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Abstract

We analyze sequential investment decisions in an innovative project that depend on the

investor�s information about the project failure risk and its potential �nal value. We consider the

feedback e¤ects between learning about the project parameters and the continuous adjustment

of the investment strategy. Investors decide sequentially about the speed of investment and

the optimal degree of involvement. We develop three types of predictions from our theoretical

model and test these predictions in a large sample of venture capital investment in the U.S. for

the period of 1987-2002.

First, the investment �ow starts cautiously if the failure risk is high and accelerates as the

projects mature. Second, the investment �ow reacts positively to information that arrives while

the project is developed. We �nd that interim information is more signi�cant for investment

decisions than the information prior to the project launch. Third, investors distribute their

investments over more funding rounds if the failure risk is larger.

Keywords: Venture Capital, Sequential Investment, Stage Financing, Intertemporal Returns

JEL Classification: D83, D92, G11, G24.

�We would like to thank Eduardo Faingold for informative discussions and Liang Peng would like to thank Susan

Woodward (Sand Hill Econometrics) for providing access to the venture capital data.
yDepartment of Economics, Yale University, New Haven, CT 06511, USA, dirk.bergemann@yale.edu.
zDepartment of Finance and Economics, HEC School of Management, 78351 Jouy-en-Josas, France, hege@hec.fr.
xLeeds School of Business, Department of Finance, University of Colorado at Boulder, liang.peng@colorado.edu.

1



1 Introduction

1.1 Motivation

An innovative project typically has to go through many steps of exploration and development that

all require capital outlays before it is completed. Moreover, it carries a substantial failure risk

and it is di¢ cult to predict at which point in time evidence might emerge that would lead to

its abandonment. The optimal investment policy depends on the information available, but the

progress of research uncovers new information about the project and reduces uncertainty that in

turn will in�uence the optimal continuation strategy. The venture capital industry is a powerful

example of the importance of these feedback e¤ects in the �nancing of innovation. But similar

issues also arise for innovative projects within large organizations or in publicly funded research.

The purpose of this paper is to understand the relationship between project-related information

and the sequentially optimal investment decisions. We develop a theory that analyzes how investors

- venture capitalists or other sponsors that provide the �nancing and help shepherding a project

to success - make optimal dynamic investment decisions as a function of their information about

failure risk and potential �nal value. In our theoretical model, we distinguish between information

that investors know up-front, and information they learn as the project advances, and we analyze

their relative impact on subsequent investment decisions.

We then put the predictions of our model to an empirical test. We use a comprehensive sample

of the US venture capital data to examine whether we �nd support for our predicted relationships.

Our empirical �ndings lend support to the main predictions of our model: First, investors proceed

cautiously if the failure risk is high, and they accelerate investment, in spite of the cost of doing so,

as projects mature. They also invest faster if they hold favorable information about the project.

Second, the investment �ow reacts positively to information that arrives during the development

of the project, and interim learning seems to be more important for the determination of the

investment path and a better predictor of the �nal outcome than ex ante information. Third, if

the failure risk is large then investors tend to adopt a more hands-on approach by adjusting their

investment strategy more frequently.

More speci�cally, we consider a continuous-time model representing the complete investment

cycle of an innovative project under uncertainty, characterized by: (i) uncertainty about the likeli-

hood of success; (ii) uncertainty about the timing of the stopping decision; (iii) uncertainty about

the �nal value in case of success; and (iv) interim learning about the failure risk and �nal value after
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the project is launched. Our model depicts the progress of the project as a continuous process of

development and research. At each point in time, information that the project should be abandoned

may arrive. Thus, the model incorporates a simple stopping problem. The signal that the project

should be abandoned arises with a given probability, derived from the Pareto distribution with

parameter �. The family of Pareto distributions has the property that the conditional probability

of failure is decreasing over time.

In our stylized model, we focus on two essential dimensions of the sequential investment de-

cisions. The �rst dimension is that investors determine the speed with which the project is un-

dertaken, or the optimal capital �ow. Experiments can often be conducted in parallel, but there

is a cost to doing so because sequential learning from one experiment to the next is curtailed, or

because of the shortages of critical resources, such as research sta¤ and management. Therefore,

the decision about the optimal speed of investment is characterized by the following trade-o¤: a

larger investment �ow into the project promises faster success, but is likely to reduce the e¢ ciency

of the investment. The investors control the optimal investment �ow at every point in time. In our

analysis, we are particularly interested in the following questions: (i) How fast to develop a project?

(ii) How to change the investment pace with the progress of the project? (iii) How to adjust the

�nancing speed if new information arises that changes the expectation of key parameters, notably

failure risk and �nal value in the event of success?

For investors, in addition to the stopping decision and the decision on the optimal investment

�ow, there is also the question of the optimal degree of their involvement. This is the second

investment dimension that we take into account. Venture capitalists normally provide �nancing in

infrequent �nancing rounds or stages, lasting typically from a few months to over a year or more.

They also de�ne milestones that must be met before a certain fraction of the funds is released. In

the venture capital industry, the time of fund managers is often considered as one of the most critical

resources (see Michelacci and Suarez (2004) and Inderst and Mueller (2004)). Each �nancing round

necessitates a thorough review and valuation exercise, it typically involves several parties (venture

�nancing is often syndicated among several funds and the managers are involved as well) and a

multilateral negotiation process. With these resource constraints and transaction costs in mind, it

is then optimal to review the project only at certain intervals, even if this implies a temporarily

suboptimal investment path.1

1Venture capitalists are also involved via continuous monitoring, e.g. through frequent visits and board represen-

tation. We view these monitoring activities as complementary to the �nancing round decisions. But compared with
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We add these considerations to our continuous-time model. Our goal is to speci�cally under-

stand the intertemporal pattern of stage �nancing and its interaction with the available information.

Critically, the determination of the �nancing rounds, their expected duration and the associated

investment �ow and the intermediate milestones are endogenous in our model. In this analysis,

investors make lumpy investment decisions that are optimized as a function of the expected value

and the probability of failure. We model the cost of each investment decision as a loss that is

proportional to the current value of the project. With this analysis, we add the following questions

to our investigation: (iv) how do transaction costs and the need for lumpy investment decisions

a¤ect the optimal investment path? (v) What is the optimal sequence of stage �nancing?

The contributions of our theoretical analysis fall into three groups. First, we show that as

a project advances and the probability of eventual success increases, investment �ows should be

optimally increasing. For the same reason, a project with a higher estimated �nal value or a higher

anticipated chance to succeed will also be allocated a larger investment �ow throughout. This is

because with an increase in the probability to succeed, accelerating becomes a more valuable option,

even if it makes investment more costly. In fact, our model shows that investment �ow should be

increasing over time as a pure information e¤ect, because the risk recedes that the project fails. Our

model predicts that if the density of the information arrival leading to abandonment is su¢ ciently

front-loaded then the returns will be decreasing even though the increasing investment �ows imply

an acceleration of the discovery process. Second, we show that the optimal staging sequence depends

on the value of the real option to abandon. The higher the estimated �nal value of the project is,

and the larger the estimated success probability, the fewer rounds will be used. Also, echoing our

result on the optimal investment path for continuous decisions, the investment �ow will increase

from one round to the next. Third, we show that learning about the expected �nal value or the

failure probability will be incorporated in all subsequent investment decisions. If there is a positive

news update then the value of the project will increase as well as the investment �ow. At the same

time, the number of subsequent investment rounds will decrease, and the capital allocation for each

of these rounds will increase.

We then take these predictions to a large sample of venture capital investment in the U.S.

for the period 1987-2002, covering the majority of all venture investments in the U.S. over that

period (Kaplan and Stromberg (2003)). The venture capital data are attractive for three reasons:

the information on �nancing rounds, the information on monitoring is soft and typically unavailable or only through

questionnaire-based data.
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�rst, they allow us to study these e¤ects in a broad sample of projects across di¤erent industries.

Second, because of the staged nature of venture �nancing, interim valuation data are available

that aggregate the state of the beliefs concerning the prospects of any particular project. We

can use these values and in particular changes in the valuations to extract information about

what investors have learnt since the last capital infusion. Third, the fact that venture-backed

projects are independent companies makes it possible to track the timing of stopping decisions

or the feedback between information arrival and sequential investment decisions more accurately

than, say, for research projects launched within organizations in which there is more discretion for

window-dressing and the investment information is more opaque.

The results of our empirical investigation lend support to our theoretical predictions as follows.

First, we document empirically that as a project advances and the probability of eventual success

increases, investment �ows are increasing. We show that at the same time, the returns of the

projects are decreasing over the investment cycle. Taken together, these two observations imply

that learning about the eventual prospect of a project are su¢ ciently concentrated at the beginning.

In our model speci�cation this means that the parameter � of the Pareto distribution must be

su¢ ciently high. Second, our evidence shows that initially, investors seem to have little screening

ability about the eventual probability of success, but they seem to hold some information about

the �nal value of the project in the event of a successful completion. We show that as the project

advances, in many cases investors get information that leads to a change in the estimated failure

risk or exit value of the project, as inferred from the dynamics of the project valuation. Moreover,

such information updates lead investors to adjust the investment path optimally: the subsequent

investment �ow as well as the size of each round and the number of subsequent rounds react in the

way predicted by our model. Consistent with our model, we �nd that investors also receive updates

over the course of the investment cycle that allow them to better estimate the �nal value. These

updates again give rise to a change in the investment �ow and the number and size of subsequent

rounds that is consistent with the pattern predicted by our model. Third, we show that the design

of �nancing rounds follows the optimal pattern predicted by our model: the investment size and the

investment �ow is increasing from one round to the next, and projects with a high initial estimate

of the �nal value or an optimistic appraisal of the probability to succeed will use less rounds than

less valuable or more risky projects.
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1.2 Related Literature

Our paper is related to three di¤erent strands of the literature. First, there is a literature on the

role of learning in the �nancing of innovation. Sorensen (2008) analyzes the decision of venture

capitalists into which industry they invest in a multi-armed bandit learning model. Using similar

data to ours, he �nds evidence that both learning as well as forward-looking expectation drive

investment decisions. The main di¤erence is that while Sorensen (2008) looks at the selection of

entire investment projects, we consider the speed and structure of the investment cycle once a

project has been selected. Hochberg, Ljungqvist, and Vissing-Jorgensen (2008) discuss the learning

impact of a venture capital�s past investments on the size and the direction of follow-up funds by

the same venture capital �rm. They �nd a positive feedback e¤ect between fund performance and

the size of follow-on funds. They also explore the speed of learning of limited partners relative to

that of general partners, and argue that the evidence supports asymmetric learning. In contrast

to our paper, they do not consider the interaction between learning and investment within a single

portfolio �rm. Several papers discuss non-trivial abandonment decisions that depend on learning.

Bergemann and Hege (2005) consider a project with a given failure risk in which the arrival time of

the �nal discovery, and hence the total cost to deliver it, are uncertain. This implies that the value

of the project decreases over time until either success arrives or the project is optimally abandoned.

They focus on the information rent of an agent who can divert the continuous investment �ow,

and show that the project may be �nancially constrained as these information rents increase in

the expected funding horizon. Jovanovic and Szentes (2007) present a paper in which the critical

constraint is the expertise of the venture capitalists, similar to Michelacci and Suarez (2004).

Because of the opportunity cost linked to their labor input, the venture capitalists abandon projects

earlier than would be socially optimal if projects are considered in isolation. In contrast to these

papers, in our learning model we focus on the investment �ow and the staging sequence.

Second, there is a literature on the optimal dynamic pattern of investments in the presence of

a real option to abandon. Berk, Green, and Naik (2004) focus on the evolution of the risk pro�le

that are due to changes from a purely technical risk in the early stages to more diverse sources of

risk in later stages. Mostly, the theoretical literature has focused on the use of stage �nancing as

a tool to alleviate agency problems. Fluck, Garrison, and Myers (2007) consider the real option

of abandoning the project in venture capital �nancing and highlight the role of stage �nancing in

this regard. They consider a contract design problem to alleviate moral hazard and show that the

6



entrepreneur�s optimal equity share decreases as uncertainty about the project�s ultimate success

recedes. In a similar vein, in Yerramilli (2006) stage �nancing gives the investor more �exibility

to abandon the project, but may expose the entrepreneur to hold up problems, thus hurting e¤ort

incentives. Other papers focus on contracting issues. Neher (1999) presents a dynamic, incom-

plete contracting model in which stage �nancing can reduce the bargaining power of opportunistic

entrepreneurs who can repudiate their �nancial obligations. Cornelli and Yosha (2003) consider

a two-period incomplete contracting model and analyze the problem of an entrepreneur who can

manipulate short-term results for purposes of �window-dressing�. They show that stage �nancing

is a means to mitigate this problem. Other incomplete contracting models that incorporate stage

�nancing include Repullo and Suarez (2004). Cuny and Talmor (2003) compare traditional round

�nancing with milestone �nancing, where venture capitalists commit to the �nancial terms of mul-

tiple funding stages conditional on achieving certain benchmarks. All of these papers suggest that

a higher frequency of milestones and �nancing rounds should translate into a more e¤ective use of

the abandonment decision, and hence smaller agency costs and better investment performance.

There is also a substantial empirical literature on stage �nancing, starting with the seminal

analysis of Gompers (1995). Subsequent work analyzes the contingent contract clauses that are

either explicit or implied by staging in more detail (see e.g. Kaplan and Stromberg (2003); Bienz

and Hirsch (2007)). By and large, these papers con�rm many of the theoretical predictions on

stage �nancing. A similar con�rmation of the theoretical predictions appears in Tian (2007) who

shows that venture capitalists with better access to information about their venture, as proxied by

geographical proximity, use staging less frequently.

Finally, there is a substantial literature on the valuation and the returns in venture capital.

In contrast to our paper, this literature looks at venture capital as an asset class and studies the

returns of venture capital from a performance-based perspective of a diversi�ed investor. Among

these studies our paper is most closely related to two studies that calculate company-level returns

for venture-related investments, namely Cochrane (2005) and Woodward and Hall (2003). Both

studies are interested in understanding the risk-return trade-o¤, and their focus is on reducing

the impact of sample selection bias. Cochrane (2005) calculates returns for each �nancing round

separately and limits the sample to �nal valuations from IPOs and trade sales, whereas we take

an integrated approach that solicits as many observations as possible at each round. Woodward

and Hall (2003) include round valuations just as we do, but for a di¤erent objective of creating a

performance index. Other papers in the risk-return literature, such as Kaplan and Schoar (2005) and
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Gottschalg and Phalippou (2008) look at returns at the fund level. They focus on cash distributions

and thus consider only the �nal value of exited investments. By contrast, our paper focuses on the

interaction between information-driven returns and investments, and looks at interim results and

sequential investments at the portfolio-company level.

2 Model

We develop a model for a new venture that describes it as a dynamic investment problem under

uncertainty in continuous time t 2 [0;1). The true value of the completed project is initially
uncertain. It is known that the �nal value is either 0 or Y > 0, and that the uncertainty about

the true value of the project can be resolved over time as follows. The value Y of the venture can

only be realized if the project can be successfully developed. We model the development of the

venture as a continuous investment process, denoted by it, which moves the venture from a starting

position, denoted by k0 2 (0;K]; to a �nal position, denoted by K > 0. The position of the project

at time t is de�ned by kt 2 [0;K]. The investor is risk-neutral, and the discount rate is given by
r > 0.

The investment �ow it at time t controls the rate at which the state of the development kt is

moving forward, through the law of motion:

dkt = 

p
itdt. (1)

The current investment it increases the speed at which the project is developed in a concave manner

- or to put it di¤erently, increasing the speed will increase the total cost of investment in a standard

convex manner. The parameter 
 > 0 describes the marginal e¤ect of investment on the speed of

development and a larger value of 
 represents a project that is easier to develop.

The project is realized successfully with a �nal value Y if the �nal position K is reached. In

contrast, if the project fails to progress beyond some position kt; then the project is terminated with

a �nal value 0. The location of the breakdown point is uncertain and given by a prior distribution

F (k). For most of the analysis, we shall restrict our attention to the class of Pareto distributions.

The Pareto distribution is given by

F (k) , 1�
�
k

k

��
,

The class of Pareto distributions is parameterized by two variables, k and �. The variable k is a

given strictly positive lower bound on the starting point of the project and � > 0 identi�es the
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skewness of the distribution. The project is successfully concluded if it reaches the terminal position

K. The prior probability of success starting at k0 = k is given by:

1� F (K) =
�
k

K

��
.

Conversely, the prior probability that the project will fail during the development phase is given

by F (K). The hazard rate of failure, in other words, the conditional probability of failure at kt is

given by

h (kt) ,
f (kt)

1� F (kt)
=
�

kt
.

The conditional failure rate is decreasing in the state of the project and a project with a larger � has

a uniformly former higher rate of failure and consequently a lower prior (and posterior) probability

at every kt that it reaches the terminal point K. The instantaneous failure probability, given the

current investment it, is therefore given by:

dkt � h (kt) =
�


p
it �

f (kt)

1� F (kt)

�
dt =

�


p
it �

�

kt

�
dt.

A venture capital project is now characterized by (Y;K; 
; �). The terminal point K describes

the length of the development process until the venture can go public or be sold, the parameter �

describes the failure rate of the project and 
 identi�es the marginal productivity of the monetary

funds to develop the project.

The value of the venture depends on the investment policy i , (it)Tt=0. If the project is a success,
then the payo¤ Y will be realized at some time T , T (i) where the terminal time T naturally

depends on the investment �ow i. Along the way, the project requires investments which have to

be deducted from the initial net present value. On the other had, if the project is failure, then

the investment �ow will be stopped at some random position kt. In this case the project will only

incur costs until the moment of failure and not receive any positive returns at all. Conditional on

a given investment policy i, we can then associate to every time t a position kt = kt (i) which is

reached at time t, provided that we did not observe a failure before kt. The expected net present

value from an investment policy i =(it)
T
t=0 at time t = 0 is then given by:

V (k0) = (1� F (K)) e�rTY �
Z T

0
(1� F (kt)) e�rtitdt. (2)
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3 Sequential Investment

The optimal investment policy can be analyzed as a dynamic programming problem under uncer-

tainty. At every point time, the investment �ow carries a cost equal to the investment, �it, and
generates one of two possible outcomes. The project may either fail at the current position or it

will pass successfully though the current position. In the event of a failure, the value of the project

drops from the current value, denoted by V (kt), to 0. In the event of a successful passage the posi-

tion increases by dkt and the value increase correspondingly by V 0 (kt). The dynamic programming

equation for the optimal investment policy is now given by:

rV (kt) = max
it2R

�
�it + 


p
it

�
V 0 (kt)�

�

kt
V (kt)

��
. (3)

The value of the project depends on the �ow of investment it in period t through three channels:

(i) the direct cost of the investment it, (ii) the failure rate 

p
it � �=kt, and (iii) the rate of change



p
it in the position of the project.

The rate of change 

p
it in the position kt is a concave function of the current investment it.

The optimal investment policy, therefore, is the result of an optimal trade-o¤ between the speed of

investment and the cost of building up the asset. The optimal investment at point kt is determined

by the �rst order conditions for the dynamic programming equation (3):

1

2



�
V 0 (kt)�

�

kt
V (kt)

�
=
p
it ,

and solving for the investment �ow we obtain:

i�t =

�



2

�
V 0 (kt)�

�

kt
V (kt)

��2
. (4)

We can insert the optimal investment �ow i�t into the value function (3) and obtain an ordinary

di¤erential equation for the evolution of the value of the venture:

rV (kt) =

2

4

�
V 0 (kt)�

�

kt
V (kt)

�2
: (5)

We observe from (4) and (5) that the optimal investment i�t is linear in the �ow value of the venture

at time t:

i�t = rV (kt) . (6)

We can rewrite the di¤erential equation in its canonical form as:

V 0 (kt) =
�

kt
V (kt) +

2




p
rV (kt): (7)
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With a change of variable given by W (kt) ,
p
V (kt), we can transform the above di¤erential

equation into a nonlinear �rst order di¤erential equation which we can solve explicitly by variation

of parameters. We obtain:

Proposition 1 (Investment Policy)

1. The optimal investment policy i� is increasing and convex in the state kt.

2. The optimal investment policy i� is decreasing and concave in the failure rate �.

3. The optimal investment policy i� is increasing and convex in Y .

The intuition of Proposition 1 is that the value of the project increases with the gradual res-

olution of uncertainty about its �nal success. The more likely it becomes that the project will

succeed, the higher is its current value, making it optimal to speed up the discovery in spite of the

convex increase in the associated cost of investment. In fact, as equation (4) shows, there is a linear

relationship between the optimal investment �ow i�t and the value of the venture that varies only

with the discount rate.

We note that our model is built on a central premise: from the perspective of a risk-neutral

investor, the expected return of the investor is constant over time and given by

R , 1 + r.

In our model, the failure event is characterized by a fall of the value to zero. In the absence of a

failure event, we observe a change in the position kt given by:

dkt = 

p
itdt.

The constant return R is therefore composed of a return in the event of a failure, which is given by

0, and the surviving return in the event of a successful continuation, de�ned by Rt. We therefore

have

R = Pr(failuret) � 0 + Pr(survivalt) � Rt.

Given that the instantaneous failure rate in period t is simply



p
it
�

kt
,
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the surviving return Rt in period t is implicitly de�ned by:

R =

�
1� 


p
it
�

kt

�
�Rt,

and explicitly given by:

Rt =
R

1� 

p
it
�
kt

. (8)

We can also express the surviving return Rt using the value function given in (3) and describe the

surviving return of the project in terms of the net change in the continuation value _Vt � it relative
to the value Vt of the project:

Rt =
_Vt � it
Vt

:

We can infer from (8) that the surviving return Rt is controlled by the product of the conditional

failure rate �=kt and the investment intensity 

p
it. As the conditional failure rate is declining in

kt and kt is increasing over time, it follows that the conditional failure rate is declining over time

as well. This may contribute to a decline of the surviving returns over time. On the other hand,

the investment intensity 

p
it is increasing over time since the project becomes more valuable as

the successful completion of the project appears to be more likely. The intertemporal pro�le of the

surviving return is then determined by the trade-o¤s between failure rate and optimal responsiveness

of the investment to the arrival of new information.

Proposition 2 (Surviving Returns)

1. For a given terminal value Y , the surviving returns Rt are decreasing over time as long as

the failure rate � and the length of the development phase K are not too high.

2. For a given terminal value Y , the surviving returns Rt are increasing over time if the failure

rate � and/or the length of the development phase K are too high.

4 Staging and Learning

4.1 Staging

We turn now to the second aspect in the investment decisions of the investors, namely the optimal

degree of their involvement into the project. This extension captures the reality of investment

transaction costs brought about by multi-party bargaining, contracting and the evaluation of the
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project which leads to a discrete number of �nancing decisions and rounds. We extend our baseline

model to include stage �nancing that we portray as the decision on the optimal degree of implication

into the project. The idea is that continuous involvement is costly for the investors. Therefore,

they reevaluate the investment policy only infrequently. We assume that each investor intervention

triggers a cost that is su¢ ciently elevated to force the optimal �nancing path to occur in discrete

lump-sum installments. We express this cost as a constant fraction of the current project value. The

investment decision at the beginning of each round includes a decision about the funding volume

as well as a decision about the constant �ow of the investment i during this round.

Thus, we depict the staging decision as the result of the trade-o¤ between the transaction costs

of a new funding round versus the �exibility to adjust the speed of investment. The objective

of this analysis is to understand the optimal structure of stage �nancing based on this trade-o¤.

Importantly, the staging decision is fully endogenous in the sense that both the number of stages

as well as their duration are chosen by investors in reaction to their information at the beginning

of each round.

The cost associated with each new investment round is introduced as follows. We assume

that during the process of putting together and negotiating each new funding round, there is a

probability of 1�p, that the agreement between the parties involved is not reached and the project
is abandoned. With the complementary probability p the relevant funding agreement is reached

and the project continues. The probability 1� p by which the agreement fails to to be completed
can alternatively be viewed as a transaction cost that is proportional to the project value.

We now describe the optimal investment with stage �nancing. We denote by il;m the optimal

investment at stage l if the entire project is �nanced in m stages (conditional on surviving until

the �nal state K), with l � m. Similarly, we denote by Vl;m (kt) the value function of the project
in stage l and state kt if the project is supposed to be funded in m stages until the successful

completion of the project.

If the project is funded in a single stage, i.e. it is funded in the initial state k0 with the objective

of maintaining a given investment level i until the positive or negative termination of the object,

then the value function is given by the unique solution of the �rst order di¤erential equation:

rV1;1 (kt) = �i1;1 + �
p
i1;1

�
V 01;1 (kt)�

�

kt
V1;1 (kt)

�
, (9)

subject to the boundary condition V1;1 (K) = Y . The value function can be explicitly solved and
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we obtain:

V1;1 (kt) = Y

�
kt
K

��
e
kt�Kp
i1;1

r

 �

p
i1;1

(�� 1) 


 
kt �K

�
kt
K

��
e
kt�Kp
i1;1

r



!
.

The optimal investment policy given the initial state k0 can be obtained implicitly by the �rst

order condition of V1;1 (k0) with respect to i1;1. The terms on the rhs of the equation represent the

bene�t and the cost of pursuing the project at a �xed intensity level i. The �rst term represent the

time discounted probability that the project is successfully realized. The second term represents

the expected cost of developing the project.

We now consider the role of stage �nancing. The value function V1;1 (kt) is determined by the

optimal investment funding to complete the venture in a single round starting at kt. The cost of

the stage funding is given by the commitment to a speci�c investment �ow over the round horizon.

If the project is developing well, then the investors will react with the infusion of new funds and a

new, and presumably higher, investment �ow. Given that a renewal of the funding is not certain,

but might lead a failure of the project with probability 1� p, the question then becomes, at which
level of development kt does it become optimal to complete the development of the venture in

multiple rather than in a single stage of funding.

Next, if the project is to be funded in two stages, then the optimal funding policy starting at the

initial position k0 has to make three distinct choices: (i) it has to determine the initial funding level

i1;2, (ii) the continued funding level i2;2 and (iii) the state k1 in which the funding is supposed to be

renewed. Conditional on the optimal funding level i2;2 given the renewal stage k1, the value function

in the initial state k0 is therefore given as the solution to the following optimization problem:

V1;2 (k0) = max
i1;2;k1

 p
i1;2

(�� 1) 
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 V2;2 (k1)

!
: (10)

We observe that the value function V2;2 (k1) has the same properties as V1;1 (k0) except that the

associated investment level i1;1 is determined earlier at k0 rather than at k1. But in either case,

the optimal investment choice provides the necessary funds in a single round and until the project

is completed.

If the investment is provided over several rounds, then the investment decision in each round,

and in particular in state k0 is formally a joint optimal control and stopping problem. As we

are interested in the interaction between information arrival and investment decisions, we focus our

analysis on the following simple question: for a given position kt, will it be optimal to undertake the

remaining investment for the interval K � kt still to be run in a single round or in two rounds? In
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other words, we determine the optimal switching decision at which it becomes optimal to comprise

the remaining interval K � kt into one round rather than in two. The comparative statics of

this switching point, denoted by k� gives us all the hypotheses that we need for our empirical

investigation.

The control problem then is the determination of the investment �ow i and the stopping problem

regards the determination of the renewal state k1. While we restrict the analysis here to the optimal

determination of funding and renewal with two stages, due to the recursive structure of the funding

problem, the optimality conditions and the qualitative properties of the optimal funding decision

extend naturally from two to �nitely many funding stages.

The �rst result characterizes the largest development state k� at which it is still optimal to

provide funding in two rounds rather than in one single round. It also shows how the optimality

of multiple stage funding is determined by the primitives of the model, namely the returns of the

venture Y , the failure rate � of the Pareto distribution and the probability p of a successful renewal

of the funding policy.

Proposition 3 (Optimality of Staging)

1. The investment levels satisfy: i1;2 < i1;1 < i2;2.

2. There is a unique k� such that it is optimal to add one more stage of funding.

The relationship between the staging decision and the investment decision is depicted in Figure

1 and Figure 2.

Insert Figure 1 and Figure 2 Here

If the project is funded in a single stage, then the value function V1 is continuously increasing

until it reaches the terminal value Y . If on the other hand, the project is funded in two stages,

then the increase in value is initially smaller as the initial investment is smaller and the project

has still to secure the second funding round. If at the stopping point k1, the funding for a second

round can be secured, then the associated value observes an upward jump from V �2 (k1) = V2;2 (k1)

to V +2 (k1) = V1;2 (k1), where the value before the jump, V2;2 (k1) ; and the value after the jump,

V1;2 (k1) satisfy the following relationship: V2;2 (k1) = pV1;2 (k1). Given the optimality of staging, we
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now investigate the temporal structure of the staging. In particular, we are interested in the length

of each staging round as we come closer to a successful completion of the venture. In particular, we

show that as the length of the remaining development increases, K � k0, increases, or alternatively
the initial starting point, k0, decreases, then it will eventually become optimal to switch from a

single stage funding to a multiple stage funding policy. As Figure 2 illustrates, the advantage of

the multiple stage funding policy is that it allows the investment �ow to be adjusted upwards as

the project moves closer to completion.

Proposition 4 (Structure of Staging)

1. The state k� is decreasing in Y and increasing in �.

2. The length of the �rst stage is increasing in the renewal rate p.

3. The �ow of funding is increasing in Y over all funding stages.

In particular, an implication of Proposition 3.2 is that a project with a larger return Y will see

fewer rounds of funding, as the delay or impasse resulting from a renewal of the funding leads to a

higher opportunity cost for a project with a larger possible return Y .

4.2 Learning

So far, we analyzed the dynamic development of the venture with an essentially binary information

structure. Either the project progressed and in consequence the future prospect improved, or the

venture failed and the funding was terminated. In this �nal extension we would like to accommodate

interim learning while the project is carried out. In particular, we are interested in learning during

the project in the sense that the progress of the project uncovers information that may change the

expectation about the future probabilities of failure and success. This interim arrival of information

is naturally of interest as the current development may also give rise to additional information about

the future likelihood of success. Consequently, we shall extend the basic model to accommodate

the arrival of new information about the likelihood of success. More speci�cally, we shall assume

that the venture starts with a given probability of failure � > 0. At a random time, the current

probability of failure � is replaced by a new failure probability, which can be either lower or higher

than the current failure probability �, wit �l < � < �h. We shall assume that the expected failure

probability is equal to the current failure probability, or

� = ��h + (1� �)�l.
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The current failure probability can therefore be interpreted as the current estimate of the true,

but currently unknown failure probability which is given by �h with probability � and �l with

probability 1 � �. We observe that a jump to lower failure probability �l represents a positive
shock from the point of view of the investors, and conversely an upwards jump to �h represents

a negative shock as it lowers the expected value of the venture. The new information about the

failure probability is assumed to arrive with a constant failure probability given by �. The dynamic

investment problem can now be represented by the usual dynamic programming equation:

rV (kt) = max
it

�
�it +

p
it


�
V 0 (kt)�

�

kt
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

��
. (11)

The investment problem represented by (11) is similar to the earlier model, with the exception

of the additional jump terms Vl (kt) and Vh (kt). The value function represent the continuation

value of the venture conditional on knowing that the true failure probability is either �l or �h,

respectively. While the continuation values, Vl (kt) and Vh (kt), have the same form as the value

function in the basic model, the initial value function here does not permit an explicit solution as

we incorporate the possibility of jump to di¤erent failure probabilities. Nonetheless, the implicit

solution allows us to obtain a number of important comparative static results.

Proposition 5 (Survival Probability and Investment)

Following a positive shock of � to �l:

1. the probability of eventual success increases;

2. the investment �ow jumps upwards.

5 Hypothesis Development

In this Section, we summarize the hypotheses of our theoretical model in order to confront them

with venture capital evidence.

Initial Valuation, Time of Information Arrival, and Return Dynamics We can use our

model to explore typical patterns of learning in venture-backed investment projects. Prior to

launching a project, investors hold beliefs about the prospects (e.g. �nal value at exit) and the

risks of the project, but they may also receive information after the project is launched. We

distinguish between three hypotheses regarding the arrival of information: (i) in the uninformed
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investor hypothesis, the investors cannot discriminate between the prospects of individual projects

and use the expected values for failure risk and the value of success; (ii) in the ex ante information

hypothesis, the investors can discriminate between the prospects of individual �rms, yet the bulk

of the information is available at the project launch; (iii) in the interim information hypothesis,

the investors obtain valuable information on the project terminal value and failure risk over the

course of the investment cycle.

We distinguish between these hypotheses by using the initial valuations and the evolution of the

valuations over the venture capital investment cycle. We start from the premise that, at the time of

inception, the value of innovative projects consists essentially of the expectation of the future value

of the project in the event of success. They typically have little or no assets. Therefore, variations

in the present value of the project are mainly explained by di¤erences in the expected �nal value

at exit if the venture is successful, or the estimated probability of success.

Under the ex ante information hypothesis, ex ante information on the failure risk should be

impounded in the initial project valuation. We investigate this hypothesis by analyzing whether

the initial project value predicts the ultimate success probability. It could also be the case that

investors have ex ante information on the �nal value. In this case we expect variation in the initial

values to be correlated with the �nal values in the event of success. Alternatively, if the initial

value of the �rm and the ultimate success are uncorrelated, then this lends support to either the

uninformed investor or the interim information hypothesis. Under these two hypotheses, we also

expect little correlation between initial and �nal value.

Moreover, we can discriminate between the uninformed investor and the interim information

hypothesis by analyzing the relationship between interim valuations and ultimate success: under

the interim information hypothesis, we expect that projects with a large value increase during the

investment cycle, i.e. high abnormal returns, are more likely to succeed, whereas we expect no

correlation under the uninformed investor hypothesis. We also expect, under the interim infor-

mation hypothesis, that high abnormal returns over the investment cycle are linked to higher exit

values, whereas we expect no relationship under the uninformed investor hypothesis. Thus, by

comparing the predictive power of initial and interim valuations for �nal outcomes, we can draw

inferences on the importance of ex ante information and interim information. The same is true for

the relationship between investment behavior (e.g. investment �ow following the �rst round) and

�nal outcome (e.g. IPO, M&A, or going down).

Our model also allows us to analyze the dynamics of the failure risk over the investment cycle.
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Our model is based on the premise of constant expected returns over the lifetime of the project.

That is, in a risk-neutral setting the value increase in each round is just an adequate compensation

for the failure risk, and hence should decrease as the project is developed to maturity.2 For the sake

of the argument and in contrast to our assumption, suppose for a moment that the hazard rate

of dropping out at any given position kt 2 (0;K) during the investment cycle would be constant.
With the increase in investment �ows, this would imply an increasing speed in the discovery process

over time and hence an increase in the returns of the project, since the return is just an adequate

compensation for the dynamics of the failure risk. This thought experiment underlines the strong

implications contained in the following two elements of our empirical analysis: (i) the investment

�ows are increasing over time and (ii) the returns generally decrease from one round to the next.

The only way how these two observations can be reconciled is if the conditional hazard rate is

declining at a su¢ ciently high rate (Proposition 2). This condition is satis�ed in our model with a

su¢ ciently large value of the parameter � of the Pareto distribution.

Investment Flow Our model shows that investments optimally react to uncertainty, and that

investment �ow will increase if there is less uncertainty about the project outcome. In particular,

our model explains that as a venture projects matures, it should exhibit larger investments, and

higher outlays over any given period of time.

The fundamental prediction of our model is that there should be a positive relationship between

project valuation and investment �ow. This relationship between the project�s valuation and the

investment �ow should hold throughout he investment cycle. This e¤ect should hold whether the

�rm�s value is high because the �nal value Y is high or because the failure rate � is low, or both.

The reason is that both a higher �nal value and a lower failure risk translate into a larger present

value of the project, and the model shows that a project�s investment �ow is closely linked to

current project valuation. Therefore, we also expect to �nd that the investment �ow is increasing

both in measures of the expected �nal value and the expected failure risk.

Section 4 extends our model to allow for the interim information hypothesis. Our theoretical

analysis explores the possibility that there is interim learning about the failure risk � of the project.

If the �rm learns positive news about �, then this has two consequences. First, a lower � means an

2 If the investors were risk-averse, then the expected or unconditional returns should be decreasing as the project

matures, given that the failure risk decreases. The magnitude of this e¤ect may not be large for moderate levels of

risk aversion. This appears to be roughly consistent with our �nding of decreasing means in the expected returns.

Our (weak) result of increasing medians contradicts the hypothesis for risk-averse investors.
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increase in the current value of the project Vt, and hence a positive abnormal return at the time

the good news is received. Second, the investment �ow should optimally increase. The inverse

relationship holds if the �rm receives bad news about �. Thus, the model predicts that subsequent

investment �ows increase with abnormal returns. The same argument would hold if there were

interim learning about the �nal value of the project Y . Good news about Y translates into an

increase in the current value and hence a positive abnormal return, and at the same time leads to

an upwards adjustment in the optimal investment �ow.

Staging Frequency Section 4 explicitly considered that funding may be provided in lumpy

amounts even though investments are made continuously. The renewal of the funding decision

enhances the value of the real option to abandon the project. Our analysis shows that shorter

�nancing rounds will occur if the information that investing produces is more valuable for the

abandonment decision. In particular, the model explains that the staging frequency should be

lower for projects with a higher success probability.

In our model the contracting costs are proportional to the current project value. The analysis

shows that the staging frequency should be lower for projects with a high expected exit value. The

reason is that the expected loss of adding one round increases in the expected �nal value, whereas

the potential savings if there is early abandonment are constant. Thus, we expect the number

of rounds to be a decreasing function of the initial value of the project. This is true whether

the variations in the project�s value are driven by di¤erences in the expected �nal value or in the

expected failure rate.

Considering interim learning about the project�s failure risk, a reduction in the estimated failure

probability � means, �rst, an increase in the current project value and and hence in the abnormal

return. At the same time, in reaction to an increase of the value of the �rm, the subsequent �nancing

will be undertaken in fewer rounds. Therefore, the model predicts that the number of subsequent

rounds until successful completion decreases with the initial abnormal return. The same negative

relationship between the initial abnormal return and the number of subsequent rounds holds if

there is interim learning about the �nal value of the project.

Size and Duration of Financing Rounds A separate set of predictions addresses the duration

and capital raised in each �nancing round. The real option of abandonment is most valuable when

the uncertainty about ultimate success is highest. As shown in Section 4, as the project advances
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and investors become more con�dent about ultimate success, they are willing to travel a longer

distance [kl; kl+1) in a single �nancing round l. Thus, the model leads to the prediction that the

size or the volume of the investment rounds is increasing from one round to the next. If the

investment �ow were constant, then the round duration would also be increasing. However, as

Proposition 5 shows, the optimal funding �ow/intensity also increases from one round to the next.

Therefore, the overall impact on round durations is ambiguous, and they could increase as well as

decrease as the project advances.

Moreover, our model predicts that the capital raised in a round is a decreasing function of the

failure rate �, and an increasing function of the expected �nal value Y and the cost of adding a

contracting stage 1� p. At the same time, the investment �ow increases in Y and decreases in �.

Therefore, the model predicts that the investment size increases in Y and decreases in �, but the

impact on round duration is again ambiguous.

Interim learning about the project�s failure risk implies that capital raised should increase after

a positive shock.

Total Project Duration Our model implies that projects with an above-average initial valua-

tion will have a consistently higher investment �ow. Therefore, the model predicts that they will

be completed faster.

6 Data Description and Empirical Methodology

Our data of venture capital investments are provided by Sand Hill Econometrics (SHE) and contain

the majority of US investments in the period from January 1987 to March 2002. SHE combines

and extends two databases, Venture Xpert (formerly Venture Economics) and Venture One, which

are extensively used in the venture capital literature. According to Gompers and Lerner (1999)

and Kaplan, Stromberg, and Sensoy (2002), the Venture Xpert data contain the majority of the

investments. SHE has spent substantial time and e¤ort to ensure the accuracy of the data. This

includes removing investment rounds that did not actually occur, adding investment rounds that

were not in the original data, and consolidating rounds, so that each round corresponds to a single

actual investment by one or more venture capitalists Cochrane (2005) and Korteweg and Sorensen

(2008) use di¤erent versions of this data set. The data in Cochrane (2005) end in June 2000 and

the data in Korteweg and Sorensen (2008) end in 2005.
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The data contains �rm level information and venture capital investment round level informa-

tion. At the �rm level, we focus on the following variables: a unique �rm ID, industry category

(healthcare, IT, retail, or others), and the exit type (IPO, merger & acquisition, out of business,

restart or unknown). A �rm with unknown exit may be alive at the end of the sample period or

exited at a unknown time point before March 2002. The round observations are linked to �rms

via the unique �rm IDs. At the round level, we use the following variables for each round: the

date stamp of the round, the round status (seed, �rst, early, late, mezzanine, restart, IPO, acqui-

sition, busted round, or unknown), the business status of the �rm during the current round (start

up, in development, beta-testing, in clinical trails, shipping, pro�table, restart, or unknown), the

amount (million dollars) raised in the current round, post money valuation of the �rm and an exit

dummy that equals one if the current round is an exit round. We �lter the data by keeping �rms

that have at least one round before the exiting round, removing �rms that exit as a restart or have

restart rounds. We further aggregate the business status information by combining in development,

beta-testing, and in clinical trails as one status called �in development�, and combining shipping,

pro�table as �in production�.

Table 1 reports summary statistics for the �rms in the data. Panel A reports the break-down

of the �rms according to industries and exits. It shows the typical composition of venture capital

samples, with more than half of the companies in IT-related activities, 15% in Healthcare and 9%

in retail. 70% of companies have unknown exits, and 25% exited via either IPO or a trade sale.

Panels B and C report average round frequencies and round durations, respectively, for the same

breakdown.

While some of the �rms with unknown exits might be alive at the end of the sample period,

many others might have already been liquidated by then. Failures are incompletely documented in

the data because liquidation is less visible than IPOs or trade sales. If �rms with unknown exits

are more likely to be already liquidated than alive, excluding all �rms with unknown exits from our

analysis would lead to a biased sample of venture capital backed �rms that overrepresents successful

ventures. Further, if the �rms with a documented failure systematically di¤er from �rms that have

been liquidated but do not have a documented failure, excluding all �rms with unknown exits would

lead to biased results, particularly concerning the analysis of the determinants of exit types and

�nal values of venture capital backed �rms. To mitigate the possible sample selection bias, we

distinguish �zombies�- �rms that were liquidated before March 2002 but have no documented exit

in the data set - from �rms with unknown exits. Speci�cally, for each �rm with unknown exit,
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we estimate the length of the period (in months) for which the capital raised in the last recorded

round would keep a �rm alive. If the duration between the last recorded round and March 2002 is

longer than this �survival time�, we assume the �rm went down at the end of the �survival time�.

Otherwise, we assume that the �rm is alive at the end of the sample period. The empirical analysis

in this paper uses not only �rms with documented exits but also �rms with estimated exits.

We use the following procedure to estimate the �survival time�after the last recorded round for

�rms with unknown exits. First, we estimate the amount of capital consumed per month after the

last recorded round for each �rm. Second, we divide the raised amount in the last recorded round

with the estimated monthly capital consumption, and obtain the �survival time� in months. In

our �rst step, we �rst run a round level regression of monthly capital consumption (raised capital

divided by the number of months between the current and next rounds, in log) for all rounds except

the last recorded rounds, on the amount of capital raised (in log), the post money valuation (in log),

industry dummies, business status dummies, and dummies for future exit types. The rationale is

that the amount of capital consumed per month by a �rm is determined by the amount of capital

raised, the size of the �rm, the industry and business status of the �rm, and the quality of the �rm

(proxied by the �nal exit type). The R2 of the regression is 0.75, which seems to indicate that

the monthly capital consumption is explained reasonably well by this regression. The regression

results suggest that the amount of capital raised and the post money valuation are positive and

signi�cant at the 1% level, which indicates that larger �rms consume more capital per month and

�rms with more capital raised consume more capital per month. In addition, retail �rms consume

more capital per month than �rms in other industries, which is signi�cant also at the 1% level.

Firms �in development� and �in production� consume less capital than start up �rms, which is

signi�cant at the 1% level. Moreover, exit type dummies also have signi�cant coe¢ cients. We run

another regression with the post money valuation excluded, and obtain similar results and a R2 of

0.74. After running these two regressions, we estimate the amount of capital consumed per month

after the last recorded rounds for �rms with unknown exits, using estimated coe¢ cients from the

regressions and the explanatory variables for the last recorded rounds. We use the coe¢ cients

from the �rst regression for the last recorded rounds with post money valuations observed, and use

the coe¢ cients from the second regression for rounds with unobserved post money valuations. We

let the exit dummies to be 0, assuming that the �rms�exits would follow the same distribution of

the exits of the exited �rms. In our second step, we divide the raised amount with the estimated

capital consumption per month, and obtain the �survival time.�If the survival time is long enough
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to go beyond the end of the sample period, we assume that the �rm is alive. If the survival time

ends before the end of the sample period, we add an exit round for the �rm, assuming that this

�rm raised $0 in the exit round, and went down with $1 post money valuation.

Starting with Table 2, all the tables and analysis are based on �rms with estimated exits

whenever the exits are unknown. Table 2 reports the same summary statistics as Table 1, but uses

�rms with documented and estimated exits using the procedure discussed above. Compared with

Table 1, the number of liquidated �rms increases dramatically - from 938 in Table 1 to 10,857 in

Table 2. The percentage of �rms that are liquidated increases from 5% in Table 2 to 57% in Table

2. The summary statistics for pre-exit rounds and duration before exits also show di¤erences.

Table 3 reports summary statistics for venture capital investment rounds prior to �rms�exits.

Panel A reports the number of rounds for �rms with di¤erent exit types in di¤erent industries.

Panels B, C, and D report the means and standard deviations, which are calculated using rounds

with corresponding information available, of pre-�nancing duration (the number of months between

the previous round and the current round), investment amount (million dollars), and the ratio of

investment amount to post-money valuation. The table shows that the pre-�nancing duration,

investment amount, and the ratio of investment amount to post-money valuation are similar across

industries and di¤erent exit types.

7 Empirical Results

Initial Valuation, Time of Information Arrival, and Return Dynamics We start by

exploring our alternative hypotheses concerning the typical arrival time of information. Table 4

reports evidence from a comparison of successful projects (�rms exiting via IPO or M&A) and

unsuccessful ones (�rms that are going down). Under the ex ante information hypothesis, valuable

information about the prospects of a particular project is mostly known ex ante. If the information

were about the success probability, then we would expect projects with higher initial values to

succeed more often. As Table 4 shows, this is not the case: successful projects actually have lower

initial values compared with unsuccessful ones. Moreover, when we look at investment behavior we

also �nd evidence that is inconsistent with the ex ante information hypothesis. Table 4 shows that

there is no signi�cant di¤erence in investment behavior between failed and successful projects. First-

round investments and the ratio of �rst-round investment to initial value are fairly constant across

projects, regardless of their ultimate outcome. Further, under the ex ante information hypothesis,
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the �rst round investment �ow, which re�ects investors� ex ante belief of the �nal exits, should

help predict the prospect of the project: a larger investment �ow indicates a higher probability of

success. Table 4 shows the opposite: IPO/M&A �rms have smaller �rst round investment �ows

than �rms that went down.

Additional evidence is provided by Table 5, which presents results of probit regressions on

whether �rms exit successfully (IPO or M&A) or exit as failures (including estimated failures). The

initial value is not signi�cant or - in one regression - is weakly signi�cant but with the wrong sign

according to the ex ante information hypothesis. Thus, the results about initial valuation and initial

investment behavior resolutely reject the hypothesis that investors have ex ante discriminatory

capabilities about the estimated success probability of a project.

We can also test whether investors hold relevant ex ante information about the expected �nal

value in the case of success. Indeed, initial values and �nal values are correlated, and Table 6 shows

that the initial value has clear predictive power for the exit value (signi�cant at the 1% level) in

the event of success. Hence we can conclude that investors have some ex ante information about

potential �nal values, but not about the chances to succeed.

According to the interim information hypothesis, the estimates about the ultimate success

probability and/or the exit value of the project evolve with the progress of the project. In many

of our tests of the interim information hypothesis, we focus on the information content in the �rst

round for which we have the most observations. From now on, we use the abnormal return from

one round to the next to measure the information content of that round. We de�ne the abnormal

return as the component of the raw return that is orthogonal to the information already known by

investors before the round, including the industry and business status of the project and the status

of the round, and the common return of the whole venture capital asset class. The common return

is assumed to be driven by the �nancial market instead of the speci�c prospect of the underlying

project. As a result, the abnormal return captures information regarding the speci�c project that

is unknown before the round.

We estimate abnormal returns as:

log(
Vi;tk+1 � Ii;tk+1

Vi;tk
) = (tk+1 � tk)�0Industryi + (tk+1 � tk)�0Businessi +

tk+1P
s=tk+1

(log(Rm;s)) + "i;k+1.

The subscript i; tk+1 denotes the month in which round k + 1 is raised for �rm i; Ii;tk+1 is the

amount of capital raised in round k+1; Vi;tk+1 is the post money value for round k+1; Industryi is
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a 3� 1 vector of dummies corresponding to healthcare, IT, and retail �rms; Businessi is a (3� 1)
vector of dummies corresponding to start up, in development, and in production; log(Rm;s) is the

log venture capital market returns, which is assumed to be a¤ected by a vector of unknown market

factors that vary over time and factor loadings that are constant for all venture capital investments;

"i;k is the portion of the log return that is not explained by market factors or information already

known by investors, and thus is the "abnormal return". Note that in the regression, log(Rm;s) is

essentially the coe¢ cient of a dummy variable for month s. The regression is similar to the repeat

sales regression for the construction of real estate price indexes.3 We pool all rounds in the data

set without missing variables and run the above regression. The monthly abnormal log return

for �rm i from round k � 1 to round k, which is denoted by ARi;k, is constructed from regression

residuals as follows:

ARi;k =
c"i;k

tk � tk�1
.

As Table 4 shows, one of the most powerful results of our study is that projects that ultimately

succeed are likely to receive a positive news update during the initial �nancing round. The ab-

normal return following the �rst round is strongly positive for projects that exit successfully, and

signi�cantly negative for all other �rms (t-value for the di¤erence: 25.335). The probit analysis

in Table 5 con�rms this e¤ect when including other explanatory variables with a comparable level

of signi�cance. In addition, consistent with the hypothesis that interim information also updates

the belief about the �nal value, Table 6 shows that the abnormal return following the �rst round

is positively related to the exit value. Taken together, these results provide solid support for the

interim information hypothesis.

We conclude that investors learn during the �rst investment round about the failure probability.

In fact, information arrival after the launch of a project, more precisely during the �rst round, is a

strong predictor of ultimate success, as opposed to ex ante information (initial valuations or �rst-

round investment behavior). In addition, investors also learn about the �nal value, but parts of

their expectation of exit values seems to be ex ante knowledge. The last regression in Table 6 shows

that in fact both ex ante information (contained in the initial value) as well as interim information

(contained in ARi;2) explain the �nal value. In other words, the �nal value of a project seems to

be partially contained in the ex ante information, and partially to be the result of interim learning

as expressed in the abnormal returns over the project�s investment cycle.

3See Bailey, Muth, and Nourseerk (1963) for the original regression and Goetzmann and Peng (2006), among

others, for an application to real-estate markets.
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We turn to the exploration of the dynamics of risk and return. Our basic model assumes that

the risk, conditional on survival, of dropping out is decreasing, as captured by the parameter � of

the Pareto distribution. This assumption of decreasing failure risk receives some support in Table

7, which shows that the probability of failing is decreasing over time. Note that while information

content in a round is better measured by abnormal returns, raw returns seem a more appropriate

measure for the total failure risk, including the expected and not expected (learned) components.

Our learning model implies that round returns for surviving companies should show a decreasing

trend as the failure risk subsides. This is indeed the case, as Table 7 shows (�surviving return�).4

The results in Table 7 are in fact even more supportive of our model than these numbers suggest:

the probabilities express the average fraction of surviving projects in each round. Our model,

however, predicts the survival probability in terms of units of the [0;K]-investment cycle, which

is the survival probability per invested dollar. Table 8 lends support to our premise of constant

expected returns. We �nd that the means of the unconditional returns are increasing over time

whereas the median returns are decreasing. Therefore, we conclude that it is di¢ cult to reject the

hypothesis of constant expected returns on which our risk-neutral model is based.

Investment Flows We turn to our predictions on investment �ow (investment spending per

month). Our model leads to the prediction that investment �ows are inversely related to a project�s

estimated failure risk �. We do not observe estimated or actual failure risk � directly, but can

approximate them in two ways. First, we observe the ultimate project outcome, which is determined

by the actual failure risk. Note that the ex ante information hypothesis indicates that investors�

estimated failure risk should correlate with the actual failure risk. If the ex ante information

hypothesis is correct, we should expect ultimately successful exits (via IPO or trade sale) to be

more likely for projects with an above-average investment �ow. As the �rst three regressions in

Table 5 show, there is no evidence for this e¤ect. A possible indirect measure of the estimated

failure risk � is the ratio of �nal value to initial value. Should the ex ante information hypothesis

be true, then the higher the ratio, the larger would be the expected cumulative failure probability

and hence �. Again, our regression results are not signi�cant (and thus not reported in our tables).

Therefore, consistent with our earlier results, Table 5 provides strong evidence that investors have

no ex ante information regarding the chance of success.

4We cannot test for the signi�cance of these numbers as they are just the proportions of surviving projects in each

round.
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The model also predicts that the investment �ow increases with the expected �nal value of the

project. Assuming that the investors hold ex ante information regarding the �nal values, a test is

only possible for successfully completed projects, using their actually realized exit values as a proxy

for expected �nal values. Regression 3 in Table 6 presents the results for this test, which seem to

support our hypothesis: the coe¢ cient of the �rst round investment �ow is signi�cant at the 1%

level. We conclude that investors seem to have some ex ante information regarding the expected

exit values.

In our model, the investment �ow reacts to uncertainty, and it will optimally increase if there

is less uncertainty about the ultimate project outcome. Table 9 provides strong support for this

hypothesis (at the 1% level for both means and medians). Consistent with our model, investment

�ows are increasing over time. Table 9 also shows that venture projects exhibit larger investment

volumes as they advance from one round to the next (at 1% level for both means and medians).

Additional predictions on the investment �ow which imply multivariate relationships are tested

using OLS regressions; the evidence is provided in Tables 10 and 11. First, the model predicts

that the investment �ow increases in the valuation of the project, and implies that this positive

relationship should for the �rst as well as the later rounds of the investment process. In Table

10, regressions for all �rms (unconditional) and IPO and M&A �rms substantiate this positive

relationship for the �rst round. Further, since investors have ex ante information about the �nal

value of the project, conditional on success (this hypothesis is validated by our results in Table 6

discussed earlier), �nal values should positively correlate with the initial investment �ow. This is

indeed the case, as the conditional regressions in Table 10 show. Table 11 provides evidence that the

positive correlation between project valuation and investment �ow holds throughout the investment

process. In Table 11, regressions 2 and 5 show strong evidence for this e¤ect (signi�cant at 1%

level). It is useful to note that we use the pre-money company value at the beginning of each round.

Regressions 3 and 5 in Table 11 show that the optimal investment �ows are autocorrelated and thus

persistent throughout the project investment cycle (signi�cant at 1% level). This is consistent with

our model which predicts the persistence of the autocorrelation as a mirror image of the evolution

of project valuation over time. We observe that the regression 5 controls for the sunk cost (the

total investment amount raised before) of investors in �rms, which would be signi�cant if investors

are not willing to realize losses and tend to continue �nancing bad projects. While the sunk cost

is signi�cant in regression 4, it is not signi�cant in regression 5, which includes the lagged �rm

value, the lagged investment �ow, and the lagged abnormal return. Note that, in Table 11, we use
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dummies to control for mezzanine rounds because they are likely bridge �nancing rounds prior to

successful exits, and may not re�ect the learning phase of the project.

We already presented evidence in favor of the interim information hypothesis. If this hypothesis

is true then it has clear implications for investment behavior that can easily be tested: investment

�ow should be increasing in the most recent abnormal return in each round that we use as a proxy

for interim information. If the last observed abnormal return ARi;k is higher, then the project

should have received a more positive information update. All regressions in Table 11 support this

prediction, and show strong evidence consistent with the interim information hypothesis. The e¤ect

seems to have a concave shape as the quadratic term for the abnormal return is negative and highly

signi�cant as well.

Staging Frequency With regard to the determinants of the round frequency, our model implies

that larger �nancing rounds will occur if there is less uncertainty resolved for every dollar of

investment. It predicts that the staging frequency should be lower for projects with a high success

probability.

To test this hypothesis, we need to turn to regressions for completed projects that explain the

number of rounds over the entire investment cycle. Since we do not observe the risk variable �

directly, we use the ratio of exit value to initial value for completed projects as a proxy, and assume

that investors have ex ante information regarding �nal values, which is supported by our earlier

evidence. The �rst line in Table 12 shows the results, with the total number of �nancing rounds

as a dependent variable. In all regressions in Table 12, there is a positive and highly signi�cant

sign (at 1% level) for our proxy for �. Moreover, our theoretical results imply a negative sign when

we regress the number of rounds on the �nal value. Regressions 3 and 4 of Table 12 show indeed

strong evidence (signi�cant at 1% level) in favor of this hypothesis.

Considering interim learning about the project�s failure risk or �nal value, we predict that

a positive information release that makes the project more valuable or less risky leads to less

subsequent �nancing rounds. As regressions 2 and 4 in Table 12 show, this is indeed the case. The

relationship is again nonlinear, as witnessed by the quadratic terms of ARi;2.

Size and Duration of Financing Rounds Our model leads to very clear predictions on the

investment size (capital raised) of each �nancing round. The model predicts that it is increasing

from one round to the next. This is indeed the case for the means and the medians of the in-
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vestment volume, as Panel B of Table 9 shows. By contrast, the predictions on round duration

(in months) of each �nancing round are ambiguous, since increasing investment volume (the dollar

amount provided in a given round) and investment �ow have countervailing e¤ects on the round

duration. Interestingly, we do not �nd any clear patterns for round durations (not reported in

tables), consistent with our model�s ambiguous predictions for round duration.

Our model predicts that a higher project valuation, re�ecting either a high expected �nal value

or a low expected failure probability, should translate into a larger investment volume in every

round. The result of our regression analysis are presented in Table 13. We �nd strong evidence

in favor of this hypothesis as regressions 2 and 5 show. Also, an above-average investment size in

round k� 1, explained by a high exit value, low failure probability or high contracting cost, should
also translate into an above-average investment volume in round k. This is indeed the case, as the

positive and signi�cant signs for variable log(investmenti;k�1) in Table 13 (regressions 3 and 5)

shows. Note that we control for the sunk cost and mezzanine rounds in this table as well.

We also explore the implications of the interim information hypothesis for investment volume.

The model implies that positive interim information releases should lead to an increase in the

capital raised in each subsequent round. This is indeed the case as the highly signi�cant and

positive coe¢ cient on the interim learning variable ARi;2 shows in Table 13, which again exhibits

a nonlinear e¤ect.

Total project duration Our model implies that projects with an above-average initial valuation

will be completed faster as they bene�t from a persistently higher investment �ow. We �nd clear

evidence in support of this prediction in Table 14. Table 14 further substantiates that favorable

information updates, which are proxied by abnormal returns, and lower failure risk, which is proxied

by the reciprocal of log(exitvaluei=valuei;1), increase investment �ows and thus help projects to

be completed faster.

8 Conclusion

We investigated a stylized model to analyze how investors make optimal dynamic investment de-

cisions in an innovative project as a function of their information about failure risk and potential

�nal value. We consider the complete investment cycle and assume that information leading to the

failure of the project may arise at any time, but at a decreasing probability. The investors choose
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the optimal speed of investment with a convex cost function. They also choose an optimal sequence

of �nancing stages. We model the cost of each investment decision as a loss that is proportional to

the current value of the project, so that investment decisions will only occur in discrete intervals.

The results of our theoretical analysis are the following. As the project advances and the prob-

ability of eventual success increases, investment �ows should be optimally increasing. Therefore,

decreasing surviving returns require that the failure risk decreases over time. If the probability

of the information arrival is su¢ ciently front-loaded then the returns will be increasing. Thus

despite an increase in the investment �ow it follows that the information-sensitive development of

the projects proceeds more quickly. The optimal staging sequence depends on the value of the

real option to abandon: The higher the estimated �nal value of the project is, and the larger the

estimated success probability, the fewer rounds will be used. Finally, we show that information

updates about the expected �nal value or the failure probability will be incorporated in all subse-

quent investment decisions. If the value of the project increases then the subsequent investment

�ow will increase. At the same time, the number of subsequent investment rounds will decrease,

and the capital allocation for each of these rounds will increase.

In our empirical tests of these predictions, we �nd that investment �ows are increasing over

time as predicted. Our evidence shows that initially, investors seem to have little ability to predict

the eventual probability of success, but have some forecasting ability about the �nal project value

conditional on success. The design of the �nancing rounds follows the optimal pattern predicted

by our model: the investment size and the investment �ow is increasing from one round to the

next, and projects with a high initial estimate of the �nal value or an optimistic appraisal are likely

to succeed with fewer rounds than less valuable or more risky projects. As the project advances,

frequently investors get information that leads them to reappraise the failure risk of the project.

We show that such information updates lead them to adjust the investment path optimally: the

subsequent investment �ow as well as the size of each round and the number of subsequent rounds

react in the way predicted by our model.
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9 Appendix

The appendix contains the proofs of all propositions in the main body of the text.

Proof of Proposition 1. We consider the dynamic investment problem with uncertainty. The

state variable kt is simply the current position of the venture, but there is a possibility of implosion

which is constant per unit of distance. The value function is given by:

rV (kt) = max
it2R

�
�it + 


p
it

�
V 0 (kt)�

�

kt
V (kt)

��
, (12)

and the resulting optimal investment is

i�t =

�



2

�
V 0 (kt)�

�

kt
V (kt)

��2
. (13)

The resulting ordinary di¤erential equation for the evolution of the value of the venture:

rV (kt) =
�

2

�2�
V 0 (kt)�

�

kt
V (kt)

�2
(14)

can be represented in its canonical form:

V 0 (kt) =
�

kt
V (kt) +

2




p
rV (kt): (15)

With a change of variable given by W (kt) ,
p
V (kt), we can transform the above di¤erential

equation into a nonlinear �rst order di¤erential equation. The di¤erential equation (6) is a non-

linear �rst order di¤erential equation which we can solve explicitly by variation of parameters (see

Hubbard and West (1991)). We observe that

W 0 (kt) =
1

2

V 0 (kt)p
V (kt)

; (16)

and hence

V 0 (kt) = 2W (kt)W
0 (kt) :

Replacing V (kt) and V 0 (kt) by W (kt) and W 0 (kt) in (15) we get:

W 0 (kt) =

p
r



+
�

2kt
W (kt) : (17)

The solution of the di¤erential equation (17) subject to the boundary condition:

W (K) =
p
Y ;
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is now given by:

W (k) =
p
Y

�
k

K

� 1
2
�

� 2
p
r


 (2� �)

 
K

�
k

K

� 1
2
�

� k
!

(18)

For the failure rate � = 2, the value function becomes linear in k and is given by:

W (k) =
p
Y
k

K
� 2

p
r



: (19)

Consequently, the value function V (k), based on the general solution of W (k) in (18) is given by:

V (k) = (W (k))2 .

We can now immediately establish the properties (1)- (3) of the optimal investment i�t by using the

linear relationship (6). We write

i� (k; Y; �) , r
 
p
Y

�
k

K

� 1
2
�

� 2
p
r


 (2� �)K
�
k

K

� 1
2
�

� k
!2
:

(1.) We obtain by elementary calculus that @i�=@k > 0 and @i�2=@2k > 0.

(2.) We obtain by elementary calculus that @i�=@� < 0 and @i�2=@2� < 0.

(3.) We obtain by elementary calculus that @i�=@Y > 0 and @i�2=@2Y > 0.�

Proof of Proposition 2. The surviving returns Rt , 1 + rt are given by:

rt =
�it +

p
it
V

0 (kt)

V (kt)
:

Using the characterization of the optimal investment given by (6), we get

rt =
�rV (kt) +

p
rV (kt)
V

0 (kt)

V (kt)
= �r +

p
r
V 0 (kt)p
V (kt)

:

Using the same change of variable as in Proposition 1, we �nd that

rt = �r + 2
p
r
W 0 (kt) .

Using (17) to replace W 0 (kt) we have rt , r (kt):

r (kt) = �r + 2
p
r


�
�

2k
W (kt) +

p
r




�
;

and we now ask whether r0 (kt) is positive or negative:

r0 (kt) = 2
p
r


�
� �

2k2
W (kt) +

�

2k
W 0 (kt)

�
;
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and using (17) again to replace W 0 (kt) we get

r0 (kt) = 2
p
r


�
� �

2k2
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2k
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r
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Since we have a solution for the value function W (k), we can insert it and compute the values. We

have �
�1
k
W (kt)

�
1� �

2

�
+

p
r




�
;

and inserting W (k) we get 
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The second term is negative for � > 2. To sign the �rst term, we simplify to:

�
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or

�
�p

Y � 2K
p
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 (2� �)

��
k

K

� 1
2
� 1

k
: (21)

Thus if K is not too large and � is su¢ ciently below 2, then the surviving returns are declining

everywhere. Conversely if K is large or � above or just below 2, then the surviving returns are

increasing in kt and hence in time everywhere. �

Proof of Proposition 3. We �rst describe the optimal investment with stage �nancing. We denote

by il;m the optimal investment at stage l if the entire project is �nanced in m stages (conditional on

surviving until the �nal state K), with l � m. Similarly, we denote by Vl;m (kt) the value function
of the project in stage l and state kt if the project is supposed to be funded in m stages until the

successful completion of the project.

If the project is funded in a single stage, i.e. it is funded in the initial state k0 with the objective

of maintaining a given investment level i until the positive or negative termination of the object,
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then the value function is given by the unique solution of the �rst order di¤erential equation:

rV1;1 (kt) = �i1;1 + �
p
i1;1

�
V 01;1 (kt)�

�

kt
V1;1 (kt)

�
, (22)

subject to the boundary condition V1;1 (K) = Y . The explicit solution of the di¤erential equation

(22) is given by:

V1;1 (kt) =

�
Y +

p
i1;1

K

(�� 1) 


��
kt
K

��
e
kt�Kp
i1;1

r

 �

p
i1;1

kt
(�� 1) 
 (23)
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The optimal investment policy given the initial state k0 can be obtained implicitly by the �rst order

condition of V1;1 (k0) with respect to i1;1. If we de�ne j ,
p
i1;1, then we have
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Based on (24), the solution to the optimal investment policy

i1;1 , i� (Y; k0; �) (25)

for a single stage investment can be shown to be strictly increasing in Y and k0 and strictly

decreasing in �.

If, in contrast, the project is funded in two stages, then the optimal funding policy starting at

the initial position k0 has to make three distinct choices: it has to determine the initial funding level

i1;2, the continued funding level i2;2 and the funding renewal state k1. Conditional on the optimal

funding level given the renewal stage k1, the value function in the initial state k0 is therefore given

as the solution to the following optimization problem:

V1;2 (k0) = max
i1;2;k1

 p
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: (26)

35



We can insert (23) into (26) to get

V1;2 (k0) = max
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or alternatively:
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We now establish the results of this proposition.

(1.) We �rst observe that i2;2 > i1;1 by the comparative static property of the optimal invest-

ment policy i� (Y; k; �) obtained above for the single stage funding policy. After all, the investment

funding i2;2 of the project conditional on renewing the project is like a single stage funding, but

at a higher level of the state kt. Suppose next that at k = k�, we have V1;1 (k�) = V1;2 (k
�).

We want to show i1;2 < i1;1. In the two stage funding environment, the optimal renewal occurs

at k1 and conditional on renewal, we have a value function V2;2 (k1). By construction, we have

V2;2 (k1) > V1;1 (k1). We now show that it follows from here that pV2;2 (k1) � V1;1 (k1). The proof
is by contradiction. If pV2;2 (k1) > V1;1 (k1), then clearly starting at k�, and having the advantage

of determining the investment level to optimally arrive at k1, the two stage funding policy could do

at least as well as the one stage funding policy which runs through the state k1 with intensity i1;1,

only to realize the project at K. But as the initial funding policy in the two stage level seeks to

determine the optimal intensity to arrive at a stopping point k1 with a value pV2;2 (k1) � V1;1 (k1),
it follows that it will choose a strictly lower investment policy i1;2 than i1;1 was determined not to

reach V1;1 (k1) optimally, but rather the higher value V1;1 (K).

(2.) We establish the uniqueness of k� by a single crossing argument. We �rst observe that the

value functions V1;1 (kt) and V1;2 (kt) are continuous and di¤erentiable in kt. We then show that if

V1;1 (k
�) = V1;2 (k

�) , (27)

then

V 01;1(k
�) > V 01;2 (k

�) .

The argument will come from the fact that at k� the value function of each program, V1;1 and V1;2,
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respectively, satis�es:

rV1;1 (k
�) =

�
�i1;1 + �

p
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�
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�)� �

k�
V1;1 (k
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��
, (28)

and
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�)� �
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V1;2 (k

�)

��
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We can now express the value function Vl;m (k�) in terms of the investment level il;m and the �rst

derivative of the value function V 0l;m (k
�) and get

Vl;m =

p
il;m�V

0
l;m (k

�)� il;m

r +

p
il;m
k �2

(30)

We can determine the sign of the di¤erence V 01;1(k
�) � V 01;2 (k�) by analyzing how V 01;1(k

�) and

V 01;2 (k
�) respectively have to di¤er in the face of the di¤erent investment intensities, i1;2 < i1;1,

established in part 1 of this proposition, yet while maintaining the hypothesis of equal values given

by (27). We determine how V 0 (k�) changes as we change the investment level i from i1;2 to i1;1.

We omit the subscripts l;m and use the relationship of the value function given by (30):

V (k�; i) =

p
i�@V (k

�;i)
@k � i

r +
p
i
k �

2
(31)

As we increase i from i1;2 to i1;1 and consider k = k�, the value V (k�; i) is supposed to stay

constant. We suppress the dependence on k� and write V (i) , V (k�; i) andW (i) = @V (k�; i) =@k.

In addition, as we are only interested in the sign of W 0 (i), we de�ne j ,
p
i, and hence we obtain

from (31):

�W (j) = j +
V (j) r

j
+ V (j)

�2

k
. (32)

We would like to establish the sign of W 0 (j) and di¤erentiating (32) by j, we �nd that:

�W 0 (j) = 1� V (j) r
j2

,

as by construction V 0 (j) = 0, or alternatively

�j2W 0 (j) = j2 � V (j) r . (33)

We complete the argument by establishing that:

j2 > V (j) r. (34)
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Now we observe that if the investors were allowed to determine the investment �ow optimally in

every instant, then we would have, as established in Proposition 1:

j2 =

2

4

�
W � �

k
V

�
, (35)

or

j2 = V (j) r.

But as we are now consider the optimal investment decision subject to staging, the optimal in-

vestment i1;m has to determined with respect to some average valuation over the course of the

investment round, and thus as the value is increasing in the current position k, we �nd that at the

beginning of the funding round the investment �ow i1;m and hence its root j, displays

j2 >

2

4

�
W � �

k
V

�
,

which establishes (34). �

Proof of Proposition 4. (1.) The optimal investment decisions to determine i1;1 and i1;2

represent solutions to a similar problem, except that the terminal value of the investment problem

of i1;1 is given by Y whereas the terminal value of the investment problem of i1;2 is given by some

fraction of Y , say q � Y , with q 2 (0; 1). But as the optimal investment problem of i1;2 is taking

the solution to the optimal stopping problem at k1 as given, it is the case that the smaller bene�t,

q � Y is reached at an earlier point, namely, k = k1. It follows that we can represent the optimal

investment decision of i1;1 and i1;2 by

i1;1 2 argmax
i2R+

fpK (i) � Y � cK (i)g ;

and

i1;2 2 argmax
i2R+

fpk1 (i) � q � Y � ck1 (i)g ;

respectively. The term pk (i) represents the discounted probability that a positive terminal value

is realized in position k given an investment �ow i and the term ck (i) represents the associated

discounted cost to reach the position k with a constant investment �ow i. By hypothesis, the value

of these problems is equal at k�, or

pK (i1;1) � Y � cK (i1;1) = pk1 (i1;2) � q � Y � ck1 (i1;2) . (36)
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Since the cost of reaching K is strictly larger than reaching k1, we have

cK (i1;1) > ck1 (i1;2) ,

but this implies by (36) that

pK (i1;1) > pk1 (i1;2) � q, (37)

hence it follows by the envelope theorem that a marginal increase in Y is more bene�cial to the

single round funding regime by (37), which establishes that k� is decreasing in Y .

The argument for an increase of k� in response to an increase in the parameter � of the failure

rate �=kt is similar to the above argument regarding Y .

(2.) The marginal bene�t of extending k1 is increased by an increase in p and hence it will lead

to an increase in k1 despite the increase in the marginal cost.

(3.) This follows immediately from the Proposition 3.1. �

Proof of Proposition 5. (1.) The undiscounted probability of success given a constant failure

probability � is given as the solution to the di¤erential equation

0 =

�
P 0 � �

k
P

�
with boundary condition P (K) = 1. We therefore have the exact solution

P (k) = Ck�

and with the boundary condition

P (K) = CK� = 1

we have

C = K��

and

P (k) =

�
k

K

��
(38)

The undiscounted probability before the resolution of uncertainty is given by

0 = P 0 (k)� �
k
P (k) + � ((1� �)Pl (k) + �Ph (k)� P (k)) , (39)

and inserting Pl (k) and Ph (k) from (38) we get:

0 = P 0 (k)� �
k
P (k) + �

 
(1� �)

�
k

K

��l
+ �

�
k

K

��h
� P (k)

!
.
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By (39), the probability P (k) is an average of Pl (k) and Ph (k) and the result follows from Pl (k) >

P (k) > Ph (k).

(2.) The optimal investment policy before the resolution of uncertainty about the failure rate

is given as the solution to the dynamic programming equation:

rV (kt) = max
it

�
�it +

p
it


�
V 0 (kt)�

�

k
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

��
,

with the solution given by:

it =

 


�
V 0 (kt)� �

kV (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))
�

2

!2
,

and hence the value function is given by

rV (kt) =
1

4

��
V 0 (kt)�

�

k
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

��2
and so:

it = 2rV (kt) .

But as Vh (kt) < V (kt) < Vl (kt) ; it follows that it;h < it < it;l, which completes the proof.�

40



References

Bailey, M., R. Muth, and H. Nourseerk (1963): �A Regression Method for Real Estate Price

Index Construction,�Journal of the American Statistical Association, 58, 933�942.

Bergemann, D., and U. Hege (2005): �The Financing of Innovation: Learning and Stopping,�

RAND Journal of Economics, 36, 719�752.

Berk, J., R. Green, and V. Naik (2004): �The Valuation and Return Dynamics of New Ven-

tures,�Review of Financial Studies, 17, 1�35.

Bienz, C., and J. Hirsch (2007): �The Dynamics of Venture Capital Contracts,� Discussion

Paper http://ssrn.com/abstract=929491, CFS Frankfurt.

Cochrane, J. (2005): �The Risk and Return of Venture Capital,�Journal of Financial Economics,

75, 3�52.

Cornelli, F., and O. Yosha (2003): �Stage Financing and the Role of Convertible Debt,�Review

of Economic Studies, 70, 1�32.

Cuny, C., and E. Talmor (2003): �The Staging of Venture Capital Financing: Milestones Vs.

Rounds,�Texas AM University and London Business School.

Fluck, Z., K. Garrison, and S. Myers (2007): �Venture Capital Contracting: Staged Financ-

ing and Later-Stage Syndication of Venture Capital Investments,�MIT.

Goetzmann, W., and L. Peng (2006): �Estimating House Price Indices in the Presence of Seller

Reservation Prices,�Review of Economics and Statistics, 88, 100�112.

Gompers, P. (1995): �Optimal Investment, Monitoring, and the Staging of Venture Capital,�

Journal of Finance, 50, 1461�1489.

Gompers, P., and J. Lerner (1999): �The Venture Capital Cycle,�MIT Press: Boston; 1999,

2nd ed. 2004.

Gottschalg, O., and L. Phalippou (2008): �Performance of Private Equity Funds,�Review of

Financial Studies, p. forthcoming.

41



Hochberg, Y., A. Ljungqvist, and A. Vissing-Jorgensen (2008): �Informational Hold-Up

and Performance Persistence in Venture Capital,�Northwestern University.

Hubbard, J., and B. West (1991): Di¤erential Equations. Springer Verlag, New York.

Inderst, R., and H. Mueller (2004): �The E¤ect of Capital Market Characteristics on the

Value of Start-Up Firms,�Journal of Financial Economics, 72, 319�356.

Jovanovic, B., and B. Szentes (2007): �On the Return to Venture Capital,�Discussion paper,

New York University and University of Chicago.

Kaplan, S., and A. Schoar (2005): �Private Equity Performance: Returns, Persistence, and

Capital Flows,�Journal of Finance, 60, 1791�1823.

Kaplan, S., and P. Stromberg (2003): �Financial Contracting Theory Meets the Real World:

An Empirical Analysis of Venture Capital Contracts,�Review of Economic Studies, 70, 281�315.

Kaplan, S., P. Stromberg, and B. Sensoy (2002): �How Well Do Venture Capital Databases

Re�ect Actual Investments?,�Discussion Paper http://ssrn.com/abstract=939073, University of

Chicago and SIFR.

Korteweg, A., and M. Sorensen (2008): �Estimating Risk and Return of Infrequently Traded

Assets: A Bayesian Selection Model of Venture Capital,�Tilburg University and University of

Chicago.

Michelacci, C., and J. Suarez (2004): �Business Creation and the Stock Market,�Review of

Economic Studies, 71, 459�481.

Neher, D. (1999): �Stage Financing: An Agency Perspective,�Review of Economic Studies, 66,

255�274.

Repullo, R., and J. Suarez (2004): �Venture Capital Finance: A Security Design Approach,�

Review of Finance, 8, 75�108.

Sorensen, M. (2008): �Learning by Investing: Evidence from Venture Capital,�Discussion Paper

http://ssrn.com/abstract=967822, Columbia University Business School.

Tian, X. (2007): �Geography, Staging, and Venture Capital,� Discussion Paper

http://ssrn.com/abstract=965803, Indiana Univeristy.

42



Woodward, S., and R. Hall (2003): �Benchmarking the Returns to Venture,�Discussion Paper

http://www.nber.org/papers/w10202, NBER WP 10202.

Yerramilli, V. (2006): �Staging of Investments: Flexibility versus Incentives,�

http://ssrn.com/abstract=890865.

43



44 
 

Table 1 Summary of Firm Characteristics (Documented Exits) 
 
This table reports means (and standard deviations if applicable) of the number of firms, the pre-
exit rounds per firm, and the duration (months) from the first round to the exit round for firms 
with documented exits, in healthcare, IT, retail and other industries with exits being IPO, M&A, 
Down (out of business) and Unknown. 
 

Industry Health care IT Retail Others Total 
 

Panel A: # of firms by exit types 
Exit: IPO 541 1,039 213 227 2,020 

Exit: M&A 451 1,654 248 312 2,665 
Exit: Down 137 556 200 45 938 

Exit: Unknown 1,757 7,326 1,042 3,187 13,312 
Total 2,886 10,575 1,703 3,771 18,935 

 
Panel B: Pre-exit rounds per firm: average [standard deviation] 

Exit: IPO 3.89 [2.46] 3.43 [2.26] 3.18 [1.92] 2.29 [2.01] 3.40 [2.30] 
Exit: M&A 3.38 [2.46] 2.93 [2.29] 3.10 [2.65] 2.19 [1.96] 2.94 [2.34] 
Exit: Down 3.72 [3.02] 3.15 [2.29] 3.02 [1.84] 2.51 [1.94] 3.17 [2.32] 
Unknown 2.77 [2.17] 2.25 [1.75] 3.04 [1.92] 1.68 [1.36] 2.24 [1.79] 

All 3.12 [2.36] 2.52 [1.98] 3.07 [2.03] 1.77 [1.49] 2.51 [2.01] 
 

Panel C: Duration (months) before exit: average [standard deviation] 
Exit: IPO 45.83 [26.90] 43.45 [28.40] 34.80 [26.27] 36.57 [28.28] 42.41 [28.00] 

Exit: M&A 49.19 [32.06] 40.74 [32.16] 37.65 [29.70] 45.15 [35.43] 42.40 [32.50] 
Exit: Down 74.10 [34.70] 59.46 [41.84] 45.05 [34.58] 49.89 [34.77] 58.07 [40.01] 

All 50.61 [31.31] 44.81 [33.60] 38.97 [30.49] 42.19 [33.05] 45.02 [32.90] 
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Table 2 Summary of Firm Characteristics (Documented and Estimated Exits) 
 
This table reports means (and standard deviations if applicable) of the number of firms, the pre-
exit rounds per firm, and the duration (months) from the first round to the exit round, in 
healthcare, IT, retail and other industries. Firms are classified into the exit types IPO, M&A, 
Down (out of business) according to documented exits, and firms with unknown exits are 
identified as Down or Alive (not yet exited) according to our estimation procedure for exits 
explained in Section 6. 
 

Industry Health care IT Retail Others Total 
 

Panel A: # of firms by exit types 
Exit: IPO 541 1,039 213 227 2,020 

Exit: M&A 451 1,654 248 312 2,665 
Exit: Down 1,352 5,892 1,087 2,526 10,857 

Alive 542 1,990 155 706 3,393 
Total 2,886 10,575 1,703 3,771 18,935 

 
Panel B: Pre-exit rounds per firm: average [standard deviation] 

Exit: IPO 3.89 [2.46] 3.43[2.26] 3.18 [1.92] 2.29 [2.01] 3.40 [2.30] 
Exit: M&A 3.38 [2.46] 2.93 [2.29] 3.10 [2.65] 2.19 [1.96] 2.94 [2.34] 
Exit: Down 2.78 [2.23] 2.20 [1.77] 2.87 [1.78] 1.74 [1.42] 2.23 [1.80] 

Alive 3.01 [2.31] 2.64 [1.88] 4.19 [2.35] 1.53 [1.16] 2.54 [1.96] 
All 3.12 [2.36] 2.52 [1.98] 3.07 [2.03] 1.77 [1.49] 2.51 [2.01] 

 
Panel C: Duration (months) before exit: average [standard deviation] 

Exit: IPO 45.83 [26.90] 43.45 [28.40] 34.80 [26.27] 36.57 [28.28] 42.41 [28.00] 
Exit: M&A 49.19 [32.06] 40.74 [32.16] 37.65 [29.70] 45.15 [35.43] 42.40 [32.50] 
Exit: Down 34.11 [29.68] 23.55 [24.53] 29.97 [25.84] 18.70 [19.77] 24.38 [29.81] 

All 39.72 [30.27] 29.27 [27.96] 31.86 [26.71] 22.71 [24.23] 29.81 [27.96] 



46 
 

Table 3 Summary of Pre-exit Round Characteristics 
 
This table reports the number of pre-exit rounds, as well as means and standard deviations of 
duration prior to each round (months), investment volume per round (million $), and the ratios of 
investment volume to post-money valuations, for firms in healthcare, IT, retail and other 
industries. Firms are classified into the exit types IPO, M&A, Down (out of business) or Alive 
(not yet exited) according to documented exits, and firms with unknown exit are identified as 
Down or Alive as in Table 2. 
 

Industry Health care IT Retail Others Total 
 

Panel A: # of Pre-exit Rounds 
Exit: IPO 2,103 3,563 678 519 6,863 

Exit: M&A 1,525 4,844 770 684 7,823 
Exit: Down 3,752 12,969 3,122 4,401 24.244 

Alive 1,629 5,248 650 1,078 8,605 
Total 9,009 26,624 5,220 6,682 47,535 

 
Panel B: Pre-financing duration (months): average [standard deviation] 

Exit: IPO 10.77 [9.47] 11.16 [10.09] 10.28 [9.84] 10.80 [10.13] 10.93 [9.87] 
Exit: M&A 10.96 [9.70] 10.35 [10.30] 8.80 [7.52] 11.69 [9.85] 10.42 [9.92] 
Exit: Down 11.88 [10.39] 10.38 [9.79] 9.61 [9.19] 12.34 [14.25] 10.81 [10.59] 

Alive 11.83 [9.93] 10.53 [8.78] 9.93 [8.29] 14.41 [18.10] 11.00 [9.99] 
Total 11.43 [9.97] 10.53 [9.75] 9.58 [8.93] 12.36 [13.99] 10.79 [10.24] 

 
Panel C: Investment volume (million $): average [standard deviation]  

Exit: IPO 5.72 [9.28] 7.16 [12.70] 11.35 [20.45] 14.13 [46.66] 7.65 [17.83] 
Exit: M&A 3.78 [5.20] 4.93 [11.07] 7.06 [13.23] 7.28 [48.71] 5.12 [17.50] 
Exit: Down 4.93 [11.93] 8.10 [16.96] 8.87 [14.19] 6.37 [19.50] 7.46 [27.96] 

Alive 7.36 [10.48] 9.77 [17.59] 8.36 [12.41] 10.08 [27.53] 9.19 [17.15] 
Total 5.33 [10.25] 7.69 [15.69] 8.88 [14.91] 7.46 [27.96] 7.34 [17.02] 

 
Panel D: Ratio of investment to post-money valuation: average [standard deviation] 

Exit: IPO 0.30 [0.21] 0.25 [0.18] 0.25 [0.17] 0.31 [0.23] 0.27 [0.19] 
Exit: M&A 0.34 [0.20] 0.27 [0.17] 0.30 [0.18] 0.30 [0.20] 0.29 [0.18] 
Exit: Down 0.32 [0.19] 0.28 [0.17] 0.30 [0.17] 0.28 [0.23] 0.29 [0.18] 

Alive 0.33 [0.20] 0.30 [0.18] 0.29 [0.17] 0.26 [0.22] 0.31 [0.19] 
Total 0.32 [0.20] 0.28 [0.18] 0.29 [0.17] 0.28 [0.22] 0.29 [0.18] 
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Table 4 Firm Characteristics: IPO/M&A vs Down Firms 
 
This table summarizes the post-money valuation (million $ in log) of the first round ଵܸ, the 
investment volume (million $ in log) in the first round  ܫଵ, the ratio of investment volume to post-
money valuation in the first round (in log) ) ܫଵ ଵܸ⁄ , the ratio of investment volume in the first 
round to the duration between first and the second round (in log) ܫଵ ⁄ଵܦ , and the abnormal return 
per month (gross return in log) from the first round to the second round ܴܣଶ, for IPO/M&A firms 
and Down firms. Down firms include documented Down exits and unknown exits that are 
identified as Down exits as in Table 2. The reported numbers are means, standard deviations (in 
parenthesis) and the number of observations used to calculate the means and standard deviations 
(in brackets).  This table also reports the t-statistics and corresponding p-values for testing the 
hypotheses of identical means between IPO/M&A and Down firms. 
 

  
IPO/M&A firms 

 

 
Down firms 

 
Difference t-tests 

ଵܸ 2.289 
(1.176) 
[1,432] 

2.485 
(1.172) 
[2,142] 

T statistic: -4.887 
P value: 0.000 

 ଵ 0.725ܫ
(1.465) 
[4,457] 

0.772 
(1.624) 

[10,650] 

T statistic: -1.764 
P value: 0.078 

ଵܫ ଵܸ⁄  -1.239 
(0.796) 
[1,430] 

-1.265 
(0.828) 
[2,140] 

T statistic: 0.963 
P value: 0.336 

ଵܫ ⁄ଵܦ  -1.637 
(1.764) 
[4.457] 

-1.423 
(1.741) 

[10.650] 

T statistic: -6.824 
P value: 0.000 

 ଶ 0.287ܴܣ
(0.386) 
[891] 

-0.339 
(0.828) 
[1,551] 

T statistic: 25.335 
P value: 0.000 
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Table 5 Probit Analysis of Firm Exits 
 
This table reports the results of a probit analysis regarding the determinants of the exit types of VC-backed firms.  For firm ݅, ݁ݑ݈ܽݒ௜,ଵ is the post-
money valuation at round 1, ܴܣ௜,ଶ is the average monthly abnormal return (gross return in log) between round 1 and 2, ݂݈ݓ݋௜,ଵ is the investment 
flow for round 1 (investment volume in round 1 divided by the number of months between round 1 and round 2).  Exit classifications are as in 
Table 2. The regressions also include a vector of dummies for the business status (start up, in development, and shipping and profitable) at the time 
of its first financing round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. 
*** denotes significance at the 1% level, ** at the 5% level, and * at 1% level.  
 

 IPO and M&A (1) 
Vs 

Down (0) 

IPO (1) 
Vs 

Down (0) 

M&A (1) 
Vs 

Down (0) 

IPO (1) 
Vs 

M&A (0) 
 ௜,ଵ൯ -0.012݁ݑ݈ܽݒ൫݃݋݈

(0.030) 
0.024 

(0.032) 
**-0.127 
(0.052) 

**0.129 
(0.055) 

 ௜,ଶ ***0.809ܴܣ
(0.049) 

***0.778 
(0.050) 

***0.610 
(0.068) 

0.240 
(0.149) 

 ௜,ଵ൯ -0.011ݓ݋൫݂݈݃݋݈
(0.016) 

-0.008 
(0.016) 

*-0.101 
(0.056) 

0.034 
(0.049) 

Sample size 
 

2,440 890 1,771 2,219 
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Table 6 Determinants of Exit Values of Successful Firms 
 
This table reports the regression results regarding the determinants of the exit values for IPO and M&A firms. 

.ݐ݅ݔሺ݁݃݋݈ ௜ሻ݁ݑ݈ܽݒ ൌ ߙ ൅ ௜,ଵ൯݁ݑ݈ܽݒ൫݃݋ଵ݈ߚ ൅ ௜,ଶܴܣଶߚ ൅ ௜,ଵ൯ݓ݋൫݂݈݃݋ଷ݈ߚ ൅ ௜ݕ݉݉ݑᇱ݀ߩ ൅  ௜ߝ
In the above equation, for firm ݅, ݁ݐ݅ݔ.  ௜ is the exit value (IPO market value minus capital raised from IPO or post M&A value minus capital݁ݑ݈ܽݒ
infused), ݁ݑ݈ܽݒ௜,ଵ is the post-money valuation at round 1, ܴܣ௜,ଶ is the average monthly abnormal return (gross return in log) between round 1 and 
 ௜,ଵ is the investment flow for round 1 (investment volume in round 1 divided by the number of months between round 1 and round 2). Theݓ݋݈݂ ,2
vector ݀ݕ݉݉ݑ௜ contains dummies for the business status (start up, in development, and shipping and profitable) at the time of its first financing 
round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes 
significance at the 1% level, ** at the 5% level, and * at 1% level.   
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 

 ௜,ଵ൯ ***0.200݁ݑ݈ܽݒ൫݃݋݈
(0.038) 

  ***0.190 
(0.044) 

 ௜,ଶ  ***0.660ܴܣ
(0.114) 

 ***0.699 
(0.115) 

 ௜,ଵ൯   ***0.037ݓ݋൫݂݈݃݋݈
(0.006) 

0.009 
(0.017) 

Sample Size 807 
 

658 1,817 657 

R2 0.12 
 

0.15 0.08 0.18 
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Table 7 Surviving Probability and Returns across Rounds 
 
This table reports the number of all non-exit rounds, the number of surviving rounds (firms receiving at least one more financing round or exiting 
successfully after this round), and the survival probability (surviving rounds divided by all non-exit rounds) for all financing rounds, broken down 
according to round type. Round types are determined according to the round status reported in the data (left column) and according to their 
sequence number in the round sequence of each company (right column).  The table also reports the means and medians of post-financing gross 
returns per month (in log) for surviving rounds (surviving return) and for all non-exit rounds (unconditional return).   
 

Variables Round Status 
 

Variables Round Sequence 

 First/Seed 
 

Early Late  1st Round 2nd Round 3rd Round 

Total rounds 
 

16,665 16,488 10,611 Total rounds 
 

17,488 10,180 6,424 

Surviving 
rounds 

11,852 12,542 8,547 Surviving 
rounds 

12,224 7,786 5,104 

Survival 
probability 

0.711 0.761 0.805 Survival 
probability 

0.699 0.764 0.795 

Surviving 
return mean 

0.086 0.062 0.057 Surviving 
return mean 

0.083 0.071 0.062 

Surviving 
return median 

0.056 0.039 0.028 Surviving 
return median 

0.054 0.045 0.039 

Unconditional 
return mean 

-0.459 -0.413 -0.315 Unconditional 
return mean 

-0.520 -0.395 -0.330 

Unconditional 
return median 

0.022 0.015 0.015 Unconditional 
return median 

0.014 0.020 0.021 
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Table 8 Equality of Unconditional Returns across Rounds 
 
Panel A of this table reports the t-statistics and corresponding p-values (in parentheses) for the 
equality of means of unconditional gross returns (post-financing gross returns for all non-exit 
rounds) per month (in log) between rounds.  Panel B reports the results for Wilcoxon signed-rank 
tests for the equality of the medians.  Both tests use all return observations for each type of round. 
Round types are determined according to round status (left column) and round sequence (right 
column) as in Table 7.  The return observations are not in pairs, and the numbers of return 
observations from different types of rounds are not necessarily equal. Negative t-statistics 
indicate that earlier rounds have lower means. *** denotes significance at the 1% level, ** at the 
5% level, and * at 1% level. 
 

Panel A. Mean equality tests 
 Early Late  2nd Round 3rd Round 

First/Seed **-2.015 
(0.044) 

**-2.027 
(0.043) 

1st Round ***-4.831 
(0.000) 

***-6.120 
(0.000) 

Early - -1.388 
(0.165) 

2nd Round - **-2.026 
(0.043) 

Panel B. Median equality tests 
 Early Late  2nd Round 3rd Round 

First/Seed *0.0555 
 

0.399 1st Round **0.021 ***0.004 

Early - 
 

**0.045 2nd Round - 0.504 
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Table 9 Firm-matched Investment Volume, Investment Flow across Rounds 
 
Panel A reports the means, medians and standard deviations of investment volume (million $) and 
investment flow (million $ per month) for individual rounds according to round types. This table 
only includes rounds from firms that have all three round statuses (left column) or at least three 
rounds (right column) before exit. Round types are determined according to round status (left 
column) and round sequence (right column) as in Table 7.  Panel B reports tests for the equality 
of the means and medians for investment volume and flow across rounds for the firms.  We first 
subtract the tested variable for later rounds from earlier rounds, and then use t-tests to test the null 
hypothesis that the means of the differences are positive (Wilcoxon signed-rank tests to test the 
null hypothesis that the medians of the differences are positive).  Negative t-statistics indicate that 
earlier rounds have lower means. The reported numbers for the mean equality tests are t-statistics, 
and the reported numbers for the median equality tests are p-values. *** denotes significance at 
the 1% level, ** at the 5% level, and * at 1% level. 
 

 
Panel A Summary statistics 

Round Status Round Order 
Variables First 

 
Early Late Variables 1st 

Round 
2nd 

Round 
3rd 

Round 
Investment volume 

# of firms 3,336 # of firms 6,464 
mean 4.745 7.746 10.040 mean 4.751 6.653 8.806 

median 2.195 4.000 4.815 median 2.000 3.000 3.750 
Std. dev. 15.778 13.239 15.832 Std. dev. 15.217 15.251 16.936 

Investment flow 
# of firms 3,049 # of firms 6,103 

mean 0.759 1.279 1.928 mean 0.802 1.059 1.452 
median 0.242 0.444 0.603 median 0.227 0.333 0.404 

Std. dev. 2.418 3.860 8.395 Std. dev. 3.292 2.893 4.921 
 

Panel B. Equality tests 
Investment volume mean tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***-10.713 ***-8.335 1st Round ***-8.764 ***-9.552 

Early - ***-15.202 2nd Round - ***-15.560 
Investment volume median tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***0 ***0 1st Round ***0 ***0 

Early - ***0 2nd Round - ***0 
Investment flow mean tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***-7.218 ***-4.001 1st Round ***-5.202 ***-5.840 

Early - ***-7.499 2nd Round - ***-9.105 
Investment flow median tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***0 ***0 1st Round ***0 ***0 

Early - ***0 2nd Round - ***0 
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Table 10 Determinants Firms’ First Round Investment Flow 
 
This table reports the regression results regarding the determinants of firms’ first round investment flow.  

௜,ଵ൯ݓ݋൫݂݈݃݋݈ ൌ ߙ ൅ ௜,ଵ൯݁ݑ݈ܽݒ൫݃݋ଵ݈ߚ ൅ .ݐ݅ݔሺ݁݃݋ଶ݈ߚ ௜ሻ݁ݑ݈ܽݒ ൅ ௜ݕ݉݉ݑᇱ݀ߩ ൅  ௜ߝ
In the above equation, for firm ݅, ݂݈ݓ݋௜,ଵ is the investment flow for round 1 (investment volume in round 1 divided by the number of months 
between round 1 and round 2), ݁ݑ݈ܽݒ௜,ଵ is the post-money valuation of the firm at round 1, ݁ݐ݅ݔ.  ௜ is the exit value of the firm (IPO market݁ݑ݈ܽݒ
value minus capital raised from IPO, or post M&A value minus capital infused, or $1 for firms going out of business).  The vector ݀ݕ݉݉ݑ௜  
contains dummies for the business status (start up, in development, and in production) at the time of the first financing round, and for the industry 
(IT, health, and retail) of the firm.  Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at 
the 5% level, and * at 1% level. 
 
 Unconditional regressions (all firms) 

 
Conditional on successful exits (IPO and M&A firms) 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 1 Regression 2 Regression 3 

 ௜,ଵ ***0.855݁ݑ݈ܽݒ
(0.014) 

 ***0.840 
(0.016) 

***0.801 
(0.027) 

 ***0.752 
(0.0350 

.ݐ݅ݔ݁  ௜  -0.001݁ݑ݈ܽݒ
(0.002) 

-0.003 
(0.002) 

 ***0.330 
(0.030) 

***0.136 
(0.032) 

Sample size 4,122 
 

12,467 2,946 1,429 1,817 806 

R2 0.51 
 

0.04 0.52 0.43 0.11 0.47 
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Table 11 Determinants of Round Investment Flow 
 
This table reports the regression results regarding the determinants of the investment flow (investment volume divided by the duration between 
current and next rounds) for all non-exit rounds. 

௜,௟൯ݓ݋൫݂݈݃݋݈ ൌ ߙ ൅ ௜,௟ܴܣଵߚ ൅ ௜,௟ܴܣଶߚ
ଶ ൅ ௜,௟ିଵ൯݁ݑ݈ܽݒ൫݃݋ଷ݈ߚ ൅  ௜,௟ିଵ൯ݓ݋൫݂݈݃݋ସ݈ߚ

൅ߚହ݈݃݋൫ݐݏ݋ܿ݇݊ݑݏ௜,௟ିଵ൯ ൅ ௜,௟ݕ݉݉ݑᇱ݀ߩ ൅  ௜,௟ߝ
In the above equation, for firm ݅, ݂݈ݓ݋௜,௟ is the investment flow for round ݈ (investment volume in round ݈ divided by the number of months 
between round ݈ and round ݈ ൅ ݈  ௜,௟ is the average monthly abnormal return (gross return in log) between roundܴܣ ,(1 െ 1 and ݈, ݁ݑ݈ܽݒ௜,௟ିଵ is the 
post-money valuation of the firm (million $) at round ݈ െ  ௜,௟ିଵ is the sum of all investment volume (million $) from the first round toݐݏ݋ܿ݇݊ݑݏ ,1
round ݈ െ 1. The vector ݀ݕ݉݉ݑ௜,௟ contains dummies for the business status (start up, in development, and in production) at the time of the first 
financing round, for mezzanine rounds, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in 
parentheses. *** denotes significance at the 1% level, ** at the 5% level, and * at 1% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

 ௜,௟ ***0.953ܴܣ
(0.096) 

***0.868 
(0.085) 

***0.242 
(0.088) 

***0.769 
(0.086) 

**0.531 
(0.088) 

௜,௟ܴܣ
ଶ  ***-0.264 

(0.044) 
***-0.279 

(0.039) 
***-0.181 

(0.039) 
***-0.234 

(0.039) 
**-0.225 
(0.038) 

 ௜,௟ିଵ൯  ***0.571݁ݑ݈ܽݒ൫݃݋݈
(0.017) 

  ***0.253 
(0.027) 

 ௜,௟ିଵ൯   ***0.525ݓ݋൫݂݈݃݋݈
(0.015) 

 ***0.258 
(0.025) 

 ௜,௟ିଵ൯    ***0.547ݐݏ݋ܿ݇݊ݑݏ൫݃݋݈
(0.016) 

0.144 
(0.031) 

Sample size 
 

4,408 4,408 4,406 4,334 4,334 

R2 
 

0.07 0.27 0.27 0.27 0.31 
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Table 12 Determinants of Pre-exit Rounds for Successful Firms 
 
This table reports the regression results regarding the determinants of the number of rounds before exit for all IPO and M&A firms. 

௜ሻݏ݀݊ݑ݋ݎሺ݃݋݈ ൌ ߙ ൅ ݃݋ଵ݈ߚ ቆ
.ݐ݅ݔ݁ ௜݁ݑ݈ܽݒ

௜,ଵ݁ݑ݈ܽݒ
ቇ ൅ ௜,ଶܴܣଶߚ ൅ ௜,ଶܴܣଷߚ

ଶ ൅ .ݐ݅ݔሺ݁݃݋ସ݈ߚ ௜ሻ݁ݑ݈ܽݒ ൅ ௜ݕ݉݉ݑᇱ݀ߩ ൅  ௜ߝ

In the above equation, for firm ݅, ݏ݀݊ݑ݋ݎ௜ is the number of financing rounds before exit, ݁ݐ݅ݔ.  ௜ is the exit value (IPO market value minus݁ݑ݈ܽݒ
capital raised from IPO or post M&A value minus capital infused), ݁ݑ݈ܽݒ௜,ଵ is the post-money valuation at round 1, ܴܣ௜,ଶ is the average monthly 
abnormal return (gross return in log) between round 1 and 2. The vector ݀ݕ݉݉ݑ௜ contains dummies for the business status (start up, in 
development, and in production) at the time of the first financing round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-
robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at the 5% level, and * at 1% level. 
 
 Regression 1 

 
Regression 2 Regression 3 Regression 4 

݃݋݈ ቆ
.ݐ݅ݔ݁ ௜݁ݑ݈ܽݒ

௜,ଵ݁ݑ݈ܽݒ
ቇ 

***0.360 
(0.046) 

***0.455 
(0.048) 

***0.525 
(0.061) 

***0.626 
(0.063) 

 ௜,ଶ  ***-0.985ܴܣ
(0.325) 

 ***-0.899 
(0.321) 

௜,ଶܴܣ
ଶ   **0.302 

(0.120) 
 **0.287 

(0.119) 
.ݐ݅ݔሺ݁݃݋݈  ௜ሻ   ***-0.302݁ݑ݈ܽݒ

(0.076) 
***-0.325 

(0.079) 
Sample size 807 

 
658 807 658 

R2 0.21 
 

0.24 0.22 0.25 
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Table 13 Determinants of Round Investment Volume 
 
This table reports the regression results regarding the determinants of the investment volume for all non-exit rounds. 

௜,௟൯ݐ݊݁݉ݐݏ݁ݒ൫݅݊݃݋݈ ൌ ߙ ൅ ௜,௟ܴܣଵߚ ൅ ௜,௟ܴܣଶߚ
ଶ ൅ ௜,௟ିଵ൯݁ݑ݈ܽݒ൫݃݋ଷ݈ߚ ൅  ௜,௟ିଵ൯ݐ݊݁݉ݐݏ݁ݒ൫݅݊݃݋ସ݈ߚ

൅ߚହ݈݃݋൫ݐݏ݋ܿ݇݊ݑݏ௜,௟ିଵ൯ ൅ ௜,௟ݕ݉݉ݑᇱ݀ߩ ൅  ௜,௟ߝ
In the above equation, for firm ݅, ݅݊ݐ݊݁݉ݐݏ݁ݒ௜,௟ is the investment volume (raised capital in million $) in round ݈, ܴܣ௜,௟ is the average monthly 
abnormal return (gross return in log) between round  ݈ െ 1 and ݈, ݁ݑ݈ܽݒ௜,௟ିଵ is the post-money valuation of the firm (million $) at round ݈ െ 1, 
݈ ௜,௟ିଵ is the sum of all investment volume (million $) from the first round to roundݐݏ݋ܿ݇݊ݑݏ െ 1. The vector ݀ݕ݉݉ݑ௜,௟ contains dummies for the 
business status (start up, in development, and in production) at the time of the first financing round, for mezzanine rounds, and for the industry (IT, 
health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at the 
5% level, and * at 1% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

 ௜,௟ ***0.556ܴܣ
(0.080) 

***0.433 
(0.071) 

***0.314 
(0.069) 

**0.335 
(0.072) 

***0.340 
(0.069) 

௜,௟ܴܣ
ଶ  ***-0.179 

(0.035) 
***-0.172 

(0.031) 
***-0.111 

(0.030) 
***-0.132 

(0.031) 
***-0.123 

(0.030) 
 ௜,௟ିଵ൯  ***0.486݁ݑ݈ܽݒ൫݃݋݈

(0.015) 
  ***0.217 

(0.023) 
 ௜,௟ିଵ൯   ***0.539ݐ݊݁݉ݐݏ݁ݒ൫݅݊݃݋݈

(0.014) 
 ***0.443 

(0.025) 
 ௜,௟ିଵ൯    ***0.462ݐݏ݋ܿ݇݊ݑݏ൫݃݋݈

(0.014) 
**-0.059 
(0.029) 

Sample size 
 

4,962 4,602 4,599 4,518 4,518 

R2 
 

0.04 0.23 0.28 0.23 0.33 
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Table 14 Determinants of Pre-exit Duration for Successful Firms 
 
This table reports the regression results regarding the determinants of the duration from the first round to exit for IPO and M&A firms. 

௜ሻ݊݋݅ݐܽݎݑሺ݀݃݋݈ ൌ ߙ ൅ ௜,ଶܴܣଵߚ ൅ ௜,ଶܴܣଶߚ
ଶ ൅ ௜,ଵ൯݁ݑ݈ܽݒ൫݃݋ଷ݈ߚ ൅ ݃݋ସ݈ߚ ቆ

௜,ଵݐ݊݁݉ݐݏ݁ݒ݊݅

௜,ଵ݁ݑ݈ܽݒ
ቇ ൅ ݃݋ହ݈ߚ ቆ

.ݐ݅ݔ݁ ௜݁ݑ݈ܽݒ

௜,ଵ݁ݑ݈ܽݒ
ቇ ൅ ௜ݕ݉݉ݑᇱ݀ߩ ൅  ௜ߝ

In the above equation, for firm ݅, ݀݊݋݅ݐܽݎݑ௜ is the number of months from the first round to the exit, ܴܣ௜,ଶ is the average monthly abnormal return 
(gross return in log) between round 1 and 2, ݁ݑ݈ܽݒ௜,ଵ is the post-money valuation at round 1, ݅݊ݐ݊݁݉ݐݏ݁ݒ௜,ଵ is the investment volume (million $) 
in round 1, ݁ݐ݅ݔ.  ௜ is the exit value (IPO market value minus capital raised from IPO or post M&A value minus capital infused). The vector݁ݑ݈ܽݒ
 ௜ contains dummies for the business status (start up, in development, and in production) at the time of the first financing round, and for theݕ݉݉ݑ݀
industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% 
level, ** at the 5% level, and * at 1% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

 ௜,ଵ ***-1.061ܴܣ
(0.099) 

***-1.150 
(0.088) 

***-1.067 
(0.098) 

***-1.500 
(0.111) 

***-1.429 
(0.103) 

௜,ଵܴܣ
ଶ  ***0.271 

(0.040) 
***0.287 
(0.036) 

***0.274 
(0.040) 

***0.372 
(0.041) 

***0.360 
(0.038) 

 ௜,ଵ൯  ***-0.284݁ݑ݈ܽݒ൫݃݋݈
(0.018) 

  ***-0.260 
(0.027) 

݃݋݈ ቆ
௜,ଵݐ݊݁݉ݐݏ݁ݒ݊݅

௜,ଵ݁ݑ݈ܽݒ
ቇ 

  ***0.083 
(0.031) 

 -0.015 
(0.031) 

݃݋݈ ቆ
.ݐ݅ݔ݁ ௜݁ݑ݈ܽݒ

௜,ଵ݁ݑ݈ܽݒ
ቇ 

   ***0.188 
(0.017) 

***0.067 
(0.019) 

Sample size 890 
 

890 889 658 657 

R2 0.25 
 

0.41 0.25 0.040 0.49 
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