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Abstract

We study a class of continuous-time reputation games between a large player and a

population of small players in which the actions of the large player are imperfectly observable.

The large player is either a normal type, who behaves strategically, or a behavioral type, who

is committed to playing a certain strategy. We provide a complete characterization of the set

of sequential equilibrium payoffs of the large player using an ordinary differential equation.

In addition, we identify a sufficient condition for the sequential equilibrium to be unique and

Markovian in the small players’ posterior belief. An implication of our characterization is

that when the small players are certain that they are facing the normal type, intertemporal

incentives are trivial: the set of equilibrium payoffs of the large player coincides with the

convex hull of the set of static Nash equilibrium payoffs.

1 Introduction.

Reputation plays an important role in long-run relationships. A firm, for instance, can benefit

from reputation to fight potential entrants, to provide high quality to consumers, or to generate

good returns to investors. Governments can benefit from commitment to non-inflationary mon-

etary policy, low capital taxation and efforts to fight corruption. Sometimes, bad reputation can

also create perverse incentives that lead to market breakdown. In this paper, we study reputa-

tion dynamics in a repeated game between a large player and a population of small players in

which the actions of the large player are imperfectly observable. For example, the quality of a

firm’s products may be a noisy outcome of a firm’s hidden effort to maintain quality standards.

The inflation rate can be a noisy signal of money supply.

∗We are grateful to Daron Acemoglu, Kyna Fong, Drew Fudenberg, David K. Levine, George J. Mailath, Eric

Maskin, Stephen Morris, Bernard Salanie, Paolo Siconolfi, Lones Smith and seminar participants at Bocconi,

Columbia, Duke, Georgetown, the Institute for Advanced Studies at Princeton, UCLA, UPenn, UNC at Chapel

Hill, Washington Univ. in St. Louis, Yale, the 2005 Summer Workshop at the Stanford Institute of Theoretical

Economics, the 2006 Meetings of the Society for Economic Dynamics, the Cowles Foundation 75th Anniversary

Conference and the 2007 Game Theory Conference in SUNY, Stony Brook for many helpful comments and

suggestions.
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Our setting is a continuous-time analogue of the repeated game of Fudenberg and Levine

(1992), hereafter FL. In the class of games that we study, the public signals about the large

player’s actions are distorted by a Brownian motion. The small players are anonymous, that

is, the public information includes the aggregate distribution of the small players’ actions but

not the actions of any individual small player. Hence, as in FL, the small players behave

myopically in every equilibrium, acting to maximize their instantaneous expected payoffs. We

model reputation assuming that the large player can be either a normal type, who behaves

strategically, or a behavioral type, who is committed to playing a certain strategy. The reputation

of the large player is interpreted as the posterior probability the small players assign to the

behavioral type.

Discrete-time methods offer two main limit results about reputation games. First, FL show

that when the large player gets patient, in every equilibrium his payoff becomes at least as high

as the commitment payoff, which is the payoff he would receive if he could credibly commit to

the strategy of the behavioral type. Second, Cripps, Mailath, and Samuelson (2004) show that

reputation effects are temporary: in any equilibrium, the type of the large player is gradually

revealed in the long run. Apart from these two limits, not much is known about equilibrium

behavior in reputation games, particularly when actions are imperfectly observable. The explicit

construction of even one sequential equilibrium appears to be a hard problem.

In our continuous-time framework we are able to provide a complete characterization of

the set of sequential equilibrium payoffs of the large player for any fixed discount rate. The

characterization is in terms of an ordinary differential equation. We also identify an interesting

class of reputation games that have a unique sequential equilibrium, which is Markovian in

the large player’s reputation. In a Markov perfect equilibrium (see Maskin and Tirole (2001))

behavior is determined by the small players’ posterior belief, the payoff-relevant state variable.

The main sufficient condition for uniqueness is expressed in terms of a family of auxiliary one-

shot games in which the payoffs of the large player are adjusted by suitably defined “reputational

weights.” We show that whenever these auxiliary one-shot games have unique Bayesian Nash

equilibria, the reputation game will have a unique sequential equilibrium, which is Markovian

and continuous in the small players’ posterior belief.

We then examine how the large player’s reputation affects his equilibrium payoffs and incen-

tives. Under our sufficient condition for uniqueness, we show that whenever the large player’s

static Bayesian Nash equilibrium payoff increases in reputation, his sequential equilibrium payoff

in the repeated game also increases in reputation. In this case, reputation is good. The normal

type of large player benefits from imitating the behavioral type and building his reputation, but

in equilibrium this imitation is necessarily imperfect: if it were perfect, the public signals would

be uninformative about the large player’s type, so imitation would have no value. The normal

type obtains his maximum payoff when the small players are certain that they are facing the

behavioral type. In this extreme case the population’s beliefs never change and the normal type

“gets away” with any action.

We also extend our characterization to general environments with multiple sequential equi-

libria. Consider the correspondence of sequential equilibrium payoffs of the large player as a

function of the small players’ prior belief. We show that this correspondence is convex-valued
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and that its upper boundary is the maximal solution of a differential inclusion (see, e.g., Aubin

and Cellina (1984)), with an analogous characterization for the lower boundary.

One implication of our characterization is that when reputation effects are absent (i.e., when

the small players are certain that they are facing the normal type), the large player cannot attain

better payoffs than in static Nash equilibrium (Theorem 2). This result has no counterpart in

the discrete-time setting of FL, where non-trivial equilibria of the complete information game are

known to exist (albeit with payoffs bounded away from efficiency). Our equilibrium degeneracy

result reflects the fact that discrete-time intertemporal incentives break down when the large

player is able to respond to public information quickly. In the best discrete-time equilibrium,

the large player’s incentives arise from the threat of a punishment phase, which is triggered

when the signal about his actions is sufficiently bad. The intuition from Abreu, Milgrom, and

Pearce (1991), who study discrete-time games in the limit as actions become more frequent,

explains why such incentives unravel. In games with frequent actions, the information that

players observe within each time period becomes excessively noisy, and so the statistical tests

that trigger the punishment regimes produce false positives too often. This effect is especially

strong when information arrives continuously via a Brownian motion, as shown in Sannikov and

Skrzypacz (2006a) for discrete-time games with frequent actions.1 We carry out our arguments

directly in continuous time.

The Markovian property of reputational equilibria is connected to the collapse of intertem-

poral incentives in the repeated game without reputation effects. When the static game has a

unique Nash equilibrium, the only equilibrium of the continuous-time game without reputation

is the repetition of the static Nash equilibrium, which is trivially Markovian. In our setting,

continuous time prevents non-Markovian incentives created by rewards and punishments from

enhancing the incentives naturally created by reputation dynamics.

We conclude the introduction by discussing the related literature. The asymmetric infor-

mation approach to reputations was introduced in the early papers of Kreps and Wilson (1982)

and Milgrom and Roberts (1982), who analyze the chain store paradox, and Kreps, Milgrom,

Roberts, and Wilson (1982), who study cooperation in the finitely repeated prisoners’ dilemma.

Arbitrarily small amounts of incomplete information (in the form of behavioral types) give rise

to behaviors that cannot be supported by the equilibria of the underlying complete informa-

tion games: entry deterrence in the chain store game and cooperation in the finitely repeated

prisoners’ dilemma.

FL study payoff bounds from reputation effects in repeated games in which the actions of

the long-run player are imperfectly observable. FL show that when the set of behavioral types

is sufficiently rich and the monitoring technology satisfies a statistical identification condition,

the upper and lower bounds coincide with the long-run player’s Stackelberg payoff, that is, the

payoff he obtains from credibly committing to the strategy to which he would like to commit

the most. A related paper, Faingold (2006), extends the Fudenberg-Levine payoff bounds to a

class of continuous-time games that includes the games we study in this paper. In addition,

Faingold (2006) shows that such payoff bounds also hold for discrete-time games with frequent

1See also the more recent studies of Fudenberg and Levine (2006) and Sannikov and Skrzypacz (2006b) into

the qualitative differences between Poisson and Brownian information.
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actions uniformly in the period length.

We use methods related to those of Sannikov (2006a) and Sannikov (2006b) to derive the

connection between the large player’s incentives and the law of motion of the large player’s

continuation value, which forms a part of the recursive structure of our games. The other part,

which is new to our paper, comes from the evolution of the posterior beliefs. The consistency

and sequential rationality conditions for sequential equilibria are formulated in terms of these

two variables.

The paper is organized as follows. Section 2 presents our leading example. Section 3 in-

troduces the continuous-time model. Section 4 provides a recursive characterization of public

sequential equilibria. Section 5 examines the underlying complete information game. Section 6

provides the ODE characterization when equilibrium is unique. Section 7 extends the charac-

terization to games with multiple equilibria.

2 Example: The Game of Quality Standards.

Consider a monopolist who provides a service to a continuum of identical consumers. At each

time t ∈ [0,∞), the monopolist chooses a level of investment in quality, at ∈ [0, 1], and each

consumer i ∈ I ≡ [0, 1] chooses a service level, bi
t ∈ [0, 3]. The monopolist does not observe

each consumer individually, but only the average level of service, b̄t, over the population of

consumers. Likewise, the consumers do not observe the monopolist’s investment. Instead, they

publicly observe the quality of the service, dXt, which is a noisy signal of the monopolist’s

investment:

dXt = at(4 − b̄t) dt + (4 − b̄t) dZt ,

where (Zt)t≥0 is a standard Brownian motion. The drift, at(4− b̄t), is the expected quality flow

at time t, and 4− b̄t is the magnitude of the noise. Hence, the technology features a congestion

effect: the expected quality flow per customer deteriorates with greater usage. Note that the

noise also decreases with usage: the more customers use the service the better they learn its

quality.

The unit price for the service is exogenously fixed and normalized to unity. The overall

surplus of consumer i ∈ I is

r

∫ ∞

0
e−rt(bi

t dXt − bi
t dt),

where r > 0 is a discount rate. We emphasize that in equilibrium the consumers behave

myopically, that is, they act to maximize their expected flow payoff, because the service provider

can only observe their aggregate consumption.

The discounted profit of the monopolist is

r

∫ ∞

0
e−rt(b̄t − at) dt . (1)

In the unique static Nash equilibrium of this game, the service provider makes zero investment

and the consumers choose zero service level. As we show in Section 5,s in the repeated game

without reputation effects (i.e., when the consumers are certain that the monopolist’s payoff is
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Figure 1: Equilibrium payoffs and actions in the game of quality standards.

given by (1)), the only equilibrium is the repetition of the static Nash equilibrium. Hence, unlike

in discrete-time repeated games, here it is impossible for the consumers to create intertemporal

incentives for the monopolist to invest, despite the fact that the monopolist’s investment can

be statistically identified (i.e., different investment levels induce different drifts for the quality

signal Xt).

However, if the large player were able to credibly commit to investment level a∗ ∈ [0, 1], he

would be able to influence the consumers’ decisions and get a better payoff. Each consumer’s

choice, bi, would maximize their expected flow payoff bi(a∗(4 − b̄) − 1), and in equilibrium all

consumers would choose the same level b∗i = max {0, 4 − 1/a∗}. The service provider would

earn a profit of max {0, 4− 1/a∗} − a∗ and at a∗ = 1 this function achieves its maximal value of

2, the monopolist’s Stackelberg payoff.

Following these observations, it is interesting to explore the repeated game with reputation

effects. Assume that at time zero the consumers believe that with probability p ∈ (0, 1) the

service provider is a behavioral type, who always chooses investment a∗ = 1, and with probability

1 − p he is a normal type, who chooses at to maximize his expected discounted profit. What

happens in equilibrium?

The top panel of Figure 1 displays the unique sequential equilibrium payoff of the normal
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type as a function of the population’s belief p, for different discount rates r. In equilibrium the

consumers continually update their belief φt, the probability assigned to the behavioral type,

using the observations of the public signal Xt. The equilibrium is Markovian in the posterior

belief φt, which uniquely determines the equilibrium actions of the normal type (bottom left

panel) and the consumers (bottom right panel).

Consistent with the asymptotic payoff bound from Faingold (2006, Theorem 3.1), the com-

putation shows that as r → 0, the large player’s payoff converges to his commitment payoff of

2. We also see from Figure 1 that the customer usage level b̄ increases towards the commitment

level of 3 as the discount rate r decreases towards 0. While the normal type chooses action 0 for

all levels of φt when r = 2, as r is closer to 0, his action increases towards a∗ = 1. However, the

imitation of the behavioral type by the normal type is never perfect, even for very low discount

rates.

In this example for every discount rate r > 0 the equilibrium action of the normal type is

exactly 0 near φ = 0 and 1 and the population’s action is 0 near φ = 0 (not visible in Figure 1 for

r = 0.1). The normal type of the large player imitates the behavioral type only for intermediate

levels of reputation.

Using our characterization from Section 6, we can not only compute equilibria in examples,

but also prove comparative statics results analytically. For example, consider a variation of our

game in which the payoff flow of the small players is given by αbi
t dXt − bi

t dt, where α > 0 is a

parameter. In Appendix C.4 we show that for every prior p ∈ (0, 1), the equilibrium payoff of

the large player weakly increases in α.

3 The Repeated Game.

A large player participates in a repeated game with a continuum of small players uniformly

distributed on I = [0, 1]. At each time t ∈ [0,∞), the large player chooses an action at ∈ A

and each small player i ∈ I chooses an action bi
t ∈ B based on their current information.

Action spaces A and B are compact subsets of an Euclidean space. The small players’ moves

are anonymous: at each time t, the large player observes the aggregate distribution b̄t ∈ ∆(B)

of the small players’ actions, but does not observe the action of any individual small player.

There is imperfect monitoring : the large player’s moves are not observable to the small players.

Instead, the small players see a noisy public signal (Xt)t≥0 that depends on the actions of the

large player, the aggregate distribution of the small players’ actions and noise. Specifically,

dXt = µ(at, b̄t) dt + σ(b̄t) · dZt,

where (Zt) is a d-dimensional Brownian motion, and the drift and the volatility of the signal

are continuous functions µ : A × B → R
d and σ : B → R

d×d, which are linearly extended to

A × ∆(B) and ∆(B) respectively.2 For technical reasons, assume that there exists c > 0 such

that |σ(b) · y| ≥ c|y|, ∀y ∈ R
d, ∀b ∈ B. Denote by (Ft)t≥0 the filtration generated by (Xt).

2Functions µ and σ are extended to distributions over B via µ(a, b̄) =
∫

B
µ(a, b) db̄(b) and σ(b̄)σ(b̄)⊤ =

∫

B
σ(b)σ(b)⊤ db̄(b).
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Our assumption that only the drift of X depends on the large player’s action corresponds to

the constant support assumption that is standard in discrete time repeated games. By Girsanov’s

Theorem the probability measures over the paths of two diffusion processes with the same

volatility but different bounded drifts are equivalent, that is, they have the same zero-probabilty

events. Since the volatility of a continuous-time diffusion process is effectively observable, we

do not allow σ(b̄) to depend on a.3

Small players have identical preferences.4 The payoff of each small player depends only on

his own action, the aggregate distribution of the small players’ actions, and the sample path of

the signal (Xt). A small player’s payoff is

r

∫ ∞

0
e−rt

(
u(bi

t, b̄t) dt + v(bi
t, b̄t) · dXt

)

where u : B × B → R and v : B × B → R
d are continuously differentiable functions that

are extended linearly to B × ∆(B). Then the expected payoff flow of the small players h :

A × B × ∆(B) → R is given by

h(a, b, b̄) = u(b, b̄) + v(b, b̄) · µ(a, b̄).

The small players’ payoff functions are common knowledge.

The small players are uncertain about the type θ of the large player. At time 0 they believe

that with probability p ∈ [0, 1] the large player is a behavioral type (θ = b) and with probability

1− p he is a normal type (θ = n). The behavioral type mechanically plays a fixed action a∗ ∈ A

at all times. The normal type plays strategically to maximize his expected payoff. The payoff

of the normal type of the large player is

r

∫ ∞

0
e−rt g(at, b̄t) dt ,

where the payoff flow is defined through a continuously differentiable function g : A × B → R

that is extended linearly to A × ∆(B).

In the dynamic game the small players update their beliefs about the type of the large player

by Bayes rule from their observations of X. Denote by φt the probability that the small players

assign to the large player being a behavioral type at time t ≥ 0.

A pure public strategy of the normal type of large player is a progressively measurable (with

respect to (Ft)) process (at)t≥0 with values in A. Similarly, a pure public strategy of small player

i ∈ I is a progressively measurable process (bi
t)t≥0 with values in B. We assume that jointly the

strategies of the small players and the aggregate distribution satisfy appropriate measurability

properties.

3If some dimensions of the large player’s actions were observable, as the price in the game of quality standards,

the normal type would have to imitate the behavioral type perfectly along those dimensions, or else reveal himself.

Our results can be generalized to such a setting with minor modifications (e.g. the large player may sometimes

mix between revealing himself or not).
4The characterization of our paper can be easily extended to a setting where the small players observe the

same public signal, but have heterogeneous preferences.

7



Definition 1. A public sequential equilibrium consists of a public strategy (at)t≥0 of the nor-

mal type of large player, public strategies (bi
t)t≥0 of small players i ∈ I, and a progressively

measurable belief process (φt)t≥0, such that at all times t and after all public histories:

(a) the strategy of the normal type of large player maximizes his expected payoff

Et

[

r

∫ ∞

0
e−rt g(at, b̄t) dt

∣
∣
∣ θ = n

]

,

(b) the strategy of each small player maximizes his expected payoff

(1 − φt)Et

[

r

∫ ∞

0
e−rt h(at, b

i
t, b̄t) dt

∣
∣
∣ θ = n

]

+ φt Et

[

r

∫ ∞

0
e−rt h(a∗, bi

t, b̄t) dt
∣
∣
∣ θ = b

]

(c) beliefs (φt)t≥0 are determined by Bayes rule given the common prior φ0 = p.

A strategy profile that satisfies conditions (a) and (b) is called sequentially rational. A belief

process (φt) that satisfies condition (c) is called consistent.

In Section 4 we explore these properties in detail and characterize them in our setting (The-

orem 1). We use this characterization in Section 5 to explore the game with prior p = 0, and

in Section 6 to present a set of sufficient conditions under which the sequential equilibrium for

any prior is unique and Markovian in the population’s belief. In this case, we characterize the

sequential equilibrium payoffs of the normal type as well as the equilibrium strategies via an ordi-

nary differential equation. In Section 7 we characterize the large player’s sequential equilibrium

payoffs when multiple equilibria exist.

Remark 1. Although the aggregate distribution of the small players’ actions is publicly observ-

able, our requirement that public strategies depend only on the sample paths of X is without

loss of generality. In fact, for a given strategy profile, the public histories along which there

are observations of b̄t that differ from those on-the-path-of-play correspond to deviations by a

positive measure of small players. Therefore our definition of public strategies does not alter the

set of public sequential equilibrium outcomes.

Remark 2. All our results hold for public sequential equilibria in mixed strategies. A mixed

public strategy of the large player is a random process (āt)t≥0 progressively measurable with

respect to Ft with values in ∆(A). The drift function µ should be extended linearly to ∆(A) ×
∆(B) to allow for mixed strategies. Because there is a continuum of anonymous small players,

the assumption that each of them plays a pure strategy is without loss of generality.

Remark 3. For both pure and mixed equilibria, the restriction to public strategies is without

loss of generality in our games. For pure strategies, it is redundant to condition a player’s current

action on his private history, as it is completely determined by the public history. For mixed

strategies, the restriction to public strategies is without loss of generality in repeated games in

which the signals have a product structure, as in our games.5 Informally, to form a belief about

5In a game with a product structure each public signal depends on the actions of only one large player. See

the definition in Fudenberg and Levine (1994, Section 5)

8



his opponent’s private histories, in a game with product structure a player can ignore his own

past actions because they do not influence the signal about his opponent’s actions. Formally, a

mixed private strategy of the large player in our game is a random process (at) with values in

A that is progressively measurable with respect to a filtration (Gt), which is generated by the

public signals X and the large player’s private randomization. For any private strategy of the

large player, an equivalent mixed public strategies is defined by letting āt be the conditional

distribution of at given Ft. Strategies at and āt induce the same probability distributions over

public signals and give the large player the same expected payoff (given Ft).

4 The Structure of Sequential Equilibria.

This section provides a characterization of public sequential equilibria of our game, which is

summarized in Theorem 1. In equilibrium, the small players always choose a static best response

given their belief about the large player’s actions. The behavioral type of the large player always

chooses action a∗, while the normal type chooses his actions strategically taking into account

his expected future payoff, which depends on the public signal X. The dynamic evolution of the

small players’ belief is also determined by X.

The equilibrium play has to satisfy two conditions: the beliefs must be consistent with

the players’ strategies, and the strategies must be sequentially rational given beliefs. For the

consistency of beliefs, Proposition 1 presents equation (1) that describes how the small players’

belief evolves with the public signal X. Sequential rationality of the normal type’s strategy is

verified by looking at the evolution of his continuation value Wt, the future expected payoff of

the normal type given the history of public signals X up until time t. Proposition 2 presents a

necessary and sufficient condition for the law of motion of a random process W, under which W

is the continuation value of the normal type. Proposition 3 presents a condition for sequential

rationality that is connected to the law of motion of W . Propositions 2 and 3 are analogous to

Propositions 1 and 2 from Sannikov (2006b).

Subsequent sections of our paper use the equilibrium characterization of Theorem 1. Sec-

tion 5 uses Theorem 1 to show that in the complete-information repeated game in which the

small players are certain that they are facing the normal type, the set of public sequential equi-

librium payoffs of the large player coincides with the convex hull of his static Nash equilibrium

payoffs. Section 6 analyzes a convenient class of games in which the public sequential equi-

librium turns out to be unique and Markovian in the population’s posterior belief. Section 7

characterizes the set of public sequential equilibrium payoffs of the large player generally.

We begin with Proposition 1, which explains how the small players use Bayes rule to update

their beliefs based on the observations of the public signals.6

Proposition 1 (Belief Consistency). Fix a public strategy profile (at, b̄t)t≥0 and a prior p ∈ [0, 1]

6A simpler version of equation (2) for history-independent drifts has been used in the literature on strategic

experimentation in continuous time. See, e.g., Bolton and Harris (1999, Lemma 1) and Moscarini and Smith

(2001, equation 2). For a more general filtering equation, which allows the unknown parameter θ to follow a

Markov process, see Liptser and Shiryaev (1977, Theorem 9.1).
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on the behavioral type. Belief process (φt)t≥0 is consistent with (at, b̄t)t≥0 if and only if it satisfies

dφt = γ(at, b̄t, φt) · dZφ
t (2)

with initial condition φ0 = p, where

γ(a, b̄, φ) = φ(1 − φ)σ(b̄)−1
(
µ(a∗, b̄) − µ(a, b̄)

)
, (3)

dZφ
t = σ(b̄t)

−1(dXt − µφt(at, b̄t) dt) , and (4)

µφ(a, b̄) = φµ(a∗, b̄) + (1 − φ)µ(a, b̄) . (5)

Proof. The strategies of the two types of large player induce two different probability measures

over the paths of the signal (Xt). From Girsanov’s Theorem we can find the ratio ξt between

the likelihood that a path (Xs : s ∈ [0, t]) arises for type b and the likelihood that it arises for

type n. This ratio is characterized by

dξt = ξt ρt · dZn

s , ξ0 = 1 , (6)

where ρt = σ(b̄t)
−1

(
µ(a∗, b̄t) − µ(at, b̄t)

)
and (Zn

t ) is a Brownian motion under the probability

measure generated by type n’s strategy.

Suppose that belief process (φt) is consistent with (at, b̄t)t≥0. Then, by Bayes’ rule, the

posterior after observing a path (Xs : s ∈ [0, t]) is

φt =
pξt

pξt + (1 − p)
. (7)

By Ito’s formula,

dφt =
p(1 − p)

(pξt + (1 − p))2
dξt −

2p2(1 − p)

(pξt + (1 − p))3
ξ2
t ρt · ρt

2
dt

= φt(1 − φt)ρt · dZn

t − φ2
t (1 − φt)(ρt · ρt) dt (8)

= φt(1 − φt)ρt · dZφ
t ,

which is equation (2).

Conversely, suppose that (φt) is a process that solves equation (2) with initial condition

φ0 = p. Define ξt using expression (7), i.e.,

ξt =
1 − p

p

φt

1 − φt
.

By another application of Ito’s formula, we conclude that (ξt) satisfies equation (6). This implies

that ξt is the ratio between the likelihood that a path (Xs : s ∈ [0, t]) arises for type b and the

likelihood that it arises for type n. Hence, φt is determined by Bayes rule and the belief process

is consistent with (at, b̄t).

In the equations of Proposition 1, (at) is the strategy that the normal type is supposed to

follow. If the normal type deviates, his deviation affects only the drift of X, but not the other

terms in equation (2).
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Coefficient γ in equation (2) is the volatility of beliefs: it reflects the speed with which the

small players learn about the type of the large player. The definition of γ plays an important role

in the characterization of public sequential equilibria presented in Sections 6 and 7 (Theorems 3

and 4). The intuition behind equation (2) is as follows. If the small players are convinced about

the type of the large player, then φt(1 − φt) = 0, so they never change their beliefs. When

φt ∈ (0, 1) then γ(at, b̄t, φt) is larger, and learning is faster, when the noise σ(b̄t) is smaller or

the drifts produced by the two types differ more. From the small players’ perspective, (Zφ
t )

is a Brownian motion and their belief (φt) is a martingale. From equation (8) we see that,

conditional on the large player being the normal type, the drift of φt is non-positive: in the long

run, either the small players learn that they are facing the normal type, or the normal type

plays like the behavioral type.

We turn to the analysis of the second important state descriptor of the interaction between

the large and the small players, the continuation value of the normal type. A player’s con-

tinuation value is his future expected payoff after a given public history for a given profile of

continuation strategies. We derive how the large player’s incentives arise from the law of motion

of his continuation value. We will find that the large player’s strategy is optimal if and only if

a certain local incentive constraint holds at all times t ≥ 0.

For a given strategy profile S = (at, b̄t)t≥0, the continuation value Wt(S) of the normal type

is his expected payoff at time t when he plans to follow strategy (as)s≥0 from time t onwards,

i.e.

Wt(S) = Et

[

r

∫ ∞

t

e−r(s−t)g(as, b̄s) ds
∣
∣
∣ θ = n

]

(9)

Proposition 2 below characterizes the law of motion of Wt.

Throughout the paper we will write L∗ for the space of progressively measurable processes

(βt)t≥0 with E
[ ∫ T

0 β2
t dt

]
< ∞ for all 0 < T < ∞.

Proposition 2 (Continuation Values). A bounded process (Wt)t≥0 is the continuation value

of the normal type under the public-strategy profile S = (at, b̄t)t≥0 if and only if for some d-

dimensional process (βt) in L∗, we have

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt). (10)

Proof. First, note that Wt(S) is a bounded process by (9), and let us show that Wt = Wt(S)

satisfies (10) for some d-dimensional process βt in L∗. Denote by Vt(S) the average discounted

payoff of the normal type conditional on the public information at time t, i.e.,

Vt(S) = Et

[

r

∫ ∞

0
e−rsg(as, b̄s) ds

∣
∣
∣ θ = n

]

= r

∫ t

0
e−rsg(as, b̄s) ds + Wt(S) (11)

Then Vt is a martingale when the large player is of normal type. By the Martingale Represen-

tation Theorem, there exists a d-dimensional process βt in L∗ such that

dVt(S) = re−rtβt · σ(b̄t)dZ
n

t , (12)

where dZn

t = σ(b̄t)
−1(dXt − µ(at, b̄t) dt) is a Brownian motion from the point of view of the

normal type of the large player.

11



Differentiating (11) with respect to time yields

dVt(S) = re−rtg(at, b̄t) dt − re−rtWt(S) dt + e−rtdWt(S) (13)

Combining equations (12) and (13) yields (10).

Conversely, let us show if Wt is a bounded process that satisfies (10) then Wt = Wt(S).

When the large player is normal, the process

Vt = r

∫ t

0
e−rsg(as, b̄s) ds + e−rtWt

is a martingale under the strategies S = (at, b̄t) because dVt = re−rtβt · σ(b̄t)dZ
n

t by (10).

Moreover, martingales Vt and Vt(S) converge because both e−rtWt and e−rtWt(S) converge to

0. Therefore,

Vt = Et[V∞] = Et[V∞(S)] = Vt(S) ⇒ Wt = Wt(S)

for all t, as required.

Representation (10) describes how Wt(S), defined above, evolves with the public history. It

is valid independently of the large player’s actions until time t, which caused a given history

(Xs, s ∈ [0, t]) to realize. This fact is important in the proof of Proposition 3 below, which deals

with incentives.

Next, we derive conditions for sequential rationality. The condition for the small players is

straightforward: they maximize their static payoff because a deviation of an individual small

player does not affect future equilibrium play. The situation of the normal type of large player

is more complicated: he acts optimally if he maximizes the sum of his current payoff flow and

the expected change in his continuation value.

Proposition 3 (Sequential Rationality). A public strategy profile (at, b̄t)t≥0 is sequentially ra-

tional with respect to a belief process (φt) if and only if for all times t ≥ 0 and after all public

histories,

at ∈ arg max
a′∈A

g(a′, b̄t) + βt · µ(a′, b̄t) , (14)

b ∈ arg max
b′∈B

u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t), ∀b ∈ support b̄t . (15)

Proof. Consider a strategy profile (at, b̄t) and an alternative strategy (ãt) of the normal type.

Denote by Wt the continuation payoff of the normal type when he follows strategy (at) after time

t, while the population follows (b̄t). If the normal type of large player plays strategy (ãt) up to

time t and then switches back to (at), his expected payoff conditional on the public information

at time t is given by

Ṽt = r

∫ t

0
e−rsg(ãs, b̄s) ds + e−rtWt .

By Proposition 2 and the expression above,

dṼt = re−rt
(
g(ãt, b̄t) − Wt

)
dt + e−rtdWt

= re−rt
(
(g(ãt, b̄t) − g(at, b̄t)) dt + βt · (dXt − µ(at, b̄t) dt)

)
,

12



where the process β ∈ L∗ is given by representation (10).

Hence the profile (ãt, b̄t) yields the normal type expected payoff

W̃0 = E[Ṽ∞] = E

[

Ṽ0 +

∫ ∞

0
dṼt

]

= W0 + E

[

r

∫ ∞

0
e−rt

(
g(ãt, b̄t) − g(at, b̄t) + βt · (µ(ãt, b̄t) − µ(at, b̄t)

)
dt

]

,

where the expectations are taken under the probability measure induced by (ãt, b̄t), and so (Xt)

has drift µ(ãt, b̄t).

Suppose that strategy profile (at, b̄t) and belief process (φt) satisfy the incentive constraints

(14) and (15). Then, for every (ãt), one has W0 ≥ W̃0, and so the normal type is sequentially

rational at time 0. By a similar argument, the normal type is sequentially rational at all times

t, after all public histories. Note also that the small players are maximizing their instantaneous

expected payoffs. Since the small players are anonymous, no unilateral deviation by a small

player can affect the future course of play. Therefore each small player is also sequentially

rational.

Conversely, suppose that incentive constraint (14) fails. Choose a strategy (ãt) such that

ãt attains the maximum in (14) for all t ≥ 0. Then W̃0 > W0 and the large player is not

sequentially rational at t = 0. Likewise, if condition (15) fails, then a positive measure of small

players is not maximizing their instantaneous expected payoffs. Since the small player’s actions

are anonymous, their strategies would not be sequentially rational.

We can now summarize our characterization of sequential equilibria.

Theorem 1 (Sequential Equilibrium). A profile (at, b̄t, φt) is a public sequential equilibrium

with continuation values (Wt) for the normal type if and only if

(a) (Wt) is a bounded process that satisfies

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt) (16)

for some process β ∈ L∗,

(b) belief process (φt) follows

dφt = γ(at, b̄t, φt) σ(b̄t)
−1(dXt − µφt(at, b̄t) dt) , and (17)

(c) strategies (at, b̄t) satisfy the incentive constraints

at ∈ arg maxa′∈A g(a′, b̄t) + βtµ(a′, b̄t) , and

b ∈ arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t) , ∀ b ∈ support b̄t .
(18)

Theorem 1 provides a characterization of public sequential equilibria which can be used to

derive many of its properties. In Section 5 we apply Theorem 1 to the repeated game with prior

p = 0, the complete information game. In Sections 6 and 7 we characterize the correspondence

E : [0, 1] ⇉ R that maps the prior probability p ∈ [0, 1] on the behavioral type into the set
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of public sequential equilibrium payoffs of the normal type in the repeated game with prior p.

Theorem 1 implies that E is the largest bounded correspondence such that a controlled process

(φt,Wt), defined by (16) and (17), can be kept in Graph(E) by controls (at, b̄t) and (βt) that

satisfy (18).7

4.1 Gradual Revelation of the Large Player’s Type.

To end this section, we apply Theorem 1 to show that Condition 1 below is necessary and

sufficient for the reputation of the normal type to decay to 0 with probability 1 in any public

sequential equilibrium (Proposition 4). Condition 1 states that in any Nash equilibrium of the

static game with just the normal type, the large player cannot appear committed to action a∗.8

Naturally, this condition plays an important role in Sections 6 and 7, where we characterize

sequential equilibria with reputation.

Condition 1. For every Nash equilibrium (aN , b̄N ) of the static game with prior p = 0,

µ(aN , b̄N ) 6= µ(a∗, b̄N ).

In discrete time, Cripps, Mailath, and Samuelson (2004) show that the reputation of the

normal type converges to zero in any sequential equilibrium under stronger conditions than

Condition 1. Among other assumptions, they also require that the small players’ best reply to

the commitment action be strict. In discrete time, an analogue of Condition 1 alone would not

be sufficient. (See Cripps, Mailath, and Samuelson (2004, p. 414).)

Proposition 4. If Condition 1 fails, then for any p ∈ [0, 1] the stage game has a Bayesian Nash

equilibrium (BNE) in which the normal and the behavioral types look the same to the population.

The repetition of this BNE is a public sequential equilibrium of the repeated game with prior p,

in which the population’s belief stays constant.

If Condition 1 holds, then in any public sequential equilibrium φt → 0 as t → ∞ almost

surely under the normal type.

Proof. If Condition 1 fails, then there is a static Nash equilibrium (aN , b̄N ) of the complete-

information game with µ(aN , b̄N ) = µ(a∗, b̄N ). It is easy to see that (aN , b̄N ) is also a BNE of

the stage game with any prior p. The repetition of this BNE is a public sequential equilibrim

of the repeated game, in which the beliefs φt ∈ p remain constant. With these beliefs (17) and

(18) hold, and Wt = g(aN , b̄N ) for all t.

Conversely, if Condition 1 holds there is no BNE (a, b̄) of the static game with prior p > 0

in which µ(a, b̄) = µ(a∗, b̄). Otherwise, (a, b̄) would be a Nash equilibrium of the static game

with prior p = 0, since the small players’ payoffs depend on the actions of the large player only

through the drift, a contradiction to Condition 1.

We present the rest of the proof in Appendix A, where we show that for some constants

C > 0 and M > 0, in every sequential equilibrium at all times t either

7This means that there does not exist a bounded correspondence with such property whose graph contains the

graph of E as a proper subset.
8Note that the action of the large player affects the small players’ payoffs only through the drift of X.
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(a) the absolute value of the volatility of φt is at least Cφt(1 − φt) or

(b) the absolute value of the volatility of Wt is at least M .

To see this intuitively, note that if the volatility of φt at time t is 0, i.e. γ(at, b̄t, φt) = 0, then

(at, b̄t) is not a BNE of the stage game by Condition 1. Then the incentive constraints (18)

imply that βt 6= 0. In Appendix A we rely on the fact that Wt is a bounded process to show that

under conditions (a) and (b), φt eventually decays to 0 when the large player is normal.

Proposition 4 also implies that players never reach an absorbing state in any public sequential

equilibrium if and only if Condition 1 holds. Players reach an absorbing state at time t if

their actions as well as the population’s beliefs remain fixed after that time. We know that

in continuous-time games between two large players, equilibrium play sometimes necessarily

reaches an absorbing state, as shown in Sannikov (2006b). This possibility requires special

treatment in the characterization of equilibria in games between two large players.

5 Equilibrium Degeneracy under Complete Information.

In this section we examine the structure of the set of equilibrium payoffs of the large player in

the complete information game (p = 0), that is, in the game in which it is common knowledge

that the large player is the normal type.

Theorem 2. Suppose the small players are certain that they are facing the normal type, that is,

p = 0. Then in every public sequential equilibrium of the repeated game the large player cannot

achieve a payoff outside the convex hull of his stage-game Nash equilibrium payoffs, i.e.

E(0) = co

{

g(a, b̄) :
a ∈ arg maxa′∈A g(a′, b̄)

b ∈ arg maxb′∈B u(b′, b̄) + v(b′, b̄) · µ(a, b̄), ∀b ∈ support b̄

}

.

Proof. Let v̄ be the highest Nash equilibrium payoff of the large player in the static game. We

will show that it is impossible to achieve a payoff higher than v̄ in any public equilibrium. (A

proof for the lowest Nash equilibrium payoff is similar). Suppose there was a public equilibrium

in which the large player’s continuation value W0 was greater than v̄. By Proposition 3, for

some random process (βt) in L∗, the large player’s continuation value satisfies

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt),

where at maximizes g(a′, b̄t) + βtµ(a′, b̄t) over all a′ ∈ A. Denote D̄ = W0 − v̄.

We claim that there exists δ > 0 such that, so long as Wt ≥ v̄ + D̄/2, either the drift of Wt

is greater than rD̄/4 or the norm of the volatility of Wt is greater than δ. To prove this claim

we need the following lemma, whose proof is in Appendix A:

Lemma 1. For any ε > 0 there exists δ > 0 (independent of t or the sample path) such that

|βt| ≥ δ whenever g(at, b̄t) ≥ v̄ + ε.
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Letting ε = D̄/4 in the lemma above we obtain δ > 0 such that |βt| ≥ δ whenever g(at, b̄t) ≥
v̄ + D̄/4. Moreover, if g(at, b̄t) < v̄ + D̄/4 then, so long as Wt ≥ v̄ + D̄/2, the drift of Wt is

greater than rD̄/4, concluding the proof of the claim.

It follows directly from the claim that with positive probability Wt becomes arbitrarily large,

which is a contradiction since Wt is bounded.

The intuition behind this result is as follows. In order to give incentives to the large player

to take an action that results in a payoff better than in static Nash equilibrium, his continuation

value must respond to the public signal Xt. When his continuation value reaches its upper

bound, such incentives cannot be provided. In effect, if at the upper bound the large player’s

continuation value were sensitive to the public signal process (Xt), then with positive probability

the continuation value would escape above this upper bound, which is not possible. Therefore,

at the upper bound, continuation values cannot depend on the public signal and so, in the best

equilibrium, the normal type must be playing a myopic best response.

While Theorem 2 does not hold in discrete time,9 it is definitely not just a result of

continuous-time technicalities. The large player’s incentives to depart from a static best response

become fragile when he is flexible to respond to public information quickly. The foundations of

this result are similar to the deterioration of incentives due to the flexibility to respond to new

information quickly in Abreu, Milgrom, and Pearce (1991) in a prisoners’ dilemma with Poisson

signals and, especially, in Sannikov and Skrzypacz (2006a) in a Cournot duopoly with Brownian

signals.

Borrowing intuition from the latter paper, suppose that the large player must hold his

action fixed for an interval of time of length ∆ > 0. Suppose that the large player’s equilibrium

incentives to take the Stackelberg action are created through a statistical test that triggers an

equilibrium punishment if the signal is sufficiently bad. A profitable deviation has a gain on

the order of ∆, the length of a time period. Therefore, such a deviation is prevented only if it

increases the probability of triggering punishment by at least O(∆). Sannikov and Skrzypacz

(2006a) show that with Brownian signals, the log likelihood ratio for a test against any particular

deviation is normally distributed. A deviation shifts the mean of this distribution by O(
√

∆).

Then, a successful test against a deviation would generate a false positive with probability of

O(
√

∆). This probability, which reflects the value destroyed in each period through punishments,

is disproportionately large for small ∆ compared to the value created during a period of length

∆. This intuition implies that in equilibrium the large player cannot sustain payoffs above

static Nash as ∆ → 0. Figure 2 illustrates the densities of the log likelihood ratio under the

’recommended’ action of the large player and a deviation, and the areas responsible for the large

player’s incentives and for false positives.

Apart from this statistical intuition, the analysis of the game in Sannikov and Skrzypacz

(2006a), as well as in Abreu, Milgrom, and Pearce (1991), differ from ours. Those papers look

at the game between two large players, either focusing on symmetric equilibria or assuming

9Fudenberg and Levine (1994) show that equilibria with payoffs above static Nash often exist in discrete time,

but they are always bounded from efficiency.
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Figure 2: A statistical test to prevent a given deviation.

a failure of pairwise identifiability to derive their results.10 In contrast, our result is proved

directly in continuous time and for games from a different class, with small players but without

any failure of identifiability.

Motivated by our result, a recent paper by Fudenberg and Levine (2006) studies the differ-

ences between Poisson and Brownian signals by taking the period between actions to zero in

a moral hazard game between a large and a population of small players. They allow the large

player’s action to affect the variance of the Brownian signal and show that nontrivial equilibria

exist whenever the variance is decreasing in the large player’s effort level.11

6 Reputation Games with a Unique Sequential Equilibrium.

In many games, including the game of quality standards from Section 2, for every prior p ∈ (0, 1)

the public sequential equilibrium is unique and Markovian in the population’s belief. That is,

the current belief φt uniquely determines the players’ actions at = a(φt) and b̄t = b(φt), as well

as the continuation value of the normal type Wt = U(φt). This section presents a sufficient

condition for the equilibrium to be unique and Markovian, and characterizes Markov perfect

equilibria using an ordinary differential equation.

First, we derive our characterization informally. Proposition 1 implies that in equilibrium

the population’s belief evolves according to

dφt = γ(at, b̄t, φt) dZφ
t = −|γ(at, b̄t, φt)|2

1 − φt
dt + γ(at, b̄t, φt) dZn

t , (19)

where dZn

t = σ(b̄t)
−1(dXt − µ(at, b̄t) dt) is a Brownian motion under the strategy of the normal

type. If the equilibrium is Markovian, then by Ito’s lemma the continuation value Wt = U(φt)

10The assumption of pairwise identifiability, introduced to repeated games by Fudenberg, Levine, and Maskin

(1994), states that deviations by different players can be statistically distinguished given the observations of the

public signals.
11They also find the surprising result that if the variance of the Brownian signal is increasing in the large

player’s effort level, then equilibrium must collapse to static Nash. The equilibrium collapse occurs despite the

fact that in the continuous-time limit the actions of the large player would be effectively observable.
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Figure 3: The large player’s payoff in a Markov perfect equilibrium.

of the normal type follows

dU(φt) = |γ(at, b̄t, φt)|2
(

U ′′(φt)

2
− U ′(φt)

1 − φt

)

dt + U ′(φt)γ(at, b̄t, φt) dZn

t . (20)

At the same time, Proposition 2 gives an alternative equation for the motion of Wt = U(φt),

dWt = r(Wt − g(at, b̄t)) dt + rβtσ(b̄t) dZn

t . (21)

By matching the drifts and volatilities of (20) and (21), we can characterize Markov perfect

equilibria. From the drifts we obtain the differential equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(a(φ), b̄(φ)))

|γ(a(φ), b̄(φ), φ)|2 , (22)

for the value function U . We can get the equilibrium actions a(φ) and b(φ) by matching the

volatilities. Since

rβtσ(b̄t) = U ′(φt)γ(at, b̄t, φt) ⇒ rβt = U ′(φt)γ(at, b̄t, φt)σ
−1(b̄t),

Proposition 3 implies that

(a(φ), b(φ)) ∈ Ψ(φ, φ(1 − φ)U ′(φ)),

where

Ψ(φ, z) =

{

(a, b̄) :
a ∈ arg maxa′∈A rg(a′, b̄) + z(µ(a∗, b̄) − µ(a, b̄))σ(b̄)−2µ(a′, b̄)

b ∈ arg maxb′∈B u(b′, b̄) + v(b′, b̄) · µφ(a, b̄), ∀b ∈ support b̄

}

,

for each (φ, z) ∈ [0, 1] × R. We show that the public sequential equilibrium is unique and

Markovian under Condition 2 below, which requires that the correspondence Ψ be single-valued.

Then the equilibrium actions are uniquely determined by (a(φ), b̄(φ)) = Ψ(φ, φ(1 − φ)U ′(φ)),
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where U satisfies equation (22). Figure 3 illustrates the function U : [0, 1] → R for the game of

quality standards of Section 2.

These simple properties of equilibria follow from the continuous-time formulation. As the

reader may guess, the logic behind this result is similar to that in Section 5. It is impossible to

create incentives to sustain greater payoffs than in a Markov perfect equilibrium. Informally, in

a public sequential equilibrium that achieves the largest difference W0 −U(φ0) across all priors,

the joint volatility of (φ0,W0) has to be parallel to the slope of U(φ0), since Wt −U(φt) cannot

increase for any realization of X at time 0. It follows that rβ0σ(b̄0) = U ′(φ0)γ(a0, b̄0, φ0). Thus,

when Ψ is single-valued the players’ actions at time zero must be Markovian, which leads to

Wt − U(φt) having a positive drift at time zero, a contradiction.

In discrete-time reputation games equilibrium behavior is typically not determined uniquely

by the population’s posterior, and Markov perfect equilibria may not even exist. Our result, pre-

sented in Theorem 3 below, shows that continuous time provides an attractive way of modeling

reputation.12 Theorem 3 assumes Condition 1 from Section 4 and:

Condition 2. Ψ is a nonempty, single-valued, Lipschitz-continuous correspondence that returns

an atomic distribution of small players’ actions for all φ ∈ [0, 1] and z ∈ R.

Effectively, the correspondence Ψ returns the Bayesian Nash equilibria of an auxiliary static

game in which the large player is a behavioral type with probability φ and the payoffs of the

normal type are perturbed by a reputational weight of z. In particular, with φ = z = 0 Condi-

tion 2 implies that the stage game with a normal large player has a unique Nash equilibrium.

Moreover, by Theorem 2, the complete information repeated game also has a unique equilibrium,

the repeated play of the static Nash.

While Condition 2 is fairly essential for the uniqueness result, Condition 1 is not. If Condition

2 holds but Condition 1 fails, then the repeated game with prior p would have a unique public

sequential equilibrium (at = aN , b̄t = b̄N , φt = p), which is trivially Markovian. Here (aN , b̄N )

denotes the unique Nash equilibrium of the stage game, in which µ(aN , b̄N ) = µ(a∗, b̄N ) when

Condition 1 fails.13

Theorem 3. Under Conditions 1 and 2, E is a single-valued correspondence that coincides with

the unique bounded solution of the optimality equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ))))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 . (23)

At p = 0 and 1, E(φ) satisfies the boundary conditions

lim
φ→p

U(φ) = E(p) = g(Ψ(p, 0)), and lim
φ→p

φ(1 − φ)U ′(φ) = 0. (24)

12We expect our methods to apply broadly to other continuous-time games, such as the Cournot competition

with mean-reverting prices of Sannikov and Skrzypacz (2006a). In that model the market price is the payoff-

relevant state variable.
13When Condition 1 fails but Condition 2 holds, by an argument similar to the proof of Theorem 2 we can

show that the large player cannot achieve any payoff other than g(aN , b̄N ). Note that Theorem 1 implies that

either (at, b̄t) = (aN , b̄N) or |βt| 6= 0 at all times t.
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For any prior p ∈ (0, 1) the unique public sequential equilibrium is a Markov perfect equilibrium

in the population’s belief. In this equilibrium, the players’ actions at time t are given by

(at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)) , (25)

the population’s belief evolves according to

dφt = γ(at, b̄t, φt) σ(b̄t)
−1(dXt − µφt(at, b̄t) dt) , (26)

and the continuation values of the normal type are given by Wt = U(φt).

Proof. Proposition 8 from Appendix C.2 shows that under Conditions 1 and 2, there exists a

unique continuous function U : [0, 1] → R that stays in the interval of feasible payoffs of the

large player, satisfies equation (22) on (0, 1) and boundary conditions (38), which include (24).

We need to prove that for any prior p ∈ (0, 1) there are no public sequential equilibria with a

payoff to the normal type different from U(p), and that the unique equilibrium with value U(p)

satisfies the conditions of the theorem.

Let us show that for any prior p ∈ (0, 1), there are no equilibria with a payoff to the large

player other than U(p). Suppose, towards a contradiction, that for some p ∈ [0, 1], (at, b̄t, φt)

is a public sequential equilibrium that yields the normal type a payoff of W0 6= U(p). Without

loss of generality, consider the case when W0 > U(p).

Then by Theorem 1, the population’s equilibrium belief follows (19), the continuation value

of the normal type follows (21) for some process (βt), and equilibrium actions and beliefs satisfy

the incentive constraints (18). Then, using (21) and (20), the process Dt = Wt−U(φt) has drift

rDt + rU(φt)
︸ ︷︷ ︸

rWt

−rg(at, b̄t) + |γ(at, b̄t, φt)|2(
U ′(φt)

1 − φt
− U ′′(φt)

2
) (27)

and volatility

rβtσ(b̄t) − γ(at, b̄t, φt)U ′(φt). (28)

Lemma 13 from Appendix C.3 shows that for every ε > 0 there exists δ > 0 such that for all

t ≥ 0, either

(a) the drift of Dt is greater than rDt − ε or

(b) the absolute value of the volatility of Dt is greater than δ

Here we provide a crude intuition behind Lemma 13. When the volatility of Dt is exactly 0,

then rβtσ(b̄t) = γ(at, b̄t, φt)U ′(φt), so

at ∈ arg maxa′∈A rg(a′, b̄t) + U ′(φt)γ(at, b̄t, φt)σ
−1(b̄t)

︸ ︷︷ ︸

rβt

µ(a′, b̄t)

b ∈ arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t) ∀ b ∈ support b̄t

and (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)). Then by (22), the drift of Dt is exactly rDt.
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In order for the drift of Dt to be lower than rDt, the volatility of Dt has to be different from

zero. Lemma 13 from Appendix C.3 presents a continuity argument to show that in order for

the drift to be below rDt − ε, the volatility of Dt has to be uniformly bounded away from 0.

By (a) and (b) above it follows that Dt would grow arbitrarily large with positive probability,

a contradiction since Wt and U(φt) are bounded processes. The contradiction shows that for

any prior p ∈ [0, 1], there cannot be an equilibrium that yields the normal type a payoff larger

than U(p). In a similar way, it can be shown that no equilibrium yields a payoff below U(p).

Next, let us construct an equilibrium for a given prior p with value U(p) to the normal type

of the large player. Let (φt) be a solution to the stochastic differential equation (26) with the

actions defined by (25). We will show that (at, b̄t, φt) is a public sequential equilibrium in which

the bounded process Wt = U(φt) is the large player’s continuation value.

By Proposition 1 the beliefs (φt) are consistent with the strategy profile (at, b̄t). Moreover,

since Wt = U(φt) is a bounded process with drift r(Wt − g(at, b̄t))dt by (20) and (22), Propo-

sition 2 implies that (Wt) is the process of continuation values of the normal type under the

strategy profile (at, b̄t). The process (βt) associated with the representation of Wt in Proposi-

tion 2 is given by rβtσ(bt) = U ′(φt)γ(at, bt, φt). To see that the public-strategy profile (at, b̄t)

is sequentially rational with respect to beliefs (φt), recall that (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt))

and so14

at = arg maxa′∈A rg(a′, bt) + U ′(φt)γ(at, b̄t, φt)σ
−1(b̄t)

︸ ︷︷ ︸

rβt

µ(a′, bt) ,

b̄t = arg maxb′∈B u(b′, b̄t) + v(b′, b̄t) · µφt(at, b̄t) .

(29)

From Proposition 3 it follows that the strategy profile (at, b̄t) is sequentially rational. We

conclude that (at, b̄t, φt) is a public sequential equilibrium.

Finally, let us show that the actions of the players are uniquely determined by the popula-

tion’s belief in any public sequential equilibrium (at, b̄t, φt) by (25). Let Wt be the continuation

value of the normal type. We know that the pair (φt,Wt) must stay on the graph of U, be-

cause there are no public sequential equilibria with values other than U(φt) for any prior φt.

Therefore, the volatility of Dt = Wt −U(φt) must be 0, i.e. rβtσ(b̄t) = U ′(φt)γ(at, b̄t, φt). Then

Proposition 3 implies that (29) holds and so (at, b̄t) = Ψ(φt, φt(1 − φt)U
′(φt)), as claimed.

The game of quality standards of Section 2 satisfies Conditions 1 and 2, and so its equilibrium

is unique and Markovian for every prior. For that game, the correspondence Ψ is given by

a =

{

0 if z ≤ r,

1 − r/z otherwise,
and b =

{

0 if φa∗ + (1 − φ)a ≤ 1/4,

4 − 1/(φa∗ + (1 − φ)a) otherwise.

The example illustrates a number of properties that follow from Theorem 3:

(a) The players’ actions, which are determined from the population’s belief φ by (a, b̄) =

Ψ(φ, φ(1 − φ)U ′(φ)), vary continuously with φ. In particular, when the belief gets close

to 0, the actions converge to the static Nash equilibrium. Thus, there is no discontinuity

14Recall that Ψ is a single-valued correspondence that returns an atomic distribution of the small players’

actions.
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for very small reputations, which is typical for infinitely repeated reputation games with

perfect monitoring.

(b) The incentives of the normal type to imitate the behavioral type are increasing in φ(1 −
φ)U ′(φ). However, imitation is never perfect, which is true for all games that satisfy

conditions 1 and 2. Indeed, since the actions are defined by (25), (at = a∗, b̄t) would be

a Bayesian Nash equilibrium of the stage game with prior φt if the normal type imitated

the behavioral type perfectly at time t. However, Condition 1 implies that the stage game

does not have Bayesian Nash equilibria in which the normal type takes action a∗.

The actions of the players are often non-monotonic in beliefs. The large player’s actions

converge to static best responses at φ = 0 and 1, creating ∩-shaped dependence on reputation in

the quality standards game. Although not visible in Figure 1, the small players’ actions are also

non-monotonic for some discount rates.15 Nevertheless, the large player’s equilibrium payoff U

is monotonic in the population’s belief in this example. This fact, which does not directly follow

from Theorem 3, holds generally under additional mild conditions.

6.1 The Effect of Reputation on the Large Player’s Payoff.

Proposition 5. Assume Conditions 1 and 2 and suppose that the static Bayesian Nash equi-

librium payoff of the normal type is weakly increasing in the population’s prior belief p. Then,

the sequential equilibrium payoff U(p) of the normal type is also weakly increasing in p.

Proof. The static Bayesian Nash equilibrium payoff of the normal type is given by g(Ψ(φ, 0)),

where φ is the prior on the behavioral type. Recall that U(0) = g(Ψ(0, 0)) and U(1) = g(Ψ(1, 0)).

Suppose U is not weakly increasing on [0, 1]. Take a maximal subinterval [φ0, φ1] on which

U is strictly decreasing. Since U(0) ≤ U(1), it follows that [φ0, φ1] 6= [0, 1]. Without loss of

generality, assume that φ1 < 1.

Since φ1 is a local minimum, U ′(φ1) = 0. Also, U(φ1) ≥ g(Ψ(φ1, 0)) because otherwise

U ′′(φ1) =
2r(U(φ1) − g(Ψ(φ1, 0)))

|γ(Ψ(φ1, 0), φ1)|2
< 0.

Since

U(φ0) > U(φ1) ≥ g(Ψ(φ1, 0)) ≥ g(Ψ(0, 0)) = U(0),

it follows that φ0 > 0. Therefore, U ′(φ0) = 0 and

U ′′(φ0) =
2r(U(φ0) − g(Ψ(φ0, 0)))

|γ(Ψ(φ0, 0), φ0)|2
> 0,

and so φ0 is a strict local minimum, a contradiction.

15For small discount rates r, not far from φ = 0 the slope of U gets very high as it grows towards the commitment

payoff. This can cause the normal type to get very close to imitating the behavioral type, producing a peak in

the small players’ actions.
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The result of Proposition 5 is not obvious. Even in games in which the functions Ψ(φ, z) and

g(Ψ(φ, z)) are highly irregular and non-monotonic, the large player’s equilibrium payoff U(φ) is

increasing in reputation φ as long as the static Bayesian Nash equilibrium payoff of the large

player is increasing in reputation.

Remark 4. If the static Bayesian Nash equilibrium payoff of the normal large player is increasing

in the small players’ belief p, then the conclusion of Theorem 3 holds even if the correspondence

Ψ is single-valued and Lipschitz-continuous only for z ≥ 0.16 Indeed, if we construct a new

correspondence Ψ̂ from Ψ by replacing the values for z < 0 by an arbitrary Lipschitz-continuous

function, then the optimality equation with Ψ̂ replacing Ψ would have a unique solution U with

boundary conditions U(0) = g(Ψ(0, 0)) and U(1) = g(Ψ(1, 0)) by Theorem 3. By Proposition 5

this solution must be monotonically non-increasing, and therefore it satisfies the original equation

with correspondence Ψ. All other arguments of Theorem 3 apply to the function U constructed

in this alternative way.

7 General Characterization.

In this section we extend the characterization of Section 6 to environments with multiple equilib-

ria. When correspondence Ψ is not single-valued (so Condition 2 is violated), the correspondence

of sequential equilibrium payoffs, E , may also not be single-valued either. Theorem 4 below char-

acterizes E for the general case.

Throughout this section, we maintain Condition 1 but relax Condition 2 to:

Condition 3. Ψ(φ, z) is non-empty for all (φ, z) ∈ [0, 1] × R.

This is a weak assumption on the primitives of the game and it is automatically satisfied

when the action spaces are finite and Ψ is replaced by its mixed-action extension (see Remark 2).

Consider the optimality equation from Section 6 (see Theorem 3). When Ψ is a multi-valued

correspondence, there may exist multiple bounded functions that solve the differential equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(a(φ), b̄(φ)))

|γ(a(φ), b̄(φ), φ)|2 , (30)

corresponding to different measurable selections φ 7→ (a(φ), b̄(φ)) ∈ Ψ(φ, φ(1 − φ)U ′(φ)). An

argument similar to the proof of Theorem 3 can be used to show that for every such solution

U and every prior p, there exists a sequential equilibrium that achieves payoff U(p) for the

normal type. Therefore, a natural conjecture is that the correspondence of sequential equilibrium

payoffs, E , contains all values between its upper boundary, the largest solution of (30), and its

lower boundary, the smallest solution of (30). Accordingly, the pair (a(φ), b̄(φ)) ∈ Ψ(φ, φ(1 −
φ)U ′(φ)) should minimize the right-hand side of (30) for the upper boundary, and maximize it

for the lower boundary.

16Such conclusion has practical value because under typical concavity assumptions on payoffs, the large player’s

objective function in the definition of Ψ may become convex instead of concave for z < 0.
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However, the differential equation

U ′′(φ) = H(φ,U(φ), U ′(φ)) , (31)

with

H(φ, u, u′) ≡ min

{
2u′

1 − φ
+

2r(u − g(a, b̄))

|γ(a, b̄, φ)|2 : (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′)

}

, (32)

may fail to have a solution in the classical sense. In general, Ψ is upper hemi-continuous, but

not necessarily continuous, and so the right-hand side of (31) is lower semi-continuous but may

fail to be continuous.

Due to this difficulty, we rely on a generalized notion of solution called viscosity solution (see

Definition 2 below), which is suitable to deal with discontinuous equations. (For an introduction

to viscosity solutions we refer the reader to Crandall, Ishii, and Lions (1992).) We show that

the upper boundary U(φ) ≡ sup E(φ) is the largest viscosity solution of the upper optimality

equation (31), and that the lower boundary L(φ) ≡ inf E(φ) is the smallest solution of the lower

optimality equation, defined by replacing the minimum by the maximum in the expression of H.

While in general viscosity solutions may fail to be differentiable, we show that the up-

per boundary U is a continuously differentiable function with absolutely continuous derivative.

When Ψ is single-valued in a neighborhood of (φ, φ(1 − φ)U ′(φ)) for some φ ∈ (0, 1), and H is

Lipschitz-continuous in a neighborhood of (φ,U(φ), U ′(φ)), any viscosity solution is a classical

solution of (31) in a neighborhood of φ. Otherwise, we show that U ′′(φ), which exists almost

everywhere since U ′ is absolutely continuous, can take any value between H(φ,U(φ), U ′(φ)) and

its upper semi-continuous envelope H∗(φ,U(φ), U ′(φ)) (Note that H is lower semi-continuous,

that is, H = H∗.)

Definition 2. A bounded function U : (0, 1) → R is a viscosity super-solution of the upper

optimality equation if for every φ0 ∈ (0, 1) and every twice continuously differentiable test

function V : (0, 1) → R,

U∗(φ0) = V (φ0) and U∗ ≥ V =⇒ V ′′(φ0) ≤ H∗(φ, V (φ0), V
′(φ0)) .

A bounded function U : (0, 1) → R is a viscosity sub-solution if for every φ0 ∈ (0, 1) and every

twice continuously differentiable test function V : (0, 1) → R,

U∗(φ0) = V (φ0) and U∗ ≤ V =⇒ V ′′(φ0) ≥ H∗(φ, V (φ0), V
′(φ0)).

A bounded function U is a viscosity solution if it is both a super-solution and a sub-solution.17

Appendix D presents the details of our analysis, which we summarize here. Propositions 9

and 10 show that U , the upper boundary of E , is a bounded viscosity solution of the upper

optimality equation. Lemma 16 shows that every bounded viscosity solution is a C1 function

with absolutely continuous derivative (so its second derivative exists almost everywhere). Finally,

Proposition 11 shows that U is the largest viscosity solution of (31), and that

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))] a.e. (33)

17This is equivalent to Definition 2.2 in Crandall, Ishii, and Lions (1992).
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In particular, when H is continuous at (φ,U(φ), U ′(φ)) then U satisfies (31) in the classical

sense.

We summarize our characterization in the following theorem.

Theorem 4. Assume Conditions 1 and 3 and that a public sequential equilibrium exists for

every prior. Then E is a compact-, convex-valued correspondence with an arcwise connected

graph. The upper boundary U of E is a C1 function with absolutely continuous derivative (so

U ′′(φ) exists almost everywhere). Moreover, U is characterized as the maximal bounded function

that satisfies the differential inclusion

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))] a.e., (34)

where the lower semi-continuous function H is defined by (32) and H∗ denotes the upper semi-

continuous envelope of H. The lower boundary of E is characterized analogously.

To see an example of such equilibrium correspondence E(p), consider the following game,

related to our example of quality commitment. Suppose that the large player, a service provider,

chooses investment in quality at ∈ [0, 1], where a∗ = 1 is the action of the behavioral type, and

each consumer chooses a service level bi
t ∈ [0, 2]. The public signal about the large player’s

investment is

dXt = at dt + dZt.

The large player’s payoff flow is (b̄t − at) dt and consumer i receives payoff bi
tb̄t dXt − bi

t dt.

The consumers’ payoff functions capture positive network externalities: greater usage b̄t of the

service by other consumers allows each individual consumer to enjoy the service more.

The unique Nash equilibrium of the stage game is (0, 0). The correspondence Ψ(φ, z) defines

the action of the normal type uniquely by

a =

{

0 if z ≤ r

1 − r/z otherwise.
(35)

The consumers’ actions are uniquely b̄ = 0 only when (1−φ)a+φa∗ < 1/2. If (1−φ)a+φa∗ ≥ 1/2

then the game among the consumers, who face a coordination problem, has two pure equilibria

with b̄ = 0 and b̄ = 2 (and one mixed equilibrium when (1 − φ)a + φa∗ > 1/2). Thus, the

correspondence Ψ(φ, z) is single-valued only on a subset of its domain.

How is this reflected in the equilibrium correspondence E(p)? Figure 4 displays the upper

boundary of E(p) for three discount rates r = 0.1, 0.2 and 0.5. The lower boundary for this

example is identically zero, because the game among the consumers has an equilibrium with

b̄ = 0.

For each discount rate, the upper boundary U is divided into three regions. In the region

near 0, where the upper boundary is a solid line, the correspondence Ψ(φ, φ(1 − φ)U ′(φ)) is

single-valued and U satisfies the upper optimality equation in the classical sense. In the region

near 1, where the upper boundary is a dashed line, the correspondence Ψ is continuous and has

three values (two pure and one mixed). There, U also satisfies the upper optimality equation
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Figure 4: The upper boundary of E(p).

with the population’s action b̄ = 2. In the middle region, where the upper boundary is a dotted

line we have

U ′′(φ) ∈
(

2U ′(φ)

1 − φ
+

2r(U(φ) − 2 + a)

|γ(a, 2, φ)|2 ,
2U ′(φ)

1 − φ
+

2r(U(φ) − 0 + a)

|γ(a, 0, φ)|2
)

,

where a is given by (35) and 0 and 2 are two values of b̄ that the correspondence Ψ returns. In

that range, the correspondence Ψ(φ, φ(1−φ)U ′(φ)) is discontinuous in its arguments: if we lower

U(φ) slightly the equilibrium among the consumers with b̄ = 2 disappears. These properties of

the upper boundary follow from the fact that it is the largest solution of the upper optimality

equation.

Remark 5. The assumption in Theorem 4 that a sequential equilibrium exists requires expla-

nation. First note that standard fixed-point arguments do not apply to our games, because

the set of histories at any time t is uncountable.18 Second, observe that while the differential

inclusion (34) is guaranteed to have a solution under Conditions 1 and 3, this does not imply

the existence of a sequential equilibrium, since a measurable selection (a(·), b̄(·)) satisfying (30)

may fail to exist. However, if public randomization is allowed then existence is restored. In

the supplemental appendix Faingold and Sannikov (2007) we develop the formalism of public

randomization in continuous time and show that a sequential equilibrium in public randomized

18See Harris, Reny, and Robson (1995) for a related problem in the context of extensive-form games with

continuum action sets.
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strategies exists under Condition 1 and finite action sets (so that Condition 3 is automatically

satisfied).
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A Bounds on γ(a, b̄, φ).

Throughout this appendix we will maintain Condition 1.

Lemma 2. There exist M > 0 and C > 0 such that whenever |β| ≤ M, and (a, b̄, φ) satisfies

the incentive constraints (18), we have

|γ(a, b̄, φ)| ≥ Cφ(1 − φ) .

Proof. Consider the set Φ of 4-tuples (a, b̄, φ, β) such that the incentive constraints (18) hold and

µ(a, b̄) = µ(a∗, b̄). Φ is a closed set that does not intersect the compact set A×∆(B)×[0, 1]×{0},
and therefore the distance M ′ > 0 between those two sets is positive. It follows that |β| ≥ M ′

for any (a, b̄, φ, β) ∈ Φ.

Now, let M = M ′/2. Let Φ′ be the set of 4-tuples (a, b̄, φ, β) such that the incentive

constraints (18) hold and |β| ≤ M . Φ′ is a compact set, and so the continuous function |µ(a∗, b̄)−
µ(a, b̄)| must reach a minimum C1 on Φ′. We have C1 > 0 because |β| ≥ 2M whenever |µ(a∗, b̄)−
µ(a, b̄)| = 0. Since for some k > 0, |σ(b̄) · y| ≤ k|y| for all y and b̄, we have

|γ(a, b̄, φ)| ≥ Cφ(1 − φ)

whenever |β| ≤ M and (a, b̄, φ) satisfies the incentive constraints (18), where C = C1/k. This

concludes the proof of the lemma.

Lemma 3. For all ε > 0 there exists K > 0 such that for all φ ∈ [0, 1] and u′ ∈ R,

|u′||γ(a, b̄, φ)| ≥ K ,

whenever φ(1 − φ)|u′| ≥ ε and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).

Proof. As shown in the proof of Proposition 4, given Condition 1 there is no Bayesian Nash

equilibium (a, b̄) of the static game with prior p > 0 in which µ(a, b̄) = µ(a∗, b̄).

If the statement of the lemma were false, there would exist a sequence (an, b̄n, u′
n, φn), with

(an, b̄n) ∈ Ψ(φn, φn(1 − φn)u′
n) and φn(1 − φn)|u′

n| ≥ ε for all n, for which |u′
n||γ(an, b̄n, φn)|

converged to 0. Let (a, b̄, φ) ∈ A×∆B × [0, 1] denote the limit of a convergent subsequence. By

upper hemi-continuity, (a, b̄) is a BNE of the static game with prior φ. Hence, µ(a, b̄) 6= µ(a∗, b̄)

and therefore lim infn |u′
n||γ(an, b̄n, φn)| ≥ ε|σ(b)−1(µ(a, b̄) − µ(a∗, b̄))| > 0, a contradiction.

Lemma 4. For all M > 0 there exists C > 0 such that

|γ(a, b̄, φ)| ≥ C φ(1 − φ) ,

whenever φ(1 − φ)|u′| < M and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).

Proof. Fix M > 0. By Lemma 3, for all ε ∈ (0,M) there exists K > 0 such that

|γ(a, b̄, φ)| ≥ K

|u′| ≥
K

M
φ(1 − φ)

whenever φ(1 − φ)|u′| ∈ (ε,M) and (a, b̄) ∈ Ψ(φ, φ(1 − φ)u′).
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Therefore, Lemma 4 can be false only if

|γ(an, b̄n, φn)|
φn(1 − φn)

= σ(b̄n)−1(µ(a∗, b̄n) − µ(an, b̄n))

converges to 0 for some sequence (an, b̄n, u′
n, φn), with (an, b̄n) ∈ Ψ(φn, u′

n), φn ∈ (0, 1), and

φn(1−φn)|u′
n| → 0. Let (a, b̄, φ) ∈ A×∆(B)×[0, 1] denote the limit of a convergent subsequence.

By upper hemi-continuity, (a, b̄) is a BNE of the static game with prior φ. Hence, µ(a, b̄) 6=
µ(a∗, b̄) and so |γ(an, b̄n, φn)|/(φn(1 − φn)) cannot converge to 0, a contradiction.

Proof of Lemma 1. Pick any constant M > 0. Consider the set Φ0 of triples (a, b, β) ∈
A × ∆B × [0, 1] × R

d that satisfy

a ∈ arg max
a′∈A

g(a′, b), b ∈ arg max
b′∈B

h(a, b′, b̄), ∀b ∈ support b̄, g(a, b̄) ≥ v̄ + ε (36)

and |β| ≤ M . Note that Φ0 is a compact set, as it is a closed subset of the compact space

A × ∆(B). Therefore, the continuous function |β| achieves its minimum δ on Φ0, and δ > 0

because of the condition g(a, b̄) ≥ v̄ + ε. It follows that |β| ≥ min(M, δ) > 0 for any triple

(a, b, β) satisfying conditions (36).

B Proof of Proposition 4.

Fix a public sequential equilibrium (at, b̄t, φt) and ε > 0. Consider the function f1(W ) =

eK1(W−g). Then, by Ito’s lemma, f1(Wt) has drift

K1e
K1(W−g)(rWt − g(at, b̄t)) + K2

1/2eK1(W−g)r2β2
t ,

which is always greater than or equal to

−K1e
K1(ḡ−g)r(ḡ − g),

and greater than or equal to

−K1e
K1(W−g)r(ḡ − g) + K2

1/2eK1(W−g)r2M2 > 1

when |βt| ≥ M (choosing K1 sufficiently large).

Consider the function f2(φt) = K2(φ
2
t − 2φt). We have

dφt = −|γ(at, b̄t, φt)|2
1 − φt

dt + γ(at, b̄t, φt) dZn

t

and so by Ito’s lemma f2(φt) has drift

−K2
|γ(at, b̄t, φt)|2

1 − φt
(2φt − 2) + K2

|γ(at, b̄t, φt)|2
2

2 = 3K2|γ(at, b̄t, φt)|2 ≥ 0

When K2 is sufficiently large, then the drift of f2(φt) is greater than or equal to K1e
K1(ḡ−g)r(ḡ−

g) + 1, whenever φt ∈ [ε, 1 − ε] and |βt| ≤ M, so that |γ(a, b̄, φ)| ≥ Cφ(1 − φ) by Lemma 2.
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It follows that until the stopping time τ when φt hits an endpoint of [ε, 1 − ε], the drift of

f1(Wt) + f2(φt) is greater than or equal to 1.

But then for some constant K3, since f1 is bounded on [g, ḡ] and f2 is bounded on [ε, 1− ε],

it follows that for all t

K3 ≥ E[f1(Wmin(τ,t)) + f2(φmin(τ,t))] ≥ f1(W0) + f2(φ0) +

∫ t

0
Prob(τ ≥ s) ds

and so Prob(τ ≥ s) must converge to 0 as s → ∞.

But then φt must converge to 0 or 1 with probability 1, and it cannot be 1 with positive

probability if the type is normal. This completes the proof of Proposition 4.

C Appendix for Section 6.

Throughout this appendix we will maintain Conditions 1 and 2.

C.1 Existence of a bounded solution of the optimality equation.

In this subsection we will prove the following Proposition.

Proposition 6. The optimality equation has at least one solution that stays within the interval

of all feasible payoffs of the large player on (0, 1).

The proof of Proposition 6 relies on several lemmas.

Lemma 5. The solutions to the optimality equation exist locally for φ ∈ (0, 1) (that is, until a

blowup point when |U(φ)| or |U ′(φ)| become unboundedly large) and are unique and continuous

in initial conditions.

Proof. First, implies that the right-hand side of optimality equation is locally Lipschitz. It

follows directly from the standard theorem on existence, uniqueness and continuity of solutions

of ordinary differential equations in initial conditions, as the right hand side of the optimality

equation is locally Lipschitz-continuous, by Lemma 4.

Lemma 6. Consider a solution U(φ) of the optimality equation. If there is a blowup at point

φ1 ∈ (0, 1) then both |U(φ)| and |U ′(φ)| become unboundedly large near φ1.

Proof. By Lemma 3, there exists a constant k > 0 such that

|U ′(φ)||γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)| ≥ k > 0

in a neighborhood of φ1, when |U ′(φ)| is bounded away from 0. Suppose, towards a contradiction,

that U(φ) is bounded from above by K near φ1. Without loss of generality assume that U ′(φ)

(as opposed to −U ′(φ)) becomes arbitrarily large near φ1, and that φ1 is the right endpoint

of the domain of the solution U . Then let us pick points φ3 < φ2 < φ1 such that U ′(φ) stays

positive on the interval (φ3, φ2) and U ′(φ2) − U ′(φ3) is sufficiently large.

Consider the case when U ′(φ) is monotonic on (φ2, φ3), and let us parameterize the interval

(φ3, φ2) by u′ = U ′(φ). Denote
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ξ(u′) =
dU(φ)

dU ′(φ)
=

U ′(φ)

U ′′(φ)
> 0

Note that

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ))))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 ≤ k1U
′(φ) + k2U

′(φ)2

for some constants k1 and k2 that depend on φ1, K and the range of stage-game payoffs of the

large player, so that ξ(u′) ≥ 1/(k1 + k2u
′).

Then

U(φ3) − U(φ2) =

∫ U ′(φ3)

U ′(φ2)
ξ(u′)du′ ≥

∫ U ′(φ3)

U ′(φ2)
1/(k1 + k2u

′)du′ (37)

This quantity grows arbitrarily large, leading to a contradiction, when U ′(φ3) − U ′(φ2) gets

large while U ′(φ2) stays fixed (this can be always guaranteed even if U ′(φ) flips sign many times

near φ1.)

When U ′(φ) is not monotonic on (φ2, φ3), a conclusion similar to (37) can be reached by

splitting the integral into subintervals where U ′(φ) is increasing (on which the bound (37) holds)

and the rest of the subintervals (on which U(φ) is increasing).

One consequence of Lemma 6 is that starting from any initial condition with φ0 ∈ (0, 1) the

solution of the optimality equation exists until φ = 0 and 1, or until U(φ) exits the range of

feasible payoffs of the large player.

Lemma 7. (Monotonicity) If two solutions U1 and U2 of the optimality equation satisfy U1(φ0) ≤
U2(φ0) and U ′

1(φ0) ≤ U ′
2(φ0) with at least one strict inequality, then U1(φ) ≤ U2(φ) and

U ′
1(φ) ≤ U ′

2(φ) for all φ > φ0 until the blowup point. Similarly, if U1(φ0) ≤ U2(φ0) and

U ′
1(φ0) ≥ U ′

2(φ0) with at least one strict inequality, then U1(φ) < U2(φ) and U ′
1(φ) > U ′

2(φ) for

all φ < φ0 until the blowup point.

Proof. Suppose that U1(φ0) ≤ U2(φ0) and U ′
1(φ0) < U ′

2(φ0). If U ′
1(φ) < U ′

2(φ) for all φ > φ0

until the blowup point then we also have U1(φ) < U2(φ) on that range. Otherwise, let

φ1 = inf
φ≥φ0

U ′
1(φ) ≥ U ′

2(φ).

Then U ′
1(φ1) = U ′

2(φ1) by continuity and U1(φ1) < U2(φ1) since U1(φ0) ≤ U2(φ0) and

U1(φ) < U2(φ) on [φ0, φ1). From the optimality equation, it follows that U ′′
1 (φ1) < U ′′

2 (φ1) ⇒
U ′

1(φ1 − ε) > U ′
2(φ1 − ε) for sufficiently small ε, which contradicts the definition of φ1.

For the case when U1(φ0) < U2(φ0) and U ′
1(φ0) = U ′

2(φ0) the optimality equation implies

that U ′′
1 (φ0) < U ′′

2 (φ0). Therefore, U ′
1(φ) < U ′

2(φ) on (φ0, φ0 + ε), and the argument proceeds as

above.

The monotonicity argument for φ < φ0 when U1(φ0) ≤ U2(φ0) and U ′
1(φ0) ≥ U ′

2(φ0) with at

least one strict inequality is similar.
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Proof of Proposition 6. Denote by [g, ḡ] the interval of all feasible payoffs of the large player.

Fix φ0 ∈ (0, 1).

(a) Note that if |U ′(φ0)| is sufficiently large then the solution U must exit the interval [g, ḡ]

in a neighborhood of φ0. This conclusion can be derived using an inequality similar to (37):

|U ′(φ)| cannot become small near φ0 without a change in U(φ) of
∫ |U ′(φ0)|
|U ′(φ)| 1/(k1 + k2|x|)dx.

(b) Also, note that if a solution U reaches the boundary of the region of feasible payoffs, it

must exit the region and never reenter. Indeed, it is easy to see from the optimality equation

that when U ′(φ) = 0, U ′′(φ) ≥ 0 if U(φ) ≥ ḡ, and U ′′(φ) ≤ 0 if U(φ) ≤ g. Therefore, U ′(φ)

never changes its sign when U(φ) is outside (g, ḡ).

(c) For a given level U(φ0) = u, consider solutions of the optimality equation for φ ≤ φ0 for

different values of U ′(φ0). When U ′(φ0) is sufficiently large, the resulting solution will reach g

at some point φ1 ∈ (0, φ0) by (a). As U ′(φ0) decreases, φ1 also decreases by Lemma 7, until for

some value U ′(φ0) = L(u) the solution never reaches the lower boundary of the set of feasible

payoffs for any φ1 ∈ (0, φ0). Note that this solution never reaches the upper boundary of the set

of feasible payoffs for any φ1 ∈ (0, φ0) : if it did, then the solution with slope U ′(φ0) = L(u) + ε

would also reach the upper boundary by Lemma 5, and by (b) it would never reach the lower

boundary. We conclude that the solution of the optimality equation with boundary conditions

U(φ0) = u and U ′(φ0) = L(u) stays within the range of feasible payoffs for all φ1 ∈ (0, φ0).

(d) Similarly, define R(u) as the smallest value of U ′(φ0) for which the resulting solution

never reaches the largest feasible payoff of the large player at any φ ∈ (φ0, 1). Then the solution

of the optimality equation with boundary conditions U(φ0) = u and U ′(φ0) = R(u) stays within

the range of feasible payoffs for all φ1 ∈ (φ0, 1), by the same logic as in (c).

(e) Now, Lemma 7 implies that L(u) is increasing in u and R(u) is decreasing in u. Moreover,

L(g) ≤ 0 ≤ L(ḡ) and R(g) ≥ 0 ≥ R(ḡ). Therefore, there exists a value of u for which L(u) =

R(u). The solution to the optimality equation with boundary conditions U(φ0) = u and U ′(φ0) =

L(u) = R(u) must stay within the interval of feasible payoffs for all φ ∈ (0, 1).

This completes the proof of Proposition 6.

C.2 Regularity conditions at the boundary and uniqueness.

Proposition 7. If U is a bounded solution of equation (22)on (0, 1), then U satisfies the fol-

lowing boundary conditions at p = 0, 1:

lim
φ→p

U(φ) = g(Ψ(p, 0)) , lim
φ→p

φ(1 − φ)U ′(φ) = 0 , lim
φ→p

φ2(1 − φ)2U ′′(φ) = 0 . (38)

Proof. Direct from Lemmas 10, 11 and 12 below. Lemmas 8 and 9 are intermediate steps.

Lemma 8. If U : (0, 1) → R is a bounded solution of the optimality equation, then U has

bounded variation.

Proof. Suppose there exists a bounded solution U of the optimality equation with unbounded

variation near p = 0 (the case p = 1 is similar). Then let φn be a decreasing sequence of

consecutive local maxima and minima of U, such that φn is a local maximum for n odd and a

local minimum for n even.

32



Then for n odd we have U ′(φn) = 0 and U ′′(φn) ≤ 0. From the optimality equation it

follows that g(Ψ(φn, 0)) ≥ U(φn). Likewise, for n even we have g(Ψ(φn, 0)) ≤ U(φn). Thus, the

total variation of g(Ψ(φ, 0)) on (0, φ1] is no smaller than the total variation of U and therefore

g(Ψ(φ, 0)) has unbounded variation near zero. However, this is a contradiction, since g(Ψ(φ, 0))

is Lipschitz continuous.

Lemma 9. Let U : (0, 1) → R be a bounded, continuously differentiable function. Then

lim inf
φ→0

φU ′(φ) ≤ 0 ≤ lim sup
φ→0

φU ′(φ) , and

lim inf
φ→1

(1 − φ)U ′(φ) ≤ 0 ≤ lim sup
φ→1

(1 − φ)U ′(φ) .

Proof. Suppose, towards a contradiction, that lim infφ→0 φU ′(φ) > 0 (the case lim supφ→0 φU ′(φ) <

0 is analogous). Then for some c > 0 and φ̄ > 0, for all φ ∈ (0, φ̄], φU ′(φ) ≥ c ⇒ U ′(φ) ≥ c/φ.

But then U cannot be bounded since the anti-derivative of 1/φ, log φ, tends to ∞ as φ → 0, a

contradiction. The proof for the case φ → 1 is analogous.

Lemma 10. If U is a bounded solution of the optimality equation, then limφ→p φ(1−φ)U ′(φ) = 0

for p ∈ {0, 1}.

Proof. Suppose, towards a contradiction, that φU ′(φ) 9 0 as φ → 0. Then, by Lemma 9,

lim inf
φ→0

φU ′(φ) ≤ 0 ≤ lim sup
φ→0

φU ′(φ) ,

with at least one strict inequality. Without loss of generality, assume lim supφ→0 φU ′(φ) > 0.

Hence there exist constants 0 < k < K, such that φU ′(φ) crosses levels k and K infinitely many

times in a neighborhood of 0.

By Lemma 4 there exists C > 0 such that

|γ(a, b̄, φ)| ≥ C φ ,

whenever φU ′(φ) ∈ (k,K) and φ ∈ (0, 1
2). Hence, by the optimality equation, we have

|U ′′(φ)| ≤ L

φ2
,

for some constant L > 0. This bound implies that for all φ ∈ (0, 1
2) with φU ′(φ) ∈ (k,K), we

have

|(φU ′(φ))′| ≤ |φU ′′(φ)| + |U ′(φ)| = (1 +
|φU ′′(φ)|
|U ′(φ)| ) |U ′(φ)| ≤ (1 +

L

k
) |U ′(φ)| ,

which yields

|U ′(φ)| ≥ |(φU ′(φ))′|
1 + L/k

.

It follows that on every interval where φU ′(φ) crosses k and stays in (k,K) until crossing K,

the total variation of U is at least (K − k)/(1 + L/k). Since this happens infinitely many times

in a neighborhood of φ = 0, function U must have unbounded variation in that neighborhood,

a contradiction (by virtue of Lemma 8.)

The proof that limφ→1(1 − φ)U ′(φ) = 0 is analogous.
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Lemma 11. If U : (0, 1) → R is a bounded solution of the optimality equation, then for p ∈
{0, 1},

lim
φ→p

U(φ) = g(Ψ(p, 0)) .

Proof. First, by Lemma 8, U must have bounded variation and so the limφ→p U(φ) exists.

Consider p = 0 and assume, towards a contradiction, that limφ→0 U(φ) = U0 < g(aN , bN ), where

(aN , bN ) = Ψ(0, 0) is the Nash equilibrium of the stage game (the proof for the reciprocal case is

similar). By Lemma 10, limφ→0 φU ′(φ) = 0, which implies that the function Ψ(φ, φ(1−φ)U ′(φ))

is continuous at φ = 0. Recall the optimality equation

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2 =
2U ′(φ)

1 − φ
+

h(φ)

φ2
,

where h(φ) is a continuous function that converges to

2r(U0 − g(aN , bN ))

|σ(bN )−1(µ(a∗, bN ) − µ(aN , bN ))|2 < 0.

as φ → 0. Since U ′(φ) = o(1/φ) by Lemma 9, it follows that for some φ̄ > 0, there exists a

constant K > 0 such that

U ′′(φ) < −K

φ2

for all φ ∈ (0, φ̄). But then U cannot be bounded since the second-order anti-derivative of 1/φ2

(− log φ) tends to ∞ as φ → 0.

The proof for the case p = 1 is analogous.

Lemma 12. If U : (0, 1) → R is a bounded solution of the optimality equation, then

lim
φ→p

φ2(1 − φ)2U ′′(φ) = 0 , for p ∈ {0, 1} .

Proof. Consider p = 1. Fix an arbitrary M > 0 and choose φ ∈ (0, 1) so that (1−φ)|U ′(φ)| < M

for all φ ∈ (φ, 1). By Lemma 4 there exists C > 0 such that |γ(Ψ(φ, φ(1−φ)U ′(φ)), φ)| ≥ C(1−φ)

for all φ ∈ (φ, 1). Hence, by the optimality equation, we have for all φ ∈ (φ, 1):

(1 − φ)2|U ′′(φ)| ≤ 2(1 − φ)|U ′(φ)| + (1 − φ)2
2r|U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))|

|γ(Ψ(φ, φ(1 − φ)U ′(φ)), φ)|2
≤ 2(1 − φ)|U ′(φ)| + 2rC−2|U(φ) − g(Ψ(φ, φ(1 − φ)U ′(φ)))| −→ 0 ,

as required. The case p = 0 is analogous.

Proposition 8. The optimality equation has a unique bounded solution over the interval (0, 1).

Proof. Proposition 6 implies that at least one such solution U : (0, 1) → R exists. Suppose V

were another bounded solution. Assuming that V (φ) > U(φ) for some φ ∈ (0, 1), let φ0 be

the point where the difference V (φ0) − U(φ0) is maximized. It follows from Proposition 7 that

φ0 ∈ (0, 1). But then by Lemma 7 the difference V (φ) − U(φ) must be increasing for φ > φ0, a

contradiction.
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C.3 A uniform lower bound on volatility.

Lemma 13. Let U : (0, 1) → R be the unique bounded solution of the optimality equation and

let d and f be the continuous functions defined by:

d(a, b̄, φ) =

{

rU(φ) − rg(a, b̄) − |γ(a,b,φ)|2

1−φ
U ′(φ) − 1

2 |γ(a, b, φ)|2U ′′(φ) : φ ∈ (0, 1)

0 : φ = 0 or 1
(39)

and

f(a, b̄, φ, β) = rβσ(b̄) − φ(1 − φ)σ(b̄)−1(µ(a∗, b̄) − µ(a, b̄))
︸ ︷︷ ︸

γ(a,b,φ)

U ′(φ) . (40)

For any ε > 0 there exists δ > 0 such that for all (a, b̄, φ, β) that satisfy

a ∈ arg max
a′∈A

rg(a′, b) + rβµ(a′, b)

b̄ ∈ arg max
b′∈B

u(b′, b̄) + v(b′, b̄) · µφ(a, b̄) , for all b ∈ support b̄,
(41)

either d(a, b̄, φ) > −ε or f(a, b̄, φ, β) ≥ δ.

Proof. Since φ(1 − φ)U ′(φ) is bounded (by Lemma 10) and there exists c > 0 such that |σ(b̄) ·
y| ≥ c|y| for all y ∈ R

d and b̄ ∈ ∆B, there exist constants M > 0 and m > 0 such that

|f(a, b̄, φ, β)| > m for all β ∈ R
d with |β| > M .

Consider the set Φ of 4-tuples (a, b, φ, β) ∈ A×∆B×[0, 1]×R
d with |β| ≤ M that satisfy (41)

and d(a, b̄, φ) ≤ −ε. Since U satisfies the boundary conditions (38), d is a continuous function

and Φ is a closed subset of the compact set

{(a, b, φ, β) ∈ A × ∆B × [0, 1] × R
d : |β| ≤ M},

Φ is compact.19

Since U satisfies the boundary conditions (38), the function |f(a, b̄, φ, β)| is continuous.

Hence, it achieves its minimum, η, on Φ. We have η > 0, because, as we argued in the proof of

Theorem 3, d(a, b̄, φ) = 0 whenever f(a, b̄, φ, β) = 0. It follows that for all (a, b̄, φ, β) that satisfy

(41), either d(a, b̄, φ) > −ε or |f(a, b̄, φ, β)| ≥ min(m, η) ≡ δ.

C.4 Comparative statics for the quality game.

The correspondence Ψα(φ, z) for our example is given by

a =

{

0 if z ≤ r,

1 − r/z otherwise,
and b =

{

0 if φa∗ + (1 − φ)a ≤ 1/(4α),

4 − 1/(α(φa∗ + (1 − φ)a)) otherwise.

Note that γ(Ψα(φ, z), φ) = φ(1 − φ)(a∗ − a) does not depend on α for our example, and that

g(Ψα(φ, z)) = b − a weakly increases in α. Consider parameter values α > α′ > 0, and let us

show that the large player’s payoffs for these parameters satisfy

Uα(φ) ≥ Uα′

(φ) (42)

19Since B is compact, the set ∆(B) is compact in the topology of weak convergence of probability measures.
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for all φ ∈ (0, 1). Note that

Uα(p) = g(Ψα(p, 0)) > g(Ψα′

(p, 0)) = Uα′

(p)

for p = 0, 1. Suppose that (42) fails for some φ ∈ (0, 1). Letting φ0 be the point where

Uα′

(φ) − Uα(φ) is maximized, we have

Uα′

(φ0) > Uα(φ0), Uα′

(φ0)
′ = Uα(φ0)

′ = z and Uα′

(φ0)
′′ ≤ Uα(φ0)

′′.

But then gα(Ψ1(φ0, z)) ≥ gα′

(Ψ2(φ0, z)) and so

Uα(φ0)
′′ =

2z

1 − φ
+

2r(Uα(φ0) − g(Ψα(φ, z)))

|γ(Ψα(φ, z), φ)|2 <
2z

1 − φ
+

2r(Uα′

(φ0) − g(Ψα′

(φ, z)))

|γ(Ψα′(φ, z), φ)|2 = Uα(φ0)
′′,

a contradiction (recall that γ(Ψα′

(φ, z), φ) = γ(Ψα(φ, z), φ)).

D Appendix for Section 7.

Throughout this appendix, we will maintain Conditions 1 and 3. Write U and L for the upper

and lower boundaries of the correspondence E respectively, that is,

U(p) = sup E(p) , L(p) = inf E(p)

for all p ∈ [0, 1].

Proposition 9. The upper boundary U : (0, 1) → R is a viscosity sub-solution of the Upper

Optimality equation.

Proof. If U is not a sub-solution, there exists q ∈ (0, 1) and a C2-function V : (0, 1) → R such

that 0 = (V − U∗)(q) < (V − U∗)(φ) for all φ ∈ (0, 1) \ {q}, and

H∗(q, V (q), V ′(q)) = H∗(q, U
∗(q), V ′(q)) > V ′′(q) .

Since H∗ is lower semi-continuous, U∗ is upper semi-continuous and V > U∗ on (0, 1) \ {q},
there exist ε and δ > 0 small enough such that for all φ ∈ [q − ε, q + ε],

H(φ, V (φ) − δ, V ′(φ)) > V ′′(φ), (43)

V (q − ε) − δ > U∗(q − ε) ≥ U(q − ε) and V (q + ε) − δ > U∗(q + ε) ≥ U(q + ε). (44)

Figure 5 displays the configuration of functions U∗ and V − δ. Fix a pair (φ0,W0) ∈ GraphE
with φ0 ∈ (q−ε, q+ε) and W0 > V (φ0)−δ. (Such pair (φ0,W0) exists because V (q) = U∗(q) and

U∗ is u.s.c.) Let (at, b̄t, φt) be a sequential equilibrium that attains the pair (φ0,W0). Denoting

by (Wt) the continuation value of the normal type, we have

dWt = r(Wt − g(at, b̄t)) dt + rβt · (dXt − µ(at, b̄t) dt)

for some β ∈ L∗. Next, we will show that, with positive probability, eventually Wt becomes

greater than U(φt), leading to a contradiction since U is the upper boundary of E .
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Figure 5: A viscosity sub-solution.

Let Dt = Wt − (V (φt) − δ). By Itô’s formula,

dV (φt) = |γt|2(
V ′′(φt)

2
− V ′(φt)

1 − φt
) dt + γtV

′(φt) dZn
t ,

where γt = γ(at, b̄t, φt), and hence,

dDt =
(
rDt +r(V (φt)− δ)−rg(at, b̄t)−|γt|2(

V ′′(φt)

2
− V ′(φt)

1 − φt
)
)
dt +

(
rβtσ(b̄t)−γtV

′(φt)
)
dZn

t .

Therefore, so long as Dt ≥ D0/2,

(a) φt cannot exit the interval [q − ε, q + ε] by (44), and

(b) there exists η > 0 such that either the drift of Dt is greater than rD0/2 or the norm of

the volatility of Dt is greater than η, because of inequality (43) using an argument similar

to the proof of Lemma 13.20

This implies that with positive probability Dt stays above D0/2 and eventually reaches any

arbitrarily large level. Since payoffs are bounded, this leads to a contradiction. We conclude

that U must be a sub-solution of the upper optimality equation.

20While the required argument is similar to the one found in the proof of Lemma 13, there are important

differences, so we outline them here. First, the functions d and f from Lemma 13 must be re-defined, with the

test function V replacing U in the new definition. Second, the definition of the compact set Φ also requires change:

Φ would now be the set of all (a, b̄, φ, β) with φ ∈ [q − ε, q + ǫ] and |β| ≤ M such that the incentive constraints

(41) are satisfied and d(a, b̄, φ) ≤ 0. Since φ is bounded away from 0 and 1, the boundary conditions will play no

role here. Finally, note that U is assumed to satisfy the optimality equation in the lemma, while here V satisfies

the strict inequality 43. Accordingly, we need to modify the last part of that proof as follows: f(a, b̄, φ, β) = 0

implies d(a, b̄, φ) > 0, and therefore we have η > 0.
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The next lemma is an auxiliary result used in the proof of Proposition 10 below.

Lemma 14. The correspondence E of public sequential equilibrium payoffs is convex-valued and

has an arc-connected graph.

Proof. We shall first prove that E is convex-valued. Fix p ∈ (0, 1), w∗, w∗ ∈ E(p) (with w∗ > w∗)

and v ∈ (w∗, w
∗). We will prove that v ∈ E(p). Consider the set V = {(φ,w) |w = α|φ− p|+ v}

where α > 0 is chosen large enough so that α|φ − p | + v > U(φ) for all φ sufficiently close

to 0 and 1. Let (φt,Wt)t≥0 be the belief / continuation value process of a public sequential

equilibrium that yields the normal type a payoff of w∗. Let τ ≡ inf{t > 0 |(φt,Wt) ∈ V }.
Proposition 4 implies that τ < ∞ almost surely. If φτ = p with probability 1, then Wτ = v

and nothing remains to be shown. Otherwise, by the martingale property, we have φτ < p

with positive probability and φτ > p also with positive probability. Hence, there exists a

continuous curve C ⊂ graph E with endpoints (p1, w1) and (p2, w2) such that p1 < p < p2,

and for all (φ,w) ∈ C we have w > v and φ ∈ (p1, p2). Pick 0 < ε < p − p1. We will now

construct a continuous curve C′ ⊂ graph E|(0, p1+ε] that has (p1, w1) as an endpoint and satisfies

inf {φ | ∃w s.t. (φ,w) ∈ C′} = 0. Fix a public sequential equilibrium of the dynamic game with

prior p1 that yields the normal type a payoff of w1. Let P
n denote the probability measure over

the sample paths of X induced by the strategy of the normal type. By Proposition 4 we have

φt → 0 P
n-almost surely. Moreover, since (φt) is a supermartingale under P

n, the maximal

inequality for non-negative supermartingales yields:

P
n

[

sup
t≥0

φt ≤ p1 + ε

]

≥ 1 − p1

p1 + ε
> 0 .

Choose a sample path (φ̄t, W̄t) with the property that φ̄t → 0 and φ̄t ≤ p1 + ε for all t ≥ 0.

Define the curve C′ as the image of the sample path t 7→ (φ̄t, W̄t). By a similar argument we can

construct a continuous curve C′′ ⊂ Graph E|[p2−ε,1) that has (p2, w2) as an endpoint and satisfies

sup {φ | ∃w s.t. (φ,w) ∈ C′′} = 1.

Thus, we have constructed a continuous curve C∗ ≡ C′ ∪C ∪C ′′ ⊂ GraphE|(0,1) that projects

onto (0, 1) and satisfies inf {w | (p,w) ∈ C∗} > v. By a similar argument, there exists a continuous

curve C∗ ⊂ GraphE|(0,1) that projects onto (0, 1) and satisfies sup {w | (p,w) ∈ C∗} < v.

Let φ 7→ (a(φ), b̄(φ)) be a measurable selection from the correspondence of static Bayesian

Nash equilibrium. Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

+ γ(a(φt), b̄(φt), φt) dZn
t

with initial condition φ0 = p.21 Let (Wt) be the unique solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt

with initial condition W0 = v, up to the stopping time T > 0 when (φt,Wt) first hits either C∗

or C∗. Define a strategy profile (at, b̄t) as follows: for t < T , (at, b̄t) ≡ (a(φt), b̄(φt)); from t = T

21Condition 1 ensures that γ(a(φt), b̄(φt), φt) is bounded away from zero, hence standard results for exis-

tence/uniqueness of weak solutions apply.
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Figure 6: A viscosity super-solution.

onwards (at, b̄t) follows an equilibrium of the game with prior φT . By Theorem 1 (at, b̄t, φt) is a

sequential equilibrium of the game with prior p that yields the normal type a payoff of v. Hence

v ∈ E(p), concluding the proof that E is convex-valued.

We will now prove that the graph of E is arc-connected. Fix p < q, v ∈ E(p) and w ∈ E(q).

Consider a sequential equilibrium of the game with prior q that yields the normal type a payoff

of w. Since φt → 0, there exists a continuous curve C ⊂ graph E with endpoints (q, w) and (p, v′)

for some v′ ∈ E(p). Since E is convex-valued, the straight line C′ connecting (p, v) to (p, v′) is

contained in the graph of E . Hence C ∪C′ is a continuous curve connecting (q, w) and (p, v) that

is contained in the graph of E , concluding the proof that E has an arc-connected graph.

Proposition 10. The upper boundary U : (0, 1) → R is a viscosity super-solution of the Upper

Optimality equation.

Proof. If U is not a super-solution, there exists q ∈ (0, 1) and a C2-function V : (0, 1) → R such

that 0 = (U∗ − V )(q) < (U∗ − V )(φ) for all φ ∈ (0, 1) \ {q}, and

H∗(q, V (q), V ′(q)) = H∗(q, U∗(q), V
′(q)) < V ′′(q) .

Since H∗ is upper semi-continuous, U∗ is lower semi-continuous and U∗ > V on (0, 1)\{q}, there

exist ε, δ > 0 small enough such that for all φ ∈ [q − ε, q + ε],

H(φ, V (φ) + δ, V ′(φ)) < V ′′(φ), (45)

V (q − ε) + δ < U(q − ε) and V (q + ε) + δ < U(q + ε). (46)

Figure 6 displays the configuration of functions U∗ and V + δ. Fix a pair (φ0,W0) with

φ0 ∈ (q− ε, q + ε) and U(φ0) < W0 < V (φ0)+ δ. We will now construct a sequential equilibrium
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that attains (φ0,W0), and this will lead to a contradiction since U(φ0) < W0 and U is the upper

boundary of E .

Let φ 7→ (a(φ), b̄(φ)) ∈ Ψ(φ, φ(1 − φ)V ′(φ)) be a measurable selection of action profiles that

minimize

rV (φ) − rg(a, b̄) − |γ(a, b̄, φ)|2(V
′′(φ)

2
− V ′(φ)

1 − φ
) (47)

over all (a, b̄) ∈ Ψ(φ, φ(1 − φ)V ′(φ)), for each φ ∈ (0, 1).

Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

dt + γ(a(φt), b̄(φt), φt) · dZn

t (48)

on the interval [q − ε, q + ε], with initial condition φ0.
22 Next, let (Wt) be the unique strong

solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt + γ(a(φt), b̄(φt), φt)V
′(φt) · dZn

t , (49)

with initial condition W0, until the stopping time when φt first exits [q − ε, q + ε].23

Then, by Ito’s formula, the process Dt = Wt − V (φt) − δ has zero volatility and drift given

by

rDt + rV (φt) − rg(a(φt), b̄(φt)) − |γ(a(φt), b̄(φt)), φt)|2
(

V ′′(φt)

2
− V ′(φt)

1 − φt

)

.

By (45) and the definition of (a(φ), b̄(φ)), the drift of Dt is strictly negative so long as Dt ≤ 0

and φt ∈ [q − ε, q + ε]. (Note that D0 < 0.) Therefore, the process (φt,Wt) remains under the

curve (φt, V (φt) + δ) from time zero onwards so long as φt ∈ [q − ε, q + ε].

By Lemma 14 there exists a continuous path C ⊂ E|[q−ε,q+ε] that connects the points (q −
ε, U(q − ε)) and (q + ε, U(q + ε)). By (46), the path C and the function V + δ bound a region in

[q − ε, q + ε] × R that contains (φ0,W0), as shown in Figure 6. Since the drift of Dt is strictly

negative while φt ∈ [q − ε, q + ε], the pair (φt,Wt) eventually hits the path C at a stopping time

τ < ∞ before φt exits the interval [q − ε, q + ε].

We will now construct a sequential equilibrium of the repeated game with prior φ0 that

yields the normal type payoff W0. Consider the strategy profile and belief process that coincides

with (a(φt), b̄(φt), φt) up to time τ , and follows a sequential equilibrium of the game with prior

φτ at all times after τ . Since Wt is bounded, (a(φt), b̄(φt)) ∈ Ψ(φt, φt(1 − φt)V
′(φt)), and the

processes (φt,Wt) follow (48) and (49), Theorem 1 implies that the strategy profile (a(φt), b̄(φt))

and belief process (φt) form a sequential equilibrium of the game with prior φ0. It follows that

W0 ∈ E(φ0), leading to a contradiction since W0 > U(φ0). This contradiction shows that U

must be a super-solution of the upper optimality equation.

Lemma 15. Every bounded viscosity solution of the upper optimality equation is locally Lipschitz

continuous.

22Existence of a weak solution on a closed sub-interval of (0, 1) follows from the fact that V ′ is bounded and

therefore γ is bounded away from zero (Lemma 4). Uniqueness is also granted, because φt is a one-dimensional

process (see Remark 4.32 on Karatzas and Shreve (1991, p. 327)).
23Existence and uniqueness of a strong solution follows from the Lipschitz and linear growth conditions in W ,

and the boundedness of γ(a(φ), b̄(φ), φ)V ′(φ) on [q − ε, q + ε].
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Proof. En route to a contradiction, suppose U is a bounded viscosity solution that is not locally

Lipschitz. That is, for some p ∈ (0, 1) and ε ∈ (0, 1
2) satisfying [p − 2ε, p + 2ε] ⊂ (0, 1) the

restriction of U to [p − ε, p + ε] is not Lipschitz continuous. Let M = sup |U |. By Lemmas 3

and 4 there exists K > 0 such that for all (φ, u, u′) ∈ [p − 2ε, p + 2ε] × [−M,M ] × R,

|H∗(φ, u, u′)| ≤ K(1 + |u′|2) , (50)

Since the restriction of U to [p−ε, p+ε] is not Lipschitz continuous, there exist φ0, φ1 ∈ [p−ε, p+ε]

such that
|U∗(φ1) − U∗(φ0)|

|φ1 − φ0|
≥ max{1, e2M(4K+ 1

ε
)} . (51)

Hereafter we will assume φ1 > φ0 and U∗(φ1) > U∗(φ0). The proof for the reciprocal case is

analogous and will be omitted.

Let V : I → R be the solution of the differential equation

V ′′(φ) = 2K(1 + V ′(φ)2) , (52)

with initial conditions given by

V (φ1) = U∗(φ1) and V ′(φ1) =
U∗(φ1) − U∗(φ0)

φ1 − φ0
, (53)

where the interval I is the maximal domain of V .

We claim V has the following two properties:

(a) There exists φ∗ ∈ I ∩ (p − 2ε, p + 2ε) such that V (φ∗) = −M and φ∗ < φ0. In particular,

φ0 ∈ I.

(b) V (φ0) > U∗(φ0).

We shall first prove property (a). For all φ ∈ I such that V ′(φ) > 1, we have V ′′(φ) <

4KV ′(φ)2 or, equivalently, (log V ′)′(φ) < 4KV ′(φ), which yields

V (φ̂) − V (φ̃) >
1

4K
(log(V ′(φ̂)) − log(V ′(φ̃))) , ∀φ̂, φ̃ ∈ I s.t. V ′(φ̂) > V ′(φ̃) > 1 . (54)

By (51) and (53), we have 1
4K

log(V ′(φ1)) > 2M , and therefore a unique φ̃ ∈ I exists such

that
1

4K
(log(V ′(φ1)) − log(V ′(φ̃))) = 2M . (55)

Since V ′(φ̃) > 1, it follows from (54) that V (φ1) − V (φ̃) > 2M and so V (φ̃) < −M . Since

V (φ1) > U(φ0) ≥ −M , there exists some φ∗ ∈ (φ̃, φ1) such that V (φ∗) = −M . Moreover φ∗

must belong to (p − 2ε, p + 2ε), because the convexity of V implies

φ1 − φ∗ <
V (φ1) − V (φ∗)

V ′(φ∗)
<

2M

V ′(φ̂)
<

2M

log(V ′(φ̂))
=

2M

log(V ′(φ1)) − 8KM
< ε ,

where the equality follows from (55) and the rightmost inequality follows from (51). Finally, we

have φ∗ < φ0, otherwise the inequality V (φ∗) ≤ U∗(φ0) and the initial conditions (53) would

imply

V ′(φ1) =
U∗(φ1) − U∗(φ0)

φ1 − φ0
≤ V (φ1) − V (φ∗)

φ1 − φ∗
,
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which would violate the strict convexity of V . This concludes the proof of property (a).

Turning to property (b), the strict convexity of V and the initial conditions (53) imply

U∗(φ1) − V (φ0)

φ1 − φ0
=

V (φ1) − V (φ0)

φ1 − φ0
< V ′(φ1) =

U∗(φ1) − U∗(φ0)

φ1 − φ0
,

and therefore V (φ0) > U∗(φ0), as required.

Define

L = max {V (φ) − U∗(φ) |φ ∈ [φ∗, φ1]} .

By property (b), we have L > 0. Let φ̂ be a point at which the maximum above is attained.

Since V (φ∗) = −M and V (φ1) = U∗(φ1), we have φ̂ ∈ (φ∗, φ1) and therefore V − L is a test

function that satisfies

U∗(φ̂) = V (φ̂) − L ,

and

U∗(φ) ≥ V (φ) − L for every φ ∈ (φ∗, φ1) .

Since U is a viscosity supersolution,

V ′′(φ̂) ≤ H∗(φ̂, V (φ̂) − L, V ′(φ̂)) ,

and hence, by (50),

V ′′(φ̂) ≤ K(1 + V ′(φ̂)2) < 2K(1 + V ′(φ̂)2)) ,

which is a contradiction, since by construction V satisfies equation (52).

Lemma 16. Every bounded viscosity solution of the upper optimality equation is continuously

differentiable with absolutely continuous derivatives.

Proof. Let U : (0, 1) → R be a bounded solution of the upper optimality equation. By Lemma 15,

U is locally Lipschitz and hence differentiable almost everywhere. We will now show that U is

differentiable. Fix φ ∈ (0, 1). Since U is locally Lipschitz, there exist δ > 0 and k > 0 such that

for every p ∈ (φ − δ, φ + δ) and every smooth test function V : (φ − δ, φ + δ) → R satisfying

V (p) = U(p) and V ≥ U we have

|V ′(p)| ≤ k .

It follows from Lemma 4 that there exists some M > 0 such that

|H(p, U(p), V ′(p))| ≤ M

for every p ∈ (φ−δ, φ+δ) and every smooth test function V satisfying V ≥ U and V (p) = U(p).

Let us now show that for all ε ∈ (0, δ) and ε′ ∈ (0, ε)

− Mε′(ε − ε′) < U(φ + ε′) −
(

ε′

ε
U(φ + ε) +

ε − ε′

ε
U(φ)

)

< Mε′(ε − ε′). (56)

If not, for example if the second inequality fails, then we can choose K > 0 such that the C2

function (a parabola)

f(φ + ε′) =

(
ε′

ε
U(φ + ε) +

ε − ε′

ε
U(φ)

)

+ Mε′(ε − ε′) + K
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is completely above U(φ+ε′) except for a tangency point at ε′′ ∈ (0, ε). But this contradicts the

fact that U is a viscosity subsolution, since f ′′(φ+ε′′) = −2M < H(φ+ε′′, U(p+ε′′), U ′(φ+ε′′)).

We conclude that the bounds in (56) are valid, and so for all 0 < ε′ < ε < δ,

∣
∣
∣
∣

U(φ + ε′) − U(φ)

ε′
− U(φ + ε) − U(φ)

ε

∣
∣
∣
∣
≤ Mε.

It follows that as ε converges to 0 from above,

U(φ + ε) − U(φ)

ε

converges to a limit U ′(φ+). Similarly, if ε converges to 0 from below, the quotient above

converges to a limit U ′(φ−).

We claim that U ′(φ+) = U ′(φ−). Otherwise, if for example U ′(φ+) > U ′(φ−), then the

function

f1(φ + ε′) = U(φ) + ε′
U ′(φ−) + U ′(φ+)

2
+ Mε′2

is below U in a neighborhood of φ, except for a tangency point at φ. But this leads to a

contradiction, because f ′′
1 (φ) = 2M > H(φ,U(φ), U ′(φ)) and U is a super-solution. Therefore

U ′(φ+) = U ′(φ−) and we conclude that U is differentiable at every φ ∈ (0, 1).

We will now show that U ′ is locally Lipschitz. Fix φ ∈ (0, 1) and, arguing just as we did

above, choose δ > 0 and M > 0 so that

|H(p, U(p), V ′(p))| ≤ M

for every p ∈ (φ− δ, φ + δ) and every smooth test function V satisfying V (p) = U(p) and either

V ≥ U or V ≤ U . We affirm that for any p ∈ (φ − δ, φ + δ) and ε ∈ (0, δ)

|U ′(p) − U ′(p + ε)| ≤ 2Mε.

If not, e.g. if U ′(p + ε) > U ′(p) + 2Mε for some p ∈ (φ − δ, φ + δ) and ε ∈ (0, δ), then the test

function

f2(p + ε′) =
ε′

ε
U(p + ε) +

ε − ε′

ε
U(p) − Mε′(ε − ε′)

must be above U at some ε′ ∈ (0, ε) (since f ′
2(p + ε) − f ′

2(p) = 2Mε.) Therefore, there exists a

constant K > 0 such that f2(p + ε′) − K stays below U for ε′ ∈ [0, ε], except for a tangency at

some ε′′ ∈ (0, ε). But then

f ′′
2 (φ + ε′′) = 2M > H(φ + ε′′, U(φ + ε′′), U ′(φ + ε′′)),

contradicting the fact that U is a viscosity super-solution.

Proposition 11. The upper boundary U is a continuously differentiable function, with absolutely

continuous derivatives. In addition, U is characterized as the maximal bounded solution of the

following differential inclusion:

U ′′(φ) ∈ [H(φ,U(φ), U ′(φ)) , H∗(φ,U(φ), U ′(φ))] a.e. . (57)
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Proof. First, note that by Propositions 9, 10 and 16, the upper boundary U is a differentiable

function with absolutely continuous derivative that solves the differential inclusion (57).

If U is not a maximal solution, then there exists another bounded solution V of the differential

inclusion (57) that is strictly above U at some p ∈ (0, 1). Choose ε > 0 such that V (p)−ε > U(p).

We will show that V (p)−ε is the payoff of a public sequential equilibrium, which is a contradiction

since U is the upper boundary.

From the inequality

V ′′(φ) ≥ H(φ, V (φ), V ′(φ)) a.e.

it follows that a measurable selection (a(φ), b̄(φ)) ∈ Ψ(φ, φ(1 − φ)V ′(φ)) exists such that

rV (φ) − rg(a(φ), b̄(φ), φ) − |γ(a(φ), b̄(φ), φ)|2(V
′′(φ)

2
− V ′(φ)

1 − φ
) ≤ 0 , (58)

for almost every φ ∈ (0, 1).

Let (φt) be the unique weak solution of

dφt = −|γ(a(φt), b̄(φt), φt)|2
1 − φt

+ γ(a(φt), b̄(φt), φt) dZn

t ,

with initial condition φ0 = p.

Let (Wt) be the unique strong solution of

dWt = r(Wt − g(a(φt), b̄(φt))) dt + V ′(φt)γ(a(φt), b̄(φt), φt) dZn

t ,

with initial condition W0 = V (p) − ε.

Consider the process Dt = Wt − V (φt). It follows from Itô’s formula for differentiable

functions with absolutely continuous derivatives that:

dDt

dt
= rDt + rV (φt) − rg(a(φt), b̄(φt), φt) − |γ(a(φt), b̄(φt), φt)|2(

V ′′(φt)

2
− V ′(φt)

1 − φt
) .

Therefore, by (58) we have
dDt

dt
≤ rDt ,

and since D0 = −ε < 0 it follows that Wt ց −∞.

Let τ be the first time that (φt,Wt) hits the graph of U . Consider a strategy profile / belief

process that coincides with (at, b̄, φt) up to time τ and, after that, follows a public sequential

equilibrium of the game with prior φτ with value U(φτ ). It is immediate from Theorem 1 that

the strategy profile / belief process constructed is a sequential equilibrium that yields the large

player payoff V (p) − ε > U(p), a contradiction.
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In this supplemental appendix, we will show that in the reputation games from Section 7 of

Faingold and Sannikov (2007) a sequential equilibrium is guaranteed to exist as long as public

randomization is allowed. For simplicity, we will consider the case of finite action sets A and B

(allowing for mixed strategies) and we will normalize σ to unity. We will maintain Condition 1

throughout.

A publicly randomized strategy profile is a random process (πt)t≥0 with values in ∆
(
A × B

)

progressively measurable w.r.t. (Ft). Given a publicly randomized strategy profile (πt), the

public signal X follows:

dXt = µ(πt) dt + dZt,

where µ is extended to ∆
(
A × B

)
by linearity.

A deviation for the large player is a progressively measurable process (αt) with values in the

set of functions from A×B into A. A deviation for the small players is defined similarly. Given

a publicly randomized strategy π and a deviation α, write:

πα
t (a, b̄) = πt(αt(a, b̄), b̄),

for all (a, b̄) ∈ A×B. A publicly randomized strategy is sequentially rational for the large player

if for every deviation α, for every t and every public history,

Et

[

r

∫ ∞

t

e−r(s−t)g(πs) ds
∣
∣
∣ θ = n

]

≥ Et

[

r

∫ ∞

t

e−r(s−t)g(πα
s ) ds

∣
∣
∣ θ = n

]

where the expectation on the LHS is taken w.r.t. to the measure generated by π and the one on

the right is taken w.r.t. to the measure generated by πα. Given a belief process (φt), sequential

rationality for the small players is defined analogously. A publicly randomized sequential equi-

librium is a publicly randomized strategy (πt) together with a belief process (φt) such that (πt)

is sequentially rational w.r.t. (φt), and (φt) is consistent with (πt).

Notice that we allow for a rich set of deviations in which the relabeling can depend on the

recommendations to the opponent. Otherwise we would get correlated equilibrium instead of

sequential equilibrium with public randomization.
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For each φ ∈ [0, 1] and β ∈ R
d, let N (φ, β) ⊂ ∆A× ∆B denote the set of Nash equilibria of

the static game in which the normal type has payoffs given by g(a, b̄) + βµ(a, b̄) and the small

players have payoffs given by (1 − φ)h(a, bi, b̄) + φh(a∗, bi, b̄).

We now state the appropriate modification of Theorem 1 for publicly randomized strategies.

Theorem. A publicly randomized profile (πt) together with a belief process (φt) is a public

sequential equilibrium with continuation values (Wt) for the normal type if and only if

(a) (Wt) is a bounded process that satisfies

dWt = r(Wt − g(πt)) dt + rβt · (dXt − µ(πt) dt) (1)

for some process β ∈ L∗,

(b) belief process (φt) follows

dφt = γ(πt, φt) (dXt − µφt(πt) dt) , and (2)

(c) strategy (πt) satisfies the incentive constraints πt ∈ coN (φt, βt).

The proof is a straightforward modification of Theorem 1 from Faingold and Sannikov (2007)

and will be omitted.

We shall now redefine the correspondence Ψ from Section 6 to allow for public randomization:

Ψ(φ, z) =
{

π ∈ ∆(A × ∆B) : π ∈ coN
(
φ, z (µ(a∗,marg∆(B) π) − µ(π))/r

)}

.

Note that Ψ(φ, z) is connected for all (φ, z).

Next, consider the convex-valued, u.h.c. correspondence Γ : [0, 1] × R
2

⇉ R,

Γ(φ, u, u′) = co

{
2u′

1 − φ
+

2r(u − g(π))

|γ(π, φ)|2 : π ∈ Ψ(φ, φ(1 − φ)u′)

}

for all (φ, u, u′) ∈ [0, 1] × R
2.

We will now show that a publicly randomized sequential equilibrium exists whenever Con-

dition 1 is satisfied.1 First, the lemma below shows that the differential inclusion

U ′′(φ) ∈ Γ(φ,U(φ), U ′(φ)) a.e. (3)

has a bounded solution U . Therefore, since Ψ is connected-valued, by the Intermediate Value

Theorem there exists a measurable selection φ 7→ π(φ) ∈ Ψ(φ, φ(1 − φ)U ′(φ)) such that

U ′′(φ) =
2U ′(φ)

1 − φ
+

2r(U(φ) − g(π(φ)))

|γ(π(φ), φ)|2 ,

and hence, by an argument similar to the penultimate paragraph of the proof of Theorem 3, we

conclude that a sequential equilibrium in publicly randomized strategies exists.

1Condition 3 is redundant, for here we work in the finite action setup.

2



Before turning to the existence lemma we note that, by a straightforward extension of Lem-

mas 3 and 4 to the public randomization setup we have the following quadratic growth condition

for Γ: given any closed interval I ⊂ (0, 1) there exists C > 0 such that

sup |Γ(φ, u, u′)| ≤ C(1 + |u′|2)

for all (φ, u, u′) ∈ I × [g, ḡ] × R.

Lemma. A bounded solution of the differential inclusion (3) exists.

Proof. In five steps:

STEP 1 (Existence away from 0 and 1): Given any closed interval [p, q] contained in (0, 1), the

differential inclusion has a C2 solution on [p, q] that stays in the set of feasible payoffs. This

follows from an existence theorem for boundary value problems for second-order differential

inclusions that satisfy a certain growth condition, called the Nagumo condition, which is

implied by our quadratic growth condition. The theorem can be found in Bebernes and

Kelley (1973)

STEP 2 (A priori bounds on derivatives): Given any interval [p, q] ⊂ (0, 1) there exists R > 0

such that every solution U : [p, q] → R that stays in the set of feasible payoffs on [p, q]

satisfies |U ′| < R on [p, q]. This can be shown using our quadratic growth condition and an

argument similar to the proof of Lemma 6 from Faingold and Sannikov (2007, Appendix

C.1).

STEP 3 (Extension to (0, 1)): For each n, let Un : [1/n, 1 − 1/n] → R be a C2 solution of the

differential inclusion on [1/n, 1 − 1/n] and let Rn > 0 denote the corresponding a priori

bound on derivatives from STEP 2. Fix n and consider m ≥ n. The restriction of Um

to [1/n, 1 − 1/n] is a solution of the differential inclusion that stays in the set of feasible

payoffs on [1/n, 1 − 1/n]. Hence STEP 2 applies and we have |U ′
m(φ)| < Rn for all

φ ∈ [1/n, 1 − 1/n], which implies a uniform bound on the second derivative U ′′
m because

of the growth condition. By the Arzel-Ascoli Theorem, for every n the sequence (Um)m>n

has a sub-sequence that converges in the C1 topology on [1/n, 1 − 1/n]. Hence, by a

standard diagonalization argument, there exists a subsequence, which we still call Un, that

converges pointwise to some function U : (0, 1) → R. Moreover, on any closed sub-interval

I of (0, 1), the convergence takes place in C1(I), i.e., U is C1 and (Un, U ′
n) → (U,U ′)

uniformly on I.

STEP 4 (Absolute continuity of U ′): Note that:

(i) U ′
n → U ′ pointwise, and

(ii) for every [p, q] ⊂ (0, 1), U ′
n is Lipschitz continuous on [p, q] uniformly over all n >

max{1/p, 1/(1 − q)}. This is because by STEP 2 there exists R > 0 such that for

all n with 1/n < min{p, 1 − q} we have |U ′
n| ≤ R on [p, q], which implies a uniform

bound on U ′′
n by the growth condition.

Therefore, U ′ is locally Lipschitz, and hence absolutely continuous.
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STEP 5 (U is a solution): Fix an arbitrary ε > 0 and a φ0 at which U ′′ exists. Since Γ is u.h.c.

and (Un, U ′
n) → (U,U ′) uniformly on a nbd of φ0 (by STEP 3), there exist δ and N > 0

such that for all n ≥ N and all φ ∈ (φ0 − δ, φ0 + δ) we have

Γ(φ,Un(φ), U ′
n(φ)) ⊂ Γ(φ0, U(φ0), U

′(φ0)) + [−ε, ε].

In particular, for almost all φ ∈ (φ0 − δ, φ0 + δ) and all n ≥ N we have

U ′′
n(φ) ∈ Γ(φ0, U(φ0), U

′(φ0)) + [−ε, ε]. (4)

On the other hand, for all h > 0 and n ≥ 1 we have

(U ′
n(φ0 + h) − U ′

n(φ0))/h =
1

h

∫ φ0+h

φ0

U ′′
n(x) dx.

It then follows from the inclusion (4) and the fact that Γ has convex, closed values that

(U ′
n(φ0 + h) − U ′

n(φ0))/h ∈ Γ(φ0, U(φ0), U
′(φ0)) + [−ε, ε]

for all n ≥ N and |h| < δ. Thus, letting n → ∞ first and then h → 0 yields

U ′′(φ0) ∈ Γ(φ0, U(φ0), U
′(φ0)) + [−ε, ε].

Finally, taking ε to zero yields the desired result.
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