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Abstract: Extreme adverse selection arises when private information has un-
bounded support, and market breakdown occurs when no trade is the only equi-
librium outcome. We study extreme adverse selection via the limit behavior of a
financial market as the support of private information converges to an unbounded
support. A necessary and sufficient condition for market breakdown is obtained. If
the condition fails, then there exists competitive market behavior that converges to
positive levels of trade whenever it is first best to have trade. When the condition
fails, no feasible (competitive or not) market behavior converges to positive levels
of trade.

Keywords: Adverse selection, market breakdown, separation, competitive pric-
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1 Introduction

The presence of adverse selection can cause severe inefficiencies. This is most
starkly illustrated by Akerlof’s (1970) famous example where adverse selection
leads to market breakdown (i.e., no trade is the only possible equilibrium outcome).
Despite the prominence of Akerlof’s example, there is little work identifying the
exact circumstances under which market breakdown must occur. We do so in a
simple model of trade in a financial market in which an informed trader possess
private information about the payoff of a risky asset.

∗We thank Martin Hellwig, Benny Moldovanu, Frank Riedel, and various seminar audiences for
helpful comments. Financial support from the National Science Foundation, grants #SES-0095768
and #SES-0350969, and the Deutsche Forschungsgemeinschaft, GRK 629 and SFB/TR 15, at the
University of Bonn is gratefully acknowledged.

1



We are interested in two issues. The first is the role of competitive pricing in
market breakdown. In a financial market context it has been argued (see Glosten
and Milgrom (1985), Glosten (1989), Leach and Madhavan (1993), and Glosten
(1994)) that competitive pricing leads to market breakdown when the adverse se-
lection problem is sufficiently severe, whereas the ability of a monopolist to cross-
subsidize across different trades keeps the market open under identical circum-
stances.

The second issue is the identification of environments in which the adverse
selection problem is sufficiently severe that market breakdown occurs under all
feasible market structures.1 Models of adverse selection in financial markets that
focus on the issue of competitive market breakdown typically follow Kyle’s (1985)
seminal contribution in assuming that the type of the informed trader is normally
distributed.2 Because of the normality assumption, these models feature what we
term extreme adverse selection, namely a type space for the informed trader with
unbounded support. In the environments we consider, extreme adverse selection is
necessary, but not sufficient, for market breakdown to be unavoidable. In particular,
we will show that while market breakdown does not arise when the private infor-
mation is normally distributed, it does arise for other distributions with unbounded
support.

We investigate these issues in a model similar to Glosten (1989). There is a
single informed, risk-averse strategic trader (with constant absolute risk aversion
preferences) and risk neutral market makers. The informed trader can act either
as a buyer or as a seller; there are no restrictions on order sizes. Glosten (1989)
models a two-dimension adverse selection problem in which the informed trader
has private information about the expected payoff of the risky asset as well as about
his endowment and both of these random variables are normally distributed. Fol-
lowing Biais, Martimort, and Rochet (2000), we make no parametric distribution
assumptions and conduct the formal analysis in a reduced form model where the
informed trader’s private information is summarized by a one-dimensional type
(we discuss this in more detail in remark 2.1).

Rather than studying the equilibria of a particular market-microstructure model,
we analyze feasible trading schedules and competitive trading schedules (where
a trading schedule specifies a quantity for each type of the informed trader). A
trading schedule is feasible if it is optimal for the informed trader to follow that
schedule given some price schedule (specifying a price for every possible quan-
tity), and if it yields nonnegative expected profits to the market makers under this

1Glosten (1994) also considers this issue. See remark 3.2 for a discussion of the relationship
between his and our work.

2Examples include Glosten (1989), Bhattacharya and Spiegel (1991), Spiegel and Subrahmanyam
(1992), and Bhattacharya, Reny, and Spiegel (1995)
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price schedule. In a model with a bounded type space this is equivalent to the
requirement that the trading schedule can be implemented as part of an incentive
compatible, interim individual rational allocation. Considering feasible trading
schedules thus allows us to delineate the circumstances under which every market
structure satisfying these constraints must result in the no-trade outcome, i.e., cases
in which market breakdown is unavoidable.

The idea behind our definition of a competitive trading schedule is natural and
straightforward. Under the price schedule supporting a competitive trading sched-
ule, market makers should earn zero expected profits conditional on any particular
traded quantity. (For quantities that are not traded by any type of the informed
trader, we require this condition to hold for some common beliefs of the market
makers consistent with the underlying distribution.) Requiring pricing to be com-
petitive in this sense eliminates the possibility of cross-subsidization across differ-
ent trades, allowing us to investigate whether such cross-subsidization is helpful in
avoiding market breakdown.3

We follow Hellwig (1992) in studying extreme adverse selection as the limit
case of a sequence of markets in which bounded supports of the distribution of
the informed trader’s information become arbitrary large.4 Like Hellwig, we view
the assumption of an unbounded support as an idealization of the adverse selection
problem caused by large but bounded supports. Under this view, it is important
to understand when a prediction of market breakdown in a model with unbounded
support holds approximately in a model with large support. Moreover, it is never
the case that the trading schedule specifying no-trade for all types of the informed
trader is a feasible trading schedule in a market with extreme adverse selection
(remark 4.1). Working directly with an unbounded type space would force an
identification of market breakdown with the non-existence of a feasible or compet-
itive trading schedule. The more natural identification is with the property that the
trading schedule specifying no trade for all types is the only feasible or competitive

3A trading schedule is competitive in our sense if and only if it is a sequential equilibrium outcome
of a signaling game in which the informed trader chooses a quantity of the risky asset to trade and the
market makers then compete a la Bertrand to take the other side of the trade (see Kreps (1990, Section
17.3) for an extended discussion in the context of Spence (1973)-job market signaling). The analysis
of Gale and Hellwig (2004), which studies a general equilibrium model of an insurance market
with adverse selection, provides an alternative “micro-foundation” for our definition of competitive
trading schedules.

Note that our use of the term “competitive” solely refers to a property of the equilibrium price
schedule. A rather different approach to modeling competition in markets with adverse selection
builds on Prescott and Townsend (1984a,b); see Bisin and Gottardi (2006) for a recent contribution
along these lines.

4Market breakdown is not an issue in our model, i.e., there exist not only feasible but also com-
petitive trading schedules resulting in positive levels of trade (for almost all types), unless adverse
selection is extreme.
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trading schedule.
We thus say that market breakdown occurs if, in the limit, trade does not occur.

Conversely, the market stays open if trade occurs in the limit, for almost all values
of the private information of the informed trader. Our main results

• establish a necessary and sufficient condition, which we term the market
breakdown condition, under which market breakdown must occur for every
sequence of feasible trading schedules;

• show that exactly the same condition is necessary and sufficient for market
breakdown to occur for every sequence of competitive trading schedules,
thus implying that competitive pricing is not a source of market breakdown;
and

• show that if the market breakdown condition fails there exists a sequence of
competitive trading schedule such that the market stays open, i.e., not only is
it possible to avoid market breakdown but a market with competitive pricing
can provide liquidity for almost all types of the informed trader.

The market breakdown condition is a condition on the mean excess function
(also known as the mean residual life function) of the distribution of the informed
trader’s type in the market with extreme adverse selection. We show that this condi-
tion fails for thin-tailed distributions (such as the normal) but is satisfied for a class
of fat-tailed distributions. In particular, for such fat-tailed distributions extreme
adverse selection may cause market breakdown in the strong sense that market
breakdown must occur for all sequence of feasible trading schedules.

Our conclusion that competitive pricing does not cause market breakdown dif-
fers from that in Glosten (1989), the most closely related paper, because Glosten
focuses on trading schedules that are not only competitive, but also separating.5

In a separating trading schedule the type of the informed trader is revealed to the
market makers, eliminating not only the possibility of cross-subsidization across
different trade sizes (as our definition of a competitive trading schedule does), but
also eliminating cross-subsidization across different types of the informed trader.
Due to the distortions required by separation, the competitive separating trading
schedule (which is unique for standard reasons) is interim inefficient in the set of
competitive trading schedules when the informed trader’s private information has

5The literature extending Glosten’s result (i.e. Bhattacharya and Spiegel (1991), Spiegel and
Subrahmanyam (1992), and Bhattacharya, Reny, and Spiegel (1995)), also focuses on separating
trading schedules.
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bounded support (no matter how large or small).6 If the market breakdown condi-
tion holds, the inefficiency from the additional constraint of separation disappears
in the limit as every competitive trading schedule converges to the no-trade out-
come. However, the condition determining whether a competitive separating trad-
ing schedule must converge to the no-trade outcome (identified in Hellwig (1992)
and corresponding to the market breakdown condition in Glosten (1989)) is in-
dependent of the shape of the limit distribution. It will thus hold even when the
market breakdown condition fails (as it does for the normal distribution studied by
Glosten), so that the market can stay open. While it can be argued that competitive
pricing should embody restrictions additional to the ones we impose in our defini-
tion of a competitive trading schedule,7 we find it more productive to identify the
inefficiency associated with the requirement of separation as a source of market
breakdown.

2 The Model

2.1 Information Structure and Preferences

We consider a market for a risky asset in which market makers provide liquidity
to an informed trader who, depending on his private information, may wish to buy
or sell the risky asset. The informed trader’s private information is summarized by
his type θ ∈ R. We denote the distribution function of θ by F . We assume F is
symmetric,8 and denote its support by [−τ,τ] with τ > 0. A trade is given by a
pair (x,m) ∈R2, where x specifies the number of units of the risky asset traded and
m is the corresponding payment. A purchase by the informed trader is indicated
by x > 0 and a sale by x < 0; a payment from the informed trader to the markets
makers is indicated by m > 0 and an amount received by the informed trader from

6We do not provide a formal proof of this assertion as it is not central to our formal analysis.
While the strategic aspects of the model are quite different, this can be shown using a construction
reminiscent of Riley’s (1979) argument that separating outcomes are unstable in his setting.

7If the market is modeled as signaling game, refinements in the spirit of those proposed by
Kohlberg and Mertens (1986) and Cho and Kreps (1987) imply separation and thus justify Glosten’s
conclusion that competitive pricing may imply market breakdown. See Gale (1992, 1996) for a
related Walrasian approach to competition in markets with adverse selection yielding similar con-
clusions. While Kohlberg and Mertens’s (1986) strategic stability has an abstract continuity motiva-
tion, the “intuitive” motivations for some of its implications seem less persuasive (Mailath, Okuno-
Fujiwara, and Postlewaite, 1993). See also Laffont and Maskin (1990) who consider a financial
market signalling model (more akin to the model in Leland and Pyle (1977) than to the one we
consider) and argue that separating trading schedules will not be observed when they are interim
inefficient in the set of sequential equilibria (as is always the case in our model).

8Most of our analysis carries over to the asymmetric case. See section 6 for further discussion.
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the market makers by m < 0. Conditional on θ , the informed trader’s preferences
over trades are described by the utility function u(x,θ)−m, where

u(x,θ) = bθx− 1
2

rx2, (1)

b > 1, and r > 0. Market makers are risk neutral and maximize expected trading
profits. It suffices for our purposes to consider aggregate trading profits. When
market makers engage in a trade (x,m) with an informed trader of type θ , these are
given by m− v(x,θ) where

v(x,θ) = θx. (2)

For later reference, we denote the surplus resulting from type θ trading quantity x
of the risky asset by

s(x,θ) = u(x,θ)− v(x,θ) = (b−1)θx− 1
2

rx2 (3)

and note that surplus is maximized by the trading quantity

qFB(θ) =
b−1

r
θ (4)

with resulting (first best) surplus

sFB(θ) =
(b−1)2

2r
θ

2. (5)

Remark 2.1 Our parameterization of a market environment with an informed trader
follows Hellwig (1992) and is closely related to the model in Glosten (1989) and
Biais, Martimort, and Rochet (2000). It is the reduced form of a model in which
the value of the risky asset is ν = t +ε , the informed trader privately observes t and
his endowment ω of the risky asset, and (t,ω,ε) are zero-mean random variables.
Denote the strictly positive variances of these random variables by σ2

t ,σ2
ω , and σ2

ε .
Assuming, in addition, that the random variable ε is normally distributed and that
the informed trader’s preferences are CARA with risk aversion parameter γ > 0,
the informed trader’s preferences have the representation (1) (see Biais, Martimort,
and Rochet (2000) for a derivation), where

θ ≡ t− rω

b
,

r ≡ γσ
2
ε > 0,

b≡ σ2
t + r2σ2

ω

σ2
t

> 1.
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Restricting attention to allocations that are measurable with respect to θ , the market
makers’ preferences are then given by (2), provided that the additional condition

θ = E[ν |t− rω] (6)

is satisfied.9 In Glosten (1989) condition (6) is implied by the assumption that
(t,ω) are normally distributed. Note that the normality of (t,ω) implies that the
distribution of θ is normal. It is essential that our analysis not require such a re-
striction on the distribution of θ , and it does not. For every symmetric distribution
of θ possessing a density decreasing in |θ |, we can construct zero mean random
variables (t,ω) such that (6) holds for any given values b > 1, r > 0. Hence, for
any such choice of parameters, our model can indeed be interpreted as a reduced
form of the model described above. The construction of such random variables is
described in appendix A.

�

2.2 Feasible and Competitive Trading Schedules

We are interested in studying the effects of changes in the distribution F and in
particular its support [−τ,τ]. While the market environment is described by the
triple (u,v,F), since u and v are fixed, we often abuse language by referring to ei-
ther the distribution F or its support parameter τ as the environment, and similarly
only make the dependence on F or τ explicit.

Throughout the following analysis we focus on implementable trading sched-
ules. A τ-trading schedule is a function q : [−τ,τ]→R, specifying a trading quan-
tity of the risky asset for every type of the informed trader. A price schedule is a
function p : R→R, specifying a price per unit of the risky asset. A price schedule
p implements a τ-trading schedule q if

q(θ) ∈ argmax
x∈R

u(x,θ)− p(x)x, ∀θ ∈ [−τ,τ]. (7)

A trading schedule q is implementable if there exists a price schedule implementing
it. Due to the revelation and taxation principles, any trading schedule that can be
implemented by some direct or indirect mechanism can be implemented by some
price schedule.

In the following definition (and throughout) we use E[ · ] to denote the expec-
tation with respect to F .

9The first best allocation of the reduced form model, as given by (4), maximizes the surplus under
the constraint that allocations are measurable with respect to θ . This is not the same as the first
best allocation in terms of the underlying model, which would provide complete insurance for the
informed agent’s endowment shock ω .
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Definition 2.1 Let p be a price schedule implementing the τ-trading schedule q
and let F be a distribution with support [−τ,τ]. Then the price and trading sched-
ule pair (p,q) is F-feasible if

E[p(q(θ))q(θ)− v(q(θ),θ)]≥ 0.

A trading schedule is F-feasible (or simply feasible if F is obvious) if (p,q) is
F-feasible for price schedule p implementing q.

Feasibility of a price and trading schedule pair requires that the trading sched-
ule arises as the outcome of a trading process in which market makers obtain non-
negative expected trading profits under the implementing price schedule. We em-
phasize that our notion of feasibility incorporates the incentive constraints embod-
ied in (7). Feasibility should be interpreted as feasible in the presence of private
information.

Definition 2.2 Let p be a price schedule implementing the τ-trading schedule q
and let F be a distribution with support [−τ,τ]. Then, the price and trading sched-
ule pair (p,q) is F-zero-profit if

p(x) = E[θ | q(θ) = x], ∀x ∈ q([−τ,τ]).

The pair (p,q) is F-competitive if in addition the sequentiality condition,

p(x) ∈ [−τ,τ], ∀x ∈ R,

is satisfied.

A trading schedule is F-zero-profit (or simply zero-profit if F is obvious) if (p,q)
is F-zero-profit for some implementing price schedule p. A corresponding conven-
tion applies for F-competitive trading schedules. Note that if (p,q) is F-zero-profit
then it is F-feasible. In particular, every competitive trading schedule is feasible.

Markets in which a monopolist specialist posts a price schedule (see Glosten
(1989) for such a model) or (a finite number of) market makers post competing
price schedules (Biais, Martimort, and Rochet, 2000) result in feasible, but not
competitive, trading schedules in which the market makers obtain strictly posi-
tive expected trading profits. Even though market makers obtain zero expected
profits, Glosten’s (1994) model of a discriminatory limit order market does not
result in a competitive trading schedule in the sense of definition 2.2, due to cross-
subsidization across different trade sizes. The zero-profit condition in definition 2.2
requires market makers to earn zero profits conditional on the traded quantity of the
risky asset. Imposing the zero-profit condition conditional on the traded quantity
is in line with the models of competitive market making in Kyle (1985), Glosten
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(1989), and Rochet and Vila (1994) and allows us to investigate whether, as sug-
gested in Glosten (1994), cross-subsidization plays an important role in avoiding
the possibility of market breakdown.

The second condition appearing in definition 2.2 is akin to a Kreps and Wil-
son (1982)-sequentiality requirement. It insists that for all possible quantities, the
price schedule specify a price consistent with zero profits, reflecting competition
between market makers with some common belief over the possible types of the
informed trader who might have chosen such a quantity. As we noted in footnote 3,
the analogy to sequentiality is precise when trade is modeled as a signaling game.
We thus refer to this condition as the sequentiality condition. Our main results hold
without the sequentiality condition; imposing it on competitive schedules merely
strengthens our conclusion that competition is not a source of market breakdown.

2.3 Two Preliminary Lemmas

As the informed trader’s preferences satisfy the single-crossing property, imple-
mentability imposes significant structure on the schedule:

Lemma 2.1 (Rochet (1987)) A trading schedule q is implementable if and only if
it is increasing, i.e., θ ≤ θ ′⇒ q(θ)≤ q(θ ′).

Given a τ-trading schedule q implemented by a price schedule p, let R : [−τ,τ]→
R be the associated rent function given by

R(θ) = bθq(θ)− 1
2

rq(θ)2− p(q(θ))q(θ).

Lemma 2.2 (Milgrom and Segal (2002)) If q is a τ-trading schedule implemented
by p, then

R(θ)−R(θ ′) =
∫

θ

θ ′
uθ (q(θ̃), θ̃)dθ̃ = b

∫
θ

θ ′
q(θ̃)dθ̃ (8)

for all θ ,θ ′ ∈ [−τ,τ].

2.4 Sequences

To capture environments where the adverse selection problem caused by the in-
formed trader’s private information is extreme, we consider sequences of market
environments in which the supports of the distribution function of the informed
trader’s type converge to the real line. As argued by Hellwig (1992), consider-
ing type distributions with unbounded support as a limiting case provides useful
insights in the structure of models with large (but bounded) support of the type
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distribution, while avoiding technical difficulties in models with unbounded type
spaces (see remark 4.1)

Fix a limit distribution F∗ with support R and say that a distribution function
F is the τ-truncation of F∗ if

F(θ) =


1, if θ > τ,
F∗ (θ)−F∗ (−τ)
F∗ (τ)−F∗ (−τ)

, if θ ∈ [−τ,τ],

0, if θ <−τ.

Given a sequence {τn}, the τn-truncation of F∗ is denoted by Fn. We are interested
in sequences of market environments characterized by τn → ∞ as n→ ∞ (we often
take n→ ∞ as understood). Observe that {Fn} converges weakly to F∗.10

We assume F∗ is symmetric and absolutely continuous, and for all θ 6= 0, pos-
sesses a strictly positive and twice continuously differentiable density f ∗.11 Note
that for any τ > 0 these properties are inherited by any τ-truncation of F∗. We also
assume F∗ has a finite variance σ2, ensuring that the expected first-best surplus
(recall (5)) under the distribution F∗ is finite.

Definition 2.3 The sequence {(τn,qn, pn)} is consistent if τn →∞ and for all n, qn

is a τn-trading schedule and pn is a price schedule implementing qn.
A consistent sequence {(τn,qn, pn)} is feasible (respectively, competitive or

zero-profit) if (pn,qn) is Fn-feasible (resp., Fn-competitive or Fn-zero-profit) for all
n.

Our analysis focuses on the limit behavior of feasible and competitive se-
quences; in particular we identify circumstances under which all feasible (and thus
all competitive) sequences converge to a closed market, as well as circumstances
under which there exist competitive (and thus feasible) sequences converging to an
open market in the sense of the following definition.

Definition 2.4 A consistent sequence converges to a closed market if for all θ ∈R,

lim
n→∞

qn(θ) = 0.

10We work with truncations to simplify notation. Our analysis applies essentially unchanged to
sequences of symmetric distributions with bounded supports {Fn} converging weakly to F∗, provided
each Fn also possesses a strictly positive and twice continuously differentiable density fn for all θ 6= 0
and supn

∫
|θ |α dFn(θ) < ∞ for some α > 2, so that the relevant moments converge (Chung, 1974,

Theorem 4.5.2).
11We do not insist on the existence of a density at zero to ensure that our analysis covers distribu-

tion functions F∗ obtained by symmetrizing smooth distribution functions with support (0,∞).
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A consistent sequence converges to an open market if for all θ 6= 0, limn→∞ qn(θ)
exists and

lim
n→∞

qn(θ) 6= 0.

Convergence to a closed market captures the idea of a total market breakdown
due to adverse selection as suggested by Akerlof (1970). Our notion of conver-
gence to an open market is quite strong: With the possible exception of the zero
type (for whom there are no gains from trade and who thus trades zero in the
first-best trading schedule), every type trades a nonzero quantity in the limit of the
sequence of trading schedules. In particular, this is significantly stronger than not
converging to a closed market, which would merely require the existence of some
type for which qn(θ) does not converge to zero.

One reason for our interest in the notion of convergence to an open market is
Glosten’s (1994) suggestion that a necessary ingredient for a market structure to
avoid market breakdown (when it can be avoided) is a “small-trade spread.” Under
such a spread, all types in a neighborhood of the zero type do not trade, precluding
convergence to an open market. In contrast, our results show that a small-trade
spread is not necessary to avoid market breakdown, since there exist competitive
sequences converging to an open market (unless all feasible sequences converge to
a closed market).

3 The Market-Breakdown Condition

3.1 The Main Results

To develop some intuition for our main results, consider a trading schedule in the
market environment F , in which all types θ̃ ≥ θ trade the quantity x > 0 at the
corresponding competitive price

p(x) = E[θ̃ | θ̃ ≥ θ ].

The informed trader of type θ earns nonnegative payoffs from trading x under this
trading schedule if and only if

(bθ − p(x))x− 1
2

rx2 ≥ 0.

For small x, this inequality implies (we denote partial derivatives by subscripts)

(b−1)θ = sx(0,θ)≥ E[θ̃ −θ | θ̃ ≥ θ ]≡ e(θ), (9)

where e : [0,τ] → R is the mean excess function (or mean residual life function).
The mean excess e(θ) provides a measure for the severity of the adverse selection
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problem facing the market makers engaging in a trade with a type θ , since it is
the difference between their expected opportunity cost of selling to all types higher
than θ (i.e. E[θ̃ | θ̃ ≥ θ ] and selling just to type θ . Comparing the mean excess
with the change in surplus at x = 0 from a marginal trade with type θ yields (9).

A sufficient condition for the convergence of a competitive sequence to an open
market is a strict inequality in (9) with e(θ) replaced by

e∗(θ)≡ E∗[θ̃ −θ | θ̃ ≥ θ ],

the mean excess function for the limit distribution.

Theorem 3.1 If there exists a type θ > 0 such that

(b−1)θ > e∗(θ), (10)

then for every sequence {τn} with τn → ∞, there exists an associated competitive
sequence converging to an open market.

If the hypothesis in theorem 3.1 fails, then not only does every competitive
sequence converge to a closed market but more generally every feasible sequence
converges to a closed market.

Theorem 3.2 If the market breakdown condition

(b−1)θ ≤ e∗(θ), ∀θ > 0 (11)

holds, then every feasible sequence converges to a closed market.

Phrased differently: every feasible sequence converges to a closed market if
and only if every competitive sequence does so, and the market breakdown condi-
tion (11) is a necessary and sufficient condition for this to occur. In other words,
competition per se cannot lead to market failure. Furthermore, theorem 3.1 shows
that if market failure can be avoided, almost all types can trade.

We prove theorem 3.1 in section 4, where we explicitly construct the associ-
ated competitive sequence for any sequence of truncations τn → ∞. In section 5,
we prove theorem 3.2. In the remainder of this section we provide an alternative
interpretation for the market breakdown condition (11) and discuss circumstances
under which it will or will not hold.

Remark 3.1 The results in Hellwig (1992) establish the existence of a competitive
sequence converging to an open market for b > 2 (see lemma 4.3 below). As
theorem 3.2 holds for any b > 1, it is a corollary of these two results that (10) holds
for any F∗ (satisfying the assumptions introduced in section 2.4) and b > 2.

�

12



3.2 Interpretation of the Market Breakdown Condition

Because we have assumed F∗ to be symmetric, the market breakdown condition
(11) is equivalent to12

E∗[θ̃ | θ̃ ≤ θ ]≤ bθ ≤ E∗[θ̃ | θ̃ ≥ θ ], ∀θ > 0. (12)

We can interpret this condition in terms of the informed traders and market
makers marginal willingness-to-pay for the risky asset. Observing that

ux(x,θ) = bθ − rx, vx(x,θ) = θ ,

we can rewrite (12) as

E∗[vx(0, θ̃ ] | θ̃ ≤ θ ]≤ ux(0,θ)≤ E∗[vx(0, θ̃ ] | θ̃ ≥ θ ], ∀θ , (13)

That is, market breakdown will occur whenever the informed traders marginal
willingness-to-pay lies between the market makers’ marginal willingness-to-pay
conditional on trading with all types smaller than θ , and the market makers’ marginal
willingness-to-pay conditional on trading with all types larger than θ (where the
marginal willingness-to-pay is evaluated at the endowment point). The first half
of this condition precludes the possibility of engaging in profitable trades in which
the informed trader sells the risky asset; the second half (which is the one corre-
sponding to (11)) trades in which the informed trader buys the risky asset. In either
case it is enough to consider marginal trades because - due to the concavity of the
traders’ utility functions - marginal trades are easier to support than large trades.

Remark 3.2 While our analysis is quite different in scope and focus from that
in Glosten (1994),13 his paper contains a result related to our theorem 3.2. In
particular, proposition 5 in Glosten (1994) provides conditions under which any
price schedule satisfying a regularity condition (see corollary 1 in Glosten (1994)
and the subsequent discussion) implementing a non-zero trading schedule results
in expected losses for the market makers, thus violating our feasibility condition.
Applying Glosten’s conditions to the limit market environment F∗ of our model,14

yields, after translating to our notation

E∗[θ̃ | ux(0, θ̃)≤ p] < p < E∗[θ̃ | ux(0, θ̃)≥ p], ∀p ∈ R.

12Without the symmetry assumption, (12) is the appropriate market breakdown condition.
13Glosten considers more general market environments than we do, but for most of his (somewhat

informal) analysis considers a particular trading mechanism, namely an “open limit order book.”
Biais, Martimort, and Rochet (2000) provide a more rigorous analysis of some aspects of Glosten’s
analysis, but do not consider the issue of market breakdown.

14Glosten’s analysis applies to a fixed market environment whereas we consider the limit behavior
of consistent sequences.
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Because ux(0, θ̃) has full range, we can substitute ux(0,θ) for p in the above in-
equality, and then, as ux(0, θ̃) is strictly increasing in θ̃ , the inequality is equivalent
to

E∗[vx(0, θ̃) | θ̃ ≤ θ ] < ux(0,θ) < E∗[vx(0, θ̃) | θ̃ ≥ θ ], ∀θ ∈ R,

yielding a more stringent condition than (13).
Note that Glosten (1994) does not provide a counterpart to our theorem 3.1 and

suggests that competitive pricing is a source of market breakdown.
�

3.3 When will the Market Breakdown Condition be Satisfied?

In our model, market breakdown is not an issue for distributions with finite support
[−τ,τ] (cf. Lemma 4.2 below). This is appropriately reflected by the bounded
support counterpart to condition (11):

sx(0,θ)≤ e(θ), ∀θ ∈ [0,τ]. (14)

As the right side vanishes as θ approaches the upper bound τ and the left-hand-side
is clearly strictly positive for all θ > 0, this condition is never satisfied.15 While this
observation is part of our motivation for studying extreme adverse selection (i.e.,
considering the limit as τ → ∞), it also raises the question of whether there are
limit distributions F∗ for which (11) holds, i.e. whether extreme adverse selection
may indeed cause market breakdown.16

Note that every limiting distribution F∗ such that e∗(θ)/θ is a decreasing func-
tion satisfying

lim
θ→∞

e∗(θ)
θ

≥ (b−1) (15)

will satisfy (11). For b < 2 it is easy to see that there are limit distributions satisfy-
ing these requirements. We content ourselves with providing an example using the

15There are models (such as Akerlof (1970)) with nonextreme adverse selection (bounded support)
displaying market breakdown. The bounded-support market-breakdown condition (14) applies in
these cases. In Akerlof (1970), for example, there is market breakdown only when there are no gains
from trade for the worst type. But this implies that the (marginal) gains from trade sx(0,θ) disappear.
Thus, the left, as well the right, hand-side of (14) converge to zero as the type approaches the worst
type.

16This question is of particular interest, as (to the best of our knowledge) all previous examples
of market breakdown in a financial market context (see Glosten and Milgrom (1985), Leach and
Madhavan (1993), Glosten (1994)) assume risk neutral informed traders, precluding the existence of
gains from trade between the informed trader and the market makers.
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Pareto distribution (the proof is in appendix C):17

Theorem 3.3 Suppose b < 2. There exists F∗ for which the market breakdown
condition holds.

Conversely, if the limit appearing in (15) is well-defined, condition (15) is
clearly necessary for market breakdown. The following result builds on this obser-
vation to obtain a more explicit necessary condition for the occurrence of market
breakdown. The result requires that the proportional hazard rate of the distribution
function F∗,

g∗(θ)≡ θ f ∗(θ)
1−F∗(θ)

,

have a well-defined limit as θ → ∞. This mild regularity condition ensures that
limθ→∞ e∗(θ)/θ exists. The distributions commonly studied in economics satisfy
this property.18

Theorem 3.4 Suppose the limit of g∗(θ) as θ → ∞ (which may be infinite) exists
and suppose for k≥ 2, the kth moment of F∗ is finite. Then for all b≥ k/(k−1) the
market breakdown condition (11) fails.

When the regularity condition on the proportional hazard rate holds, theorem
3.4 implies, in particular, that for any given b > 1 the market breakdown condition
fails if all moments of F∗ exist.19 Hence, a necessary condition for the market
breakdown condition (11) is that F∗ has fat tails (i.e., not all moments exist). In
addition, as we have assumed F∗ has a finite variance, it follows from theorem 3.4
that market breakdown can only occur if b < 2 holds, demonstrating the necessity
of this condition in the statement of theorem 3.3 (recall from remark 3.1 that the
weaker necessary condition b ≤ 2 already follows from Hellwig (1992) and does
not require the regularity condition).

Remark 3.3 Suppose, as for many commonly studied distributions, the density f ∗

17The distribution F∗ used in the proof of Theorem 3.3 not only satisfies the assumptions in-
troduced in section 2.4, but has a density decreasing in |θ |. Consequently, the argument proving
Theorem 3.3 in conjunction with the construction in appendix A implies that market breakdown is
not an artefact of our reduced form, but occurs in the underlying model described in remark 2.1.

18It is satisfied by any distribution F∗ with a truncation from below possessing an increasing pro-
portional hazard rate. See van den Berg (1994) for an extensive discussion of distributions possessing
an increasing proportional hazard rate.

19In terms of the underlying model described in remark 2.1, if follows that if all moments of (the
limit distributions) of t and ω exist (e.g., in Glosten’s (1989) model in which these variables are
normally distributed), the market breakdown condition fails.
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of F∗ is log-concave on R+.20 By An (1998, proposition 1), e∗(θ) is decreasing
in θ , providing a simple proof that the market breakdown condition will not hold
for sufficiently large θ in this case. As log-concavity of the density implies that
the hazard rate (and thus the proportional hazard rate) is increasing and that all
moments of F∗ exist (An, 1998, corollary 1), this result is a special case of theorem
3.4.

�

4 Competitive Trading Schedules and Open Markets

In this section, we prove theorem 3.1. After conducting some preliminary analysis
in section 4.1, we analyze separating competitive schedules in section 4.2. These
schedules converge to open markets for b > 2. When b ≤ 2, the distortions re-
quired by separation result in the separating competitive schedules converging to a
closed market (even when the market breakdown condition fails). Reducing these
distortions requires pooling some types, and as an intermediate step we analyze
tail-pooling schedules in section 4.3. We prove theorem 3.1 in section 4.4 using
semi-pooling competitive trading schedules. In these schedules, the distortions im-
plied by separation are ameliorated by pooling the right set of types of informed
traders.

4.1 Symmetric Trading Schedules

In every zero-profit trading schedule, the type zero informed trader does not trade,
implying (from lemma 2.1) that positive types are buyers (q(θ)≥ 0) and negative
types are sellers (q(θ)≤ 0).

Lemma 4.1 Every zero-profit trading schedule q satisfies q(0) = 0 and q(θ)θ ≥ 0
for all θ ∈ [−τ,τ].

Proof. Let q be a zero-profit trading schedule implemented by the price schedule p.
To simplify notation, let x0 = q(0) and p0 = p(x0). Suppose x0 > 0. Because x = 0
is a feasible choice for the informed trader it follows from (7) that u(x0,0)− p0x0 =
−1

2 rx2
0− p0x0 ≥ 0. Consequently, we have p0 < 0. The zero profit condition then

implies that there exists θ ≤ p0 such that q(θ) = x0. But u(x0,θ)− p0x0 = (θ −
p0)x0− 1

2 rx2
0 < 0, contradicting (7). An analogous argument when q(0) < 0 also

20See Bagnoli and Bergstrom (2005) for a list of parametric families of distribution functions
with log-concave densities. Note that f ∗ will be log-concave on R+ whenever it is obtained by
symmetrizing the log-concave density function of a distribution with support R+
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leads to a contradiction, implying q(0) = 0. Lemma 2.1 now implies q(θ)θ ≥ 0
for all θ ∈ [−τ,τ].

Lemma 4.1 simplifies the analysis of zero-profit trading schedules, since pos-
itive types and negative types can be studied independently: Negative types sell
the asset and positive types buy the asset. It is immediate that no type has an in-
centive to choose a quantity specified for a type of a different sign. Furthermore,
because the model is symmetric, we can restrict attention to symmetric zero-profit
trading schedules, where a τ-trading schedule q is symmetric if q(−θ) = −q(θ)
for all θ ∈ [0,τ]. We will do so throughout the remainder of this section. In par-
ticular, whenever convenient we specify trading schedules only for positive types
(and implementing price schedules only for positive quantities) with the extension
to negative types (and negative quantities) then given by symmetry.

4.2 Separating Trading Schedules

A one-to-one trading schedule q is said to be separating. From lemma 2.1, every
separating trading schedule is strictly increasing. Note that a separating τ-trading
schedule is zero-profit if and only if p(q(θ)) = θ for all θ ∈ [−τ,τ].

The notion of a separating zero-profit trading schedule is closely related to
Hellwig’s (1992) notion of a Spencian outcome and plays an important role in our
subsequent analysis. A slight modification of the arguments in Mailath (1987)
yields the following lemma (see appendix D for the proof).

Lemma 4.2 Let τ > 0 and x̄ ∈ (0,qFB(τ)]. There exists a unique symmetric sep-
arating zero-profit τ-trading schedule q : [−τ,τ] → R satisfying q(τ) = x̄. Fur-
thermore, a separating zero-profit trading schedule is competitive if and only if
it is symmetric and satisfies q(τ) = qFB(τ). Hence, there is a unique separating
competitive τ-trading schedule for every τ > 0.

Figures 1 and 2 illustrate the separating competitive trading schedule. As usual,
in a separating trading schedule, imposing the sequentiality condition determines
the behavior of the “worst” types. Among positive types the worst belief the market
makers can hold is θ = τ , while among negative types the worst belief is θ =−τ .
Since each type receives his or her type as the price in a separating price schedule,
the worst types cannot be disciplined in a separating competitive trading schedule
and so choose their “first-best” quantity, qFB(θ). Due to the incentive constraints,
the quantities for all types in the intervals (−τ,0) and (0,τ) are distorted from their
first best level towards zero. For a given support of the type distribution, the degree
of distortion is determined by the trade-off between the incentive to mislead the
market and the increased cost of lowered diversification, i.e. the parameters b and
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Figure 1: The separating competitive trading schedule qs for b ≤ 2. The trading
schedule qs is tangential to the θ -axis at θ = 0.

r in the informed trader’s utility function. Note that, as illustrated in the figures, the
structure of the separating competitive trading schedules is different for the cases
b≤ 2 and b > 2.

The behavior of the informed trader in a separating competitive trading sched-
ule depends on the characteristics of the distribution of the private information in
a limited and particular way. The value of the boundary type completely deter-
mines the separating competitive trading schedule, with other characteristics of
the distribution function irrelevant. On the other hand, again as usual, increasing
the severity of adverse selection by increasing τ does have a significant impact on
the separating competitive trading schedule. In particular, it follows from Hellwig
(1992) that competitive sequences with separating trading schedules converge to an
open market if b > 2 and converge to a closed market if b≤ 2 (again, see appendix
D for the proof):21

Lemma 4.3 (Hellwig (1992)) Suppose {(τn,qn, pn)} is a competitive sequence with
qn separating for each n. If b ≤ 2, the competitive sequence converges to a closed
market. If b > 2, the competitive sequence converges to an open market; in partic-
ular qn(θ)→ (b−2)θ/r for all θ .

Lemma 4.3 implies that for all sequences {τn} satisfying τn → ∞ there is an
associated competitive sequence converging to an open market when b > 2. To

21Hellwig (1992) does not provide a complete proof for the case of a continuous type distribution
under consideration here. In addition his analysis does not cover the case b = 2.
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Figure 2: The separating competitive trading schedule qs for b > 2. The trading
schedule qs is tangential to the line q = (b−2)θ/r at θ = 0.

show that (10) is sufficient for the existence of competitive sequences converging
to an open market, it thus suffices to consider the case b ∈ (1,2] for the remainder
of this section.

Remark 4.1 (Discontinuity at infinity) Our focus on large bounded type spaces,
rather than unbounded type spaces, is motivated by a lack of continuity as τ → ∞.
For separating competitive schedules, this lack of continuity arises for both large
and small b.

Definitions 2.1 and 2.2 apply to the limit market environment where τ = ∞

without change, though the sequentiality condition is trivially satisfied (since the
price schedule maps into R).

For b > 2, from lemma 4.3, the separating quantities qn and prices pn converge
pointwise to those of the linear equilibrium in Glosten (1989). The additional
separating competitive trading schedules identified by Glosten (1989) for the limit
market environment are eliminated as potential limit outcomes by the sequentiality
condition, pn(x) ∈ [−τn,τn].22

For b≤ 2, the limit of the separating competitive trading schedules is the trad-
ing schedule q0 : R→R specifying q0(θ) = 0, ∀θ ∈R. This limit trading schedule

22In contrast, dispensing with the sequentiality condition in our definition of a competitive trading
schedule would not affect the conclusion of the lemma for the case b≤ 2 (see Hellwig (1992)).
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cannot be implemented by any price schedule p : R → R in the limit market en-
vironment (u,v,F∗): for any price schedule there exists a (sufficiently large) type
such that q(θ) = 0 does not satisfy the implementation condition (7). In this sense,
the limit of a sequence of competitive separating trading schedule not only fails to
be separating (as noted by Hellwig (1992)) but also fails to correspond to an im-
plementable trading schedule in the limit market environment.23 The latter issue
also arises for the sequence of trading schedules that we use to prove theorem 3.1
for the case b ∈ (1,2]; see remark 4.3 below.

Analyzing market environments with unbounded supports (instead of consid-
ering sequences) would thus lead to misleading conclusion about market environ-
ments with large but bounded support. Moreover, unbounded type spaces lead to
the interpretation of market breakdown as the non-existence of an equilibrium trad-
ing schedule, rather than the more natural interpretation that the only equilibrium
trading schedule specifies zero trades for all types.

�

4.3 Tail-pooling Schedules

For b ≤ 2, separating competitive sequences converge to a closed market because
the distortions required to separate all types become arbitrarily large as the bound-
ary types τ and−τ become arbitrarily large in absolute value. A natural conjecture
(see, for example, Hellwig (1992, footnote 3)) is that pooling extreme types elimi-
nates the negative impact of requiring all types to separate. As we will demonstrate
in this subsection, this conjecture is correct in the sense that pooling extreme types
does allow us to obtain a zero-profit sequence that converges to an open market if
the market breakdown condition fails. However, pooling extreme types does not
generate competitive sequences that converge to an open market so the result ob-
tained here falls short of proving theorem 3.1. This defect is rectified in the next
subsection, where we build on the insights obtained here to construct a competitive
sequence converging to an open market (when the market breakdown condition
fails) that also converges to a trading schedule in which extreme types are pooled.

Definition 4.1 A symmetric τ-trading schedule q is tail-pooling if there exists a
cutoff type θ̂ ∈ (0,τ) and a pooling quantity x̂ > 0 such that

q(θ) = x̂, ∀θ ∈ (θ̂ ,τ]

23If we allow prices to take on values in R∪{−∞,+∞}, then the trading schedule q0 specifying
no trade for all types is implementable in the limit market environment (set p(x) = +∞ for x > 0 and
p(x) = −∞ for x < 0). Note, however, that this construction also works when b > 2 in which case
the trading schedule q0 does not correspond to the limit of a separating competitive sequence.
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and the restriction of q to [−θ̂ , θ̂ ] is separating.

Suppose the market breakdown condition (11) fails, so that for some θ̂ > 0,
(b−1)θ̂ > e∗(θ̂) and let

x̂ = argmax
x

(bθ̂ − θ̂ − e∗(θ̂))x− 1
2

rx2 =
((b−1)θ̂ − e∗(θ̂))

r
> 0. (16)

Consider τn → ∞. We now construct, for sufficiently large n, a symmetric tail-
pooling zero-profit τn-trading schedule qn with cut-off type θ̂ and pooling quantity
x̂.

The zero-profit condition requires a price at the quantity x̂ of

pn(x̂) = En
[
θ̃ | θ̃ ∈ (θ̂ ,τn]

]
= θ̂ + en(θ̂). (17)

The rent for type θ̂ from choosing x̂ is then given by

Rn(θ̂) = [(b−1)θ̂ − en(θ̂)]x̂− 1
2

rx̂2.

Because en(θ)→ e∗(θ) (see lemma B.2 in appendix B) and x̂ satisfies (16) we have
that Rn(θ̂) converges to

R∗(θ̂)≡ ((b−1)θ̂ − e∗(θ̂))2

r
> 0.

Thus, for sufficiently large n, the rent Rn(θ̂) is strictly positive, and for such n we
construct a symmetric zero-profit τn-trading schedule.

Set qn(θ) = x̂ for all θ ∈ (θ̂ ,τ]. To complete the specification of the trading
schedule qn, let x̄n ∈ (0, x̂) be the quantity making type θ̂ indifferent between re-
vealing his type at x̄n and joining the pool, i.e., x̄n is the (unique) quantity x̄n ∈ (0, x̂)
satisfying s(x̄n, θ̂) = Rn(θ̂). From lemma 4.2, there exists a symmetric separat-
ing zero-profit θ̂ -trading schedule qn : [−θ̂ , θ̂ ]→ R satisfying the initial condition
qn(θ̂) = x̄n.

The price schedule is determined for quantities in the range of qn by using
the zero profit condition, i.e., (17) and pn(qn(θ)) = θ for all θ ∈ [−θ̂ , θ̂ ]. Stan-
dard arguments using the single-crossing property of u show that no type has
an incentive to choose the quantity of another type. By specifying sufficiently
unattractive prices for quantities outside the range of qn, no type has an incentive
to choose quantities outside the range, and so the symmetric tail-pooling schedule
constructed in this way is implementable.

Consider now the impact of taking τn → ∞ on the sequence of tail-pooling
trading schedules we have just constructed. Since Rn(θ̂) → R∗(θ̂) > 0, the limit
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separating quantity limn x̄n and the limit rent to θ̂ from the separating quantity
limn s(x̄n, θ̂) must both be strictly positive. Hence, qn(θ)→ qt(θ) for all θ , where
qt : [−θ̂ , θ̂ ]→ R is (applying lemma 4.2) the symmetric separating zero-profit θ̂ -
trading schedule satisfying the initial condition qt(θ̂) = limn x̄n, qt(θ) = x̂ for θ >
θ̂ , and qt(θ) =−x̂ for θ <−θ̂ . Since qt(θ) = 0 only if θ = 0, we have proved the
following lemma.

Lemma 4.4 Suppose there exists θ̂ > 0 satisfying (b− 1)θ̂ > e∗(θ̂). For every
τn → ∞, there exists an associated zero-profit sequence {(τn,qn, pn)} converging
to an open market in which, for n sufficiently large, qn is a tail-pooling trading
schedule with cutoff-type θ̂ .

As we have noted above, lemma 4.4 does not establish theorem 3.1, since it
ignores the sequentiality condition. Indeed, the sequence constructed in the proof
of lemma 4.4 is not competitive. To see this, note that for any price schedule pn

implementing the trading schedule qn constructed above, the rent obtained by type
τn is given by

Rn(τn) = b[τn− θ̂ ]x̂+Rn(θ̂).

As Rn(θ̂) converges to a finite limit, it follows that Rn(τn) is of order O(τn), while
from (5), sFB(τn) is of order O(τ2

n ), so that eventually Rn(τn) < sFB(τn). If pn is
a competitive price schedule, type τn can obtain a payoff at least equal to sFB(τn)
by choosing qFB(τn), and so for large n, pn cannot implement qn, a contradiction.
Consequently, any implementing price schedule must violate the sequentiality con-
dition for sufficiently large n. This failure of sequentiality is similar to the failure
(discussed in remark 4.1) of the trading schedule q0, in which all types trade zero,
to be implementable.

Remark 4.2 (Competitive tail-pooling and closed markets) It can be shown that
all tail-pooling competitive sequences converge to a closed market when b≤ 2, im-
plying that tail-pooling competitive sequences must converge to a closed market
under precisely the same conditions as separating competitive trading schedules.
This is despite the fact that for every τ there exist competitive tail-pooling trading
schedules interim Pareto-dominating the competitive separating τ-trading sched-
ule.24 Every tail-pooling competitive sequence converges to a closed market when
b ≤ 2 because sustaining a tail-pool for large τn requires a large pooling quantity
x̂n (to ensure that type τn is willing to participate in the pool), which in turn re-
quires the cutoff-type, θ̂n, to also be large. That is, limn x̂n = ∞ and limn θ̂n = ∞.

24That is, every non-zero type of the informed trader achieves a higher rent under the former than
under the later. Market makers obtain zero profits under any competitive trading schedule so this is
the appropriate notion of interim Pareto-dominance.
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But for b ≤ 2 this implies convergence to a closed market for the same reason that
separating competitive sequences converge to a closed market. The tail-pool zero-
profit trading schedule of lemma 4.4 converges to an open market because both the
pooling quantity and cutoff type are bounded away from infinity as n gets large.

�

4.4 Semi-pooling Trading Schedules

The difficulty noted after the statement of lemma 4.4 is avoided by adjusting the
construction of a tail-pooling trading schedule to allow sufficiently extreme types
to separate.

Definition 4.2 A symmetric τ-trading schedule q is semi-pooling if there exists a
pooling interval (θ̂ , θ̄ ] where 0 < θ̂ < θ̄ < τ and a pooling quantity x̂ > 0 such that

q(θ) = x̂, ∀θ ∈ (θ̂ , θ̄ ]

and the restriction of q to θ ∈ [−τ,−θ̄)∪ [−θ̂ , θ̂ ]∪ (θ̄ ,τ] is separating.

A semi-pooling trading schedule differs from a tail-pooling trading schedule
only in that the types θ ∈ (θ̄ ,τ] do not choose the pooling quantity x̂ but are instead
separated.

In conjunction with lemma 4.3 the following result establishes theorem 3.1.

Lemma 4.5 Suppose b ∈ (1,2] and there exists θ̂ > 0 satisfying (b−1)θ̂ > e∗(θ̂).
For every sequence {τn} with τn → ∞, there exists an associated competitive se-
quence {(τn,qn, pn)} converging to an open market in which, for n sufficiently
large, qn is a semi-pooling trading schedule.

We now describe how to construct the competitive semi-pooling trading sched-
ule qn for sufficiently large n. Lemma D.1 in appendix D ensures that for large n,
there exists a triple (θ̄n, x̂n, p̂n) ∈ R3 satisfying the properties required in this con-
struction. The formal argument showing the convergence of such a sequence to an
open market is provided in lemma D.2.

Our construction of the competitive semi-pooling schedule qn is illustrated in
in figure 3 for positive types. The solid line depicts the trading schedule. The
pooling interval is given by (θ̂ , θ̄n] with θ̄n < τn and θ̂ satisfying the condition
(b− 1)θ̂ > e∗(θ̂). The pooling quantity is x̂n. For θ > θ̄n the trading schedule
is identical to the unique separating competitive τn-trading schedule illustrated in
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figure 1. Type θ̄n is indifferent between his trade in the separating competitive
τn-trading schedule, qs

n(θ̄n), and trading the pooling quantity at the price

p̂n = En
[
θ |θ ∈ (θ̂ , θ̄n]

]
< bθ̂ , (18)

where the inequality will hold for n sufficiently large. The pooling quantity x̂n

satisfies the condition that it be the optimal quantity for type θ̂ taking the price p̂n

as given:

x̂n = argmax
x

(bθ̂ − p̂n)x−
1
2

rx2 =
(bθ̂ − p̂n)

r
> 0,

where the inequality is from the inequality in (18). Finally, for 0 ≤ θ ≤ θ̂ , the
trading schedule is given by the zero-profit separating θ̂ -trading schedule satisfying
the initial condition q(θ̂) = xn where xn ∈ (0, x̂n) satisfies the indifference condition

s(xn, θ̂) =
(bθ̂ − p̂n)2

r
,

with the inequality in (18) ensuring that the quantity xn is well-defined and strictly
positive.

It is immediate from the construction of the semi-pooling trading schedule
qn that the trading schedule is implemented by a price schedule pn specifying
pn(x̂n) = p̂n , pn(qn(θ)) = θ for all θ that are separated,25 and sufficiently unattrac-
tive prices for all quantities q outside the range of the trading schedule. Hence, qn

is a zero-profit trading schedule.
To verify that qn is in fact competitive, and not just zero-profit, requires ex-

tending the zero-profit specification of the price schedule pn to quantities not in
the range of qn. This extension is illustrated in figure 3 where the heavy dashed
lines indicate the specification of the price schedule pn outside the range of qn.
For quantities x in the interval (xn, x̂n), the price pn(x) is set to make θ̂ indifferent
between trading x at the price pn(x) and trading x̂n at the price p̂n (equivalently,
trading xn at the price θ̂ ); for quantities x ∈ (x̂n,qs

n(θ̄n)), the price pn(x) is set to
make θ̄n indifferent between trading x at the price pn(x) and trading x̂n at the price
p̂n (equivalently, trading qs

n(θ̄n) at the price θ̄n); and finally, for x > qFB(τn), set
pn(x) = τn. In addition to implementing qn (this is immediate from the single-
crossing property of u and footnote 25) the defined price function is increasing and
continuous (and so satisfies the sequentiality condition).26

25Note that we have ensured that type θ̂ (resp., θ̄n) is indifferent between trading the pooling
quantity x̂ at price p̂ to trading the quantity xn at price θ̂ (resp., to trading the quantity qs

n(θ̄n) at price
θ̄n).

26The definition of x̂n plays a critical role in determining the properties of pn. In particular, for a
pooling interval (θ̂ , θ̄n), if we had fixed the pooling quantity larger than x̂n, any implementing price
function could not be increasing.
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Figure 3: Semi-pooling competitive trading schedule with pooling quantity x̂n and
pooling interval (θ̂ , θ̄n]. The solid line depicts the trading schedule qn.
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In the proof of lemma D.2, we demonstrate that the sequence θ̄n associated with
the semi-pooling schedule qn converges to infinity, implying that the sequence of
pooling quantities {x̂n} converges to the strictly positive limit x̂ given in (16), and
that the sequence of pooling prices {p̂n} converges to θ̂ + e∗(θ̂). The sequence
of semi-pooling trading schedules thus converges pointwise to the same limit as
the sequence of tail-pooling schedules constructed in section 4.3. In particular, the
sequence converges to an open market, thus proving lemma 4.5.

Remark 4.3 We noted that the sequence of tail-pool zero-profit trading schedule
constructed in section 4.3 is not competitive (because it violates sequentiality).
For a similar reason, the limit of the semi-pooling trading schedules we have con-
structed here cannot be implemented by any price schedule p : R→ R in the limit
market environment (u,v,F∗): Sufficiently large types have an incentive to deviate
from the pooling quantity. This observation illustrates again (see remark 4.1) that it
is essential for our analysis to consider sequences of bounded types spaces instead
of working with unbounded types spaces.

�

5 Convergence to Closed Markets

In this section, we prove theorem 3.2. The results in the previous section estab-
lished that the existence of θ such that (b−1)θ > e∗(θ) is sufficient for the exis-
tence of a competitive sequence converging to an open market. Here we establish
not only that this conditions is necessary for the existence of such a competitive
sequence, but prove the stronger result that every feasible sequence, and hence ev-
ery competitive sequence, {(τn,qn, pn)} converges to a closed market if the above
conditions fail. We recall the statement of theorem 3.2.

Theorem 3.2 If the market breakdown condition (11) holds, then every feasible
sequence converges to a closed market.

We highlight the key steps in the proof here, relegating the more technical ar-
guments to appendix E. Suppose {(τn,qn, pn)} is a feasible sequence with qn(θ)→
q∗(θ) for all θ .27 For market environment Fn, denote the market makers’ expected
profit by

Πn ≡
∫

τn

−τn

pn(qn(θ))qn(θ)− v(qn(θ),θ)dFn(θ). (19)

27The possibility that {qn(θ)} is not a convergent sequence for some θ is an example of the
technical issues dealt with in appendix E.
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Since the market environment includes the possibility of both negative and
positive types, as well as as the market makers acting as both buyers and sellers,
there is a potential for profits from trades on one side of the market to subsidize
losses on the other. Suppose, however, that under our feasible sequence qn(0) = 0
and that there is no such cross-subsidization (while this is without loss of generality,
see lemma E.2, it is more subtle than the simple argument for zero-profit schedules
in section 4.1). We can then restrict attention to θ ≥ 0. Since the sequence is
feasible, for all n,

0≤Π
+
n ≡

∫
τn

0
pn(qn(θ))qn(θ)− v(qn(θ),θ)dFn(θ)

=
∫

τn

0
VSn(qn(θ),θ)dFn(θ), (20)

where

VSn(θ)≡ s(qn(θ),θ)−b
(1−Fn(θ))

fn(θ)
qn(θ)

≡ Sn(θ)−b
(1−Fn(θ))

fn(θ)
qn(θ)

is the virtual surplus and we use lemma 2.2 and integration by parts to obtain (20).
When we decorate a trading schedule, such as q̃n, the corresponding functions
defined above are similarly decorated.

We now argue that when the market-breakdown condition is satisfied, Π+
n

converges to a strictly negative number (and so must eventually be negative) if
q∗(θ) > 0 for any θ > 0, contradicting feasibility.

As {qn(θ)} may be unbounded as a function of θ , we introduce an upper
bound on quantities, x†

n = qn(θ †), with θ † to be determined, and define q̃n(θ) ≡
min{qn(θ),x†

n}. Recalling the comment about decorations, rewrite the expression
for Π+

n in (20) as

Π
+
n =

∫
τn

0
ṼSn(θ)dFn(θ)+

∫
τn

0

{
VSn(θ)−ṼSn(θ)

}
dFn(θ). (21)

The quadratic nature of the surplus allows us to write the first integral as∫
τn

0
{(b−1)θ fn(θ)−b(1−Fn(θ))} q̃n(θ)dθ −

∫
τn

0

r
2
(q̃n(θ))2 dFn(θ). (22)

We now argue to a contradiction from the hypothesis that q∗(θ̂) > 0 for some
θ̂ > 0, i.e., that the feasible sequence does not converge to a closed market. The
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last term in (22) satisfies for θ † > θ̂ (since qn is increasing)

−
∫

τn

0

r
2
(q̃n(θ))2 fn(θ)dθ ≤−

∫
τn

θ̂

r
2
(qn(θ̂))2 fn(θ)dθ

=−r(1−Fn(θ̂))
2

(qn(θ̂))2

→−r(1−F∗(θ̂))
2

(q∗(θ̂))2. (23)

A calculation (see lemma E.3) shows that the second integral in (21) is, for
large n, bounded above by

2
∫

∞

θ †
sFB(θ)dF∗(θ). (24)

Because the expected first-best surplus is finite, for sufficiently large θ †, (24) is
sufficiently small that the sum of the bounds (23) and (24) is strictly negative.

It remains only argue that the first integral in (22) cannot dominate the other
terms. It is here that the market-breakdown condition is used. By the next lemma,
that integral does converge to zero, and so Π+

n is eventually negative, contradicting
the feasibility of qn.

Lemma 5.1 Suppose τn → ∞ and {x†
n} is a sequence of numbers converging to

x† ≥ 0. Let Hn be the value of the program

max
qn

∫
τn

0
{(b−1)θ fn(θ)−b(1−Fn(θ))}qn(θ)dθ (25)

subject to
qn : [0,τn]→ [0,x†

n] increasing. (26)

If (b−1)θ ≤ e∗(θ) for all θ , then Hn → 0.

Proof. The constrained maximization problem described by (25) subject to
(26) is a special case of the optimal auction design problem in Myerson (1981).
Hence, there exists θn such that

Hn = x†
n

∫
τn

θn

{(b−1)θ fn(θ)−b(1−Fn(θ))} dθ . (27)

Suppose the sequence {Hn} does not converge to zero. As Hn ≥ 0 for all n,
the first moment of F∗ is finite, and x†

n → x†, the sequence {Hn} is bounded. We
may thus assume (by taking an appropriate subsequence if necessary) Hn →H > 0.
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Suppose, first, the associated sequence {θn} satisfying (27) is unbounded. Then,
there exists a subsequence {θm} such that θm → ∞, implying

Hm ≤ x†
m

∫
τm

θm

(b−1)θ dFm(θ)≤ x†
m

F∗(τm)−F∗(−τm)

∫
∞

θm

(b−1)θ dF∗(θ)→ 0,

contradicting the hypothesis Hn → H > 0.
Suppose, then, that the sequence {θn} satisfying (27) is bounded. Then there

exists a subsequence {θm} such that θm → θ̄ ≥ 0. Performing an integration by
parts on the first term in (27) and using lemma B.1, we obtain

Hm = x†
m(1−Fm(θm))[(b−1)θm− em(θm)]

and thus
Hm → x†(1−F∗(θ̄))[(b−1)θ̄ − e∗(θ̄)].

By assumption (b−1)θ̄ −e∗(θ̄)≤ 0 holds for all θ̄ ≥ 0, contradicting the hypoth-
esis Hn → H > 0, finishing the proof.

6 Concluding Remarks

We, like most of the literature studying adverse selection in financial markets, con-
sidered market environments where the informed trader can act as either buyer
or seller. It is immediate that our theorems continue to hold as stated if we had
restricted the analysis to the buy side of the market while considering type distri-
butions with support in the positive reals.28 In this sense considering a “two-sided”
model is not essential for our analysis. It is also clear that the buy-side and the sell-
side of the market can be studied independently for competitive trading schedules
(see section 4.1). The possibility of an interaction between the buy-side and the
sell-side of the market implies, however, that this separation is not trivially true for
feasible trading schedules. Consequently, it is important that our analysis address
this possibility. While our proof relies on the assumption that the informed trader’s
type is symmetrically distributed (for expository convenience), our analysis could
be extended to asymmetric distributions, with the market breakdown condition then
given by (12). In the absence of symmetry, the interesting possibility arises that
only one of the two inequalities in (12) holds. Competitive pricing then implies the
informed trader can only be active on one side of the market, whereas, as suggested

28Mutatis mutandis the same is true for the sell-side.
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by Glosten and Milgrom (1985), cross-subsidies between asset sales and purchases
would make it possible to provide liquidity on both sides of the market.

Finally, note that our market breakdown condition hinges on the specific func-
tional form of the informed trader’s preferences. We believe that the reformula-
tion of the condition in terms of the trader’s marginal willingness-to-pay (see (13))
holds quite generally and provides useful insights into the conditions under which
adverse selection will cause market breakdown. For instance, the example we use
to prove theorem 3.3 can be used to show that a change in the type distribution
leading to a first-order-stochastic dominant increase in the distribution of first-best
gains from trade may cause an open market to close. This is surprising and only
emphasizes the need to gain a better understanding of the relationship between
the distribution of the first-best gains from trade and the occurrence of market-
breakdown in more general market environments.

Appendices

A Constructing the Distributions in Remark 2.1

In this section, we describe how to construct zero-mean random variables (t,ω)
satisfying (6) given a symmetric distribution for θ with density decreasing in |θ |,
and given values for b > 1 and r > 0.

Let θ̂ = bθ . Because the distribution of θ̂ is symmetric with density decreasing
in |θ |, it follows from Eaton (1981, proposition 1) that we may assume the exis-
tence of a random variable µ so that the distribution of (θ̂ ,µ) is rotation invariant
and independent of ε . Let α ∈ (0,2π) satisfy tanα =

√
b−1 and define random

variables x and y as the solution to the equations

µ = xcosα + ysinα

and θ̂ =−xsinα + ycosα.

Because (x,y) is a rotation of (θ̂ ,µ), the distribution of (x,y) is identical to the
distribution of (θ̂ ,µ) and thus, in particular, rotation invariant. Let t = ycosα

and ω = xsinα/r. As a linear transformation of (x,y), the random variables
(t,ω) are elliptically distributed (Fang, Kotz, and Ng, 1990). Because elliptically
distributed random variables possess the linear conditional expectation property
(Hardin, 1982), (t,ω) have zero mean, and are uncorrelated, we have

E[t|t− rω] =
σ2

t

σ2
t + r2σ2

ω

(t− rω).
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As E[ν |t − rω] = E[t|t − rω] and (t − rω) = θ̂ = bθ holds by construction, this
implies (6), provided the equality

b =
σ2

t + r2σ2
ω

σt

2

⇔
√

b−1 =
rσω

σt

is satisfied. This in turn follows from

rσω

σt
=

σx sinα

σy cosα
= tanα =

√
b−1,

where the second equality uses the fact that the distribution of (x,y) is rotation
invariant and the corresponding standard deviations thus satisfy σx = σy.

B Properties of the Mean Excess Function

For a distribution function F with support [−τ,τ], let e : [0,τ] → R be the mean
excess function defined by e(θ ′) = E[θ̃−θ ′|θ̃ ≥ θ ′]. The mean excess function for
F∗ (which has support R) is e∗ : [0,∞)→R defined by e∗(θ ′) = E∗[θ̃ −θ ′|θ̃ ≥ θ ′].

Lemma B.1 The mean excess function e satisfies

e
(
θ
′) =

1
1−F (θ ′)

∫
τ

θ ′
1−F (θ) dθ ,

and the mean excess function e∗ satisfies

e∗
(
θ
′) =

1
1−F∗ (θ ′)

∫
∞

θ ′
1−F∗ (θ) dθ .

Proof. For 0≤ θ ≤ τ ,

e
(
θ
′) = E

[
θ −θ

′|θ ≥ θ
′]

=
1

1−F (θ ′)

∫
τ

θ ′
(θ −θ

′) f (θ) dθ

=
1

1−F (θ ′)

{
−

(
θ −θ

′)(1−F (θ))
∣∣τ

θ ′
+

∫
τ

θ ′
1−F (θ) dθ

}
=

1
1−F (θ ′)

{∫
τ

θ ′
1−F (θ) dθ

}
.

The argument for e∗ is identical, where the last equality is an implication of
limθ→∞ θ(1−F∗(θ)) = 0, which follows from the existence of the first moment
of F∗.
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Lemma B.2 Suppose τn →∞. Then, the associated sequence of mean excess func-
tions {en} converges to e∗ pointwise.

Proof. Since
en(θ ′) =

1
1−Fn(θ ′)

∫
∞

θ ′
θ dFn(θ)−θ

′,

the convergence of en(θ ′) to e∗(θ ′) follows from the convergence of Fn to F∗ and
of

∫
|θ |dFn(θ) to

∫
|θ |dF∗(θ).

C The Market Breakdown Condition

Proof of theorem 3.3.
The desired distribution, F∗, is obtained via symmetrization of the density of a

translated Pareto distribution with shape parameter β so that

F∗(θ) = 1− 1
2
(θ +1)−β , θ ≥ 0.

Let
2 < β ≤ b

b−1
. (28)

The assumption b < 2 ensures that such a β exists; the restriction β > 2 guarantees
the variance of F∗ exists.

The mean excess function of F∗ is given by

e∗(θ) =
∫

∞

θ
θ̃β (θ̃ +1)−β−1dθ̃

(θ +1)−β
−θ

Since,∫
∞

θ

θ̃β (θ̃ +1)−β−1dθ̃ =
∫

∞

θ

(θ̃ +1)β (θ̃ +1)−β−1dθ̃ − (θ +1)−β

=
∫

∞

θ

β (θ̃ +1)−β dθ̃ − (θ +1)−β

=
β

(1−β )
(θ̃ +1)−β+1

∣∣∣∞

θ

− (θ +1)−β

=
β

(β −1)
(θ +1)−β+1− (θ +1)−β ,

it follows that

e∗(θ) =
β

(β −1)
(θ +1)−1−θ =

(θ +1)
(β −1)

.
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Thus,

e∗(θ)≥ θ

β −1
≥ (b−1)θ ,

where the second inequality is from (28).

Proof of theorem 3.4. Let limθ→∞ g∗(θ) = g, where g is possibly infinite. The
finiteness of the kth-moment of F∗ for k ≥ 2 implies g > k ≥ 2 (Lariviere, 2006,
theorem 2).29 Using lemma B.1 for the first equality and applying l’Hôpital’s rule
to get the second equality, we have

lim
θ→∞

e∗(θ)
θ

= lim
θ→∞

1
θ(1−F∗(θ))

∫
∞

θ

(1−F∗(θ̃))dθ̃)

= lim
θ→∞

−(1−F∗(θ))
1−F∗(θ)−θ f ∗(θ)

= lim
θ→∞

−1
1−g∗(θ)

=
1

g−1

and thus

lim
θ→∞

e∗(θ)
θ

<
1

k−1
. (29)

For θ sufficiently large, (29) implies

e∗(θ) <
1

k−1
θ ≤ (b−1)θ ,

where the second inequality uses the assumption b≥ k/(k−1).

D Competitive Trading Schedules

Proof of lemma 4.2. Since a symmetric separating trading schedule qs : [−τ,τ]→
R satisfies qs(−θ) =−qs(θ), it is enough to show the existence of a unique sepa-
rating trading schedule qs : [0,τ]→ R+ satisfying qs(τ) = x̄ (the restriction of the
range to nonnegative quantities is without loss of generality from lemma 4.1). Such
a trading schedule is a one-to-one function solving

θ ∈ argmax
θ ′∈[0,τ]

u(qs(θ ′),θ)−θ
′qs(θ ′) (30)

and qs(τ) = x̄. (31)

29Lariviere (2006, theorem 2) assumes g∗ is increasing, but the proof only uses g∗ increasing to
conclude that limθ→∞ g∗(θ) exists.
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The differentiability of any one-to-one function qs satisfying (30) would follow
from Mailath (1987, Theorem 2), except that condition (2), belief monotonicity, is
not satisfied. Belief monotonicity requires that the marginal payoff to a change in
the beliefs of the uninformed agents (here given by −x) never equals 0. However,
since single crossing implies a strictly increasing solution to (30), at most θ = 0 can
choose x = 0, and so belief monotonicity holds for interior types. An examination
of the arguments in Mailath (1987) reveals this is enough to obtain differentiability.

We verify existence and uniqueness directly. The maximization problem in
(30) implies the first order condition

dqs(θ)
dθ

=
qs(θ)

(b−1)θ − rqs(θ)
. (32)

Letting y(x) = (qs)−1(x) and rearranging, we have

xy ′− (b−1)y =−rx. (33)

Suppose b 6= 2. The linear function rx/(b−2) is a particular solution to (33),
and βxb−1 is a general solution to the homogeneous differential equation xy ′−
(b−1)y = 0. Adding these two yields the general solution

y(x) =
r

(b−2)
x+βxb−1

(this is well-defined since x ≥ 0), where β is chosen to satisfy the initial value
implied by (31),

y(x̄) = τ. (34)

Thus,

β = x̄1−b
(

τ− r
b−2

x̄
)

.

Suppose now b = 2. Rewrite (33) as xy ′ = y− rx, and differentiate, yielding
y ′+xy ′′ = y ′− r. That is, y ′′ =−r/x. Integrating twice gives y(x) =−r

∫
logx+

αx+κ , where α and κ are constants. Equation (33) is only satisfied if κ = 0.
Hence, the general solution is

y(x) =−rx logx+ rx+αx

for x > 0 with y(0) = 0. The parameter α is chosen so that (34) holds.
It remains to verify the uniqueness claim (monotonicity can be verified by cal-

culation). For all ε ∈ (0, x̄), the equation (b− 1)y/x− r is Lipschitz in x for all
x ∈ [ε, x̄], the initial value problem (33) and (34) has a unique solution on [ε, x̄].
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Letting ε → 0 gives uniqueness on [0, x̄], and so the initial value problem (32) and
(31) has the inverse of y as a unique solution.

Proof of lemma 4.3. Fix n. From lemma 4.3, there is a unique symmetric
separating competitive trading schedule qs

n. For b 6= 2, from the proof of lemma
4.3, the schedule is implicitly given by, for θ ≥ 0,

θ =
−r

2−b
qs

n(θ)+βn(θ)(qs
n(θ))b−1 ,

where

βn(θ) =
(

b−1
r

)1−b 1
2−b

τ
2−b
n .

For b = 2, the schedule is given by

θ = rqs
n(θ) [logτn− log qs

n(θ)]+ rqs
n(θ).

For b < 2, as τn → ∞, for θ > 0, the coefficient βn(θ) → +∞, while for
θ < 0, βn(θ) → −∞. In other words, for a fixed trade level x, the type choos-
ing that trade diverges. Equivalently, (since the trading schedules are ordered, with
qs

n(θ) > qs
n′(θ) for 0 ≤ θ ≤ τn if τn < τ ′n) the trade of any fixed type converges to

0. Similarly, for b = 2, as τn → ∞, for a fixed trade level x, the type choosing that
trade diverges. Hence, if b ≤ 2 every competitive sequence of separating trading
schedules converges to a closed market.

Finally, for b > 2, βn(θ)→ 0 as τn → ∞, and so qn(θ)→ (b−2)θ/r for all θ

in every competitive sequence of separating trading schedules.

Lemma D.1 Let θ̂ > 0 satisfy (b−1)θ̂ > e∗(θ̂). For any {τn} satisfying τn → ∞

there exists an associated sequence {(θ̄n, x̂n, p̂n)} with (θ̄n, x̂n, p̂n) ∈ R3, satisfying
for all n sufficiently large, θ̄n ∈ (θ̂ ,τn),

p̂n =En
[
θ | θ ∈ (θ̂ , θ̄n]

]
< bθ̂ , (35)

x̂n =
(bθ̂ − p̂n)

r
> 0, (36)

and

Rs
n(θ̄n) =u(x̂n, θ̄n)− p̂nx̂n, (37)

where Rs
n : [−τn,τn]→R is the rent function associated with the unique separating

competitive τn trading schedule.

35



Proof of lemma D.1. Observe first that there exists N such that θ̂ < τn for all
n≥ N.

Consider any sequence {θ̄n} satisfying θ̄n ∈ (θ̂ ,τn) for all n≥N. For all n≥N,
determine (p̂n, x̂n) by the equalities in (35) and (36). From lemma B.2, we have
en(θ̂)→ e∗(θ̂) and thus,

(b−1)θ̂ > en(θ̂). (38)

for n large. Because

En
[
θ | θ ∈ (θ̂ , θ̄n]

]
< θ̂ + en(θ̂)

it is immediate from (38) that the inequality in (35) and, thus the inequality in (36),
holds for all sufficiently large n.

It remains to argue that the sequence {θ̄n} can be chosen such that (37) holds
for n large. Towards this end, note first that since x̂n is the utility maximizing
quantity for trader θ̂ facing a fixed price of p̂n ≥ θ̂ , and the trader captures the first
best surplus at the price θ̂ when trading the quantity qFB(θ̂), we have u(x̂n, θ̂)−
p̂nx̂n ≤ sFB(θ̂). Moreover, for n fixed, p̂n and x̂n are continuous functions of θ̄n ∈
[θ̂ ,τn].

At the point θ̄n = θ̂ we have p̂n = θ̂ and thus x̂n = qFB(θ̂), implying that the
right side of (37) is strictly larger than the left side (as Rs

n(θ) < sFB(θ) for all
θ ∈ (0,τn)). As

u(x̂n, θ̄n)− p̂nx̂n = (θ̄n− θ̂)x̂n +u(x̂n, θ̂)− p̂nx̂n ≤ (θ̄n− θ̂)qFB(θ̂)+ sFB(θ̂),

the right side of (37) increases linearly with θ̄n. Consequently, because Rs
n(τn) =

sFB(τn) is a quadratic function of τn, for n large the left side of (37) is strictly larger
than the right side at θ̄n = τn. As both sides of (37) are continuous in θ̄n it then
follows from the intermediate value theorem that there exists θ̄n ∈ (θ̂ ,τn) such that
(37) holds.

Lemma D.2 The semi-pooling trading schedule constructed in section 4.4 con-
verges to an open market.

Proof of lemma D.2. Under qn, the quantity traded by θ̂ is

x̂n >
[(b−1)θ̂ − en(θ̂)]

r
.

Let η ≡ [(b− 1)θ̂ − e∗(θ̂)]/2 > 0. Since for large n,
∣∣en(θ̂)− e∗(θ̂)

∣∣ < η , the
quantity traded by θ̂ is bounded below by

[(b−1)θ̂ − e∗(θ̂)−η ]
r

=
η

r
.
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It remains to argue that, for θ 6= 0, qn(θ) converges to a nonzero quantity.
We claim that θ̄n → ∞ as n → ∞: If not, there exists a subsequence with θ̄n →

θ̄ < ∞. But then qs
n(θ̄n) → 0, and so Rs

n(θ̄n) → 0. However, Rs
n(θ̄n) = [2bθ̄n −

bθ̂ − p̂n)]x̂n/2, the utility from pooling. Since this latter term is no smaller than
(b−1)θ̄nx̂n/2, which is bounded away from zero, we have a contradiction.

Consequently, qn converges pointwise to qt , the tail-pooling trading schedule
where all types θ ≥ θ̂ pool on the quantity

x̂ =
[(b−1)θ̂ − e∗(θ̂)]

r
,

types θ ≤−θ̂ pool on the quantity −x̂, and types |θ |< θ̂ separate.
Since qt(θ) 6= 0 for all θ 6= 0, {qn} converges to an open market.

E Convergence to Closed Markets

E.1 Preliminaries

Before stating and proving the various lemmas needed to prove theorem 3.2, we
begin with some preliminary definitions and maintained assumptions.

For any feasible trading and price schedule pair (qn, pn), aggregate trading
profits are

πn(θ) = pn(qn(θ))qn(θ)− v(qn(θ),θ),

the surplus function is given by

Sn(θ) = s(qn(θ),θ) = Rn(θ)+πn(θ),

and the virtual surplus function by

VSn(θ)≡

{
Sn(θ)+b Fn(θ)

fn(θ) qn(θ), if θ < 0,

Sn(θ)−b 1−Fn(θ)
fn(θ) qn(θ), if θ > 0.

As in the text, when we decorate a trading schedule, such as q̃n, the corresponding
functions defined above are similarly decorated. Note that (8) implies

Rn(θ) = b
∫

θ

0
qn(θ̃)dθ̃ +Rn(0)

and thus, upon substituting for Sn(θ) = u(qn(θ),θ)− v(qn(θ),θ) into (19) and
integrating by parts aggregate profits,

Πn = Π
−
n +Π

+
n −Rn(0)
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where

Π
−
n ≡

∫ 0

−τn

VSn(θ)dFn(θ),

Π
+
n ≡

∫
τn

0
VSn(θ)dFn(θ).

Given F∗ and a sequence τn → ∞, we assume that n is sufficiently large that

F∗(τn)−F∗(−τn) >
1
2
. (39)

E.2 Two Technical Lemmas

Lemma E.1 Let {(τn,qn, pn)} be a feasible sequence. Then for all θ ∈ R the
sequence {qn(θ)} is bounded.

Proof. Suppose there exists θ̂ ∈ R such that {qn(θ̂)} is unbounded above
(the case in which {qn(θ̂)} is unbounded below is analogous). There then exists
a subsequence {qm} such that qm(θ̂) → ∞. For fixed θ † > θ̂ , since the trading
schedules qm are increasing (lemma 2.1), we have

qm(θ)→ ∞, ∀θ ∈ [θ̂ ,θ †]. (40)

Since Rm(θ)≥ 0 and so Sm(θ)≥ πm(θ) for all θ , we have

Πm ≤
∫

τm

−τm

Sm(θ) fm(θ)dθ . (41)

For sufficiently large m, −τm < θ̂ < θ † < τm and recalling (39), so∫
τm

−τm

Sm(θ) fm(θ)dθ =
1

F∗(τm)−F∗(−τm)

∫
τm

−τm

Sm(θ) f ∗(θ)dθ

≤ 2
∫

τm

−τm

Sm(θ) f ∗(θ)dθ

≤ 2

[∫
τm

−τm

sFB(θ) f ∗(θ)dθ +
∫

θ †

θ̂

Sm(θ) f ∗(θ)dθ

]
.

Using (5) we have ∫
τm

−τm

sFB(θ) f ∗(θ)dθ → (b−1)2

2r
σ

2,
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where σ2 is the variance of F∗. From (3) and (40) we have Sm(θ) →−∞ for all
θ ∈ [θ̂ ,θ †] and thus ∫

θ †

θ̂

Sm(θ) f ∗(θ)dθ →−∞.

Hence, (41) implies Πm →−∞, contradicting the hypothesis that {qn} is a feasible
sequence.

Lemma E.2 If there exists a feasible sequence not converging to a closed market,
then there exists a feasible sequence {(τ̃m, q̃m, p̃m)} satisfying:

1. there exist θ̂ > 0 and x̂ > 0 such that q̃m(θ̂)→ x̂ as m→ ∞,

2. q̃m(0) = 0 for all m, and

3. there exists Π̃+ ≥ 0 such that Π̃+
m → Π̃+ as m→ ∞.

Proof. The lemma is established in three steps, in which we sequentially con-
struct the sequence, verifying at each step that the desired property holds. Denote
by {(τn,qn, pn)} the feasible sequence not converging to a closed market.

STEP 1 As the sequence {(τn,qn, pn)} does not converge to a closed market, there
is a type θ ∗ such that qn(θ ∗) does not converge to zero. From lemma E.1, the
sequence {qn(θ ∗)} is bounded, so there exists a subsequence {(τm,qm, pm)} of
{(τn,qn, pn)} such that qm(θ ∗)→ x∗ 6= 0. If x∗ > 0 and θ ∗ > 0, then property 1 in
the statement of the Lemma holds for the feasible sequence {(τm,qm, pm)}.

If x∗ > 0 and θ ∗ ≤ 0, consider any θ̂ > 0 ≥ θ ∗. As qm is increasing in θ

for all m and {qm(θ̂)} is bounded, there exists a subsequence {(τk,qk, pk)} of
{(τm,qm, pm)} and an x̂ ≥ x∗ > 0 such that qk(θ̂) → x̂, verifying property 1 for
the feasible sequence {(τk,qk, pk)}.

If x∗ < 0, define a new sequence {(τm,q†
m, p†

m)} by “flipping” {qm} and {pm},
i.e., q†

m(θ) = −qm(−θ) for all θ and m, p†
m(x) = −pm(−x) for all x and m. This

sequence then satisfies q†
m(−θ ∗) → −x∗ > 0 and is feasible for {Fm}, because

(u,v,Fm) is a symmetric market environment for all m. Replacing θ ∗ by −θ ∗, x∗

by−x∗, and {qm} by {q†
m} in the arguments for the case x∗ > 0 establishes property

1.

STEP 2 By step 1, we can now assume property 1 holds for the original sequence,
i.e., there exists θ̂ > 0 satisfying qn(θ̂) = x̂ > 0.

Let

q̃n(θ) =


min[qn(θ),0], if θ < 0
0, if θ = 0
max[qn(θ),0], if θ > 0
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The trading sequence {q̃n} then satisfies q̃n(0) = 0 for all n and q̃n(θ̂) → x̂ > 0.
We show next that q̃n is feasible for Fn for each n, establishing the existence of a
sequence {τn, q̃n, p̃n)} satisfying properties 1 and 2 in the statement of the lemma.
Towards this end note, first, that as qn is increasing so is q̃n. Lemma 2.1 implies
that, for all n, the trading schedule q̃n is implementable. To show that {q̃n} is
feasible, it suffices to show that

R̃n(θ)≤ Rn(θ) and s(q̃n(θ),θ)≥ s(qn(θ),θ) (42)

and thus π̃n(θ)≥ πn(θ) holds for all θ .
Let θ n = inf{θ | q̃n(θ) = 0} (we do not exclude the possibility θ n = −τn)

and θ̄n = sup{θ | q̃n(θ) = 0} (we do not exclude the possibility θ̄n = τn). For all
θ ∈ (θ n, θ̄n) (42) holds because for those types R̃n(θ) = 0≤ Rn(θ) and s(q̃n(θ) =
0 ≥ s(qn(θ),θ), where the latter inequality follows from (3) and observing that
qn(θ)θ ≤ 0 for all types in (θ n, θ̄n). Consider then θ > θ̄n. By construction, we
have q̃n(θ) = qn(θ) and thus s(q̃n(θ),θ) = s(qn(θ),θ). From (8) we have

R̃n(θ †)− R̃n(θ̄n) = Rn(θ †)−Rn(θ̄n), ∀θ
† > θ̄n,

implying (42) (because R̃n(θ̄n) = 0 ≤ Rn(θ̄n)). For θ < θ n, (42) follows from an
analogous argument, establishing the feasibility of {q̃n}.

STEP 3 Let {(τn,qn, pn)} be feasible for a sequence {Fn} approximating F∗ and
suppose properties 1 and 2 in the statement of the lemma are satisfied. By hypoth-
esis, qn(0) = 0 and thus Rn(0) = 0 holds for all n, implying the identity

Πn = Π
−
n +Π

+
n .

We next show that the sequences {Π−
n } and {Π+

n } are bounded so that there
exists a subsequence {(τm,qm, pm)}, Π− ∈R, and Π+ ∈R such that Π−

m →Π− and
Π+

m → Π+. Using qn(θ) ≥ 0 for all θ ≥ 0 in the first inequality, we have for all n
sufficiently large:

Π
+
n ≤

∫
τn

0
[Sn(θ) fn(θ)]dθ

≤
∫

τn

0

[
sFB(θ) fn(θ)

]
dθ

=
1

F∗(τn)−F∗(−τn)

∫
τn

0

[
sFB(θ) f ∗(θ)

]
dθ

<
1

F∗(τn)−F∗(−τn)

∫
∞

0

[
sFB(θ) f ∗(θ)

]
dθ

< 2
∫

∞

0

[
sFB(θ) f (θ)

]
dθ
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=
(b−1)2

2r
σ

2,

establishing that {Π+
n } is bounded above. An analogous argument shows that

{Π−
n } is bounded above. Because {(τn,qn, pn)} is feasible we have Πn = Π−

n +
Π+

n ≥ 0 for all n. It then follows from the fact that {Π−
n } (resp. {Π+

n }) is bounded
above that {Π+

n } (resp. {Π−
n }) is bounded below.

Let {(τm,qm, pm)} be a subsequence of {(τn,qn, pn)} satisfying Π−
m →Π− and

Π+
m → Π+. If Π+ ≥ 0, the sequence {(τm,qm, pm)} satisfies properties 1–3 in the

statement of the lemma and so is the desired sequence {(τ̃m, q̃m, p̃m)}.
Finally, suppose Π+ < 0. Then, because Πm →Π−+Π+, feasibility of the se-

quence {(τm,qm, pm)} implies Π− > 0. Consider the “flipped” sequence {(τm,q†
m, p†

m)}
defined by q†

m(θ) =−qm(−θ) for all θ and m, and p†
m(x) =−pm(−x) for all x and

m. By construction, this sequence satisfies properties 2 and 3 in the statement
of the lemma and, because of symmetry of (u,v,Fm), is feasible for the sequence
{Fm}. We complete our argument by demonstrating that there is a subsequence
{(τk, q̃k, p̃k)} of the flipped sequence {(τm,q†

m, p†
m)} also satisfying property 1.

Suppose not. Then we must have, for the unflipped sequence, qm(θ) → 0 for
all θ < 0. [If not, we can find a type θ̃ < 0 and a subsequence {qk} such that
qk(θ̃)→ x̃ 6= 0. Because qk(θ̃)≤ 0 holds for all k we must have x̃ < 0, and so the
flipped sequence satisfies property 1.] Let 0 < ε < Π−. As the second moment of
F∗ exists, there exists θ̂ < 0 such that

2
∫

θ̂

−∞

sFB(θ) f ∗(θ)dθ < ε.

Noting that for all m sufficiently large,

Π
−
m ≤ 2

∫
θ̂

−∞

sFB(θ) f ∗(θ)dθ +
∫ 0

θ̂

Sm(θ) fm(θ)dθ ,

and that the second integral on the right hand side converges to zero because
qm(θ) → 0 for all θ ∈ [θ̂ ,0], we obtain a contradiction to the hypothesis Π−

m →
Π− > ε .

E.3 Proof of Theorem 3.2

Assume there is a feasible sequence {(τn,qn, pn)} that does not converge to a closed
market. From lemma E.2, we may assume without loss of generality that there
exists θ̂ > 0 such that qn(θ̂) → x̂ > 0, qn(0) = 0 for all n, and Π+

n → Π+ ≥ 0.
Because x̂ > 0 and the second moment of F∗ exists, there exists θ † > θ̂ such that

− [1−F∗(θ̂)]
1
2

rx̂2 +2
∫

∞

θ †
sFB(θ) f ∗(θ)dθ < 0. (43)
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From lemma E.1, qn(θ †) is bounded and there thus exists a subsequence {(τm,qm, pm)}
of {(τn,qn, pn)} such that qm(θ †)→ x†. As every implementable trading schedule
is increasing, we have x† ≥ x̂.

The following calculations will show that if the market breakdown condition
(11) holds, {Π+

n } is bounded above by a sequence converging to the left hand
side of (43), contradicting the hypothesis Π+

n → Π+ ≥ 0 and thus establishing the
desired result.

Define the sequence {q̃n} by setting q̃n(θ) = min[qn(θ),qn(θ †)] for all θ and
n. We recall equation (21),

Π
+
n =

∫
τn

0
ṼSn(θ)dFn(θ)+

∫
τn

0

[
VSn(θ)−ṼSn(θ)

]
dFn(θ). (44)

Lemma E.3 For n sufficiently large,∫
τn

0

[
VSn(θ)−ṼSn(θ)

]
dFn(θ)≤ 2

∫
∞

θ †
sFB(θ)dF∗(θ).

Proof. The integrand on the left is equal to zero for all θ ∈ (0,θ †]. For θ ≥ θ † we
have qn(θ)≥ qn(θ †) = q̃n(θ)≥ 0 and thus

VSn(θ)−ṼSn(θ) = Sn(θ)− S̃n(θ)−b
1−Fn(θ)

fn(θ)
[qn(θ)− q̃n(θ)]

≤ Sn(θ)− S̃n(θ)

≤ sFB(θ)

where the last inequality follows from the calculation

s(z,θ)− s(x,θ) = (b−1)θ(z− x)− 1
2

r(z2− x2)

= (b−1)θ(z− x)− 1
2

r(z− x)2− 1
2

r
(
2zx−2x2)

≤ sFB(θ)− rx(z− x).

It follows that∫
τn

0

[
VSn(θ)−ṼSn(θ)

]
dFn(θ)≤

∫
τn

θ †
sFB(θ)dFn(θ)

≤ 2
∫

∞

θ †
sFB(θ)dF∗(θ).
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Consider now the first integral in (44). This can be written as∫
τn

0
ṼSn(θ)dFn(θ) =

∫
τn

0
[s(q̃n(θ),θ) fn(θ)− (1−Fn(θ))bq̃n(θ)]dθ

=
∫

τn

0
[(b−1)θ fn(θ)−b(1−Fn(θ))] q̃n(θ)dθ −

∫
τn

0

1
2

rq̃n(θ)2 dFn(θ).

Because q̃n(θ)≥ qn(θ̂) for all θ ≥ θ̂ , we have∫
τn

0

1
2

rq̃n(θ)2 dFn(θ)≥
∫

τn

θ̂

1
2

rqn(θ̂)2 dFn(θ)

= {1−Fn(θ̂)}1
2

r(qn(θ̂))2.

Combining our calculations so far, we have

Π
+
n ≤ Gn +

{
−{1−Fn(θ̂)}1

2
rqn(θ̂)2 +2

∫
∞

θ †
sFB(θ)dF∗(θ)

}
, (45)

where
Gn =

∫
τm

0
[(b−1)θ fn(θ)−b(1−Fn(θ))] q̃n(θ)dθ .

By lemma 5.1, (11) implies that the sequence {Gn} is bounded above by a
sequence converging to zero. Hence (45) implies that {Π+

n } is bounded above by
a sequence converging to the left side of (43), completing the proof.
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