (5.11)

which is the discretization bias caused by discretizing the dirft function. Since the asymptotic

mean of
p
n(�̂1��1) and hence the asymptotic mean of

p
n(�̂Euler��+ 1

hH) is zero for a �xed

h and n!1, the Euler discretization of the di¤usion function introduces no discretization
bias to � under the square root model.

Furthermore, the �nite sample variance for �̂Euler is

V ar(�̂Euler) =
1

h2
V ar(�̂1): (5.12)

If � > 0, �1 = e��h < 1. When h is �xed, we have

V ar(�̂Nowman) =
1

h2�21

h
V ar(�̂1) +O(n

�2)
i
>
1

h2
V ar(�̂1) = V ar(�̂Euler); (5.13)

leading to
V ar(�̂Euler)

V ar(�̂Nowman)
= �21 +O(n

�1) < 1: (5.14)

According to (5.14), the Euler scheme always gains over Nowman�s method in terms of

variance. The smaller is �1, the larger the gain.

Tang and Chen (2009) obtained a bias formula of E(�̂1 � �1) for the Nowman estimator
under the square root model. Unfortunately, the expression is too complex to be used to

determine the sign of the bias analytically. However, the simulation results reported in the

literature (Phillips and Yu, 2009, for example) and in our own simulations reported in Section

6 suggest that E(�̂Euler � �) > 0. Since H > 0, (5.10) implies that

E(�̂1 � �1) < 0;

and the estimation bias � 1
hE(�̂1 � �1) dominates the discretization bias � 1

hH in the Euler

approximation. Consequently, the negative discretization bias � 1
hH reduces the total bias in

the Euler method. Consequently, the bias in �̂Nowman is larger than that in �̂Euler because

E(�̂Nowman � �) = �
1

h

�
1

�1
E(�̂1 � �1)�

1

2�21
E(�̂1 � �1)2 +O(n�3=2)

�
� �1

h

1

�1
E(�̂1 � �1)

� �1
h
E(�̂1 � �1)�

1

h
H = E(�̂Euler � �): (5.15)

The Milstein scheme is another popular approximation approach. For the square root

model, the discrete time model obtained by the Milstein scheme is given by

Xt = Xt�1 + �(��Xt�1)h+ �
p
Xt�1h�t +

1

4
�2h

�
�2t � 1

�
: (5.16)

Let a = �
p
Xt�1h, b = 1

4�
2h, Yt = Xt �Xt�1 � �(��Xt�1)h+ 1

4�
2h, then Equation (5.16)

can be represented by

Yt = a�t + b�
2
t = b

��
�t +

a

2b

�2
� a2

4b2

�
: (5.17)
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Since �t � iid N(0; 1), Z =
�
�t +

a
2b

�2 follows a noncentral �2 distribution with 1 degree of
freedom and noncentrality parameter � = a2

4b2
. Elerian (1998) showed that the density of Z

may be expressed as

f(z) =
1

2
exp

�
��+ z

2

�� z
�

��1=4
I�1=2

�p
�z
�
; (5.18)

where

I�1=2(x) =

r
2

x

1X
i=0

(x=2)2i

i!�(j + 0:5)
=

r
1

2�x
fexp(x) + exp(�x)g:

This expression may be used to compute the log-likelihood function of the approximate

model (5.16). Unfortunately, the ML estimator does not have a closed form expression and

it is therefore di¢ cult to examine the relative performance of the bias and the variance using

analytic methods. The performance of the Milstein scheme is therefore compared to other

methods in simulations.

5.2 Di¤usions with linear drift

We consider the following general di¤usion process with a linear drift

dX(t) = �(��X(t))dt+ �q(X(t); )dW (t); (5.19)

as a generalization to the Vasicek and the square root models, where �q(X(t); ) is a general

di¤usion function with parameters  , and � = (�; �; �;  ) 2 Rd is the unknown parameter

vector. This model include the well known Constant Elasticity of Variance (CEV) model,

such as the Chan, et al (1992, CKLS) model, as a special case. In this general case, the

transitional density is not analytically available.

The Nowman approximate discrete model is

Xt = �1Xt�1 + (1� �1)�+ �q(Xt�1; )
r
1� �21
2�

�t; (5.20)

The Euler approximate discrete model is

Xt = �2Xt�1 + (1� �2)�+ �q(Xt�1; )
p
h�t: (5.21)

Theorem 5.1 For Model (5.19), the MLE of � based on the Nowman approximation is

�̂Nowman = �
1

h
ln(�̂1); (5.22)

where �̂1 is the ML estimator for �1 in (5.20). The MLE of � based on the Euler approxi-

mation is

�̂Euler = �
1

h
(�̂2 � 1); (5.23)

where �̂2 is the ML estimator for �2 in (5.21). Then we have

�̂2 = �̂1: (5.24)
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Remark 5.1 The ML estimator of �1 does not have a closed-form expression. Neither does

the ML estimator of �2. So numerical calculations are needed for comparisons. However,

according to Theorem 5.1, even without a closed-form solution, we can still establish the

equivalence of �̂1 and �̂2. After �̂1 and �̂2 are found numerically, one may �nd the estimators

of � by using the relations �̂Nowman = � 1
h ln(�̂1) and �̂Euler = �

1
h(�̂2 � 1).

To compare the magnitude of the bias in �̂Nowman to that of �̂Euler, no general analytic re-

sult is available. However, under some mild conditions, comparison is possible. In particular,

we make the following three assumptions. Assumption 1: �̂1 � �1 � Op(n
�1=2); Assumption

2: E(�̂1��1) < 0; Assumption 3: � 1
hE(�̂1��1) > �

1
hH, i.e., the estimation bias dominates

the discretization bias in Euler approximation. Under Assumption 1, we get

E(�̂Nowman � �) = �
1

h

�
1

�1
E(�̂1 � �1)�

1

2�21
E(�̂1 � �1)2 +O(n�3=2)

�
; (5.25)

V ar(�̂Nowman) =
1

h2�21
[V ar(�̂1) +O(n

�2)]; (5.26)

E(�̂Euler � �) = �
1

h
E(�̂1 � �1)�

1

h
H; (5.27)

and

V ar(�̂Euler) =
1

h2
V ar(�̂1); (5.28)

where H =
P1
i=2(��h)i=i! = O(h2).

If � > 0, �̂Euler has a smaller �nite sample variance than �̂Nowman because

V ar(�̂Nowman) =
1

h2�21

h
V ar(�̂1) +O(n

�2)
i
� 1

h2
V ar(�̂1) = V ar(�̂Euler): (5.29)

Under Assumptions 1, 2, 3, �̂Euler has a smaller bias than �̂Nowman because

E(�̂Nowman � �) = �
1

h

�
1

�1
E(�̂1 � �1)�

1

2�21
E(�̂1 � �1)2 +O(n�3=2)

�
� �1

h

1

�1
E(�̂1 � �1)

� �1
h
E(�̂1 � �1)�

1

h
H = E(�̂Euler � �): (5.30)

6 Simulation Studies

6.1 Linear models

To examine the performance of the proposed bias formulae and to compare the two alternative

approximation scheme in multivariate di¤usions, we estimate � = �A in the bivariate model
with a known mean:

dXt = AXtdt+�dWt; X0 = 0; (6.1)

where Wt is the standard bivariate Brownian motion whose components are independent,

and

Xt =

�
X1t
X2t

�
; � = �A =

�
�11 0
�21 �22

�
; and � =

�
�11 0
0 �22

�
:
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Since A is triangular, the parameters are all identi�ed. While keeping other parameters �xed,

we let �22 take various values over the interval (0,3], which covers empirically reasonable values

of �22 that apply for data on interest rates and volatilities. The mean reversion matrix is

estimated with 10 years of monthly data. The experiment is replicated 10,000 times. Both the

actual total bias and the actual standard deviation are computed across 10,000 replications.

The actual total bias is split into two parts � discretization bias and estimation bias � as

follows. The estimation bias is calculated as H=h and �v as in (3.13) and (3.21) for the two
approximate methods. The estimation bias is calculated as:

estimation bias = actual total bias - discretization bias

Figure 1 plots the biases of the estimate of each element in the mean reversion matrix �,

based on the Euler method, as a function of the true value of �22. Four biases are plotted, the

actual total bias, the approximate total bias given by the formula in (3.13), the discretization

bias H=h as in (3.13), and the estimation bias.

Several features are apparent in the �gure. First, the actual total bias in all cases is large,

especially when the true value of �22 is small. Second, except for �12 whose discretization bias

is zero, the sign of the discretization bias for the other parameters is opposite to that of the

estimation bias. Not surprisingly, in these cases, the actual total bias of estimator (3.10) is

smaller than the estimation bias. The discretization bias for �12 is zero because it is assumed

that the true value is zero. In the bivariate set-up, however, it is possible that the sign of the

discretization bias for the other parameters is the same as that of the estimation bias (for

example when �12 = 5 and �21 = �0:5). Third, the bias in all parameters is sensitive to the
true value of �22. Finally, the bias formula (3.13) generally works well in all cases.

Figure 2 plots the biases of the estimate of each element in the mean reversion matrix

�, based on the trapezoidal method, as a function of the true value of �22. Four biases are

plotted, the actual total bias, the approximate total bias given by the formula in (3.21), the

discretization bias �� as in (3.21), and the estimation bias. In all cases, the discretization
bias is closer to zero than that based on the Euler approximation. This suggests that the

trapezoidal method indeed reduces the discretization bias. Moreover, the bias formula (3.21)

generally works well in all cases.

The performance of the two approximation methods is compared in Figure 3, where the

actual total bias of the estimators given by (3.10) and (3.20) is plotted. It seems that the

bias of the estimator obtained from the trapezoidal approximation is larger than that from

the Euler approximation for all parameters except �12. For �12, the performance of the two

methods are very close with the Euler method being slightly worse when �22 is large.

Figure 4 plots the actual standard deviations for the two approximate estimators, (3.10)

and (3.20) as a function of �22. We notice that, for all the parameters, the standard deviation

of the Euler method is smaller than that of the trapezoidal method. The percentage di¤erence

can be as high as 20%.

We also design an experiment to check the performance of the alternative estimators in
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the univariate case. Data are simulated from the univariate OU process with a known mean

dX(t) = ��X(t)dt+ �dW (t); X(0) = 0: (6.2)

Figure 5 reports the bias in b� obtained from the Euler method and the trapezoidal method
in the OU process with a known mean. Three biases are plotted: the actual total bias, the

estimation bias and the discretization bias. Figure 6 compares the bias in b� obtained from
the exact ML methods with that of the two approximate methods. Several conclusions may

be drawn from these two Figures. First, our bias formula provides a good approximation

to the actual total bias. Second, for the two approximate estimators, (4.20) and (4.28), the

sign of the discretization bias is opposite to that of the estimation bias. Third, while the

trapezoidal method leads to a smaller discretization bias than the Euler method, it has a

larger estimation bias. Finally, the actual total bias for the Euler method is smaller than

that of the trapezoidal method and both methods lead to a smaller total bias than the exact

ML estimator (4.13).

Figure 7 reports the standard deviations for estimators (4.13), (4.20) and (4.28). It is

easy to �nd that the standard deviations of estimator (4.20) is the smallest among those of all

estimators. The standard deviations of estimator (4.28) are almost the same with those from

the exact ML estimator (4.13), but smaller when � is bigger than 1. Considering the sample

size is 120, we can roughly say that, focusing on bias and standard deviation, the estimator

(4.20) from the Euler approximation is better than the other estimators in comparatively

small sample sizes.

6.2 Square root model

For the square root model, we designed an experiment to compare the performance of the

various estimation methods, including the exact ML, the Euler scheme, the Nowman scheme

and the Milstein scheme. In all cases we �x h = 1=12, T = 120, � = 0:05, � = 0:05, but vary

the value of � from 0.05 to 0.5. These settings correspond to 10 years of monthly data in the

estimation of �. The experiment is replicated 10,000 times.

Table 1 reports the bias, the standard error (Std err), and the root mean square error

(RMSE) of � for all estimation methods, obtained across 10,000 replications. Several conclu-

sions emerge from the table. First, all estimation methods su¤er from a serious bias problem.

Second, the Euler scheme performs best both in terms of bias and variance. Third, the ratios

of the standard error of b�Euler and that of b�Norman are 0.9958, 0.9917, 0.9835, 0.9592 when
� is 0.05, 0.1, 0.2, 0.5, respectively. The ratio decreases as � increases, as predicted in (5.14).

Finally, although the bias for the Milstein method is larger than that for the Euler method,

the variances for these two methods are very close.

7 Conclusions

This paper provides a framework for studying the implications of di¤erent discretization

schemes in estimating the mean reversion parameter in both multivariate and univariate
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di¤usion models with a linear drift function. The approach includes the Euler method and

the trapezoidal method as special cases, an asymptotic theory is developed, and �nite sample

bias comparisons are conducted using analytic approximations. Bias is decomposed into a

discretization bias and an estimation bias. It is shown that the discretization bias is of order

O(h) for the Euler method and O(h2) for the trapezoidal method, respectively, whereas the

estimation bias is of the order of O(T�1). Since in practical applications in �nance it is very

likely that h is much smaller than 1=T , estimation bias is likely to dominate discretization

bias.

Applying the multivariate theory to univariate models gives several new results. First,

it is shown that in the Euler and trapezoidal methods, the sign of the discretization bias is

opposite that of the estimation bias for practically realistic cases. Consequently, the bias in

the two approximate method is smaller than the ML estimator based on the exact discrete

time model. Second, although the trapezoidal method leads to a smaller discretization bias

than the Euler method, the estimation bias is bigger. As a result, it is not clear if there is

a gain in reducing the total bias by using a higher order approximation. When comparing

the estimator based on the Euler method and the exact ML, we �nd that the asymptotic

variance of the former estimator is smaller. As a result, there is clear evidence for preferring

the estimator based on the Euler method to the exact ML in the univariate linear di¤usion

when the mean reversion is slow.

Simulations suggest the bias continues to be large in �nite samples. It is also con�rmed

that for empirically relevant cases, the magnitude of the discretization bias in the two ap-

proximate methods is much smaller than that of the estimation bias. The two approximate

methods lead to a smaller variance than exact ML. Most importantly for practical work,

there is strong evidence that the bias formulae work well and so they can be recommended

for analytical bias correction with these models.

For the univariate square root model, the Euler method is found to have smaller bias and

smaller variance than the Nowman method. Discretizing the di¤usion function both in the

Euler method and the Nowman method causes no discretization bias on the mean reversion

paramter. For the Euler method, we have derived an explicit expression for the discretization

bias caused by discretizing the drift function. The simulation results suggest that the Euler

method performs best in terms of both bias and variance.

The analytic and expansion results given in the paper are obtained for stationary systems.

Bias analysis for nonstationary and explosive cases require di¤erent methods. For di¤usion

models with constant di¤usion functions, it may be possible to extend recent �nite sample

and asymptotic expansion results for the discrete time AR(1) model (Phillips, 2010) to a con-

tinuous time setting. Such an analysis would involve a substantial extension of the present

work and deserves treatment in a separate study.
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Appendix

Proof of Lemma 3.3: Let C = F
0
and then

1X
t=0

F
0k = (I � F 0

)�1 = (1� C); (7.1)

1X
k=0

F
0ktr(F k+1) =

1X
k=0

F
0k

X
�2spec(F )

�k+1 =
X

�2spec(F )
[�

1X
k=0

�kF
0k]

=
X

�2spec(C)
[�

1X
k=0

�kCk] =
X

�2spec(C)
�(I � �C)�1; (7.2)

where Spec(C) denotes the set of eigenvalues of C. Thus,

1X
k=0

F
02k+1 =

1X
k=0

C2k+1 = C(I � C2)�1; (7.3)

�(0) = V ar(xt) =
1X
i=0

F i �G � F 0i = D; (7.4)

Bn = BIAS(F̂ ) = E(F̂ )� F = � b
n
+O(n�

3
2 ): (7.5)

Proof of Theorem 3.1: By Lemma 3.1, for �xed h, as n!1, F̂ p! F: Hence,

Â�A = 1

h
[F̂ � F ] + 1

h
H

p! 1

h
H:

From Equations (3.8), 1hH = 1
h [F � I �Ah] = O(h) as h! 0; proving the �rst part.

(b) According to Lemma 3.1, �xed h, as n!1,

p
nfV ec(F̂ )� V ec(F )g d! N(0; (�(0))�1 
G);

p
nhV ec[Â� 1

h
(F � I)] =

p
nV ec[Âh� (F � I)]

=
p
nV ec[F̂ � F ] d! N(0; (�(0))�1 
G);

giving the second part.

Proof of Theorem 3.2: According to formulae (3.8), (3.9) and Lemma 3.3,

E(Â�A) = 1

h
E(F̂ � F ) + 1

h
H =

1

h
E(
�b
n
+O(n�3=2)) +

1

h
H

= � b

T
+
1

h
H + o(T�1):
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Proof of Theorem 3.3a: From formulae (3.19),

Â�A = 2

h
(F̂ � I)(F̂ + I)�1 � 2

h
(F � I)(F + I)�1 � �

=
2

h
(F̂ + I � 2I)(F̂ + I)�1 � 2

h
(F � I)(F + I)�1 � �

=
2

h
[I � 2(F̂ + I)�1]� 2

h
[I � 2(F + I)�1]� �

= �4
h
[(F̂ + I)�1 � (F + I)�1]� �

=
4

h
(I + F )�1(F̂ � F )(I + F̂ )�1 � �: (7.6)

As h is �xed, according Lemma 3.1, as n!1, F̂ p! F , the �rst part of above equation goes

to zero. And from formula (3.19),

Â�A p! �� = 2

h
(F � I)(F + I)�1 �A:

Proof of Theorem 3.3b: :

V ec(Â�A+ �) = V ec[Â� 2

h
(F � I)(F + I)�1] = 4

h
V ec[(I + F )�1(F̂ � F )(I + F̂ )�1]

=
4

h
f(F̂ 0 + I)�1 
 (F + I)�1gV ec(F̂ � F ):

Again when h is �xed, according to Lemma 3.1, as n!1,
p
n(F̂ �F ) d! N(0;�(0)�1
G);

and we get

h
p
nV ec[Â� 2

h
(F � I)(F + I)�1] d! N(0;	);

where

	 = 16�[�(0)�1 
G]�0; � = (F 0 + I)�1 
 (F + I)�1

Proof of Theorem 3.4: From the proof of theorem 3.3, we have

E[Â]�A = �4
h
E[(F̂ + I)�1 � (F + I)�1]� �

= �4
h
E[(F̂ + I)�1] +

4

h
(F + I)�1 � �:

For the �rst term, we note that

(F̂ + I)�1 = (I + F + F̂ � F )�1 = [(I + F )(I + (I + F )�1(F̂ � F ))]�1

= [I + (I + F )�1(F̂ � F )]�1(I + F )�1;

and

[I + (I + F )�1(F̂ � F )]�1 =
1X
i=0

(�1)i[(I + F )�1(F̂ � F )]i

= I � (I + F )�1(F̂ � F ) + [(I + F )�1(F̂ � F )]2

+
1X
i=3

(�1)i[(I + F )�1(F̂ � F )]i:

By Lemma 3.1, we have

p
n[V ec(F̂ )� V ec(F )] d! N(0;�(0)�1 
G);
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and so,

F̂ij � Fij = OP (n
� 1
2 ):

Then,

[(I + F )�1(F̂ � F )]3 = Op(n
� 3
2 ) and [(I + F )�1(F̂ � F )]i = op(n

� 3
2 ); i � 3;

[I + (I + F )�1(F̂ � F )]�1 = I � (I + F )�1(F̂ � F ) + [(I + F )�1(F̂ � F )]2 +Op((n�
3
2 ));

and

E[Â�A] = �4
h
Ef[I + (I + F )�1(F̂ � F )�1]g(I + F )�1 + 4

h
(F + I)�1 +O(h2)

=
4

h
Ef(I + F )�1(F̂ � F )(I + F )�1g � 4

h
Ef[(I + F )�1(F̂ � F )]2(I + F )�1g

+
1

h
O(n�

3
2 )� �:

Now let ĝ = [(I + F )�1(F̂ � F )], so that

p
n � V ec[ĝ] =

p
n � V ec[(I + F )�1(F̂ � F )] = [IM 
 (I + F )�1]

p
nV ec(F̂ � F ) d! N(0;�);

where � = [IM 
 (I + F )�1] � �(0)�1 
G � [IM 
 (I + F )�1]0. As a result,

V ar(
p
n � V ec(ĝ)) = � + o(1)! V ar[V ec(ĝ)] =

�

n
+ o(n�1);

and

E[V ec(ĝ) � V ec(ĝ)T ] = V ar[V ec(ĝ)] + E[V ec(ĝ)] � E[V ec(ĝ)]T

=
�

n
+ E[V ec(ĝ)] � E[V ec(ĝ)]T + o(n�1):

From Lemma 3.3,

Bn = E(F̂ )� F = � b
n
+O(n�

3
2 ):

When the exact discrete model involves an unknown B(�) we have

b = G[(I � C)�1 + C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1;

and when we have a prior knowledge that B(�) = 0 in (2.2), we have

b = G[C(I � C2)�1 +
X

�2Spec(C)
�(I � �C)�1]�(0)�1:

Then

E[V ec(ĝ)] = E[(IM 
 (I + F )�1)V ec(F̂ � F )]

= [IM 
 (I + F )�1]E[V ec(F̂ � F )]

= [IM 
 (I + F )�1]V ec[E(F̂ � F )]

= [IM 
 (I + F )�1]V ec[� b
n
+O(n�

3
2 )] = O(n�1)

! E[V ec(ĝ)V ec(ĝ)T ] =
�

n
+ o(n�1):
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Here we assume Ŵ = [(I+F )�1(F̂ �F )]2 = ĝĝ and Ŵij =
PM
s=1 ĝisĝsj . It is easy to �nd that

ĝis is the (M(s� 1)+ i)th element of V ec(ĝ), and ĝisĝsj is the (M(s� 1)+ i;M(j � 1)+ s)th

element of V ec(ĝ)V ec(ĝ). De�ning ei to be the column vector of dimension M2 whose ith

element is 1 and other elements are 0, we have

E[ĝisĝsj ] = e0M(s�1)+iE[V ec(ĝ)V ec(ĝ)]
0]eM(j�1)+s

=
1

n
e0M(s�1)+i �� � eM(j�1)+s + o(n

�1);

E[Ŵij ] =

MX
s=1

E[ĝisĝsj ]

=

MX
s=1

1

n
e0M(s�1)+i �� � eM(j�1)+s + o(n

�1):

Next, de�ne the matrix P with (i; j) element

Pij =
1

n

MX
s=1

e0M(s�1)+i �� � eM(j�1)+s:

Then

Ef[(I + F )�1(F̂ � F )]2g = E(Ŵ ) = P + o(n�1):

Again, using Lemma 3.3, the formula for the estimation bias is

E[Â�A] = 4

h
Ef(I + F )�1(F̂ � F )(I + F )�1g � 4

h
Ef[(I + F )�1(F̂ � F )2](I + F )�1g

+
1

h
O(n�

3
2 )� �

=
4

h
(I + F )�1[� b

n
+O(n�

3
2 )](I + F )�1

� 4

h
�W � (I + F )�1 + 1

h
o(n�1) +

1

h
O(n�

3
2 )� �

= � 4
T
(I + F )�1 � b � (I + F )�1 � 4

h
�W � (I + F )�1 � � + o(T�1):
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Proof of Theorem 4.1: Using (4.8) and (4.9) in (4.7), we have

nX
t=1

1

h
(Xt �Xt�1)V 0t =

1

2h
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1
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0
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XtX
0
t�1
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Xt�1X
0
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2h
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0
t�1

!

=
1

2h
(F̂ � I)

24I + nX
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Xt�1X
0
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nX
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Xt�1X
0
t�1

!�135 nX
t=1

Xt�1X
0
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=
1

2h
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"
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Xt�1X
0
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Xt�1X
0
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#

=
1
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nX
t=1

Xt�1X
0
t�1

!
(F̂ 0 + I): (7.7)

By the same method, it is easy to obtain"
nX
t=1

1

2
(Xt +Xt�1)V

0
t

#�1
=

"
1

4
(F̂ + I)(

nX
t=1

Xt�1X
0
t�1)(F̂

0 + I)

#�1
(7.8)

Using the above two formulae in (4.7), the two stage least squares estimator is

Â =
2

h
(F̂ � I)(F̂ + I)�1: (7.9)

Proof of Theorem 5.1: The Nowman approximate discrete time model yields the following

transition function

f(XiX(i�1)) =
[(1� e�2�h)=2�]�1=2p

2��g(Xi�1; )
exp

�
� [Xi � �1Xi�1 � (1� �1)�]2
2�2g2(Xi�1; )(1� e�2�h)=2�

�
; (7.10)

and the following log-likelihood function

`(�) = �n
2
ln(�2)�

nX
i=1

ln[g(Xi�1; )]�
n

2
ln(
1� e�2�h

2�
)

�
nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
2�2g2(Xi�1; )(1� e�2�h)=2�

: (7.11)
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The �rst order conditions are

@`(�)

@�
= 0 )

nX
i=1

[Xi � �1Xi�1 � (1� �1)�]
g2(Xi�1; )

= 0; (7.12)

@`(�)

@�2
= 0 ) �2

�
1� e�2�h

2�

�
� 1

n

nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
g2(Xi�1; )

= 0; (7.13)
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= 0 ) 0 = �n

2

�
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1� e�2�h �
1

�

�
� he��h

nX
i=1

[Xi � �1Xi�1 � (1� �1)�](Xi�1 � �)
�2g2(Xi�1; )(1� e�2�h)=2�

�
nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
2�2g2(Xi�1; )

�
2(1� e�2�h)� 4�he�2�h

(1� e�2�h)2

�
: (7.14)

and

@`(�)

@ j
= 0 ) 0 = �2

1� e�2�h
2�

nX
i=1

@g(Xi�1; )=@ j
g(Xi�1; )

�
nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
g2(Xi�1; )

@g(Xi�1; )=@ j
g(Xi�1; )

: (7.15)

Taking Equation (7.13) into (7.14), the �rst term and the third term cancel and we obtain

nX
i=1

[Xi � �1Xi�1 � (1� �1)�](Xi�1 � �)
g2(Xi�1; )

= 0: (7.16)

Taking Equation (7.13) into (7.15), we have

0 =
1

n

nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
g2(Xi�1; )

nX
i=1

@g(Xi�1; )=@ j
g(Xi�1; )

�
nX
i=1

[Xi � �1Xi�1 � (1� �1)�]2
g2(Xi�1; )

@g(Xi�1; )=@ j
g(Xi�1; )

: (7.17)

Equations (7.12), (7.16) and (7.17) yield the ML estimators, �̂1, �̂ and  ̂ and Equation (7.13)

gives the ML estimator, �̂2.

The Euler approximate discrete model yields the following log-likelihood function,

`(�) = �n
2
ln(�2)�

nX
i=1

ln[g(Xi�1; )]�
nX
i=1

[Xi � �2Xi�1 � (1� �2)�]2
2�2hg2(Xi�1; )

: (7.18)

It is easy to obtain the �rst order conditions, three of which are identical to those in (7.12),

(7.16) and (7.17). Hence,

�̂2 = �̂1: (7.19)
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Table 1: Exact and approximate ML estimation of � from the square root model using 120
monthly observations. The experiment is replicated 10,000 times.
Method Exact Euler Nowman Milstein

� = 0:05

Bias .1156 .1126 .1152 .1132
Std err .2251 .2205 .2249 .2206
RMSE .2531 .2476 .2526 .2480

� = 0:1

Bias .1392 .1342 .1387 .1350
Std err .2670 .2590 .2668 .2592
RMSE .3011 .2917 .3007 .2922

� = 0:2

Bias .1615 .1529 .1610 .1538
Std err .3178 .3070 .3178 .3068
RMSE .3565 .3430 .3562 .3432

� = 0:5

Bias .1869 .1625 .1862 .1639
Std err .4210 .3999 .4209 .3993
RMSE .4607 .4317 .4603 .4316

0 0.5 1 1.5 2 2.5 3
­0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3
­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

0

actual total bias
approximate total bias
discretization bias
estimation bias

0 0.5 1 1.5 2 2.5 3
­0.1

­0.05

0

0.05

0.1

0 0.5 1 1.5 2 2.5 3
­0.4

­0.2

0

0.2

0.4

Figure 1: The bias of the elements in Â in Model (6.1) as a function of �22 at the monthly
frequency and T = 10. The estimates are obtained from the Euler method. The solid line is
the actual total bias; the broken line is the approximate total bias according to the formula
(3.13); the dashed line is the discretization bias H=h; the point line is the estimation bias.
The true value for �11, �12, and �21 is 0.7, 0, and 0.5, respectively.
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Figure 2: The bias of the elements in Â in Model (6.1) as a function of �22 at the monthly
frequency and T = 10. The estimates are obtained from the trapezoidal method. The solid
line is the actual total bias; the broken line is the approximate bias according to the formula
(3.13); the dashed line is the discretization bias �v; the point line is the estimation bias. The
true value for �11, �12, and �21 is 0.7, 0, and 0.5, respectively.
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Figure 3: The bias of the elements in Â in Model (6.1) as a function of �22 at the monthly
frequency and T = 10. The estimates are obtained from the Euler and the trapezoidal
methods, respectively. The solid line is the actual total bias for the Euler method; the broken
line is the actual total bias for the trapezoidal method. The true value for �11, �12, and �21
is 0.7, 0, and 0.5, respectively.
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Figure 4: The standard deviation of the elements in Â in Model (6.1) as a function of �22
at the monthly frequency and T = 10. The estimates are obtained from the Euler and the
trapezoidal methods, respectively. The solid line is the standard deviation for the Euler
method; the broken line is the standard deviation for the trapezoidal method. The true value
for �11, �12, and �21 is 0.7, 0, and 0.5, respectively.
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Figure 5: The bias of the � estimates in the univariate model as a function of � at the
monthly frequency and T = 10 for the two approximate methods. The left panel is for the
Euler method and the right panel is for the trapezoidal method. The solid line is the actual
total bias; the dashed line is the approximate total bias; the dotted line is the estimation
bias; the broken line is the discretization bias.
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Figure 6: The actual total bias of the � estimates in the univariate model as a function of �
at the monthly frequency and T = 10 for the two approximate methods and the exact ML.
The solid line is for the exact ML; the dashed line is for the Euler method; the broken line is
for the trapezoidal method.
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Figure 7: The standard deviation of the � estimates in the univariate model as a function of
� at the monthly frequency and T = 10. The solid line is for the exact ML; the broken line
is for the Euler method; the dotted line is for the trapezoidal method.
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