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Abstract

This paper considers a �rst-order autoregressive model with conditionally heteroskedastic

innovations. The asymptotic distributions of least squares (LS), infeasible generalized least

squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS proce-

dures allow for misspeci�cation of the form of the conditional heteroskedasticity and, hence,

are referred to as quasi-GLS procedures. The asymptotic results are established for drifting

sequences of the autoregressive parameter and the distribution of the time series of innovations.

In particular, we consider the full range of cases in which the autoregressive parameter �n sat-

is�es (i) n(1 � �n) ! 1 and (ii) n(1 � �n) ! h1 2 [0;1) as n ! 1; where n is the sample
size. Results of this type are needed to establish the uniform asymptotic properties of the LS

and quasi-GLS statistics.
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1 Introduction

We are very happy to contribute this paper to the Special Issue in Honor of Peter C. B.

Phillips. The topic of the paper is the �rst-order autoregressive AR(1) model with a stationary,

unit, or near unit root. This is a topic to which Peter Phillips has made seminal contributions

over several decades ranging from Phillips (1977) to Phillips and Magdalinos (2007). The

current paper considers an AR(1) model with conditional heteroskedasticity and, hence, is

closely related to Guo and Phillips (2001).

This paper establishes the asymptotic distributions of quasi-GLS statistics in an AR(1)

model with intercept and conditional heteroskedasticity. The statistics considered include in-

feasible and feasible quasi-GLS estimators, heteroskedasticity-consistent (HC) standard error

estimators, and the t statistics formed from these estimators. The paper considers: (i) the sta-

tionary and near stationary case, where the autoregressive parameter �n satis�es n(1��n)!1
as n!1 and (ii) the unit-root and near unit-root case, where n(1� �n)! h1 2 [0;1): Our
interest in asymptotics under drifting sequences of parameters is due to the fact that near

unit-root asymptotics are well-known to provide better �nite-sample approximations than �xed

parameter asymptotics for parameters values that are close to, but di¤erent from, unity. In

addition, uniform asymptotic results rely on asymptotic results under drifting sequences of

parameters, see Andrews and Guggenberger (2010).

In case (i), the quasi-GLS t statistic is shown to have a standard normal asymptotic dis-

tribution. In case (ii), its asymptotic distribution is shown to be that of a convex linear

combination of a random variable with a �demeaned near unit-root distribution�and an inde-

pendent standard normal random variable. The weights on the two random variables depend

on the correlation between the innovation, say Ui; and the innovation rescaled by the quasi-

conditional variance, say Ui=�
2
i : Here �

2
i is the (possibly misspeci�ed) conditional variance used

by the GLS estimator. In the case of LS, we have �2i = 1; the correlation between Ui and Ui=�
2
i

is one, and the asymptotic distribution is a demeaned near unit-root distribution (based on an

Ornstein-Uhlenbeck process).

For an AR(1) model without conditional heteroskedasticity, case (i) is studied by Park

(2002), Giraitis and Phillips (2006), and Phillips and Magdalinos (2007). An AR(1) model
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with conditional heteroskedasticity and � = 1; which falls within case (ii) above, has been

considered by Seo (1999) and Guo and Phillips (2001). The results given here make use of

ideas in these two papers. Case (ii) is the �near integrated�case that has been studied in AR

models without conditional heteroskedasticity by Bobkowski (1983), Cavanagh (1985), Chan

and Wei (1987), Phillips (1987), Elliott (1999), Elliott and Stock (2001), and Müller and Elliott

(2003). The latter three papers consider the situation that also is considered here in which

the initial condition yields a stationary process. Gonçalves and Kilian (2004, 2007) consider

inference in autoregressive models with conditional heteroskedasticity but do not allow for unit

roots or roots near unity.

As noted above, in the present paper, we consider a heteroskedasticity-consistent (HC)

standard error estimator. Such an estimator is needed in order for the quasi-GLS t statistic to

have a standard normal asymptotic distribution in case (i) when the form of the conditional

heteroskedasticity is misspeci�ed.

The paper provides high-level conditions under which infeasible and feasible quasi-GLS esti-

mators are asymptotically equivalent.1 The high-level conditions are veri�ed for cases in which

the GLS estimator employs a parametric model, with some parameter �; for the form of the

conditional heteroskedasticity. For technical reasons, we take the estimator of � to be a dis-

cretized estimator and we require the parametric form of the conditional heteroskedasticity to

be such that the conditional variance depends upon a �nite number of lagged squared inno-

vations. Neither of these conditions is particularly restrictive because (a) the grid size for the

discretized estimator can be de�ned such that there is little di¤erence between the discretized

and non-discretized versions of the estimator of �; (b) the parametric model for the conditional

heteroskedasticity may be misspeci�ed, and (c) any parametric model with stationary condi-

tional heteroskedasticity, such as a GARCH(1,1) model, can be approximated arbitrarily well

by a model with a large �nite number of lags.

The results of this paper are used in Andrews and Guggenberger (2009) to show that sym-

metric two-sided subsampling con�dence intervals (based on the quasi-GLS t statistic described

above) have correct asymptotic size in an AR(1) model with conditional heteroskedasticity.

(Here �asymptotic size� is de�ned to be the limit as the sample size n goes to in�nity of the

exact, i.e., �nite-sample, size.) This result requires uniformity in the asymptotics and, hence,

1By de�nition, the feasible quasi-GLS estimator is based on (possibly misspeci�ed) estimators fb�2n;i : i � ng
of the conditional variances of the innovations. The corresponding infeasible quasi-GLS estimator is based on

the limits f�2i : i � ng of the estimators fb�2n;i : i � ng in the sense of Assumption CHE below. If the latter are
misspeci�ed, then the true conditional variances are di¤erent from f�2i : i � ng:
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relies on asymptotic results in which the autoregressive parameter and the innovation distri-

bution may depend on n: (Triangular array asymptotics are needed to establish uniformity

in the asymptotics in a wide variety of models, e.g., see Andrews and Guggenberger (2010).)

In addition, Andrews and Guggenberger (2009) shows that upper and lower one-sided and

symmetric and equal-tailed two-sided hybrid-subsampling con�dence intervals have correct as-

ymptotic size. No other con�dence intervals in the literature, including those in Stock (1991),

Andrews (1993), Andrews and Chen (1994), Nankervis and Savin (1996), Hansen (1999), Chen

and Deo (2007), and Mikusheva (2007), have correct asymptotic size in an AR(1) model with

conditional heteroskedasticity.

The remainder of the paper is organized as follows. Section 2 introduces the model and

statistics considered. Section 3 gives the assumptions, normalization constants, and asymptotic

results. Section 4 provides proofs of the results.

2 Model, Estimators, and t Statistic

We use the unobserved components representation of the AR(1) model. The observed time

series fYi : i = 0; :::; ng is based on a latent no-intercept AR(1) time series fY �i : i = 0; :::; ng:

Yi = �+ Y
�
i ;

Y �i = �Y
�
i�1 + Ui; for i = 1; :::; n;(1)

where � 2 [�1 + "; 1] for some 0 < " < 2; fUi : i = :::; 0; 1; :::g are stationary and ergodic
with conditional mean 0 given a �-�eld Gi�1 de�ned at the end of this section, conditional
variance �2i = E(U

2
i jGi�1); and unconditional variance �2U 2 (0;1): The distribution of Y �0 is the

distribution that yields strict stationarity for fY �i : i � ng when � < 1; i.e., Y �0 =
P1

j=0 �
jU�j;

and is arbitrary when � = 1:

The model can be rewritten as

(2) Yi = e�+ �Yi�1 + Ui; where e� = �(1� �);
for i = 1; :::; n:2

We consider a feasible quasi-GLS (FQGLS) estimator of � and a t statistic based on it. The

FQGLS estimator depends on estimators fb�2n;i : i � ng of the conditional variances f�2i : i �
2By writing the model as in (1), the case � = 1 and e� 6= 0 is automatically ruled out. Doing so is desirable

because when � = 1 and e� 6= 0; Yi is dominated by a deterministic trend and the LS estimator of � converges
at rate n3=2:
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ng: The estimators fb�2n;i : i � ng may be from a parametric speci�cation of the conditional

heteroskedasticity, e.g., a GARCH(1, 1) model, or from a nonparametric estimator, e.g., one

based on q lags of the observations. We do not assume that the conditional heteroskedasticity

estimator is consistent. For example, we allow for incorrect speci�cation of the parametric

model in the former case and conditional heteroskedasticity that depends on more than q lags

in the latter case. The estimated conditional variances fb�2n;i : i � ng are de�ned such that
they approximate a stationary Gi�1-adapted sequence f�2i : i � ng in the sense that certain
normalized sums have the same asymptotic distribution whether b�2n;i or �2i appears in the sum.
This is a typical property of feasible and infeasible GLS estimators.

As an example, the results (i.e., Theorems 1 and 2 below) allow for the case where (i)

fb�2n;i : i � ng are from a GARCH(1; 1) parametric model with parameters � estimated using

LS residuals with GARCH and LS parameter estimators e�n and (e�n;e�n); respectively, (ii)
(e�n;e�n) have a probability limit given by the true values (e�0; �0); (iii) e�n has a probability
limit de�ned as the �pseudo-true� value �0; (iv) b�2n;i = �2i;1(e�n;e�n; e�n); where �2i;1(e�; �; �) is
the i-th GARCH conditional variance based on a start-up at time 1 and parameters (e�; �; �);
and (v) �2i;�1(e�; �; �) is the GARCH conditional variance based on a start-up at time �1
and parameters (e�; �; �): In this case, �2i = �2i;�1(e�0; �0; �0): Thus, �2i is just b�2n;i with the
estimation error and start-up truncation eliminated.

Under the null hypothesis that � = �n; the studentized t statistic is

(3) T �n(�n) =
n1=2(b�n � �n)b�n ;

where b�n is the LS estimator from the regression of Yi=b�n;i on Yi�1=b�n;i and 1=b�n;i; and b�2n is the
(1; 1) element of the standard heteroskedasticity-robust variance estimator for the LS estimator

in the preceding regression.

To de�ne T �n(�n) more explicitly, let Y; U; X1; and X2 be n-vectors with ith elements given

by Yi=b�n;i; Ui=b�n;i; Yi�1=b�n;i; and 1=b�n;i; respectively. Let � be the diagonal n�n matrix with
ith diagonal element given by the ith element of the residual vectorMXY; where X = [X1 : X2]

and MX = In �X(X 0X)�1X 0: That is, � = Diag(MXY ): Then, by de�nition,

b�n = (X 0
1MX2X1)

�1
X 0
1MX2Y; and(4) b�2n = �n�1X 0

1MX2X1

��1 �
n�1X 0

1MX2�
2MX2X1

� �
n�1X 0

1MX2X1

��1
:

We assume f(Ui; �2i ) : i � 1g are stationary and strong mixing. We de�ne Gi to be some
non-decreasing sequence of �-�elds for i � 1 for which (Uj; �2j+1) 2 Gi for all j � i:
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3 Asymptotic Results

3.1 Assumptions

We let F denote the distribution of f(Ui; �2i ) : i = :::; 0; 1; :::g: Our asymptotic results
below are established under drifting sequences f(�n; Fn) : n � 1g of autoregressive parameters
�n and distributions Fn: In particular, we provide results for the cases n(1 � �n) ! 1 and

n(1� �n)! h1 2 [0;1):When Fn depends on n; f(Ui; �2i ) : i � ng for n � 1 form a triangular
array of random variables and (Ui; �

2
i ) = (Un;i; �

2
n;i):We now specify assumptions on (Un;i; �

2
n;i):

The assumptions place restrictions on the drifting sequence of distributions fFn : n � 1g that
are considered.

The statistics b�n; b�n; and T �n(�n) are invariant to the value of �: Hence, without loss of
generality, from now on we take � = 0 and Yn;i = Y �n;i:

Let �min(A) denote the smallest eigenvalue of the matrix A:

Assumption INNOV. (i) For each n � 1; f(Un;i; �2n;i) : i = :::; 0; 1; :::g are stationary and
strong mixing with EFn(Un;ijGn;i�1) = 0 a.s., EFn(U

2
n;ijGn;i�1) = �2n;i a.s. where Gn;i is some

non-decreasing sequence of �-�elds for i = :::; 1; 2; ::: for n � 1 for which (Un;j; �2n;j+1) 2 Gn;i for
all j � i;
(ii) the strong-mixing numbers f�n(m) : m � 1g satisfy �(m) = supn�1 �n(m) = O(m�3�=(��3))

as m!1 for some � > 3;

(iii) supn;i;s;t;u;v;AEFnj
Q
a2A aj� < 1; where 0 � i; s; t; u; v < 1; n � 1; and A is a non-

empty subset of fUn;i�s; Un;i�t; U2n;i+1=�4n;i+1; Un;�u; Un;�v; U2n;1=�4n;1g or a subset of fUn;i�s;
Un;i�t; �

�k
n;i+1; Un;�u; Un;�v; �

�k
n;1g for k = 2; 3; 4:

(iv) �2n;i � � > 0 a:s:;
(v) �min(EFn(X

1X10U2n;1=�
2
n;1)) � � > 0; where X1 = (Y �n;0=�n;1; �

�1
n;1)

0; and

(vi) the following limits exist and are positive: h2;1 = limn!1EFnU
2
n;i; h2;2 = limn!1EFn

(U2n;i=�
4
n;i); h2;3 = limn!1EFn(U

2
n;i=�

2
n;i); h2;4 = limn!1EFn�

�1
n;i; h2;5 = limn!1EFn�

�2
n;i; and

h2;6 = limn!1EFn�
�4
n;i:

Assumptions INNOV(i) and (ii) specify the dependence structure of the innovations. These

conditions rule out long-memory innovations, but otherwise are not very restrictive. Assumption

INNOV(iii) is a moment condition on the innovations. This assumption can be restrictive

because it restricts the thickness of the tails of the innovations and �nancial time series often

have thick tails. It would be desirable to relax this assumption but the current methods of

proof, namely the proofs of Lemmas 6-9, require the assumption as stated. Note that the
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use of the heteroskedasticity-robust variance estimator b�2n requires stronger moment conditions
than would a variance estimator that is designed for homoskedasticity, but the latter would

not yield a standard normal asymptotic distribution under stationarity and heteroskedasticity.

Assumption INNOV(iv) bounds �2n;i away from zero. This is not restrictive because most

conditional variance estimators b�2n;i are de�ned so that they are bounded away from zero. The

terms �2n;i then inherit the same property, see Assumption CHE below. Assumption INNOV(v)

is a nonsingularity condition that is not very restrictive because Y �n;0 is not equal to a constant.

For example, in the trivial case in which fUn;i : i � ng are i.i.d. and �2n;i = 1; it reduces to

EFnU
2
n;i being bounded away from zero. Assumption INNOV(vi) requires that the limits of

certain moments exist. This assumption is not very restrictive. For example, it still allows

one to establish uniform asymptotic results for tests and con�dence intervals, see Andrews and

Guggenberger (2009).

We now discuss Assumption INNOV for the example of a correctly-speci�ed GARCH(1,1)

model

Un;i = �n;i"n;i; for f"n;ig i.i.d. in i = :::; 0; 1; :::; EFn"n;i = 0; EFn"2n;i = 1; and

�2n;i = �
2
n;i = cn + �nU

2
n;i + �n�

2
n;i�1(5)

with GARCH innovations f"n;ig that satisfy supn�1EFnjj"n;ijj6� <1 with � = 3+" for any small

" > 0 and with GARCH parameters (cn; �n; �n) restricted by infn�1 cn > 0; supn�1 cn < 1;
supn�1(�n + �n) < 1; �n > 0; �n � 0 for all n; and the additional restriction supn�1EFn(�n +
�n"

2
n;1)

3� < 1.3 We show in Section 4.1 below how these conditions imply the stationarity part

of Assumption INNOV(i) and Assumptions INNOV(iii)-(iv). To do so, we use results about

GARCH(1,1) processes given in Bollerslev (1986) and Lindner (2009). Lindner (2009, Theorem

8) states that for given n; f(Un;i; �2n;i) : i = :::; 0; 1; :::g is strongly mixing with geometric
decay rate of the mixing numbers, i.e. �n(m) = O(�mn ) as m ! 1 for a �n 2 (0; 1), if in
addition "n;1 is absolutely continuous with Lebesgue density fn(x) � f(x) > 0 for all jxj < �
for some � > 0 and some function f . For example, this requirement is satis�ed if "n;1 is

normally distributed. Therefore, the mixing part of Assumptions INNOV(i) and INNOV(ii)

holds provided supn�1 �n < 1. (The latter obviously holds when the GARCH parameters and

the distribution of "n;1 do not depend on n and should hold when they do depend on n given

3E.g., for the case where "n;1 is N(0; 1) and " = 1=30; the latter restriction implies that for given �n; �n
is restricted to the interval [0; ��n ], where some values of (�n; ��n) are given as (:01; :98); (:02; :97); (:03; :96);

(:04; :94); (:05; :91); (:06; :88); (:07; :83); (:08; :78); (:09; :71); (:1; :62); (:11; :51); (:12; :39); (:13; :25); and (:14; :1):

For �n � :15, the set of possible �n values is empty.
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the restrictions that supn�1(�n + �n) < 1 and the innovation densities are bounded away from

zero in a neighborhood of the origin.) Regarding INNOV(v), because EFn(X
1X10U2n;1=�

2
n;1) is

positive semide�nite, it just requires that the determinant of this matrix is uniformly bounded

away from zero. Assumption INNOV(vi) just requires the existence of certain limits and is

innocuous.

We now return to the general case. If �n = 1; the initial condition Y �n;0 is arbitrary. If

�n < 1; then the initial condition satis�es the following assumption:

Assumption STAT. Y �n;0 =
P1

j=0 �
j
nUn;�j:

Assumption STAT states that a stationary initial condition is employed when �n < 1: If

a di¤erent initial condition is employed, such as Y �n;0 = 0; then the asymptotic distributions

in Theorems 1 and 2 below are di¤erent in the near unit-root case (which corresponds to

h1 2 (0;1) in those Theorems). In particular, in (15) below, the second summand in the
de�nition of I�h(r) is attributable to the stationary initial condition.

We determine the asymptotic distributions b�n; b�2n; and T �n(�n) under sequences f(�n; Fn) :
n � 1g such that (a) Assumption INNOV holds and if �n < 1 Assumption STAT also holds,
and

(6) (b) n(1� �n)! h1 for (i) h1 =1 and (ii) 0 � h1 <1:

The asymptotic distributions of b�n and b�2n are shown to depend on the parameters h1; h2;1; and
h2;2 (where h2;1 and h2;2 are de�ned in Assumption INNOV(vi)) and the parameter h2;7; which

is de�ned by

(7) h2;7 =
h2;3

(h2;1h2;2)1=2
= lim

n!1
CorrFn(Un;i; Un;i=�

2
n;i)):

The asymptotic distribution of T �n(�n) is shown to depend only on h1 and h2;7:

De�ne

h2 = (h2;1; :::; h2;7)
0 and

h = (h1; h
0
2)
0 2 H = R+;1 �H2;(8)

where R+ = fx 2 R : x � 0g; R+;1 = R+ [ f1g; and H2 � (0;1)6 � (0; 1]:
For notational simplicity, we index the asymptotic distributions of b�n; b�2n; and T �n(�n) by h

below (even though they only depend on a subvector of h).
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3.2 Normalization Constants

The normalization constants an and dn used to obtain the asymptotic distributions of b�n andb�n; respectively, depend on (�n; Fn) and are denoted an(�n; Fn) and dn(�n; Fn): They are de�ned
as follows. Let f�n : n � 1g be a sequence for which n(1��n)!1 or n(1��n)! h1 2 [0;1):
De�ne the 2-vectors

X1 = (Y �n;0=�n;1; �
�1
n;1)

0 and

Z = (1;�EFn(Y �n;0=�2n;1)=EFn(��2n;1))0:(9)

De�ne

an = an(�n; Fn) = n
1=2dn(�n; Fn) and(10)

dn = dn(�n; Fn) =

8<:
EFn (Y

�2
n;0=�

2
n;1)�(EFn (Y �n;0=�2n;1))2=EFn (�

�2
n;1)

(Z0EFn (X
1X10U2n;1=�

2
n;1)Z)

1=2 if n(1� �n)!1

n1=2 if n(1� �n)! h1 2 [0;1):

Note that the normalization constant for the t statistic T �n(�n) is an(�n; Fn)=dn(�n; Fn) = n
1=2:

In certain cases, the normalization constants simplify. In the case where n(1 � �n) ! 1
and �n ! 1; the constants an and dn in (10) simplify to

(11) an = n
1=2

EFn(Y
�2
n;0=�

2
n;1)

(EFn(Y
�2
n;0U

2
n;1=�

4
n;1))

1=2
and dn =

EFn(Y
�2
n;0=�

2
n;1)

(EFn(Y
�2
n;0U

2
n;1=�

4
n;1))

1=2

up to lower order terms. This holds because by Lemma 6 below

Z 0EFn(X
1X10U2n;1=�

2
n;1)Z

= EFn(Y
�2
n;0U

2
n;1=�

4
n;1)� 2EFn(Y �n;0U2n;1=�4n;1)EFn(Y �n;0=�2n;1)=EFn(��2n;1)

+(EFn(Y
�
n;0=�

2
n;1))

2EFn(U
2
n;1=�

4
n;1)=(EFn(�

�2
n;1))

2

= EFn(Y
�2
n;0U

2
n;1=�

4
n;1)(1 +O(1� �n))(12)

and

(13) EFn(Y
�2
n;0=�

2
n;1)� (EFn(Y �n;0=�2n;1))2=EFn(��2n;1) = EFn(Y �2n;0=�2n;1)(1 +O(1� �n)):

If, in addition, fUn;i : i = :::; 0; 1; :::g are i.i.d. with mean 0, variance �2U;n 2 (0;1), and
distribution Fn and �

2
n;i = 1; then the constants an and dn simplify to

(14) an = n
1=2(1� �2n)�1=2 and dn = (1� �2n)�1=2:
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This follows because in the present case �2n;i = 1; EFnY
�2
n;0 =

P1
j=0 �

2j
n EFnU

2
n;�j = (1��2n)�1�2U;n;

and EFn(Y
�2
n;0U

2
n;1=�

2
n;1) = (1 � �2n)�1�4n;U : The expression for an in (14) is as in Giraitis and

Phillips (2006).

The form of dn in (11) is explained as follows. For the infeasible QGLS estimator, one can

write n1=2(b�n � �n) = (n�1X 0
1MX2X1)

�1n�1=2X 0
1MX2U as in (4) with X1; X2; and U de�ned

with �n;i in place of b�n;i: The numerator of dn in (11) is the rate of growth of n�1X 0
1MX2X1; see

(37) and (40) below, and the denominator of dn in (11) is the rate of growth of n�1=2X 0
1MX2U;

see (37)-(39) below.

3.3 Results for LS and Infeasible QGLS

In this section, we provide results for the infeasible QGLS estimator which is based on

f�2n;i : i � ng rather than fb�2n;i : i � ng (i.e., the estimator b�n in (4) with �n;i in place of b�n;i).
Conditions under which feasible and infeasible QGLS estimators are asymptotically equivalent

are given in Section 3.4 below. The LS estimator is covered by the results of this section by

taking �2n;i = 1 for all n; i (i.e., the estimator b�n in (4) with b�n;i = 1 for all n; i).
Let W (�) and W2(�) be independent standard Brownian motions on [0; 1]: Let Z1 be a

standard normal random variable that is independent of W (�) and W2(�): We de�ne

Ih(r) =
rR
0

exp(�(r � s)h1)dW (s);

I�h(r) = Ih(r) +
1p
2h1

exp(�h1r)Z1 for h1 > 0 and I�h(r) =W (r) for h1 = 0;

I�D;h(r) = I
�
h(r)�

1R
0

I�h(s)ds; and

Z2 =

�
1R
0

I�D;h(r)
2dr

��1=2 1R
0

I�D;h(r)dW2(r):(15)

As de�ned, Ih(r) is an Ornstein-Uhlenbeck process. Note that the conditional distribution of

Z2 given W (�) and Z1 is standard normal. Hence, its unconditional distribution is standard
normal and it is independent of W (�) and Z1:
The asymptotic distribution of the infeasible QGLS estimator and t statistic are given in

the following Theorem.

Theorem 1 Suppose (i) Assumption INNOV holds, (ii) Assumption STAT holds when �n < 1;

(iii) �n 2 [�1 + "; 1] for some 0 < " < 2; and (iv) �n = 1 � hn;1=n and hn;1 ! h1 2 [0;1]:
Then, the infeasible QGLS estimator b�n and t statistic T �n(�n) (de�ned in (3) and (4) with �n;i
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in place of b�n;i) satisfy
an(b�n � �n)!d Vh; dnb�n !d Qh; and T �n(�n) =

n1=2(b�n � �n)b�n !d Jh;

where an; dn; Vh; Qh; and Jh are de�ned as follows.4

(a) For h1 2 [0;1); an = n; dn = n1=2; Vh is the distribution of

(16) h2;7

R 1
0
I�D;h(r)dW (r)

h
1=2
2;2 h

1=2
2;1

R 1
0
I�D;h(r)

2dr
+ (1� h22;7)1=2

R 1
0
I�D;h(r)dW2(r)

h
1=2
2;2 h

1=2
2;1

R 1
0
I�D;h(r)

2dr
;

Qh is the distribution of

(17) h
�1=2
2;2 h

�1=2
2;1

�
1R
0

I�D;h(r)
2dr

��1=2
;

and Jh is the distribution of

(18) h2;7

R 1
0
I�D;h(r)dW (r)�R 1
0
I�D;h(r)

2dr
�1=2 + (1� h22;7)1=2Z2:

(b) For h1 = 1; an and dn are de�ned as in (10); Vh is the N(0; 1) distribution, Qh is the
distribution of the constant one, and Jh is a N(0; 1) distribution.

Comments. 1. Theorem 1 shows that the asymptotic distribution of the QGLS t statistic

is a standard normal distribution when n(1 � �n) ! 1 and a mixture of a standard normal

distribution and a �demeaned near unit-root distribution�when n(1 � �n) ! h1 2 [0;1): In
the latter case, the mixture depends on h2;7; which is the asymptotic correlation between the in-

novation Un;i and the rescaled innovation Un;i=�
2
n;i:When the LS estimator is considered (which

corresponds to �2n;i = 1); we have h2;7 = 1 and the asymptotic distribution is a �demeaned near

unit-root distribution.�

2. It is important to note that the t statistic considered in Theorem 1 employs a heterosked-

asticity-robust standard error estimator b�n; see its de�nition in (4). This di¤ers from other

papers in the literature, such as Stock (1991), Hansen (1999), Giraitis and Phillips (2006),

Mikusheva (2007), and Phillips and Magdalinos (2007), which consider the LS estimator and

the usual LS standard error estimator that is designed for homoskedasticity. In consequence,

4For simplicity, in Theorem 1 and Theorem 2 below, for a sequence of random variables fWn : n � 1g and
a distribution V; we write Wn !d V as n ! 1; rather than Wn !d W as n ! 1 for a random variable with

distribution V:

11



the results of Theorem 1 with �n;i = 1 (which corresponds to the LS estimator of �n) do not

imply that the t statistics considered in the latter papers have a standard normal distribution

when n(1 � �n) ! 1 in the presence of conditional heteroskedasticity. The standard error

estimator designed for homoskedasticity is not consistent under conditional heteroskedasticity.

3. The asymptotic results of Theorem 1 apply to a �rst-order AR model. They should

extend without essential change to a p-th order autoregressive model in which � equals the

�sum of the AR coe¢ cients.�Of course, the proofs will be more complex. We do not provide

them here.

4. Theorem 1 is used in the AR(1) example of Andrews and Guggenberger (2009) to

verify Assumptions BB(i) and (iii) for the (infeasible) QGLS estimator (with Qh playing the

role of Wh in Assumption BB). In turn, the results of Andrews and Guggenberger (2009)

show that whether or not conditional heteroskedasticity is present: (i) the symmetric two-sided

subsampling con�dence interval for � has correct asymptotic size (de�ned to be the limit as

n!1 of exact size) and (ii) upper and lower one-sided and symmetric and equal-tailed two-

sided hybrid-subsampling con�dence intervals for � have correct asymptotic size. These results

hold even if the form of the conditional heteroskedasticity is misspeci�ed.

3.4 Asymptotic Equivalence of Feasible and Infeasible QGLS

Here we provide su¢ cient conditions for the feasible and infeasible QGLS statistics to be

asymptotically equivalent. In particular, we give conditions under which Theorem 1 holds whenb�n is de�ned using the feasible conditional heteroskedasticity estimators fb�n;i : i � ng:
We assume that the conditional heteroskedasticity estimators (CHE) fb�2n;i : i � ng satisfy

the following assumption.

Assumption CHE. (i) For some " > 0; b�2n;i � " a.s. for all i � n; n � 1:
(ii) For random variables f(Un;i; �2n;i) : i = :::; 0; 1; :::g for n � 1 that satisfy Assumption INNOV
and for Yn;i = �+Y �n;i; Y

�
n;i = �nY

�
n;i�1+Un;i; with � = 0; that satis�es Assumption STAT when

�n < 1 and n(1� �n)! h1 2 [0;1]; we have
(a) when h1 2 [0;1); n�1=2

Pn
i=1(n

�1=2Y �n;i�1)
jUn;i(b��2n;i � ��2n;i) = op(1) for j = 0; 1;

(b) when h1 2 [0;1); n�1
Pn

i=1 jUn;ijdjb��jn;i���jn;ij = op(1) for (d; j) = (0; 1); (1; 2); and (2; 2);
(c) when h1 =1; n�1=2

Pn
i=1 ((1� �n)1=2Y �n;i�1)jUn;i(b��2n;i � ��2n;i) = op(1) for j = 0; 1; and

(d) when h1 =1; n�1
Pn

i=1 jUn;ijk jb��jn;i � ��jn;ijd = op(1) for (d; j; k) = (1; 2; 0); (2; 2; 0); and
(2; 4; k) for k = 0; 2; 4:

Assumption CHE(i) is not restrictive. For example, if b�n;i is obtained by specifying a para-
12



metric model for the conditional heteroskedasticity, then Assumption CHE(i) holds provided

the speci�ed parametric model (which is user chosen) consists of an intercept that is bounded

away from zero plus a non-negative random component (as in (19) below). Most parametric

models in the literature have this form and it is always possible to use one that does. Assump-

tion CHE(ii) speci�es the sense in which b�n;i must converge to �n;i for i � n; n � 1 in order

for the feasible and infeasible QGLS estimators to be asymptotically equivalent. Typically,

Assumptions CHE(ii)(a) and (c) are more di¢ cult to verify than Assumptions CHE(ii)(b) and

(d) because they have the scale factor n�1=2 rather than n�1:

Theorem 2 Suppose (i) Assumptions CHE and INNOV hold, (ii) Assumption STAT holds

when �n < 1; (iii) �n 2 [�1 + "; 1] for some 0 < " < 2; and (iv) �n = 1 � hn;1=n and
hn;1 ! h1 2 [0;1]: Then, the feasible QGLS estimator b�n and t statistic T �n(�n) (de�ned in (3)
and (4) using b�n;i) satisfy

an(b�n � �n)!d Vh; dnb�n !d Qh; and T �n(�n) =
n1=2(b�n � �n)b�n !d Jh;

where an; dn; Vh; Qh; and Jh are de�ned as in Theorem 1 (that is, with an and dn de�ned using

�n;i; not b�n;i):
Comment. Theorem 2 shows that the infeasible and feasible QGLS statistics have the same

asymptotic distributions under Assumption CHE.

We now provide su¢ cient conditions for Assumption CHE. Suppose fb�2n;i : i � ng are
based on a parametric model with conditional heteroskedasticity parameter � estimated using

residuals. Let e�n be the estimator of � and let (e�n;e�n) be the estimators of (e�; �) used to
construct the residuals, where e� is the intercept when the model is written in regression form,
see (2). For example, e�n may be an estimator of � based on residuals in place of the true errors
and (e�n;e�n) may be the LS estimators (whose properties are covered by the asymptotic results
given in Theorem 1 by taking �n;i = 1). In particular, suppose that

b�2n;i = �2n;i(e�n;e�n; e�n); where
�2n;i(e�; �; �) = ! + LiX

j=1

�j(�)bU2n;i�j(e�; �);
bUn;i(e�; �) = Yn;i � e�� �Yn;i�1;(19)

Li = minfi� 1; Lg; and ! is an element of �: Here L <1 is a bound on the maximum number

of lags allowed. Any model with stationary conditional heteroskedasticity (bounded away from
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the nonstationary region), such as a GARCH(1,1) model, can be approximated arbitrarily well

by taking L su¢ ciently large. Hence, the restriction to �nite lags is not overly restrictive. The

upper bound Li; rather than L; on the number of lags in the sum in (19) takes into account

the truncation at 1 that naturally occurs because one does not observe residuals for i < 1:

The parameter space for � is �; which is a bounded subset of Rd� ; for some d� > 0: Letb�n 2 � be an n�1-consistent estimator of � for some �1 > 0: For technical reasons, we baseb�2n;i on an estimator e�n that is a discretized version of b�n that takes values in a �nite set �n
(� �) for n � 1; where �n consists of points on a uniform grid with grid size that goes to

zero as n ! 1 and hence the number of elements of �n diverges to in�nity as n ! 1: The
reason for considering a discretized estimator is that when the grid size goes to zero more slowly

than n��1 ; then wp! 1 the estimators fe�n : n � 1g take values in a sequence of �nite sets
f�n;0 : n � 1g whose numbers of elements is bounded as n!1: The latter property makes it
easier to verify Assumption CHE(ii). The set �n can be de�ned such that there is very little

di¤erence between b�n and e�n in a �nite sample of size n:
We employ the following su¢ cient condition for the FQGLS estimator to be asymptotically

equivalent to the (infeasible) QGLS estimator.

Assumption CHE2. (i) b�2n;i satis�es (19) with L <1 and �j(�) � 0 for all j = 1; :::; L;
(ii) �2n;i = !n +

PL
j=1 �j(�n)U

2
n;i�j and �n ! �0 for some �0 2 � (and �0 may depend on the

sequence), where !n is an element of �n;

(iii) an(e�n � �n) = Op(1); n1=2e�n = Op(1); and n�1(b�n � �n) = op(1) for some �1 > 0 under any
sequence (Un;i; �

2
n;i) that satis�es Assumption INNOV and for Yn;i de�ned as in Assumption

CHE with � = � = 0 satisfying Assumption STAT when �n < 1; and with � = �n that satis�es

n(1� �n)! h1 2 [0;1]; where an is de�ned in (10),
(iv) e�n minimizes jj� � b�njj over � 2 �n for n � 1; where �n (� �) consists of points on a

uniform grid with grid size Cn��2 for some 0 < �2 < �1 and 0 < C <1;
(v) � bounds the intercept ! away from zero, and

(vi) �j(�) is continuous on � for j = 1; :::; L:

The part of Assumption CHE2(iii) concerning e�n holds for the LS estimator by Theorem 1(a)

(by taking �n;i = 1), the part concerning e�n holds for the LS estimator by similar, but simpler,
arguments, and typically the part concerning b�n holds for all �1 < 1=2: Assumptions CHE2(iv)-
(vi) can always be made to hold by choice of b�n; �; and �j(�):
Lemma 1 Assumption CHE2 implies Assumption CHE.

14



Comment. The use of a discretized estimator e�n and a �nite bound L on the number of lags
in Assumption CHE2 are made for technical convenience. Undoubtedly, they are not necessary

for the Lemma to hold (although other conditions may be needed in their place).

4 Proofs

This section provides the veri�cation of parts of Assumption INNOV for a GARCH(1,1)

model and proofs of Theorems 1, 2, and Lemma 1. Section 4.1 is concerned with veri�cation

of parts of Assumption INNOV for a GARCH(1,1) model. Section 4.2.1 states Lemmas 2-9,

which are used in the proof of Theorem 1. Section 4.2.2 proves Theorem 1. Section 4.2.3 proves

Lemmas 2-9. Section 4.3 proves Theorem 2. Section 4.4 proves Lemma 1.

4.1 Veri�cation of INNOV for GARCH(1,1)

To verify the stationarity part of Assumption INNOV(i), we use Lindner (2009, Theorem

1(a)) for the case �n > 0 and Lindner (2009, Theorem 1(b)(i)-(ii)) for the case �n = 0. These

results imply that f(Un;i; �2n;i) : i = :::; 0; 1; :::g are strictly stationary if for all n � 1 we have
cn > 0; �n > 0; �n � 0; EFn log(�n + �n"

2
n;1) > �1; and EFn log(�n + �n"2n;1) < 0: When

�n = 0; the fourth and �fth conditions can be replaced by P ("n;1 = 0) > 0: The �rst three

restrictions hold by assumption. The fourth requirement clearly holds when �n > 0: When

�n = 0 and P ("n;1 = 0) = 0; it also follows that EFn log(�n"
2
n;1) > �1: By Jensen�s inequality,

a su¢ cient condition for the �fth requirement is that �nEFn"
2
n;1 + �n = �n + �n < 1; which is

assumed.

To verify Assumption INNOV(iii), we use Bollerslev (1986, Theorem 2) and Lindner (2009,

Theorem 5). It is enough to establish that

(20) sup
n�1

EFnjUn;i�sUn;i�t(U2n;i+1=�4n;i+1)Un;�uUn;�v(U2n;1=�4n;1)j� <1:

For notational simplicity, we now often leave out the subscript n on random variables and Fn
on expectations. We �rst establish that supn�1Ej"1j6� < 1 and supn�1Ej�1j6� < 1 imply

supn�1EjUi�sUi�t(U2i+1=�4i+1)U�uU�v(U21=�41)j� <1. We then specify conditions on (cn; �n; �n)
that imply supn�1EFnj�n;1j6� <1:
To deal with the �rst task, we consider only the case where i � t < 1 < i � s: All other

cases can be handled analogously (or more easily). Note that because s � 0 it follows that
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i� s < i+ 1: Therefore, using the law of iterated expectations (LIE),

EjU�uU�vUi�t(U21=�41)Ui�s(U2i+1=�4i+1)j�

= EE(jU�uU�vUi�t(U21=�41)Ui�s(U2i+1=�4i+1)j� jGi)

= E[(jU�uU�vUi�t(U21=�41)Ui�s��2i+1j�)E(j"i+1j2� jGi)]:(21)

Because (��2i+1)
� and (��21 )

� are uniformly bounded by Assumption INNOV(iv) andE(j"i+1j2� jGi)
= Ej"i+1j2� is uniformly bounded it is enough to show that EjU�uU�vUi�t"21Ui�sj� is uniformly
bounded. Again, by the LIE and i� s > 1, we have
(22)

EjU�uU�vUi�t"21Ui�sj� = EE(jU�uU�vUi�t"21Ui�sj� jGi�s�1) = EjU�uU�vUi�t"21�i�sj�Ej"i�sj� :

By Hölder�s inequality EjU�uU�vUi�t"21�i�sj� � (EjU2�uU2�vU2i�t"41j�Ej�2i�sj�)1=2: By the gener-
alized Hölder inequality we �nally obtain

EjU2�uU2�vU2i�t"41j�

= EjU2�uU2�vU2i�tj�E("41)�

� (EjU�uj6�EjU�vj6�EjUi�tj6�)1=3E("41)�

= EjU1j6�Ej"1j4� ;(23)

where in the last line we used stationarity. Now, EjU1j6� = Ej"1j6�Ej�1j6� which is bounded by
assumption. This proves the �rst claim.

Next, we specify conditions on (cn; �n; �n) that imply supn�1EFnj�n;1j6� < 1: By Lindner
(2009, eq. (10)) we have �2n;t =

P1
i=0

Qi�1
j=0 cn(�n + �n"

2
n;t�1�j): Therefore, using Minkowski�s

inequality and f"n;ig i.i.d. we have

(24) (EFnj�2n;1j3�)1=(3�) � cn
P1

i=0(EFn(�n + �n"
2
n;1)

3�)i=(3�);

see Lindner (2009, �rst equation p.57). Therefore supn�1EFnj�n;1j6� <1 if supn�1 cn <1 and

supn�1EFn(�n + �n"
2
n;1)

3� < 1:

For the case where "n;1 is N(0; 1) we simulate EFn(�n+�n"
2
n;1)

3� for a grid with stepsize .01

of parameter combinations for (�n; �n) for which �n; �n � 0 and �n + �n < 1 using 2,000,000
draws from "n;1 and � = 3 + " with " = 1=30. The expectation is smaller than 1 for the

parameter combinations (�n; �n) reported in the footnote below (5).

INNOV(iv) is clearly satis�ed if infn�1 cn > 0: �

4.2 Proof of Theorem 1

To simplify notation, in the remainder of the paper we omit the subscript Fn on expectations.
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4.2.1 Lemmas 2-9

The proof of Theorem 1 uses eight lemmas that we state in this section. The �rst four

lemmas deal with the case of h1 2 [0;1): The last four deal with the case of h1 =1:
In integral expressions below, we often leave out the lower and upper limits zero and one,

the argument r; and dr to simplify notation when there is no danger of confusion. For example,R 1
0
Ih(r)

2dr is typically written as
R
I2h: By \ ) " we denote weak convergence of a stochastic

process as n!1:

Lemma 2 Suppose Assumptions INNOV and STAT hold, �n 2 (�1; 1) and �n = 1 � hn;1=n
where hn;1 ! h1 2 [0;1) as n!1: Then, for �n;1 = V arFn(Un;i)

(2hn;1=n)
1=2Y �n;0=�

1=2
n;1 !d Z1 � N(0; 1):

De�ne h�n;1 � 0 by �n = exp(�h�n;1=n): As shown in the proof of Lemma 2, h�n;1=hn;1 ! 1

when h1 2 [0;1): By recursive substitution, we have

Y �n;i = eYn;i + exp(�h�n;1i=n)Y �n;0; whereeYn;i = Pi
j=1 exp(�h�n;1(i� j)=n)Un;j:(25)

Let BM(
) denote a bivariate Brownian motion on [0; 1] with variance matrix 
: The next

lemma is used to establish the simpli�ed form of the asymptotic distribution that appears in

Theorem 1(a).

Lemma 3 Suppose (h1=22;1W (r);M(r))
0 = BM(
); where


 =

"
h2;1 h2;3

h2;3 h2;2

#
:

Then, M(r) can be written as M(r) = h
1=2
2;2

�
h2;7W (r) + (1� h22;7)1=2W2(r)

�
; where (W (r);

W2(r))
0 = BM(I2) and h2;7 = h2;3=(h2;1h2:2)

1=2 is the correlation that arises in the variance

matrix 
:

The following Lemma states some general results on weak convergence of certain statistics

to stochastic integrals. It is proved using Theorems 4.2 and 4.4 of Hansen (1992) and Lemma

2 above. Let 
 denote the Kronecker product.

Lemma 4 Suppose fvn;i : i � n; n � 1g is a triangular array of row-wise strictly-stationary
strong-mixing random dv-vectors with (i) strong-mixing numbers f�n(m) : m � 1; n � 1g that
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satisfy �(m) = supn�1 �n(m) = O(m���=(���)) as m ! 1 for some � > � > 2; and (ii)

supn�1 jjvn;ijj� < 1; where jj � jj� denotes the L�-norm: Suppose n�1EVnV 0n ! 
0 as n ! 1;
where Vn =

Pn
i=1 vn;i; and 
0 is some dv�dv variance matrix. Let Xn;i = �nXn;i�1+vn;i; where

n(1 � �n) ! h1 2 [0;1): If h1 > 0; the �rst element of Xn;i has a stationary initial condition

and all of the other elements have zero initial conditions. If h1 = 0; all of the elements of

Xn;i have zero initial conditions, i.e., Xn;0 = 0: Let � = limn!1 n
�1Pn

i=1

Pn
j=i+1Evn;iv

0
n;j:

Let Kh(r) =
R r
0
exp((r � s)h1)dB(s); where B(�) is a dv-vector BM(
0) on [0; 1]: If h1 > 0;

let K�
h(r) = Kh(r) + e1(2h1)

�1=2 exp(�h1r)
1=20;1;1Z1; where Z1 � N(0; 1) is independent of B(�);
e1 = (1; 0; :::; 0)

0 2 Rdv ; and 
0;1;1 denotes the (1; 1) element of 
0: If h1 = 0; let K�
h(r) = Kh(r):

Then,

(a) n�1=2Xn;[nr] ) K�
h(r);

(b) n�1
Pn

i=1Xn;i�1v
0
n;i !d

R
K�
hdB

0 + �; and

(c) for � � 3; n�3=2
Pn

i=1(Xn;i�1 
 Xn;i�1)v
0
n;i !d

R
(K�

h 
 K�
h)dB

0 +
�
�


R
K�
h

�
+
�R
K�
h 
 �

�
:

We now use Lemma 4 to establish the following results which are key in the proof of Theorem

1(a). Let [a] denote the integer part of a:

Lemma 5 Suppose Assumptions INNOV and STAT hold, �n 2 (�1; 1]; �n = 1� hn;1=n where
hn;1 ! h1 2 (0;1): Then, the following results (a)-(k) hold jointly,
(a) n�1=2Y �n;[nr] ) h

1=2
2;1 I

�
h(r);

(b) n�1
Pn

i=1 �
�j
n;i !p limn!1E�

�j
n;i = h2;(j+3) for j = 1; 2; 4;

(c) n�1
Pn

i=1 Un;i=�
4
n;i !p limn!1E(Un;i=�

4
n;i) = 0;

(d) n�1
Pn

i=1 U
2
n;i=�

4
n;i !p limn!1E(U

2
n;i=�

4
n;i) = h2;2;

(e) n�1=2
Pn

i=1 Un;i=�
2
n;i !d M(1) =

R
dM = h

1=2
2;2

R
d[h2;7W (r) + (1� h22;7)1=2W2(r)];

(f) n�3=2
Pn

i=1 Y
�
n;i�1=�

2
n;i = n

�3=2Pn
i=1 Y

�
n;i�1E�

�2
n;1 +Op(n

�1=2)!d h2;5h
1=2
2;1

R
I�h;

(g) n�1
Pn

i=1 Y
�
n;i�1Un;i=�

2
n;i !d h

1=2
2;1

R
I�hdM = h

1=2
2;2 h

1=2
2;1

R
I�hd[h2;7W (r)+

(1� h22;7)1=2W2(r)];

(h) n�2
Pn

i=1 Y
�2
n;i�1=�

2
n;i = n

�2Pn
i=1 Y

�2
n;i�1E�

�2
n;1 +Op(n

�1=2)!d h2;5h2;1
R
I�2h ;

(i) n�3=2
Pn

i=1 Y
�
n;i�1U

2
n;i=�

4
n;i = n

�3=2Pn
i=1 Y

�
n;i�1E(U

2
n;1=�

4
n;1) +Op(n

�1=2)

!d h2;2h
1=2
2;1

R
I�h;

(j) n�2
Pn

i=1 Y
�2
n;i�1U

2
n;i=�

4
n;i = n

�2Pn
i=1 Y

�2
n;i�1E(U

2
n;1=�

4
n;1) +Op(n

�1=2)

!d h2;2h2;1
R
I�2h ;

(k) n�1�`1=2
Pn

i=1 Y
�`1
n;i�1U

`2
n;i=�

4
n;i = op(n) for (`1; `2) = (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1);

and (4; 0); and
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(l) when h1 = 0; parts (a) and (f)-(k) hold with Y �n;i�1 replaced by eYn;i�1:
In the proof of Theorem 1(b), we use the following well-known strong-mixing covariance

inequality, see e.g. Doukhan (1994, Thm. 3, p. 9). Let X and Y be strong-mixing random

variables with respect to �-�elds F j
i (for integers i � j) such that X 2 Fn

�1 and Y 2 F1
n+m

with strong-mixing numbers f�(m) : m � 1g: For p; q > 0 such that 1 � p�1 � q�1 > 0; let

jjXjjp = (EjXjp)1=p and jjY jjq = (EjY jq)1=q: Then, the following inequality holds

(26) Cov(X;Y ) � 8jjXjjpjjY jjq�(k)1�p
�1�q�1 :

The proof of Theorem 1(b) uses the following technical Lemmas. The Lemmas make re-

peated use of the mixing inequality (26) applied with p = q = � > 3; where � appears in

Assumption INNOV.

Lemma 6 Suppose n(1� �n) ! 1; �n ! 1; and Assumptions INNOV and STAT hold, then

we have

E(Y �2n;0U
2
n;1=�

4
n;1)� (1� �2n)�1(EU2n;1)E(U2n;1=�4n;1) = O(1);

E(Y �2n;0=�
2
n;1)� (1� �2n)�1EU2n;1E��2n;1 = O(1);

E(Y �n;0=�
2
n;1) = O(1); and

E(Y �n;0U
2
n;1=�

4
n;1) = O(1):

Lemma 7 Suppose n(1 � �n) ! 1; �n ! 1 and Assumptions INNOV and STAT hold, then

we have

E

 
nX
i=1

[E�2n;i � E(�2n;ijGn;i�1)]
!2
! 0; where �n;i � n�1=2

Y �n;i�1Un;i=�
2
n;i

(E(Y �2n;0U
2
n;1=�

4
n;1))

1=2
:

In Lemma 8, X1; X2; and U are de�ned as in the paragraph containing (4), but with �n;i
in place of b�n;i:
Lemma 8 Suppose n(1� �n) ! 1; �n ! 1; and Assumptions INNOV and STAT hold, then

we have

(a) n�1(1� �n)1=2X 0
1X2 = op(1);

(b) E(Y �2n;0=�
2
n;1)

�1n�1X 0
1X1 !p 1;

(c) (E(Y �2n;0U
2
n;1=�

4
n;1))

�1n�1
Pn

i=1(Y
�2
n;i�1U

2
n;i=�

4
n;i)!p 1;

(d) (X 0X)�1X 0U = (Op((1� �n)1=2n�1=2); Op(n�1=2))0,
(e) (E(Y �2n;0U

2
n;1=�

4
n;1))

�1n�1X 0
1�

2X1 !p 1;

(f) (1� �n)1=2n�1(X 0
2�

2X1) = Op(1); and

(g) n�1(X 0
2�

2X2) = Op(1):
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Lemma 9 Suppose n(1 � �n) ! 1; �n ! 1; and Assumptions INNOV and STAT hold, we

have
Pn

i=1E(�
2
n;i1(j�n;ij > �)jGn;i�1)!p 0 for any � > 0:

4.2.2 Proof of Theorem 1

To simplify notation, in the remainder of the paper we often leave out the subscript n: For

example, instead of �n; �
2
U;n; Y

�
n;i; Un;i; �n;i;

b�n;i; and �n;i; we write �; �2U ; Y �i ; Ui; �i; b�i; and � i:
We do not drop n from hn;1 because hn;1 and h1 are di¤erent quantities. As above, we omit the

subscript Fn on expectations.

In the proof of Theorem 1, X1; X2; U; �; and Y are de�ned as in the paragraph containing

(4), but with �i in place of b�n;i:
Proof of Theorem 1. First we prove part (a) of the Theorem when h1 > 0: In this case,

an = n and dn = n1=2: We can write

n(b�n � �) = �n�2X 0
1MX2X1

��1
n�1X 0

1MX2U and

nb�2n = �n�2X 0
1MX2X1

��1 �
n�2X 0

1MX2�
2MX2X1

� �
n�2X 0

1MX2X1

��1
:(27)

We consider the terms in (27) one at a time. First, we have

n�2X 0
1MX2X1

= n�2
nX
i=1

0@Y �i�1=�i �
 

nX
j=1

Y �j�1=�
2
j

! 
nX
j=1

��2j

!�1
��1i

1A2

= n�2
nX
i=1

Y �2i�1=�
2
i �

 
n�3=2

nX
j=1

Y �j�1=�
2
j

!2 
n�1

nX
j=1

��2j

!�1

!d h2;5h2;1

Z
I�2h �

�
h2;5h

1=2
2;1

Z
I�h

�2
h�12;5 = h2;5h2;1

Z
I�2D;h;(28)

where the �rst two equalities hold by de�nitions and some algebra, and the convergence holds

by Lemma 5(b), (f), and (h) with j = 2 in part (b).

20



Similarly, we have

n�1X 0
1MX2U

= n�1
nX
i=1

0@Y �i�1=�i �
 

nX
j=1

Y �j�1=�
2
j

! 
nX
j=1

��2j

!�1
��1i

1AUi=�i
= n�1

nX
i=1

Y �i�1Ui=�
2
i �

 
n�3=2

nX
j=1

Y �j�1=�
2
j

! 
n�1

nX
j=1

��2j

!�1
n�1=2

nX
i=1

Ui=�
2
i

!d h
1=2
2;1

Z
I�hdM � h1=22;1

Z
I�h

Z
dM = h

1=2
2;1

Z
I�D;hdM;(29)

where the �rst two equalities hold by de�nitions and some algebra, and the convergence holds

by Lemma 5(b) and (e)-(g) with j = 2 in part (b).

To determine the asymptotic distribution of n�2X 0
1MX2�

2MX2X1; we make the following

preliminary calculations. Let bUi=�i denote the ith element of MXY =MXU: That is,

bUi=�i = Ui=�i � A0nB�1n
 

n�1=2��1i

n�1Y �i�1=�i

!
; where

An =

 
n�1=2

Pn
j=1 Uj=�

2
j

n�1
Pn

j=1 Y
�
j�1Uj=�

2
j

!
and

Bn =

 
n�1

Pn
j=1 �

�2
j n�3=2

Pn
j=1 Y

�
j�1=�

2
j

n�3=2
Pn

j=1 Y
�
j�1=�

2
j n�2

Pn
j=1 Y

�2
j�1=�

2
j

!
:(30)

Using (30), we have

n�2
nX
i=1

Y �2i�1 bU2i =�4i = n�2 nX
i=1

Y �2i�1U
2
i =�

4
i � 2n�1A0nB�1n

 
n�3=2

Pn
i=1 Y

�2
i�1Ui=�

4
i

n�2
Pn

i=1 Y
�3
i�1Ui=�

4
i

!

+n�1A0nB
�1
n

 
n�2

Pn
i=1 Y

�2
i�1=�

4
i n�5=2

Pn
i=1 Y

�3
i�1=�

4
i

n�5=2
Pn

i=1 Y
�3
i�1=�

4
i n�3

Pn
i=1 Y

�4
i�1=�

4
i

!
B�1n An

= n�2
nX
i=1

Y �2i�1U
2
i =�

4
i + op(1);(31)

where the second equality holds using Lemma 5(k) with (`1; `2) = (2; 1); (3; 1); (2; 0); (3; 0); and

(4; 0) and to show that An and B�1n are Op(1) we use Lemma 5(b) and (e)-(h) with j = 2 in

part (b).
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Similarly to (31) but with Y �i�1 in place of Y
�2
i�1; and then with Y

�2
i�1 deleted, we have

n�3=2
nX
i=1

Y �i�1
bU2i =�4i = n�3=2 nX

i=1

Y �i�1U
2
i =�

4
i + op(1) and

n�1
nX
i=1

bU2i =�4i = n�1 nX
i=1

U2i =�
4
i + op(1)(32)

using Lemma 5 as above to show that An and B�1n are Op(1); using Lemma 5(k) with (`1; `2) =

(1; 1); (2; 1); (1; 0); (2; 0); and (3; 0) for the �rst result, and using Lemma 5(k) with (`1; `2) =

(1; 1); (1; 0); and (2; 0); Lemma 5(b) with j = 4; and Lemma 5(c) for the second result.

We now have

n�2X 0
1MX2�

2MX2X1

= n�2
nX
i=1

�bU2i =�2i�
0@Y �i�1=�i �

 
nX
j=1

Y �j�1=�
2
j

! 
nX
j=1

��2j

!�1
��1i

1A2

= n�2
nX
i=1

Y �2i�1
bU2i =�4i � 2

 
n�3=2

nX
j=1

Y �j�1=�
2
j

! 
n�1

nX
j=1

��2j

!�1
n�3=2

nX
i=1

Y �i�1
bU2i =�4i

+

 
n�3=2

nX
j=1

Y �j�1=�
2
j

!2 
n�1

nX
j=1

��2j

!�2
n�1

nX
i=1

bU2i ��4i
= n�2

nX
i=1

Y �2i�1U
2
i =�

4
i � 2

 
n�3=2

nX
j=1

Y �j�1=�
2
j

! 
n�1

nX
j=1

��2j

!�1
n�3=2

nX
i=1

Y �i�1U
2
i =�

4
i

+

 
n�3=2

nX
j=1

Y �j�1=�
2
j

!2 
n�1

nX
j=1

��2j

!�2
n�1

nX
i=1

U2i =�
4
i +Op(n

�1)

!d h2;2h2;1

Z
I�2h � 2h

1=2
2;1

Z
I�h �

�
h2;2h

1=2
2;1

Z
I�h

�
+

�
h
1=2
2;1

Z
I�h

�2
h2;2

= h2;2h2;1

Z �
I�h �

Z
I�h

�2
= h2;2h2;1

Z
I�2D;h;(33)

where the �rst two equalities follow from de�nitions and some algebra, the third equality holds

by (31), (32), and Lemma 5(b), (d), (f), (i), and (j) with j = 2 in part (b), and the convergence

holds by the same parts of Lemma 5.
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Putting the results of (27), (28), (29), (33), and Lemma 3 together gives

T �n(�n) !d

h
1=2
2;1

R
I�D;hdM�

h2;2h2;1
R
I�2D;h

�1=2
=
h
1=2
2;2

R
I�D;hd

�
h2;7W + (1� h22;7)1=2W2

�
h
1=2
2;2

�R
I�2D;h

�1=2
= h2;7

�Z
I�2D;h

��1=2 Z
I�D;hdW + (1� h22;7)1=2Z2;(34)

where the last equality uses the de�nition of Z2 in (15). This completes the proof of part (a)

of the Theorem when h1 > 0:

Next, we consider the case where h1 = 0: In this case, (27)-(34) hold except that the

convergence results in (28), (29), and (33) only hold with Y �i�1 replaced by eYi�1 because Lemma
5(l) only applies to random variables based on a zero initial condition when h1 = 0: Hence, we

need to show that the di¤erence between the second last line of (28) with Y �i�1 appearing and

with eYi�1 appearing is op(1) and that analogous results hold for (29) and (33).
For h1 = 0; by a mean value expansion, we have

max
0�j�2n

j1� �jj = max
0�j�2n

j1� exp(�h�n;1j=n)j = max
0�j�2n

j1� (1� h�n;1j exp(mj)=n)j

� 2h�n;1 max
0�j�2n

j exp(mj)j = O(h�n;1);(35)

for 0 � jmjj � h�n;1j=n � 2h�n;1 ! 0; where h�n;1 is de�ned just above (25).

Using the decomposition in (25), we have Y �i�1 = eYi�1 + �i�1Y �0 : To show the desired result
for (28), we write the second last line of (28) as

n�2
nX
i=1

0@Y �i�1=�i �
 

nX
j=1

Y �j�1=�
2
j

! 
nX
j=1

��2j

!�1
��1i

1A2

= n�2
nX
i=1

0@eYi�1=�i + �i�1Y �0 =�i �
 

nX
j=1

eYj�1=�2j + �j�1Y �0 =�2j
! 

nX
j=1

��2j

!�1
��1i

1A2

= n�2
nX
i=1

0@eYi�1=�i �
 

nX
j=1

eYj�1=�2j
! 

nX
j=1

��2j

!�1
��1i +Op(h

�
n;1Y

�
0 )=�i

1A2

(36)

= n�2
nX
i=1

0@eYi�1=�i �
 

nX
j=1

eYj�1=�2j
! 

nX
j=1

��2j

!�1
��1i

1A2

+Op(n
�1=2h�n;1Y

�
0 );

where the second equality holds because �i�1 = 1+O(h�n;1) uniformly in i � n by (35), and the
third equality holds using Lemma 5. Next, Lemma 2 and h�n;1=hn;1 ! 1 (which is established
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at the beginning of the proof of Lemma 2) show that n�1=2h�n;1Y
�
0 = Op(h

�1=2
n;1 ) = op(1): This

completes the proof of the desired result for (28) when h1 = 0: The proofs for (29) and (33) are

similar. This completes the proof of part (a) of the Theorem.

It remains to consider the case where h1 =1; i.e., part (b) of the Theorem. The results in
part (b) generalize the results in Giraitis and Phillips (2006) in the following ways: (i) from a no-

intercept model to a model with an intercept, (ii) to a case in which the innovation distribution

depends on n; (iii) to allow for conditional heteroskedasticity in the error distribution, (iv)

to cover a quasi-GLS estimator in place of the LS estimator, and (v) to cover the standard

deviation estimator as well as the GLS/LS estimator itself.

It is enough to consider the two cases � ! �� < 1 and � ! 1: First, assume � ! 1 and

n(1� �)!1: In this case, the sequences an and dn are equal to the expressions in (11) up to
lower order terms. We �rst prove an(b�n � �)!d N(0; 1). Note that

(37) an(b�n � �) = �n�1 X 0
1MX2X1

E(Y �20 =�
2
1)

��1
n�1=2X 0

1MX2U

(E(Y �20 U
2
1=�

4
1))

1=2
� �n�n;

where �n and �n have been implicitly de�ned. We now show �n !p 1 and �n !d N(0; 1):

To show the latter, de�ne the martingale di¤erence sequence

(38) � i � n�1=2
Y �i�1Ui=�

2
i

(E(Y �20 U
2
1=�

4
1))

1=2
:

We show that

(39)
n�1=2X 0

1PX2U

(E(Y �20 U
2
1=�

4
1))

1=2
!p 0 and

nX
i=1

� i !d N(0; 1):

To show the �rst result, note that n�1=2X 0
2U = n�1=2

Pn
i=1 Ui=�

2
i = Op(1) by a CLT for a

triangular array of martingale di¤erence random variables Ui=�
2
i for which EjUi=�2i j3 < 1

and n�1
Pn

i=1(U
2
i =�

4
i �EU2i =�4i )!p 0: The latter convergence in probability condition holds by

Lemma 5(d). Furthermore, (n�1X 0
2X2)

�1 = Op(1) by Lemma 5(d) and Assumption INNOV(vi).

Finally, n�1(1 � �)1=2X 0
1X2 = n�1(1 � �)1=2

Pn
i=1 Y

�
i�1=�

2
i = op(1) by Lemma 8(a). The �rst

result in (39) then follows because E(Y �20 U
2
1=�

4
1) = O((1� �)�1) by Lemma 6.

To show the latter we adjust the proof of Lemma 1 in Giraitis and Phillips (2006). It is

enough to prove the analogue of equations (11) and (12) in Giraitis and Phillips (2006), namely

the Lindeberg condition
Pn

i=1E(�
2
i 1(j� ij > �)jGi�1)!p 0 for any � > 0 and

Pn
i=1E(�

2
i jGi�1)!p

1: Lemma 9 shows the former and Lemma 7 implies the latter, because by stationarity (within

rows) we have
Pn

i=1E�
2
i = 1:
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By Lemma 8(b) and Lemma 6

(40)
n�1X 0

1X1

E(Y �20 =�
2
1)
!p 1 and

n�1X 0
1PX2X1

E(Y �20 =�
2
1)

!p 0

which imply �n !p 1.

We next show that dnb�n !p 1: By (40) it is enough to show that

(41)
n�1X 0

1MX2�
2MX2X1

E(Y �20 U
2
1=�

4
1)

!p 1:

Lemma 8(e)-(g) shows that (E(Y �20 U
2
1=�

4
1))

�1n�1X 0
1�

2X1 !p 1; (1 � �)1=2 � n�1(X 0
2�

2X1) =

Op(1); and n�1(X 0
2�

2X2) = Op(1): These results combined with Lemma 6, (n�1X 0
2X2)

�1 =

Op(1); and n�1(1� �)1=2X 0
1X2 = op(1) imply (41).

In the case �! �� < 1; Theorem 1(b) follows by using appropriate CLTs for martingale dif-

ference sequences and weak laws of large numbers. For example, the analogue to the expression

in parentheses in (37) satis�es

(42)
n�1X 0

1MX2X1

E(Y �20 =�
2
1)� (E(Y �0 =�21))2=E(��21 )

!p 1:

This follows by a weak law of large numbers for triangular arrays of mean zero, L1+� bounded

(for some � > 0); near-epoch dependent random variables. Andrews (1988, p.464) shows that

the latter conditions imply that the array is a uniformly integrable L1 mixingale for which a

WLLN holds, see Andrews (1988, Thm. 2). For example, to show n�1X 0
1X1�E(Y �20 =�21)!p 0;

note that Y �2i�1=�
2
1 � EY �20 =�21 is near-epoch dependent with respect to the �-�eld Gi using the

moment conditions in Assumption INNOV(iii),
P1

j=0 �
�j = (1���)�1 <1; and �! �� < 1: �

4.2.3 Proof of Lemmas 2-9

Proof of Lemma 2. We have: �n = 1� hn;1=n and hn;1 = O(1) implies that �n ! 1: Hence,

exp(�h�n;1=n) = �n ! 1 and h�n;1 = o(n): By a mean-value expansion of exp(�h�n;1=n) about 0;

(43) 0 = �n � �n = exp(�h�n;1=n)� (1� hn;1=n) = hn;1=n� exp(�h��n;1=n)h�n;1=n;

where h��n;1 = o(n) given that h
�
n;1 = o(n). Hence, hn;1 � (1 + o(1))h�n;1 = 0; h�n;1 =hn;1 ! 1; and

it su¢ ces to prove the result with h�n;1 in place of hn;1:

Let fmn : n � 1g be a sequence such that mnh
�
n;1=n ! 1: By Assumption STAT

(which holds because �n < 1); we can write (2h�n;1=n)
1=2Y �0 =�

1=2
n;1 = A1n + A2n for A1n =
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(2h�n;1=n)
1=2
Pmn

j=0 �
j
nU�j=�

1=2
n;1 and A2n = (2h

�
n;1=n)

1=2
P1

j=mn+1
�jnU�j=�

1=2
n;1 : Note that EA2n = 0

and

var(A2n) = (2h
�
n;1=n)

P1
j=mn+1

�2jn = (2h
�
n;1=n)�

2(mn+1)
n =(1� �2n)(44)

= (2h�n;1=n)�
2(mn+1)
n =((2h�n;1=n)(1 + o(1))) = O(exp(�2(mn + 1)h

�
n;1=n)) = o(1);

where the third equality holds because �2n = exp(�2h�n;1=n) = 1� (2h�n;1=n)(1+o(1)) by a mean
value expansion and the last equality holds because mnh

�
n;1=n!1 by assumption. Therefore,

A2n !p 0:

The result now follows from A1n !d Z1 which holds by the CLT in Corollary 3.1 in Hall and

Heyde (1980) with theirXn;i being equal to (2h�n;1=n)
1=2�inU�i=�

1=2
n;1 . To apply their Corollary 3.1

we have to verify their (3.21), a Lindeberg condition, and a conditional variance condition. For

all i=:::; 0; 1; ::: set F0;i = ? and de�ne recursively Fn+1;i = �(Fn;i[�(Un+1;j : j = 0;�1; :::;�i))
for n � 1: Then, (3.21) in Hall and Heyde (1980) holds automatically. To check the remaining
two conditions, note �rst that

Pmn

i=0E(X
2
n;ijFn;i�1) =

Pmn

i=0EX
2
n;i = 2h

�
n;1

Pmn

i=0 �
2i
n =n! 1 which

holds because
Pmn

i=0 �
2i
n = (1� �

2(mn+1)
n )=(1� �2n); �

2(mn+1)
n = exp(�2h�n;1(mn + 1)=n)! 0; and

(45) n(1� �2n) = n(1� �n)(1 + �n) = hn;1(1 + �n)! 2h:

Secondly, for " > 0; Pmn

i=0E(X
2
n;iI(jXnij > ")jFn;i�1)

=
Pmn

i=0EX
2
n;iI(jXn;ij > ")

� (2h�n;1=n)
Pmn

i=0 �
2i
nE((U

2
�i=�n;1)I(2h

�
n;1U

2
�i=(n�n;1) > "

2))

= (2h�n;1=n)[
Pmn

i=0 �
2i
n ]E((U

2
0=�n;1)I(2h

�
n;1U

2
0=�n;1 > n"

2))

= O(1)o(1);(46)

where the second equality holds because the U�i have identical distributions. For the last equal-

ity, write Wn = (U
2
0=�n;1): For any � > 0; WnI((2h

�
n;1Wn=(n"

2))� > 1) � W 1+�
n (2h�n;1=(n"

2))�

and the result follows from Assumption INNOV which implies that (2h�n;1=(n"
2))� EW 1+�

n =

O(n��): �

Proof of Lemma 3. We decomposeM(r) into the sum of two independent Brownian motions,

one of which is W (r): (The decomposition is as in Guo and Phillips (2001) but with the added

complication that �2i 6= �2i :) Let

(47) � = A
A0 =

"
h2;1 0

0 h2;2h
�2
2;3 � h�12;1

#
; where A =

"
1 0

�h�12;1 h�12;3

#
:
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Hence, W (r) and W 0
2 (r) are independent Brownian motions, where W

0
2 (r) is de�ned by

(48)

 
h
1=2
2;1W (r)

W 0
2 (r)

!
= A

 
h
1=2
2;1W (r)

M(r)

!
=

 
h
1=2
2;1W (r)

h�12;3M(r)� h
�1=2
2;1 W (r)

!
= BM(�):

Let

(49) W2(r) = (h2;2h
�2
2;3 � h�12;1)�1=2W 0

2 (r):

As de�ned, W2 is a standard univariate Brownian motion on [0; 1]: We have

M(r) = h2;3

�
h
�1=2
2;1 W (r) +W 0

2 (r)
�

= h2;3

�
h
�1=2
2;1 W (r) + (h2;2h

�2
2;3 � h�12;1)1=2W2(r)

�
= h2;3(h

1=2
2;2 h

�1
2;3)
�
h2;7W (r) + (1� h22;7)1=2W2(r)

�
= h

1=2
2;2

�
h2;7W (r) + (1� h22;7)1=2W2(r)

�
:(50)

This concludes the proof. �

Proof of Lemma 4. Parts (a) and (b) of the Lemma follow from Theorem 4.4 of Hansen

(1992) when Xn;i is de�ned with zero initial conditions and fvn;i : i � n; n � 1g is a sequence
rather than a triangular array. Part (c) of the Lemma follows from a combination of Theorems

4.2 and 4.4 of Hansen (1992) under the same conditions as just stated. (Note that the same

argument as in Hansen (1992) can be used when the random variables form a triangular array

as when they form a sequence, given the conditions of the Lemma.) Hence, parts (a)-(c) of the

Lemma hold when h1 = 0:

When h1 > 0; the �rst element of Xn;i is based on a stationary initial condition. In this

case, (25) applies with Y �i and Ui denoting the �rst element of Xn;i and vn;i; respectively. By

the proof of Lemma 2, the result of Lemma 2 holds with Y �0 denoting the �rst element of Xn;0

and with �n;1 replaced by 
0;1;1: In consequence, we have

n�1=2Y �[nr] = n�1=2eY[nr] + exp(�h�n;1[nr]=n)(2hn)�1=2(2hn=n)1=2Y �0
)
Z r

0

exp((r � s)h1)dB1(s) + (2h1)�1=2 exp(�h1r)
1=20;1;1Z1;(51)

where eY[nr] = eYn;[nr] and h�n;1 are de�ned as in the paragraph containing (25), B1(s) denotes
the �rst element of B(s); the �rst summand converges by Thm. 4.4 of Hansen (1992), the

second summand converges by the result of Lemma 2 and the convergence of exp(�h�n;1[nr]=n)
to exp(�h1r); which holds uniformly over r 2 [0; 1]; and the convergence of the two summands
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holds jointly. The limit random quantities B1(�) and Z1 are independent due to the strong-
mixing assumption. In addition, the convergence of the �rst element of Xn;i; given in (51),

holds jointly with the convergence of the remaining elements, whose weak limit is that stated in

the Lemma by Thm. 4.4 of Hansen (1992). This concludes the proof of part (a) when h1 > 0:

When h1 > 0; the e¤ect of the stationary initial condition of the �rst element of Xn;i on

the limit distribution in parts (b) and (c) of the Lemma is established in a similar way to that

given above for part (a). �

Proof of Lemma 5. Part (a) holds by applying Lemma 4(a) with h1 > 0; dv = 1; vn;i = Ui;


0 (= 
0;1;1) = h2;1; K
�
h(r) = h

1=2
2;1 I

�
h(r); and � = 3; using Assumptions INNOV and STAT.

Parts (b)-(d) hold by a weak law of large numbers for triangular arrays of L1+�-bounded

strong-mixing random variables for � > 0; e.g., see Andrews (1988), using the moment condi-

tions in Assumption INNOV(iii).

The convergence in parts (e) and (g) holds by applying Lemma 4 with h1 > 0; dv = 2;

vn;i = (Ui; Ui=�
2
i )
0; 
0 = 
 (where 
 is de�ned in Lemma 3), � = 0 (because f(Ui; Ui=�2i ) :

i � ng is a martingale di¤erence array) and � = 3; using Assumptions INNOV and STAT. In
particular, we use supn�1[EjUij� +EjUi=�2i j� ] <1 for some � > 3 by Assumption INNOV(iii).

Let B(r) = (h
1=2
2;1W (r);M(r))

0 = BM(
): Then, the �rst element of K�
h(r) can be written

as h1=22;1 I
�
h(r) and the second element of B(r) equals M(r): The convergence in part (e) holds

by the convergence to M(1) of the second element of Xn;[nr] in Lemma 4(a) with r = 1: The

convergence in part (g) holds by the convergence of the (1; 2) element of n�1
Pn

i=1Xn;i�1v
0
n;i in

Lemma 4(b). The (1; 2) element of
R
K�
hdB

0 equals h1=22;1
R
I�hdM: The last equalities of parts (e)

and (g) hold by Lemma 3.

The equality in part (f) holds by applying Lemma 4(b) with vn;i = (Ui; �
�2
i � E��21 ) and

� = 3 because the appropriate element of this vector result gives n�1
Pn

i=1 Y
�
i�1(�

�2
i �E��21 ) =

Op(1): The equality in part (h) holds by applying Lemma 4(c) with vn;i = (Ui; �
�2
i � E��21 )

and � = 3 because the appropriate element of this matrix result gives n�3=2
Pn

i=1 Y
�2
i�1(�

�2
i �

E��21 ) = Op(1): This result uses the assumption that supn�1E�
�2�
1 < 1 for some � > 3 in

Assumption INNOV(iii). The equality in parts (i) and (j) holds by applying Lemma 4(b) and

(c), respectively, with vn;i = (Ui; U
2
i =�

4
i � E(U21=�41)): This result uses the assumption that

supn�1EjUi=�2i j2� <1 for some � > 3 in Assumption INNOV(iii).

The convergence in parts (f) and (h)-(j) holds by Assumption INNOV(vi) and by part (a) of

the current Lemma combined with the continuous mapping theorem using standard arguments

(e.g., see the proof of Lemma 1 of Phillips (1987)) which gives n�3=2
Pn

i=1 Y
�
i�1 !d

R
I�h and

n�2
Pn

i=1 Y
�2
i�1 !d

R
I�2h :
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This concludes the proof of parts (a)-(j).

Part (k) holds because

(52) jn�1�`1=2
Pn

i=1 Y
�`1
i�1U

`2
i =�

4
i j � sup

i�n
jn�1=2Y �i�1j`1 � n�1

Pn
i=1 jUij`2=�

4
i = Op(1);

where the equality holds by part (a) of the current Lemma combined with the continuous

mapping theorem and the weak law of large numbers (referred to above).

Part (l) holds by the same argument as given above for parts (a)-(k), but without the extra

detail needed to cover the case of a non-zero initial condition. �

Proof of Lemma 6. Using Y �i =
P1

j=0 �
jUi�j and stationarity (within the rows of the

triangular array),

E(Y �20 U
2
1=�

4
1)

=
1X
u=0

1X
v=0

�u+vEU�uU�vU
2
1=�

4
1

=
1X
u=0

�2uEU2�uU
2
1=�

4
1 + 2

1X
u=0

u�1X
v=0

�u+vEU�uU�vU
2
1=�

4
1

= (1� �2)�1EU21EU21=�41 +O(1):(53)

The last equality holds by the following argument. First, for u > v; we have

EU�uU�vU
2
1=�

4
1 = Cov(U�u; U�vU

2
1=�

4
1) = Cov(U�uU�v; U

2
1=�

4
1): This, �-mixing, (26), and As-

sumption INNOV(iii) give

EU�uU�vU
2
1=�

4
1

= O(1)maxfjjU�uU�vjj� jjU21=�41jj� ; jjU�ujj� jjU�vU21=�41jj�g �

�n
1�2��1(maxf(u� v); (1 + v)g)

= O((maxf(u� v); (1 + v)g)�3�")(54)
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for some " > 0 because �1�2�
�1

n (m) = O(m�3�(1�2��1)=(��3)) = O(m�3�"): Therefore,

1X
u=0

u�1X
v=0

�u+vEU�uU�vU
2
1=�

4
1

= O(1)

1X
u=0

u�1X
v=0

�u+vminf(u� v)�3�"; (1 + v)�3�"g

= O(1)
1X
u=0

u=2X
v=0

(u� v)�3�" +O(1)
1X
u=0

uX
v=u=2+1

v�3�"

= O(1)

1X
u=0

u�2�" +O(1)

1X
u=0

u�2�"

= O(1):(55)

Second,

1X
u=0

�2uEU2�uU
2
1=�

4
1 =

1X
u=0

�2u[Cov(U2�u; U
2
1=�

4
1) + EU

2
�uEU

2
1=�

4
1]

= O(1)
1X
u=0

u�3�" +
1X
u=0

�2uEU21EU
2
1=�

4
1

= O(1) + (1� �2)�1EU21EU21=�41:(56)

The other statements in the Lemma are proven analogously. For example, for the last

statement note that E(Y �0 U
2
1=�

4
1) =

P1
u=0 �

uEU�uU
2
1=�

4
1 and jEU�uU21=�41j = O((u + 1)�3�")

give the desired result. �

Proof of Lemma 7. Using Y �i =
P1

j=0 �
jUi�j and stationarity (within rows), we have

E

 
nX
i=1

[E�2i � E(�2i jGi�1)]
!2
=
E(
Pn

i=1(Y
�2
i�1�

2
i =�

4
i � EY �20 U21=�41))2

n2(E(Y �20 U
2
1=�

4
1))

2

=

Pn
i;j=1Cov(Y

�2
i�1�

2
i =�

4
i ; Y

�2
j�1�

2
j=�

4
j)

n2(E(Y �20 U
2
1=�

4
1))

2
=

Pn
i=1(n� i+ 1)Cov(Y �2i�1�2i =�

4
i ; Y

�2
0 �

2
1=�

4
1)

n2(E(Y �20 U
2
1=�

4
1))

2

=

Pn
i=1(n� i+ 1)

P1
s;t=0 �

s+t
P1

u;v=0 �
u+vCov(Ui�1�sUi�1�tU

2
i =�

4
i ; U�uU�vU

2
1=�

4
1)

n2(E(Y �20 U
2
1=�

4
1))

2
:

(57)

The key portion of the proof is to bound the covariance term C(i; s; t; u; v) =

Cov(Ui�1�sUi�1�tU
2
i =�

4
i ; U�uU�vU

2
1=�

4
1) using strong mixing. However, it is not enough to use

the strong-mixing inequality (26) in the case where i�1�s and i�1�t are both strictly positive
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and to exploit C(i; s; t; u; v) = O((maxfi�1�s; i�1�tg)�3�(1�2=�)=(��3)) in this case. The trick
is to consider disjoint sets A and B such that A[B = fUi�1�s; Ui�1�t; U2i =�4i ; U�u; U�v; U21=�41g
and to note that

jC(i; s; t; u; v)j

� jEUi�1�sUi�1�t(U2i =�4i )U�uU�vU21=�41j+ jEUi�1�sUi�1�tU2i =�4i � EU�uU�vU21=�41j

� jE
Q
a2A

aE
Q
b2B

b+ Cov(
Q
a2A

a;
Q
b2B

b)j+ jEUi�1�sUi�1�tU2i =�4i � EU�uU�vU21=�41j:

(58)

Note that if A 2 ffUi�1�s; Ui�1�t; U2i =�4i g; fU�u; U�v; U21=�41gg then the simpler bound

jC(i; s; t; u; v)j � jCov(
Q
a2A a;

Q
b2B b)j applies. We will pick the partition A [ B such that

E
Q
a2A a�E

Q
b2B b = 0 and then apply the strong-mixing inequality (26) to bound Cov(

Q
a2A a;Q

b2B b) and also jEUi�1�sUi�1�tU2i =�
4
i �EU�uU�vU21=�41j: In fact, E

Q
a2A a �E

Q
b2B b = 0 holds

true for any partition, unless 1 is the largest subindex in one group A or B:

First we show that we can assume that all the subindices i�1�s; i�1� t; i; �u; �v; 1 that
appear in the covariance expression (57) are di¤erent because the sum of all summands, where

at least two of these subindices are equal, is of order o(1): To see this, consider �rst the case

where there is more than one pair of subindices that coincides, e.g. when i�1�s = i�1�t = �u
or when i � 1 � t = 1 and �u = �v. For example, assume i � 1 � s = �u and i � 1 � t = 1
(the other cases are proven analogously). Then i = �u + s + 1 = t + 2 and the numerator in
(57) equals

(59) O(1)
nX
i=1

(n� i+ 1)
1X
s;t=0

�s+t
1X

u;v=0

�u+v = O(n)
1X

u;v=0

�u+v
1X
s=0

�s��u+s�1 = O(n(1� �)�3):

Because E(Y �20 U
2
1=�

4
1) is of order (1� �)�1 by Lemma 6 and n(1� �)!1; the result follows.

We can therefore assume there is exactly one pair of subindices that coincides, for example,

i�1�s = 1: (The other cases are proven analogously.) Then the numerator in (57) is bounded
by

(60) 2n
1X
u=0

u�1X
v=0

�u+v
1X
t=0

n�2X
s=0

�s+tjCov(U1Us+1�tU2s+2=�4s+2; U�uU�vU21=�41)j;

where the summations are such that all subindices 1; s+1�t;�u;�v are di¤erent. There are four
cases to consider: (i) 1 < s+1�t; (ii)�v < s+1�t < 1; (iii)�u < s+1�t < �v; and (iv) s+1�
t < �u: In case (i), we use (58) with A = fU�u; U�vg and B = fU1; Us+1�t; U2s+2=�4s+2; U21=�41g:
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This leads to

jC(s+ 2; s; t; u; v)j

� jCov(
Q
a2A

a;
Q
b2B

b)j+ jEU1Us+1�tU2s+2=�4s+2j � jEU�uU�vU21=�41j

� (v + 1)�3�(1�2�
�1)=(��3) + (maxfv + 1; u� vg)�3�(1�2��1)=(��3)

� (v + 1)�3�" + (maxfv + 1; u� vg)�3�"(61)

for some " > 0; where in the second to last inequality we use Assumption INNOV(iii) and

(26) and apply an argument analogous to (58) to the expectation EU�uU�vU21=�
4
1; namely,

EU�uU�vU
2
1=�

4
1 = Cov(U�u; U�vU

2
1=�

4
1) = Cov(U�uU�v; U

2
1=�

4
1): In the last inequality we

use the fact that �3�(1 � 2��1)=(� � 3) < �3 � " for some " > 0: Picking A = fU�ug
and B = fU�v; U1; Us+1�t; U2s+2=�4s+2; U21=�41g the same argument can be used to show that

jC(s + 2; s; t; u; v)j � (u � v)�3�"+ (maxfv + 1; u � vg)�3�": Therefore, jC(s + 2; s; t; u; v)j �
2(maxfv + 1; u� vg)�3�": Thus, the summands in (60) over case (i) are bounded by

4n
1X
u=0

u�1X
v=0

�u+v
1X
t=0

n�2X
s=t+1

�s+t(maxfv + 1; u� vg)�3�"

� O(n)
1X
u=0

u�1X
v=0

(maxfv + 1; u� vg)�3�"
1X
t=0

n�2X
s=t+1

�s+t

� O(n(1� �)�2)
1X
u=0

0@[u=2]X
v=0

(u=2)�3�" +
u�1X

v=[u=2]

(u=2)�3�"

1A
= O(n(1� �)�2)

1X
u=0

(u=2)�2�"

= O(n(1� �)�2):(62)

Because by Lemma 6 the denominator is of order n2(1� �)�2 the result follows. Cases (ii)�(iv)
are handled analogously.

From now on, we can therefore assume that all the subindices i� 1� s; i� 1� t; i; �u; �v;
1 that appear in the covariance expression in (57) are di¤erent. From now on, all summations

are subject to this restriction without explicitly stating it.

We now show that the second summand in (58), i.e., jEUi�1�sUi�1�tU2i =�4i�
EU�uU�vU

2
1=�

4
1j; is negligible when substituted into (57). Because the problem is symmetric in

u and v; in the following we can assume u > v:Note thatEU�uU�vU21=�
4
1 = Cov(U�u; U�vU

2
1=�

4
1)
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= Cov(U�uU�v; U
2
1=�

4
1). Therefore, for some " > 0; (26) and Assumption INNOV(iii) yield

EU�uU�vU
2
1=�

4
1 = O(maxfjv � uj; 1 + vg�3�(1�2�

�1)=(��3))

= O(maxfjv � uj; 1 + vg�3�"):(63)

We can proceed analogously for the term EUi�1�sUi�1�tU
2
i =�

4
i . Therefore, in the numerator of

(57), the contribution of the second summand of (58) is bounded by

4
nX
i=1

(n� i+ 1)
X

0�t<s<1
�s+t

X
0�v<u<1

�u+vjEUi�1�sUi�1�tU2i =�4i � EU�uU�vU21=�41j

= O(n2)
1X

0�t<s<1

1X
0�v<u<1

maxfjv � uj; 1 + vg�3�"maxfjs� tj; 1 + tg�3�"

= O(n2)

 1X
0�v<u<1

maxfjv � uj; 1 + vg�3�"
!2
:(64)

But note that

O(n2)

 1X
u=0

u�1X
v=0

maxfu� v; 1 + vg�3�"
!2

= O(n2)

0@ 1X
u=0

[u=2]X
v=0

(u=2)�3�" +
1X
u=0

u�1X
v=[u=2]+1

(u=2)�3�"

1A2

= O(n2)
1X
u=0

(u=2)�2�"

= O(n2):(65)

Because the denominator n2(E(Y �20 U
2
1=�

4
1))

2 in (57) is of order n2(1 � �2)�2 by Lemma 6, we
have shown that the summands jEUi�1�sUi�1�tU2i =�4i � EU�uU�vU21=�41j in (57) are negligible.

We are now left to show that the sum of all summands in the last line of (57) is o(1) when

all the subindices i� 1� s; i� 1� t; i; �u; �v; 1 that appear in the covariance expression (57)
are di¤erent. We can assume u > v and s > t:We can also impose the bound jC(i; s; t; u; v)j �
jE
Q
a2A aE

Q
b2B b + Cov(

Q
a2A a;

Q
b2B b)j because we have shown that the contributions of

the last summand in (58) are negligible. We only consider partitions A and B where 1 is not

the largest subindex in any of the two sets A or B in which case we have jC(i; s; t; u; v)j �
jCov(

Q
a2A a;

Q
b2B b)j: There are ten di¤erent cases to consider regarding the order of i� 1� s

and i� 1� t relative to 1;�u; and �v. In case (1) i� 1� s > 1 (which implies i� 1� t > 1
because we assume s > t), (2) 1 > i� 1� s > �v (which implies i� 1� s > �u because u > v)
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and i�1� t > 1; (3) �v > i�1�s > �u and i�1� t > 1; (4) �u > i�1�s and i�1� t > 1;
(5) �v < i� 1� s < 1 and �v < i� 1� t < 1; (6) �u < i� 1� s < �v and �v < i� 1� t < 1;
(7) �u < i� 1� s and �v < i� 1� t < 1; (8) �u < i� 1� s < �v and �v < i� 1� t < �u;
(9) �u < i� 1� s and �u < i� 1� t < �u; and (10) �u < i� 1� s and �u < i� 1� t < �u:
We will only deal with the two cases (1) and (2), the other cases can be handled analogously.

Case (1). Consider the partitions A and B of fU�u; U�v; U21=�41; Ui�1�s; Ui�1�t; U2i =�4i g;
where A = fU�ug; A = fU�u; U�vg; and A = fU�u; U�v; U21=�41; Ui�1�s; Ui�1�tg: The strong-
mixing covariance inequality implies that

(66) jC(i; s; t; u; v)j � jCov(
Q
a2A a;

Q
b2B b)j � (maxfu� v; v + 1; t+ 1g)�3�":

Therefore, Pn
i=1(n� i+ 1)

P1
s>t=0 �

s+t
P1

u>v=0 �
u+vjC(i; s; t; u; v)j

n2(E(Y �20 U
2
1=�

4
1))

2

= O(1� �)
1X
t=0

1X
u>v=0

(maxfu� v; v + 1; t+ 1g)�3�";(67)

where we use
P1

s=0 �
s = (1 � �)�1; (66), and Lemma 6. We now consider three subcases 1(i)

t+ 1 > u� v and t+ 1 > v + 1; 1(ii) u� v > t+ 1 and u� v > v + 1; 1(iii) v + 1 > t+ 1 and
v + 1 > u� v: In case 1(i), the sum over s; t; u; v in (67) can be bounded by

(68)
1X
t=0

t�1X
v=0

t+1+vX
u=v

(t+ 1)�3�" �
1X
t=0

t�1X
v=0

(t+ 1)�2�" =
1X
t=0

(t+ 1)�1�" = O(1):

In case 1(ii), the sum over s; t; u; v in (67) can be bounded by

(69)
1X
u=1

[u=2]X
v=0

u�v�1X
t=0

(u� v)�3�" �
1X
u=1

[u=2]X
v=0

(u� v)�2�" �
1X
u=1

(u=2)�1�" = O(1):

In case 1(iii), the sum over s; t; u; v in (67) can be bounded by

1X
u=1

u�1X
t=0

u�1X
v=max(t+1;[(u�1)=2])

(v + 1)�3�" �
1X
u=1

u�1X
t=0

u�1X
v=[(u�1)=2]

(v + 1)�3�"

�
1X
u=1

u�1X
t=0

(u=2)�2�" = O(1):(70)

This proves case (1). We next deal with case (2).
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Case (2). Consider the partitions A and B of fU�u; U�v; U21=�41; Ui�1�s; Ui�1�t; U2i =�4i g;
where A = fU�u; U�vg; A = fU�u; U�v; Ui�1�sg, or A = fU�u; U�v; Ui�1�s; U21=�41; Ui�1�tg: The
strong-mixing covariance inequality implies that

(71) jC(i; s; t; u; v)j � jCov(
Q
a2A a;

Q
b2B b)j � (maxfi� 1� s+ v; 2� i+ s; t+ 1g)�3�":

We consider several subcases. In case 2(i) suppose that i� 1� s+ v < t+ 1: Then,Pn
i=1(n� i+ 1)

P1
s>t=0 �

s+t
P1

u>v=0 �
u+vjC(i; s; t; u; v)j

n2(E(Y �20 U
2
1=�

4
1))

2

= O

 
n�1(1� �)2

1X
u>v=0

�u+v
1X

s>t=0

�s+t
t+s�v+2X
i=s�v+1

(t+ 1)�3+"

!
;(72)

where the restrictions on the summation over i result from i�1�s > �v and i�1�s+v < t+1:
The expression in (72) is of order O(n�1

P1
s=0 �

s
P1

t=0(t + 1)
�2+") because of Lemma 6 and

t+ s� v+ 2� (s� v+ 1) = t+ 1: But the latter expression is o(1) because n(1� �)!1 andP1
t=0(t+ 1)

�2+" = O(1):

In case 2(ii) suppose that t+ 1 > 2� i+ s: Therefore,Pn
i=1(n� i+ 1)

P1
s>t=0 �

s+t
P1

u>v=0 �
u+vjC(i; s; t; u; v)j

n2(E(Y �20 U
2
1=�

4
1))

2

= O(n�1(1� �)�2
1X

u>v=0

�u+v
1X

s>t=0

�s+t
s+2X

i=s�t+1
(t+ 1)�3+");(73)

where the restrictions on the summation over i result from t+ 1 > 2� i+ s and 1 > i� 1� s:
The expression in (73) is of order O(n�1

P1
s=0 �

s
P1

t=0(t+1)
�2+"): The latter expression is o(1)

as in case 2(i).

Finally consider the case 2(iii) where i � 1 � s + v > t + 1 and t + 1 < 2 � i + s: Assume
�rst that i� 1� s+ v < 2� i+ s: This implies that i < �v=2 + s+ 3=2: Therefore,Pn

i=1(n� i+ 1)
P1

s>t=0 �
s+t
P1

u>v=0 �
u+vjC(i; s; t; u; v)j

n2(E(Y �20 U
2
1=�

4
1))

2

= O(n�1(1� �)2
1X

s>t=0

�s+t
1X

u>v=0

�u+v
[�v=2+s+3=2]X
i=�v+s�1

(2� i+ s)�3+"):(74)

The expression in (74) is of order O(n�1
P1

u=0 �
u
P1

v=0(v=2)(v=2)
�3+"): The latter expression

is o(1) as in case 2(i).

The subcase i � 1 � s + v � 2 � i + s of case 2(iii) can be handled using the same steps.
That completes the proof of case (2). �
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Proof of Lemma 8. To prove (a), by Markov�s inequality it is enough to show that n�2(1�
�)E(X 0

1X2)
2 = o(1): Note that

(75) E(X 0
1X2)

2 =
nX

i;k=1

1X
j;l=0

�j+lEUi�1�j�
�2
i Uk�1�l�

�2
k :

The contribution of the summands where i = k is
Pn

i=1

P1
j;l=0 �

j+lEUi�1�j�
�4
i Ui�1�l which is

of order O(n(1 � �)�2) and thus negligible because n(1 � �) ! 1: It is therefore enough to
study the sum

Pn
i>k=1

P1
j;l=0 �

j+lEUi�1�j�
�2
i Uk�1�l�

�2
k : We have to consider several subcases,

namely, (1) i� 1� j < k � 1� l; (2) k � 1� l � i� 1� j < k; and (3) k � i� 1� j: In case
(1), the sum in (75) can be bounded by

(76)
1X
j;l=0

�j+l
nX
k=1

k+j�lX
i=k+1

maxfl + 1; k � l � i+ jg�3�"

noting that EUi�1�j�
�2
i Uk�1�l�

�2
k = Cov(Ui�1�j; Uk�1�l�

�2
i �

�2
k ) = Cov(Ui�1�jUk�1�l; �

�2
i �

�2
k )

and using (26) and Assumption INNOV(iii). The sum in (76) can be bounded by

1X
j;l=0

�j+l
nX
k=1

"
k�2l+j�1X
i=k+1

(k � l � i+ j)�3�" +
k+j�lX

i=k�2l+j

(l + 1)�3�"

#

�
1X
j;l=0

�j+l
nX
k=1

[l�3�"maxfj � 2l; 0g+ (l + 1)�2�"]

= O(n(1� �)�2 + n(1� �)�1);(77)

where the last equality holds because

(78)
1X
j;l=0

�j+l
nX
k=1

l�3�"maxfj � 2l; 0g � n
1X
l=0

�ll�3�"
1X
j=2l

�j(j � 2l) = O(n)
1X
j=0

�jj

and
P1

j=0 �
jj = �(1� �)�2: This proves case (1). Cases (2) and (3) can be proved analogously.

Next, we prove part (b) of the Lemma. It is enough to show that

(79) E

�
n�1X 0

1X1 � E(Y �20 =�21)
E(Y �20 =�

2
1)

�2
! 0:

By Lemma 6, this holds if

(80) ((1� �)2=n2)
nX

i;j=1

Cov(Y �2i�1=�
2
i ; Y

�2
j�1=�

2
j) = o(1):

The latter can be established using the same approach as was used in (57) to establish that

(E(Y �20 U
2
1=�

4
1))

�2 n�2
Pn

i;j=1 Cov(Y
�2
i�1�

2
i =�

4
i ; Y

�2
j�1�

2
j=�

4
j) = o(1):
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We can show part (c) by proceeding as in part (b).

Next, we prove part (d) of the Lemma. Note that

(n�1X 0X)�1n�1X 0U = det �1(T1; T2)
0; where

det = n�1
nX
i=1

(Y �2i�1=�
2
i )n

�1
nX
i=1

��2i �
 
n�1

nX
i=1

Y �i�1=�
2
i

!2
;(81)

T1 =

 
n�1

nX
i=1

��2i

! 
n�1

nX
i=1

Y �i�1Ui=�
2
i

!
�
 
n�1

nX
i=1

Y �i�1=�
2
i

!
n�1

nX
i=1

Ui=�
2
i ; and

T2 = �n�1
nX
i=1

(Y �i�1=�
2
i )

 
n�1

nX
i=1

Y �i�1Ui=�
2
i

!
+ n�1

nX
i=1

(Y �2i�1=�
2
i )n

�1
nX
i=1

Ui=�
2
i :

Using parts (a) and (b) of the Lemma, (39), n�1
Pn

i=1 Ui=�
2
i = Op(n

�1=2); and Lemma 6, it

follows that det�1 = Op(1 � �); T1 = Op((n(1 � �))�1=2); and T2 = Op((1 � �)�1n�1=2); which
proves the claim.

Next we prove part (e). Note that since � = Diag(MXY ) = Diag(MXU) we have

(82) X 0
1�

2X1 =
nX
i=1

(Y �2i�1=�
2
i )fUi=�i � (Y �i�1=�i; ��1i )(X 0X)�1X 0Ug2:

By part (c), we are left to show that

(E(Y �20 U
2
1=�

4
1))

�1n�1
nX
i=1

(Y �2i�1=�
2
i )(Ui=�i)(Y

�
i�1=�i; �

�1
i )(X

0X)�1X 0U !p 0 and

(E(Y �20 U
2
1=�

4
1))

�1n�1
nX
i=1

(Y �2i�1=�
2
i )[(Y

�
i�1=�i; �

�1
i )(X

0X)�1X 0U ]2 !p 0:

(83)

Part (d) and Lemma 6 imply that it is su¢ cient to show that

Op((1� �)n�1)
nX
i=1

(Y �2i�1Ui=�
4
i )Op(n

�1=2) = op(1);

Op((1� �)n�1)
nX
i=1

(Y �2i�1=�
4
i )Op(n

�1) = op(1);

Op((1� �)n�1)
nX
i=1

(Y �3i�1Ui=�
4
i )Op((1� �)1=2n�1=2) = op(1);

Op((1� �)n�1)
nX
i=1

(Y �3i�1=�
4
i )Op((1� �)1=2n�1) = op(1); and

Op((1� �)n�1)
nX
i=1

(Y �4i�1=�
4
i )Op((1� �)n�1) = op(1):(84)

37



The �rst and second conditions follow by proofs as for parts (c) and (b), respectively. The

other conditions can be proven along the same lines as above. For example, one can establish

that

(85) (1� �)3=2n�2
nX
i=1

(Y �3i�1=�
4
i ) = op(1)

by using Markov�s inequality and methods as in Lemma 7.

Finally, for the proofs of parts (f) and (g) note that

X 0
1�

2X2 =

nX
i=1

(Y �i�1=�
2
i )[Ui=�i � (Y �i�1=�i; ��1i )(X 0X)�1X 0U ]2 and

X 0
2�

2X2 =

nX
i=1

��2i [Ui=�i � (Y �i�1=�i; ��1i )(X 0X)�1X 0U ]2:(86)

Therefore the desired results are implied by showing that

(1� �)1=2n�1
nX
i=1

(Y �i�1=�
2
i )(U

2
i =�

2
i ) = Op(1);

(1� �)1=2n�1
nX
i=1

(Y �i�1=�
2
i )(Ui=�i)(Y

�
i�1=�i; �

�1
i )(X

0X)�1X 0U = Op(1);

(1� �)1=2n�1
nX
i=1

(Y �i�1=�
2
i )[(Y

�
i�1=�i; �

�1
i )(X

0X)�1X 0U ]2 = Op(1);(87)

and

n�1
nX
i=1

��2i (U
2
i =�

2
i ) = Op(1);

n�1
nX
i=1

��2i (Ui=�i)(Y
�
i�1=�i; �

�1
i )(X

0X)�1X 0U = Op(1);

n�1
nX
i=1

��2i ((Y
�
i�1=�i; �

�1
i )(X

0X)�1X 0U)2 = Op(1):(88)

All of the statements in (87) and (88) follow from earlier parts of the Lemma or by arguments

used in earlier parts of the Lemma. For example, (1 � �)1=2n�1
Pn

i=1 (Y
�
i�1U

2
i =�

4
i ) = Op(1)

and (1 � �)1=2n�1
Pn

i=1(Y
�
i�1Ui=�

4
i ) = Op(1) are proven as part (a) of the Lemma. To show

(1� �)n�3=2
Pn

i=1(Y
�2
i�1Ui=�

4
i ) = Op(1); one can use a proof as for part (c). �

Proof of Lemma 9. It is enough to show that
Pn

i=1E(�
2
i 1(j� ij > �))! 0 for any � > 0. We

have
nX
i=1

E(�2i 1(j� ij > �)) � ��2
nX
i=1

E(�4i ) = n�
�2E(�41) = O(n

�1(1� �)2)E(Y �0 U1=�21)4;

(89)
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by stationarity (within rows) and Lemma 6. Furthermore,

(90) E(Y �i�1Ui=�
2
i )
4 =

1X
u;v;s;t=0

�u+v+s+tEU�uU�vU�sU�tU
4
1=�

8
1:

The contributions of all summands for which at least two of the indices u; v; s; t are the same

is o(n(1� �)�2): For example, suppose u = v: Note that
P1

u;s;t=0 �
2u+s+t EU2�uU�sU�tU

4
1=�

8
1 =

O((1 � �)�3) which is indeed o(n(1 � �)�2) because n(1 � �) ! 1: We can therefore restrict
attention in the sum in (90) to the case where all indices are di¤erent and by symmetry, we

can even restrict summation to the cases where v = minfu; t; s; vg. Using the strong-mixing
inequality as above, we have

(91) E(Y �i�1Ui=�
2
i )
4 � O(

X
u;t;s

�u+s+t
X
v

(v � 1)�3�") = O((1� �)�3);

which is o(n(1� �)�2) as shown above. �

4.3 Proof of Theorem 2

Proof of Theorem 2. Suppose h1 2 [0;1): Inspection of the proof of Theorem 1 shows that

is su¢ ces to show that Lemma 5 holds with b�i in place of �i: The di¤erence between the lhs
quantity in Lemma 5(b) with j = 1 and the corresponding quantity with b�i in place of �i is
op(1) by Assumption CHE(ii)(b) with (d; j) = (0; 1): The same result holds for j = 2 because

jn�1
Pn

i=1
b��2i � ��2i j

� n�1
Pn

i=1
b��1i jb��1i � ��1i j+ n�1

Pn
i=1 �

�1
i jb��1i � ��1i j

� 2"�1=2n�1
Pn

i=1 jb��1i � ��1i j = op(1);(92)

where the �rst inequality holds by the triangle inequality, the second inequality holds by As-

sumption CHE(i), and the equality holds by Assumption CHE(ii)(b) with (d; j) = (0; 1): For

j = 4; the same result holds by the same argument as just given with 4 in place of 2 in the �rst

line and 2 in place of 1 in the second and third lines.

The di¤erences between the lhs quantities in Lemma 5(c) and (d) and the corresponding

quantities with b�i in place of �i are op(1) by the same argument as in (92) (with 4 in place of 2
in the �rst line and 2 in place of 1 in the second and third lines) using Assumption CHE(ii)(b)

with (d; j) = (1; 2) and (2; 2); respectively.

The di¤erences between the lhs quantities in Lemma 5(e) and (g) and the corresponding

quantities with b�i in place of �i are op(1) by Assumption CHE(ii)(a) with j = 0 and j = 1;

respectively.
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The di¤erence between the lhs quantity in Lemma 5(f) and the corresponding quantity withb�i in place of �i is op(1) because
jn�3=2

Pn
i=1 Y

�
i�1(
b��2i � ��2i )j

� sup
i�n;n�1

jn�1=2Y �i�1j � n�1
Pn

i=1 jb��2i � ��2i j = op(1);(93)

where the equality holds by (92) and supi�n;n�1 jn�1=2Y �i�1j = Op(1); which holds by Lemma

5(a) and the continuous mapping theorem. Analogous results hold for Lemma 5(h)-(j) using

Assumption CHE(ii)(b) with (d; j) = (2; 2) for parts (i) and (j).

Next, we show that the lhs quantity in Lemma 5(k) with b�i in place of �i is op(n):We have
jn�1�`1=2

Pn
i=1 Y

�`1
i�1U

`2
i =
b�4i j

� "�2 sup
i�n;n�1

jn�1=2Y �i�1j`1 � n�1
Pn

i=1 jUij = Op(1);(94)

using Assumption CHE(i), supi�n;n�1 jn�1=2Y �i�1j = Op(1); and aWLLN for strong-mixing trian-
gular arrays of L1+�-bounded random variables, see Andrews (1988), which relies on Assumption

INNOV(iii). The results in Lemma 5(l) hold by the same arguments as given above.

Next, suppose h1 =1: Lemma 6 shows that E(Y �20 =�21) = O((1��)�1) and E(Y �20 U21=�41) =
O((1� �)�1); where O((1� �)�1) = O(1) in the case where �! �� < 1: Inspection of the proof

of Theorem 1 then shows that it su¢ ces to show that the equivalent of (39)-(41) holds when �i
is replaced by b�i: More precisely, by Lemma 6, for (40) it is su¢ cient to show that
(95) (i) n�1(1� �)

nX
i=1

(Y �i�1)
2(b��2i � ��2i ) = op(1);

(ii) n�1(1 � �)1=2
Pn

i=1 Y
�
i�1(
b��2i � ��2i ) = op(1); and (iii) n�1

Pn
i=1(
b��2i � ��2i ) = op(1): In

addition, for (39), it is su¢ cient to show that (iv) n�1=2
Pn

i=1((1��)1=2Y �i�1)jUi �(b��2i ���2i ) =
op(1) for j = 0; 1: To show (41), it is enough to show that in addition n�1(1� �)X 0

1�
2X1 !p 1;

n�1(1� �)1=2(X 0
2�

2X1) = Op(1); and n�1(X 0
2�

2X2) = Op(1) hold (with X1; X2; and � de�ned

with b�i; not �i): Inspecting the proof of Lemma 8(e)-(g) carefully, it follows that to show the
latter three conditions, it is enough to show that in addition to (i)-(iv), we have (v) n�1(1 �
�)
Pn

i=1(Y
�
i�1)

2 U2i (
b��4i ���4i ) = op(1) and (vi) n�r1(1��)r2Pn

i=1(Y
�
i�1)

r3 U r4i (
b��4i ���4i ) = op(1)

for (r1; :::; r4) = (3=2; 1; 2; 1); (2; 1; 2; 0); (3=2; 3=2; 3; 1); (2; 3=2; 3; 0); and (2; 3=2; 4; 0): These

conditions come from the proof of Lemma 8.

Conditions (iii) and (iv) are assumed in Assumption CHE(ii)(c) and (d). Immediately

below we prove (i) in (95) using Assumption CHE(ii)(d) with (d; j; k) = (2; 2; 0); (ii), (v), and
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(vi) can be shown using exactly the same approach by applying Assumption CHE(ii)(d) with

(d; j; k) = (1; 2; 0); (2; 4; 0); (2; 4; 2); and (2; 4; 4), respectively.

We now prove (i) in (95). Note that by the Cauchy-Schwarz inequality we have

n�1(1� �)
nX
i=1

(Y �i�1)
2(b��2i � ��2i )

�
 
n�1(1� �)2

nX
i=1

(Y �i�1)
4

!1=2 
n�1

nX
i=1

(b��2i � ��2i )2
!1=2

(96)

and therefore by Assumption CHE(ii)(d) it is enough to show that n�1(1� �)2
Pn

i=1 (Y
�
i�1)

4 =

Op(1): By Markov�s inequality, we have

(97) P

 
n�1(1� �)2

nX
i=1

(Y �i�1)
4 > M

!
�M�2n�2(1� �)4

nX
i;j=1

E(Y �i�1Y
�
j�1)

4:

Thus, it is enough to show that for

(98) Eijstuvabcd = E(Ui�1�sUi�1�tUi�1�uUi�1�vUj�1�aUj�1�bUj�1�cUj�1�d);

we have

(99) n�2(1� �)4
nX

i;j=1

1X
s;t;u;v=0

1X
a;b;c;d=0

�a+b+c+d+s+t+u+vEijstuvabcd = O(1):

In the case where �! �� < 1; (99) holds by Assumption INNOV(iii). Next consider the case

when �! 1: Note that when the largest subindex i�1�s; :::; j�1�d in (99) appears only once
in Eijstuvabcd; then the expectation equals zero because Ui is a martingale di¤erence sequence.

As in some proofs of Lemmas 2-9, one can then show that it is enough to consider the case

where the largest subindex appears twice and all other subindices are di¤erent from each other.

One has to consider di¤erent subcases regarding the order of the subindices. We consider only

one case here, namely the case where i�1�s < i�1� t < ::: < j�1� b < j�1� c = j�1�d
and thus c = d: The other cases are handled using an analogous approach. We make use of the

mixing inequality in (26) and apply Assumption INNOV(iii). Note that

n�2(1� �)4
nX

i;j=1

1X
s>t>u>v=0

1X
a>b>c=0

�a+b+2c+s+t+u+vEijstuvabcc

= O(n�2(1� �)4)
nX

i;j=1

1X
s>t>u>v=0

1X
a>b>c=0

�a+b+2c+s+t+u+v(maxfs� t; t�u; b� cg)�3�"

= O(n�2(1� �)3)
nX

i;j=1

1X
s>t=0

�s(s� t)�1�"=3
1X

u>v=0

�s(s� t)�1�"=3
1X

b>c=0

�b(b� c)�1�"=3

= O(1);(100)
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where the last equality holds because
P1

b>c=0 �
b(b�c)�1�"=3 =

P1
c=0 �

c
P1

b=1 �
bb�1�"=3 = O((1�

�)�1): This completes the proof of (i) in (95). �

4.4 Proof of Lemma 1

Proof of Lemma 1. Assumption CHE(i) holds by Assumption CHE2(i) and (v). We verify

Assumption CHE(ii)(a) (which applies when h1 2 [0;1)) for j = 1: The proof for j = 0 is

similar. We need to show that

(101) n�1=2
nX
i=1

(n�1=2Y �i�1)Ui[
b��2i � ��2i ] = op(1):

To do so, we need to take account of the fact that under Assumption CHE2, b�2i di¤ers from �2i
in three ways. First, b�2i is based on the estimated conditional heteroskedasticity parameter e�n;
not the pseudo-true value �n; second, b�2i is based on residuals, i.e., it uses (e�n;e�n); not the true
values (0; �n); and third b�2i is de�ned using the truncated-at-time-period-one value Li; not L:
Assumption CHE2(iii) and (iv) implies that jjb�n � �njj � Cn��2 wp! 1 for some constant

C <1: Hence, e�n 2 �n;0 = �n\B(�n; Cn��2) wp! 1 (where B(�; �) denotes a ball with center

at � and radius �): The set �n;0 contains a �nite number of elements and the number is bounded

over n � 1: Without loss of generality, we can assume that �n;0 contains K <1 elements for

each n � 1: We order the elements in each set �n;0 and call them �n;k for k = 1; :::; K: This

yields K sequences f�n;k : n � 1g for k = 1; :::; K:
To show (101), we use the following argument. Suppose for some random variables f(Zn;0;

Zn(�n;1); :::; Zn(�n;K))
0 : n � 1g and Z; we have

(102) (Zn;0; Zn(�n;1); :::; Zn(�n;K))
0 !d (Z; :::; Z)

0

as n!1: In addition, suppose e�n 2 f�n;1; :::; �n;Kg wp! 1: Then, by the continuous mapping

theorem,

min
k�K

Zn(�n;k)� Zn;0 !d

�
min
k�K

Z

�
� Z = 0;

max
k�K

Zn(�n;k)� Zn;0 !d

�
max
k�K

Z

�
� Z = 0;

Zn(e�n)� Zn;0 2 [min
k�K

Zn(�n;k)� Zn;0;max
k�K

Zn(�n;k)� Zn;0] wp! 1; and hence,

Zn(e�n)� Zn;0 !d 0:(103)

Since convergence in distribution to zero is equivalent to convergence in probability to zero,
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this gives Zn(e�n)� Zn;0 !p 0. We apply this argument with

Zn;0 = n
�1=2

nX
i=1

(n�1=2Y �i�1)Ui�
�2
i and

Zn(�n;k) = n
�1=2

nX
i=1

(n�1=2Y �i�1)Ui�
�2
i (e�n;e�n; �n;k)(104)

for k = 1; :::; K:

Hence, it su¢ ces to show (102), where f�n;k : n � 1g is a �xed sequence such that �n;k ! �0

for k = 1; :::; K: To do so, we show below that

Zn(�n;k)� Zn(�n;k) = op(1); where

Zn(�n;k) = n
�1=2

nX
i=1

(n�1=2Y �i�1)Ui�
�2
i (0; �n; �n;k)(105)

(By de�nition, Zn(�n;k) is the same as Zn(�n;k) except that it is de�ned using the true para-

meters (0; �n) rather than the estimated parameters (e�n;e�n):) It is then enough to show that
(102) holds with Zn(�n;k) in place of Zn(�n;k):

For the case h1 2 [0;1) considered here, we do the latter by applying Lemma 4 with

(106) vn;i = (Ui; Ui�
�2
i ; Ui�

�2
i (0; �n; �n;1); :::; Ui�

�2
i (0; �n; �n;K)))

0:

Conditions (i) and (ii) of Lemma 4 hold by Assumptions INNOV and CHE2(v) (which guar-

antees that b��2i and ��2i (0; �n; �n;k) are uniformly bounded above). In addition, � = 0 because

f(vn;i;Gn;i�1) : i = :::; 0; 1; :::;n � 1g is a martingale di¤erence triangular array. Using Assump-
tion CHE2(vi), for all k1; k2; k3; k4 = 0; :::; K; we have

lim
n!1

n�1EVn;k1V
0
n;k2

= lim
n!1

n�1EVn;k3V
0
n;k4
; where

Vn;0 =
nX
i=1

Ui�
�2
i =

nX
i=1

Ui

 
!n +

LX
j=1

�j(�n)U
2
i�j

!
and

Vn;k =
nX
i=1

Ui�
�2
i (0; �n; �n;k) =

nX
i=1

Ui

 
!n;k +

LiX
j=1

�j(�n;k)U
2
i�j

!
(107)

for k = 1; :::; K: In consequence, the matrix 
0 in Lemma 4 has all elements that are not in

the �rst row or column equal to each other. For this reason, the elements in the limit random

vector in (102) are equal to each other. We conclude that (102) holds when Zn(�n;k) appears in

place of Zn(�n;k) by Lemma 4(b). In this case, Z = h
1=2
2;1

R
I�hdM; see Lemma 5(g) and its proof.

The veri�cation of Assumption CHE(ii)(a) when j = 0 is the same as that above because one
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of the elements of Xi�1 in Lemma 4(b) can be taken to equal 1 and the latter result still holds

with the corresponding element of K�
h being equal to 1; see Hansen (1992, Thm. 3.1).

It remains to show (105) holds in the case h1 2 [0;1) considered here. We only deal with
the case j = 1: The case j = 0 can be handled analogously. To evaluate ��2i (e�n;e�n; �n;k)�
��2i (0; �n; �n;k); we use the Taylor expansion

(108) (x+ �)�1 = x�1 � x�2� + x�3� �2;

where x� is between x+ � and x; applied with x+ � = �
2
i (e�n;e�n; �n;k); x = �2i (0; �n; �n;k); and

(109) � = �i = �
2
i (e�n;e�n; �n;k)� �2i (0; �n; �n;k):

Thus, to show Assumption CHE(ii)(a), it su¢ ces to show that

(110) n�1=2
nX
i=1

(n�1=2Y �i�1)Ui(�
�4
i (0; �n; �n;k)� � x�3� �2) = op(1):

Note that in the Taylor expansion, x�2 and x�3� are both bounded above (uniformly in i) because

both x+ � and x are bounded away from zero by Assumption CHE2(v). Simple algebra gives

� =

LiX
t=1

�t(�n;k)[�2Ui�te�n � 2Y �i�t�1Ui�t(e�n � �n)
+e�2n + 2Y �i�t�1(e�n � �n)e�n + Y �2i�t�1(e�n � �n)2]:(111)

The e¤ect of truncation by Li rather than L only a¤ects the �nite number of summands with

i � L and hence its e¤ect is easily seen to be asymptotically negligible and hence without loss
of generality we can set Li = L for the rest of the proof.

We �rst deal with the contributions from ��4i (0; �n; �n;k)� in (110). Rather than considering

the sum
PLi

t=1 in (111) when showing (110), it is enough to show that for every �xed t = 1; :::; L

the resulting expression in (110) is op(1). Fix t 2 f1; :::; Lg and set bi = ��4i (0; �; �n;k): It is

enough to show that

(112) n�1=2
nX
i=1

(n�1=2Y �i�1)Uibicit = op(1);

where cit equals

(i) Ui�te�n; (ii) Y �i�t�1Ui�t(e�n � �); (iii) e�2n;
(iv) Y �i�t�1(e�n � �)e�n, or (v) Y �2i�t�1(e�n � �)2:(113)
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By Assumption CHE2(iii) and because h1 2 [0;1); we have (1) e�n = Op(n�1=2) and e�n � � =
Op(n

�1): Terms of the form (2) n�1
Pn

i=1 Y
�
i�1UibiUi�t and n

�3=2Pn
i=1 Y

�
i�1Y

�
i�t�1 �UiUi�tbi are

Op(1) by Lemma 4(b) and (c) applied with vn;i = (Ui; Ui�t; UiUi�tbi)0: Note here that bi is an

element of the �-�eld �(Ui�L; :::; Ui�1) by de�nition of �
2
i (0; �; �n;k) in (19) and by Assumption

CHE2(i) and (v), (3) supi�n;n�1 jn�1=2Y �i�1j = Op(1) by Lemma 5(a), (4) terms of the form

n�1
Pn

i=1 jUiU
j
i�1j for j = 1; 2 are Op(1) by a WLLN for strong-mixing triangular arrays, see

Andrews (1988), and (5) the bi are Op(1) uniformly in i. The result in (112) for cases (i)-(ii)

of (113) follows from (2). Cases (iii)-(v) are established by jn�1=2
Pn

i=1(n
�1=2Y �i�1)Uibicitj �

supi�n;n�1 jn�1=2Y �i�1jn�3=2
Pn

i=1 jUij = op(1) using (1) and (3)-(5).
Next, we deal with the contributions from x�3� �

2 in (110). Because x�3� and �t(�n;k) are

both Op(1) uniformly in i, it is enough to show that

(114) n�1=2
nX
i=1

jn�1=2Y �i�1Uicij1dij2j = op(1);

where cij and dij 2 fUi�je�n; Y �i�j�1Ui�j(e�n � �); e�2n; Y �i�j�1(e�n � �)e�n; Y �2i�j�1(e�n � �)2g and
j1; j2 2 f1; :::; Lig: Conditions (1), (3), and (4) then imply (114). This completes the proof of
Assumption CHE(ii)(a).

Next, we verify Assumption CHE(ii)(b) (which applies when h1 2 [0;1)): For the cases
of (d; j) = (0; 2); (1; 2); and (2; 2); the proof is similar to that given below for Assumption

CHE(ii)(d) but with an = O(n1=2(1 � �)�1=2) replaced by an = n and using the results above
that (i) supi�n;n�1 jn�1=2Y �i�1j = Op(1) and (ii) terms of the form n�1

Pn
i=1 jU

j1
i U

j2
i�1j for j1 = 1; 2

and j2 = 1; 2 are Op(1); which holds using Assumption INNOV(iii). (Note that the case of

(d; j) = (0; 2) is not needed for Assumption CHE(ii) but is used in the veri�cation of Assumption

CHE(ii)(b) for the case where (d; j) = (0; 1), which follows.)

We now verify Assumption CHE(ii)(b) for (d; j) = (0; 1): We have

n�1
Pn

i=1 jb��1i � ��1i j = n�1
Pn

i=1 jb�i � �ij=(b�i�i)
� "�1n�1

Pn
i=1 jb�i � �ij � "�3=2n�1Pn

i=1 jb�2i � �2i j;(115)

where the �rst inequality holds because b�2i and �2i are bounded away from zero by some " > 0 by
Assumption CHE2(i), (ii), and (v) and the second inequality holds by the mean-value expansion

(x + �)1=2 = x1=2 + (1=2)x
�1=2
� �; where x� lies between x + � and x; applied with x + � = b�2i ;

x = �2i ; � =
b�2i � �2i ; and x�1=2� = ��1i;� � "�1=2 using Assumption CHE2(v), where �2i;� lies

between b�2i and �2i : The rhs of (115) is op(1) by the result above that Assumption CHE(ii)(b)
holds for (d; j) = (0; 2):
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Next, we verify Assumption CHE(ii)(c) (which applies when h1 = 1). We only show the
case j = 1, the case j = 0 is handled analogously. We use a very similar approach to the one

in the proof of Assumption CHE(ii)(a). We show that (105) holds when h1 =1 and that

(116) Zn;0 � Zn(�n;k) = op(1)

for every k = 1; :::; K; where

Zn;0 = n
�1=2

nX
i=1

((1� �)1=2Y �i�1)Ui��2i ;

Zn(�n;k) = n
�1=2

nX
i=1

((1� �)1=2Y �i�1)Ui��2i (e�n;e�n; �n;k); and
Zn(�n;k) = n

�1=2
nX
i=1

((1� �)1=2Y �i�1)Ui��2i (0; �; �n;k):(117)

We �rst show (105). By (108),

n�1=2
nX
i=1

((1� �)1=2Y �i�1)Ui(��2i (e�n;e�n; �n;k)� ��2i (0; �; �n;k))
= n�1=2

nX
i=1

((1� �)1=2Y �i�1)Ui(���4i (0; �; �n;k)� + x�3� �2);(118)

where � is de�ned in (111) and x� in (108). Hence, it su¢ ces to show that the expression in

the second line of (118) is op(1): First, we deal with the contributions from ���4i (0; �; �n;k)�
in (118). Rather than considering the sum

PLi
j=1 in (111) when showing (118), it is enough

to show that for every �xed j = 1; :::; Li the expression in the second line of (118) is op(1).

Fix j 2 f1; :::; Lig; set bi = ��4i (0; �; �n;k); and note that �j(�n;k) is bounded by Assumption

CHE2(vi). It is enough to show that

(119) n�1=2
nX
i=1

((1� �)1=2Y �i�1)Uibicij = op(1);

where cij equals

(i) Ui�je�n; (ii) Y �i�j�1Ui�j(e�n � �); (iii) e�2n;
(iv) Y �i�j�1(e�n � �)e�n, or (v) Y �2i�j�1(e�n � �)2:(120)

In case (i) of (120), we use Assumption CHE2(iii) which implies e�n = Op(n
�1=2): By
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Markov�s inequality and Assumption STAT, we have

P (jn�1(1� �)1=2
nX
i=1

Y �i�1UibiUi�jj > ")

= O(n�2(1� �))
nX

i;k=1

EbibkY
�
i�1Y

�
k�1UiUi�jUkUk�j

= O(n�2(1� �))
nX

i;k=1

1X
s;t=0

�s+tEbibkUi�s�1Uk�t�1UiUi�jUkUk�j:(121)

Note that bi is an element of the �-�eld �(Ui�L; :::; Ui�1): The latter holds by de�nition of

�2i (0; �; �n;k) in (19) and by Assumption CHE2(i) and (v). To show that the last expression

in (121) is o(1) we have to distinguish several subcases. As in several proofs above, we can

assume that all subindices i� s� 1; k� t� 1; :::; k� j are di¤erent. We only consider the case
i � s � 1 < k � t � 1 < i � j < k � j. The other cases can be dealt with using an analogous
approach. By Assumption INNOV(iii) and the mixing inequality in (26), we have

nX
k=1

1X
s;t=0

nX
i=1

�s+tEbibkUi�s�1Uk�t�1UiUi�jUkUk�j

= O(1)
nX
k=1

1X
s;t=0

k�t+s�1X
i=1

�s+t(k � t� i+ s)�3�"

= O(1)
nX
k=1

1X
s;t=0

�s+t
k�t+s�1X
i=1

i�3�"

= O(n(1� �)�2);(122)

where in the third line we do the change of variable i 7! k � t � i + s: This implies that the
expression in (121) is o(1) because n(1� �)!1:
In case (ii) of (120), using e�n� � = Op(n�1=2(1� �)1=2) by Assumption CHE2(iii), (11), and

Lemma 6, and using Markov�s inequality as for case (i), it is enough to show that

(123)
nX

i;k=1

1X
s;t=0

1X
u;v=0

�s+t+u+vEbijbkjUi�s�1Ui�j�1�tUiUi�jUk�u�1Uk�j�1�vUkUk�j

is o(n2(1� �)�2): Again, one has to separately examine several subcases regarding the order of
the subindices i� s�1; :::; k� j on the random variables Ui:We can assume that all subindices
are di¤erent. We only study the case i� s�1 < i� j�1� t < k�u�1 < k� j�1�v < i� j:
The other cases can be handled analogously. By Assumption INNOV(iii), boundedness of bi,
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and the mixing inequality in (26), the expression in (123) is of order

O(1)
nX
k=1

1X
s;t=0

1X
u;v=0

nX
i=k�v

�s+t+u+vmax(s� t� j; i� k + v + 1)�3�"

= O(1)
1X

u;v=0

�u+v
nX
k=1

nX
i=k�v

(i� k + v + 1)�3=2
1X
s;t=0

�s+t(s� t� j)�3=2

= O((1� �)�3n);(124)

where in the �rst line we use k � 1 � v < i and in the last line we use
Pn

i=k�v(i � k + v +
1)�3=2 =

Pn�k+v+1
i=1 i�3=2 = O(1): The desired result then follows because n(1��)!1 implies

O((1� �)�3n) = o(n2(1� �)�2).
Cases (iii)-(v) of (120) can be handled analogously.

Next, we show that the contribution from x�3� �
2 in (118) is op(1): Noting that x�3� and

�j(�n;k) are Op(1) uniformly in i by Assumption CHE2(ii), (v), and (vi), it is enough to show

that n�1=2(1� �)1=2
Pn

i=1 jY �i�1Uicij1dij2j = op(1); where cij and dij 2 fUi�je�n; Y �i�j�1Ui�j(e�n �
�); e�2n; Y �i�j�1(e�n � �)e�n; Y �2i�j�1(e�n � �)2g and j1; j2 2 f1; :::; Lig: Using e�n = Op(n

�1=2) ande�n � � = Op(n�1=2(1� �)1=2) the latter follows easily from Markov�s inequality. For example,

P (n�1=2(1� �)1=2
nX
i=1

jY �i�1Ui(Ui�j1e�n)(Ui�j2e�n)j > ")
= O(n�3(1� �))

nX
i;k=1

1X
s;t=0

�s+tEjUi�1�sUiUi�j1Ui�j2Uk�1�tUkUk�j1Uk�j2 j

= O(n�3(1� �))(1� �)�2n2

= o(1)(125)

by Assumption INNOV(iii) and n(1� �)!1:
Next we show that (116) holds: We have

Zn;0 � Zn(�n;k)

= n�1=2
nX
i=1

((1� �)1=2Y �i�1)Ui(��2i � ��2i (0; �; �n;k))

= n�1=2(1� �)1=2
nX
i=1

Y �i�1Ui(�
2
i (0; �; �n;k)� �2i )(��2i ��2i (0; �; �n;k))

= n�1=2(1� �)1=2
nX
i=1

Y �i�1Ui

 
!n � !n;k +

LX
j=1

(�j(�n)� �j(�n;k))U2i�j

!
�(��2i ��2i (0; �; �n;k)) + op(1);(126)
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where !n is de�ned in Assumption CHE2(ii). Thus, it is enough to show that

D1 = n
�1=2(1� �)1=2

nX
i=1

Y �i�1Ui(!n � !n;k)(��2i ��2i (0; �; �n;k)) and

D2j = n
�1=2(1� �)1=2

nX
i=1

Y �i�1Ui((�j(�n)� �j(�n;k))U2i�j)(��2i ��2i (0; �; �n;k))

(127)

are op(1) for j = 1; :::; L: We can prove D2j = op(1) along the same lines as D1 = op(1)

and we therefore only prove D1 = op(1). By Assumption CHE2(ii) and �n;k ! �0; we have

!n � !n;k ! 0: Thus, by Markov�s inequality and Assumption STAT,

P (jD1j > ")

= o(n�1(1� �))
nX

i;v=1

1X
s;t=0

�s+tEUi�1�sUiUv�1�tUv

���2i ��2i (0; �; �n;k)��2v ��2v (0; �; �n;k):(128)

The random variable eiv = (��2i �
�2
i (0; �; �n;k))(�

�2
v �

�2
v (0; �; �n;k)) is an element of the �-�eld

�(Uminfi;vg�L; :::; Umaxfi;vg) by de�nition of �
2
i (0; �; �n;k) in (19) and by Assumption CHE2(i)

and (v). To prove that the rhs in (128) is op(1) we have to study several subcases. We

only examine the subcase where all subindices i � 1 � s; i; v � 1 � t; v are di¤erent and where
i� 1� s < i < v � 1� t < v: The other cases can be dealt with analogously. By Assumption
INNOV(iii), boundedness of eiv, and the mixing inequality in (26), the rhs in (128) for the

particular subcase is of order

o(n�1(1� �))
nX

i;v=1

1X
s;t=0

�s+t(s+ 1)�3=2(v � 1� t� i)�3=2

= o(n�1(1� �))
1X
s;t=0

�s+t(s+ 1)�3=2
nX
v=1

v�2�tX
i=1

(v � 1� t� i)�3=2

= o(n�1(1� �))O((1� �)�1)O(n)

= o(1);(129)

where in the third line a change of variable i ! �i � t � 1 + v was used. This completes the
veri�cation of Assumption CHE(ii)(c).

Finally, we show that Assumption CHE(ii)(d) holds. First, note that Assumptions CHE2(i),

(ii), and (v) imply b��ji ��ji = Op(1) uniformly in i: Therefore, writing jb��ji � ��ji jd as j(�
j
i �

49



b�ji )=(b�ji�ji )jd we have
(130) n�1

nX
i=1

jUki (b��ji � ��ji )dj = Op(1)n�1
nX
i=1

jUki j � jb�ji � �ji jd:
We need to show that the quantity in (130) is op(1): Note that by the de�nition of b�2i in (19)
and �2i in Assumption CHE2(ii) we have

(131) jb�ji � �ji jd =
������
 e!n + LiX

v=1

�v(e�n)bU2i�v(e�n;e�n)
!j=2

�
 
!n +

LX
v=1

�v(�n)U
2
i�v

!j=2������
d

with bU2i�v(e�n;e�n) = (�(e�n��)Y �i�v�1�e�n+Ui�v)2: It can be shown that the additional terms in
(130), that arise if we replace Li by L in (131), are of order op(1):We �rst study the case where

j = 2: Multiplying out in (131), it follows that when d = 1; b�2i � �2i can be bounded by a �nite
sum of elements in S = fje!n�!nj; j�v(e�n)��v(�n)jU2i�v; (e�n��)2Y �2i�v�1; e�2n; j(e�n��)Y �i�v�1e�nj;
j(e�n � �)Y �i�v�1Ui�vj; e�nUi�v : for v = 1; :::; Lg: When d = 2; (b�ji � �ji )2 can be bounded by
a �nite sum of elements given as products of two terms in S. By Assumption CHE2(iii) and

an = O(n
1=2(1� �)�1=2); we have e�n� � = Op(n�1=2(1� �)1=2); e�n = Op(n�1=2), and e!n�!n =

Op(n
��2): To show the quantity in (130) is op(1); it is enough to verify that n�1

Pn
i=1 jUki si1si2j =

op(1) where for d = 1; si1 2 S and si2 = 1 and for d = 2; si1; si2 2 S: We only show this for one
particular choice of si1; si2; namely, si1 = si2 = j�v(e�n) � �v(�n)jU2i�v; the other cases can be
handled analogously. In that case, we have j�v(e�n)��v(�n)j2n�1Pn

i=1 jUki U2i�vj = op(1) because
j�v(e�n) � �v(�n)j2 = o(1) by Assumption CHE2(iii), (iv), and (vi), and n�1Pn

i=1 jUki U2i�vj =
Op(1) by a weak law of large numbers for triangular arrays of L1+�-bounded strong-mixing

random variables for � > 0; see Andrews (1988), using the moment conditions in Assumption

INNOV(iii).

The case j = 4 can be proved analogously. �
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