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ABSTRACT

In time series regressions with nonparametrically autocorrelated errors, it is now stan-
dard empirical practice to use kernel-based robust standard errors that involve some
smoothing function over the sample autocorrelations. The underlying smoothing parame-
ter b, which can be defined as the ratio of the bandwidth (or truncation lag) to the sample
size, is a tuning parameter that plays a key role in determining the asymptotic properties
of the standard errors and associated semiparametric tests. Small-b asymptotics involve
standard limit theory such as standard normal or chi-squared limits, whereas fixed-b as-
ymptotics typically lead to nonstandard limit distributions involving Brownian bridge
functionals. The present paper shows that the nonstandard fixed-b limit distributions of
such nonparametrically studentized tests provide more accurate approximations to the
finite sample distributions than the standard small-b limit distribution. In particular,
using asymptotic expansions of both the finite sample distribution and the nonstandard
limit distribution, we confirm that the second-order corrected critical value based on the
expansion of the nonstandard limiting distribution is also second-order correct under the
standard small-b asymptotics. We further show that, for typical economic time series,
the optimal bandwidth that minimizes a weighted average of type I and type II errors is
larger by an order of magnitude than the bandwidth that minimizes the asymptotic mean
squared error of the corresponding long-run variance estimator. A plug-in procedure for
implementing this optimal bandwidth is suggested and simulations confirm that the new
plug-in procedure works well in finite samples.

JEL Classification: C13; C14; C22; C51

Keywords: Asymptotic expansion, bandwidth choice, kernel method, long-run variance,
loss function, nonstandard asymptotics, robust standard error, Type I and Type II errors



1 Introduction

In time series regressions with autocorrelation of unknown form, the standard errors of
regression coefficients are usually estimated nonparametrically by kernel-based methods
that involve some smoothing over the sample autocorrelations. The underlying smoothing
parameter (b) may be defined as the ratio of the bandwidth to the sample size and is
an important tuning parameter that determines the size and power properties of the
associated test. It therefore seems sensible that the choice of b should take these properties
into account. However, in conventional approaches (e.g., Andrews, 1991, and Newey and
West, 1987, 1994) and most practical software, the parameter b is chosen to minimize
the asymptotic mean squared error (AMSE) of the long-run variance (LRV) estimator.
This approach follows what has long been standard practice in the context of spectral
estimation (Grenander and Rosenblatt, 1957; Hannan, 1970) where the focus of attention
is the spectrum (or, in the present context, the LRV). Such a choice of the smoothing
parameter is designed to be optimal in the AMSE sense for the estimation of the relevant
quantity (here, the asymptotic standard error or LRV ), but is not necessarily best suited
for hypothesis testing and confidence interval construction.

In contrast to the above convention, the present paper develops a new approach to
choosing the smoothing parameter. We consider choosing b to optimize a loss function that
involves a weighted average of the type I and type II errors, a criterion that addresses the
central concerns of interest in hypothesis testing, balancing possible size distortion against
possible power loss in the use of different bandwidths. This new approach to automatic
bandwidth selection requires improved measurement of type I and type II errors, which
are provided here by means of asymptotic expansions of both the finite sample distribution
of the test statistic and the nonstandard limit distribution.

We first examine the asymptotic properties of the statistical test under different choices
of b. Using a Gaussian location model, we show that the distribution of the conventionally
constructed t-statistic is closer to its limit distribution derived under the fixed-b asymp-
totics than that derived under the small-b asymptotics. More specifically, when b is fixed,
the error in the rejection probability (ERP) of the nonstandard t-test is of order O

¡
T−1

¢
while that of the standard normal test is O(1). On the other hand, when b is decreasing
with the sample size, the ERP of the nonstandard t-test is smaller than that of the stan-
dard normal test, although they are of the same order of magnitude. As a consequence,
the nonstandard t-test has less size distortion than the standard normal test. Our the-
oretic findings here support earlier simulation results in Kiefer, Vogelsang and Bunzel
(2000, hereafter KVB), Kiefer and Vogelsang (2002a, 2002b, hereafter KV), Vogelsang
(2003) and ourselves (2005).

In view of its better size property, KV (2005) suggested using the fixed b rule and
the associated nonstandard limit distribution in statistical testing. The nonstandard test
is not very convenient to use in practice as the critical values of the nonstandard limit
distribution have to be simulated for practical implementation. One of the contributions of
the present paper is to design an easy-to-implement test based on an asymptotic expansion
of the nonstandard limit distribution about a limiting chi-squared form. This expansion,
which is of independent interest, leads to an associated Cornish-Fisher type expansion
from which high-order corrected critical values may be computed easily. These corrected

1



critical values provide very good approximations to the critical values of the nonstandard
limit distribution. In particular, the second-order corrected critical value for the Bartlett
kernel and the third-order corrected critical value for the Parzen and QS kernels are
remarkably close to their respective exact ones for all values of b in (0, 1].

The corrected critical values are further justified by a higher order asymptotic ex-
pansion of the finite sample distribution of the t-statistic under conventional joint limits
where the sample size T →∞ and b→ 0 simultaneously. The higher order expansion also
enables us to develop improved approximations to the type I and type II errors. More
specifically, the type I error is measured by using the first correction term in the asymp-
totic expansion of the finite sample distribution of the test statistic about its nonstandard
limit distribution. This term is of order O

¡
(bT )−q

¢
where q is the Parzen characteristic

exponent that measures the degree of smoothness of the kernel used. For typical economic
time series, this term increases as b decreases for any given T . Similarly, the expansion
under the local alternative reveals that in general the type II error decreases as b de-
creases. Thus, to this order in the asymptotic expansion, decreasing b reduces the type
II error but also increases the type I error. Since the desirable effects on these two types
of errors generally work in opposing directions, there is an opportunity to trade off these
effects. Accordingly, we construct a loss function criterion by taking a weighted average
of these two types of errors and show how b may be selected in such a way as to minimize
the loss. This method of choosing b is consistent with the Neyman principle under which
the probability of the type II error is minimized after controlling for the probability of
the type I error (see, for example, Gourieroux and Monfort, 1995).

Our approach gives an optimal b which generally has a shrinking rate of at most
b = O

¡
T−q/(q+1)

¢
and which can even be O (1) for certain loss functions, depending on

the weights that are chosen. Note that the optimal b that minimizes the asymptotic
mean squared error of the corresponding LRV estimator is of order O

¡
T−2q/(2q+1)

¢
(c.f.,

Andrews (1991)). Thus, optimal values of b for LRV estimation are smaller as T → ∞
than those which are most suited for statistical testing. The fixed b rule is obtained by
attaching substantially higher weight to the type I error in the construction of the loss
function. This theory therefore provides some insight into the type of loss function for
which there is a decision theoretic justification for the use of fixed b rules in econometric
testing.

The rest of the paper is organized as follows. Section 2 reviews the first order limit the-
ory for the t-test as T →∞ with the parameter b fixed and as T →∞ with b approaching
zero. Section 3 develops an asymptotic expansion of the nonstandard distribution under
the null and local alternative hypotheses as b→ 0 about the usual central and noncentral
chi-squared distributions. The high-order terms in this asymptotic expansion under the
null delivers correction terms that can be used to adjust the critical values in the usual
chi-squared test. Section 4 develops comparable expansions of the finite sample distribu-
tion of the statistic as T →∞ and b→ 0 at the same time. This expansion validates the
use of the corrected critical values in practical work. Section 5 compares the accuracy of
the nonstandard approximation with that of the standard normal approximation. Section
6 proposes a selection rule for b that is suitable for implementation in semiparametric test-
ing. The subsequent section reports simulation evidence on the performance of the new
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procedure. The last section provides some concluding discussion. Proofs and additional
technical results are given in the Appendix.

2 Heteroskedasticity-Autocorrelation Robust Inference

Throughout the paper, we focus on inference about β in the location model:

yt = β + ut, t = 1, 2, ..., T, (1)

where ut is zero mean process with a nonparametric autocorrelation structure. The non-
standard limiting distribution in this section and its asymptotic expansion in Section 3
apply to general regression models under certain conditions on the regressors, see KV
(2002a, 2002b, 2005). On the other hand, the asymptotic expansion of the finite sample
distribution in Section 4 applies only to the location model. Although the location model
is of interest in its own right, this is a limitation of the paper and some possible extensions
are discussed in Section 8.

OLS estimation of β gives β̂ = Ȳ = 1
T

PT
t=1 yt, and the scaled and centred estimation

error is
√
T (β̂ − β) =

1√
T
ST , (2)

where St =
Pt

τ=1 uτ . Let ûτ = yτ − β̂ be the demeaned time series and Ŝt =
Pt

τ=1 ûτ be
the corresponding partial sum process.

The following condition is commonly used to facilitate the limit theory (e.g., KVB
and Jansson (2004)).

Assumption 1 S[Tr] satisfies the functional law

T−1/2S[Tr] ⇒ ωW (r), r ∈ [0, 1] (3)

where ω2 is the long-run variance of ut and W (r) is standard Brownian motion.

Under Assumption 1,

T−1/2Ŝ[Tr] ⇒ ωV (r), r ∈ [0, 1] , (4)

where V is a standard Brownian bridge process, and
√
T (β̂ − β)⇒ ωW (1) = N(0, ω2), (5)

which provides the usual basis for robust testing about β. It is standard empirical practice
to estimate ω2 using kernel-based nonparametric estimators that involve some smoothing
and possibly truncation of the autocovariances. When ut is stationary, the long-run
variance of ut is

ω2 = γ0 + 2
∞X
j=1

γ(j), (6)

3



where γ(j) = E(utut−j). Correspondingly, heteroskedasticity-autocorrelation consistent
(HAC) estimates of ω2 typically have the form

ω̂2(M) =
T−1X

j=−T+1
k(

j

M
)γ̂(j), γ̂(j) =

(
1
T

PT−j
t=1 ût+jût for j ≥ 0

1
T

PT
t=−j+1 ût+jût for j < 0

(7)

involving the sample covariances γ̂(j). In (7), k(·) is some kernel function and M is a
bandwidth parameter. Consistency of ω̂2(M) requires M → ∞ and M/T → 0 as T →∞
(e.g. Andrews (1991), Andrews and Monahan (1992), Hansen (1992), Newey and West
(1987,1994), de Jong and Davidson (2000)). Jansson (2002) provides a recent overview
and weak conditions for consistency of such estimates.

To test the null H0 : β = β0 against H1 : β 6= β0, the standard approach relies on a
nonparametrically studentized t-ratio statistic of the form

tω̂(M) = T 1/2(β̂ − β0)/ω̂(M), (8)

which is asymptotically N(0, 1). Use of tω̂(M) is convenient empirically and therefore
widespread in practice, in spite of well-known problems of size distortion in inference.

To reduce size distortion, KVB and KV proposed the use of kernel-based estimators
of ω2 in which M is set proportional to T, i.e. M = bT for some b ∈ (0, 1]. In this case,
the estimator ω̂2 becomes

ω̂2b =
T−1X

j=−T+1
k

µ
j

bT

¶
γ̂(j), (9)

and the associated t statistic is given by

tb = T 1/2(β̂ − β0)/ω̂b. (10)

When the parameter b is fixed as T → ∞, KV showed that under Assumption 1
ω̂2b ⇒ ω2Ξb, where the limit Ξb is random and given by

Ξb =

Z 1

0

Z 1

0
kb(r − s)dV (r)dV (s), (11)

with kb (·) = k (·/b) and the tb-statistic has a nonstandard limit distribution. Under the
null hypothesis

tb ⇒W (1)Ξ
−1/2
b , (12)

whereas under the local alternative H1 : β = β0 + cT−1/2,

tb ⇒ (δ +W (1))Ξ
−1/2
b , (13)

where δ = c/ω. Thus, the tb-statistic has a nonstandard limit distribution arising from the
random limit of the LRV estimate ω̂b when b is fixed as T →∞. However, as b decreases,
the effect of this randomness diminishes, and when b → 0 the limit distributions under
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the null and local alternative both approach those of conventional regression tests with
consistent LRV estimates.

In related work, the present authors (2005a, 2005b, hereafter PSJa, PSJb) propose
using an estimator of ω2 of the form

ω̂2ρ =
T−1X

j=−T+1

∙
k

µ
j

T

¶¸ρ
γ̂(j), (14)

which involves settingM equal to T and taking an arbitrary power ρ ≥ 1 of the traditional
kernel. Statistical tests based on ω̂2ρ and ω̂2b share many of the same properties, which is
explained by the fact that ρ and b play similar roles in the construction of the estimates.
The present paper focuses on ω̂2b and tests associated with this estimate. Comparable
ideas and methods to those explored in the present paper may be pursued in the context
of estimates such as ω̂2ρ and are reported in other work (PSJc and PSJd).

3 Expansion of the Nonstandard Limit Theory

This section develops asymptotic expansions of the limit distributions given in (12) and
(13) as the bandwidth parameter b → 0. These expansions are taken about the relevant
central and noncentral chi-squared limit distributions that apply when b→ 0, correspond-
ing to the null and local alternative hypotheses.

These expansions of the nonstandard limit distributions are of some independent in-
terest. For instance, they can be used to deliver correction terms to the limit distributions
under the null, thereby providing a mechanism for adjusting the nominal critical values
provided by the usual chi-squared distribution. The latter correspond to the critical val-
ues that would be used for tests based on conventional consistent HAC estimates. As we
shall see, when the higher-order correction on the nominal chi-squared asymptotic critical
value is implemented using this asymptotic expansion, the resulting expression provides
an asymptotic justification for the polynomial approximation suggested in KV(2005) for
practical testing situations.

The asymptotic expansions and later developments in the paper make use of the
following kernel conditions:

Assumption 2 (i) k(x) : R→ [0, 1] is symmetric, piecewise smooth with k(0) = 1 andR∞
0 k(x)xdx <∞.
(ii) The Parzen characteristic exponent defined by

q = max{q0 : q0 ∈ Z+, gq0 = lim
x→0

1− k(x)

|x|q0 <∞} (15)

is greater than or equal to 1.
(iii) k(x) is positive semidefinite, i.e., for any square integrable function f(x),R∞

0

R∞
0 k(s− t)f(s)f(t)dsdt ≥ 0.

Assumption 2 imposes only mild conditions on the kernel function. All the commonly
used kernels satisfy (i) and (ii). The assumption

R∞
0 k(x)xdx <∞ ensures the integrals
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that appear frequently in our later developments are finite. It also enables us to use the
Riemann-Lebesgue lemma in our proofs. The assumption of positive semidefiniteness in
(iii) ensures that the associated LRV estimator is nonnegative. Commonly used kernels
that are positive semidefinite include the Bartlett kernel, the Parzen kernel and the QS
kernel, which are the main focus of the present paper. For the Bartlett kernel, the Parzen
characteristic exponent is 1. For the Parzen and QS kernels, the Parzen characteristic
exponent is 2.

We proceed to establish the asymptotic expansion of the nonstandard limiting distri-
bution. Let Gλ = G(·;λ2) be the cdf of a non-central χ21(λ2) variate with noncentrality
parameter λ2. Then

P
n¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
≤ z

o
= P

n
(δ +W (1))2 ≤ z2Ξb

o
= E

©
Gδ(z

2Ξb)
ª
, (16)

in view of the independence of W (1) and Ξb. Set μb = E (Ξb) , and a fourth-order Taylor
expansion yields

Gδ(z
2Ξb) = Gδ(μbz

2) +
1

2

¡
G00δ (μbz

2)z4
¢
(Ξb − μb)

2

+
1

6

¡
G000δ (μbz

2)z6
¢
(Ξb − μb)

3 +
1

24

³
G
(4)
δ (μ̃bz

2)z8
´
(Ξb − μb)

4 , (17)

where μ̃b lies on the line segment between μb and Ξb. Taking expectation on both sides of
the equation and using the fact that

¯̄̄
G
(4)
δ (μ̃bz

2)z8
¯̄̄
≤ C for some constant C, we have

EGδ(z
2Ξb) = Gδ(μbz

2) +
1

2
G00δ (μbz

2)E (Ξb − μb)
2 z4

+
1

6
G000δ (μbz

2)E (Ξb − μb)
3 z6 +O

³
E (Ξb − μb)

4
´
, (18)

as b→ 0, where the O (·) term holds uniformly over z ∈ R+.
To characterize the asymptotic behavior of E (Ξb − μb)

m as b→ 0, we write

Ξb =

Z 1

0

Z 1

0
k∗b (r, s)dW (r)dW (s), (19)

where k∗b (r, s) is defined by

k∗b (r, s) = kb(r − s)−
Z 1

0
kb(r − t)dt−

Z 1

0
kb(τ − s)dτ +

Z 1

0

Z 1

0
kb(t− τ)dtdτ.

Here, k∗b (r, s) is simply the projection of kb(r − s) onto the Hilbert subspace defined by

{f(·, ·) : f ∈ L2([0, 1]),

Z 1

0
f(r, s)dr = 0,

Z 1

0
f(r, s)ds = 0,

Z 1

0

Z 1

0
f(r, s)drds = 0}.

Since k(r−s) is positive semidefinite, by Mercer’s theorem (e.g., see Shorack and Wellner
(1986)), k(r − s) can be represented as k(r − s) =

P∞
n=1 λnfn(r)fn(s), where λn > 0

are the eigenvalues of the kernel and fn(x) are the corresponding eigenfunctions, i.e.
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λnfn(s) =
R∞
0 k(r − s)fn(r)dr. Since λn > 0, k∗b (r, s) is also positive semidefinite because

it may be written as

k∗b (r, s) =
∞X
n=1

λngn(r/b)gn(s/b) for any (r, s) ∈ [0,∞]× [0,∞], (20)

where gn(r) = fn(r) −
R∞
0 fn(τ)dτ. In consequence, for any function q(x) ∈ L2(R+), we

have Z ∞

0

Z ∞

0
q(r)k∗b (r, s)q(s)drds =

∞X
n=1

λn

µZ ∞

0
gn(r/b)q(r)dr

¶2
≥ 0. (21)

Using Mercer’s theorem again, we therefore have

k∗b (r, s) =
∞X
n=1

λ∗nf
∗
n(r)f

∗
n(s), (22)

where λ∗n > 0 are the eigenvalues of the kernel and f∗n(r) are the corresponding eigenfunc-
tions, i.e. λ∗nf

∗
n(s) =

R∞
0 k∗b (r, s)f

∗
n(r)dr.

Using representation (22), we can write Ξb as Ξb =
P∞

n=1 λ
∗
nZ

2
n, where Zn ∼ iid

N(0, 1). Therefore, the characteristic function of Ξb − μb is given by

φ (t) = E
n
eit(Ξb−μb)

o
= e−itμb

∞Y
n=1

{1− 2iλ∗nt}−1/2 , (23)

and the cumulant generating function is

lnφ (t) =
∞X

m=2

(
2m−1(m− 1)!

∞X
n=1

(λ∗n)
m

)
(it)m

m!
. (24)

Let κ1, κ2, κ3, . . . be the cumulants of Ξb − μb. Then

κ1 = 0 and κm = 2
m−1(m− 1)!

∞X
n=1

(λ∗n)
m for m ≥ 2. (25)

Some algebraic manipulations show that for m ≥ 2

κm = 2
m−1(m− 1)!

Z 1

0
...

Z 1

0

⎛⎝ mY
j=1

k∗b (τj , τj+1)

⎞⎠ dτ1 · · · dτm, (26)

where τ1 = τm+1.
With these preliminaries, we are able to find the dominating terms in the moments

E (Ξb − μb)
m, m = 1, 2 and develop an asymptotic expansion of P{

¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
≤

z} as the bandwidth parameter b → 0. In fact, a full series expansion is possible using
this method, but our purpose here requires only the leading terms in the expansion.
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Theorem 1 Let Fδ(z) := P
n¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
≤ z

o
be the nonstandard limiting dis-

tribution, then under Assumption 2,

Fδ(z) = Gδ(z
2) + pδ(z

2)b+ qδ(z)b
2 + o

¡
b2
¢
, (27)

where the term o
¡
b2
¢
holds uniformly over z ∈ R+ as b→ 0,

pδ(z
2) = c2G

00
δ(z

2)z4 − c1G
0
δ(z

2)z2,

qδ(z
2) = −G0δ(z2)z2c3 +

1

2
G00δ (z

2)z4(c4 − c21)−G000δ (z
2)z6c1c2, (28)

and

c1 =
R∞
−∞ k(x)dx, c2 =

R∞
−∞ k2(x)dx,

c3 = −
R∞
−∞ k(x) |x| dx, c4 = −

R∞
−∞ k2(x) |x| dx. (29)

As is apparent from the proof of the theorem, the term c2G
00
δ (z

2)z4b in pδ(z
2) arises

from the randomness of Ξb, whereas the term c1G
0
δ(z

2)z2b in pδ(z2) arises from the asymp-
totic bias of Ξb. Although Ξb converges to 1 as b → 0, we have var(Ξb) = 2bc2(1 + o(1))
and E(Ξb) = 1− bc1(1 + o(1)), as is established in the proof. Ξb is not centered exactly
at 1 because the regression errors have to be estimated. The terms in qδ(z

2) are due to
the first and second order biases of Ξb, the variance of Ξb and their interactions.

It follows from Theorem 1 that when δ = 0,

F0(z) = D(z2) +
£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b∙

−D0(z2)z2c3 +
1

2
D00(z2)z4(c4 − c21)−D000(z2)z6c1c2

¸
b2 + o

¡
b2
¢
, (30)

where D(·) = G0(·) is the cdf of χ21 distribution. For any α ∈ (0, 1), let z2α ∈ R+, z2α,b
∈ R+ such that D(z2α) = 1− α and F0(zα,b) = 1− α. Then, using a Cornish-Fisher type
expansion, we can obtain high-order corrected critical values.

Before presenting the corollary below, we introduce some terminology. We call the
critical value that is correct up to the O(b) order the second-order corrected critical value.
We call the critical value that is correct up to the O(b2) order the third-order corrected
critical value. We will use this convention throughout the rest of the paper. The following
quantities appear in the corollary:

k1 =

µ
c1 +

1

2
c2

¶
z2α +

1

2
c2z

4
α, (31)

k2 =

µ
1

2
c21 +

3

2
c1c2 +

3

16
c22 + c3 +

1

4
c4

¶
z2α

+

µ
−1
2
c1 +

3

2
c1c2 +

9

16
c22 +

1

4
c4

¶
z4α +

µ
5

16
c22

¶
z6α −

µ
1

16
c22

¶
z8α, (32)
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k3 =
1

2

µ
c1 +

1

2
c2

¶
zα +

1

4
c2z

3
α, (33)

k4 =

µ
1

8
c21 +

5

8
c1c2 +

1

16
c22 +

1

2
c3 +

1

8
c4

¶
zα

+

µ
−1
4
c1 +

5

8
c1c2 +

7

32
c22 +

1

8
c4

¶
z3α +

1

8
c22z

5
α −

1

32
c22z

7
α. (34)

Corollary 2 For asymptotic chi-square and normal tests,
(i) the second-order corrected critical values are

z2α,b = z2α + k1b+ o(b), zα,b = zα + k3b+ o(b), (35)

(ii) the third-order corrected critical values are

z2α,b = z2α + k1b+ k2b
2 + o(b2), zα,b = zα + k3b+ k4b

2 + o(b2), (36)

where zα is the nominal critical value from the standard normal distribution.

Our later developments require only the second-order corrected critical values. The
third-order corrected critical values are given here because the second-order correction
is not enough to deliver a good approximation to the exact critical values when the
Parzen and QS kernels are employed and b is large. As shown below, the third-order
approximation provides a good general purpose approximation that works well over a
wide range of values of b.

For the Bartlett, Parzen and QS kernels, we can compute c1, c2, c3 and c4 either
analytically or numerically. They are given in Table I:

Table I. Values of c’s for Different Kernels
c1 c2 c3 c4

Bartlett 1.0000 0.6667 −0.3333 −0.1667
Parzen 0.7500 0.5393 −0.1750 −0.0920
QS 1.2500 1.0000 −0.4222 −0.3166

Using Table I, we can obtain the high-order corrected critical values in Table II.

Table II. High Order Corrected Critical Values
z2α,b = z2α + k1b+ k2b

2 + o(b2), zα,b = zα + k3b+ k4b
2 + o(b2)

α = 5%, zα = 1.960 α = 10%, zα = 1.645
k1 k2 k3 k4 k1 k2 k3 k4

Bartlett 10.0414 16.9197 2.5616 2.6423 6.0489 9.7192 1.8386 1.9267
Parzen 7.8964 9.5481 2.0144 1.4006 4.7337 5.5670 1.4388 1.0629
QS 14.1017 38.6840 3.5974 6.5671 8.3968 21.8723 2.5522 4.6682
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To evaluate the accuracy of the approximate critical values given in Corollary 2, we
compare them with the critical values obtained via simulations. Of course the simulation
error can be made arbitrarily small, and so the simulated critical values can be regarded
as exact for practical purposes. In our simulations, the Brownian motion and Brownian
bridge processes are approximated by normalized partial sums of T = 1000 iid N(0, 1)
random variables and the number of replications is 10,000. Comparing the second-order
and third-order corrected critical values, we find that the second-order corrected critical
value is more accurate for the Bartlett kernel while the third-order corrected critical value
is more accurate for the Parzen and QS kernels. Figures 1—3 graph the approximate
critical values and the exact critical values as functions of b for the Bartlett, Parzen and
QS kernels. Fig. 1 shows that for the Bartlett kernel the second-order corrected critical
values are remarkably close to the the exact ones for all values of b. Figs. 2 and 3 show that
for the Parzen and QS kernels the third-order corrected critical values provide excellent
approximations to the exact ones for all values of b.
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Figure 1: Comparison of the second-order corrected critical values and the exact critical
values based on the Bartlett kernel

Since the limiting distributions (12) and (13) are valid for general regression models
under certain conditions on the regressors (see PSJa), we may use the second-order cor-
rected critical values for the Bartlett kernel and the third-order corrected critical values
for the Parzen or QS kernel in a general regression framework.

It is important to point out that the exact critical values can be simulated and the
high-order asymptotic expansion is developed here for two reasons. First, the resulting
high-order corrected critical values are easy to calculate and convenient to use for practical
testing situations. In addition, the asymptotic expansion provides a theoretical justifica-
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Figure 2: Comparison of the third-order corrected critical values and the exact critical
values based on the Parzen kernel
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Figure 3: Comparison of the third-order corrected critical values and the exact critical
values based on the QS kernel
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tion for the polynomial approximation suggested in KV(2005). Second, the asymptotic
expansion helps shed some new light on the accuracy of the nonstandard approximation.
In the next section, we will show that the second-order corrected critical values based
on the asymptotic expansion of the nonstandard distribution is also second-order correct
under the conventional asymptotics. As a result, the nonstandard limiting distribution is
closer to the exact distribution than the standard normal distribution even when b→ 0;
See Section 5.

When δ 6= 0 and the second-order corrected critical values are used, we can use
Theorem 1 to calculate the local asymptotic power, measured by P{

¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
>

zα,b}, as in the following corollary.

Corollary 3 Let Assumption 2 hold, then the local asymptotic power satisfies

P
n¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
> zα,b

o
= 1−Gδ(z

2
α)− c2z

4
αKδ

¡
z2α
¢
b+ o(b), (37)

as b→ 0 where

Kδ (z) =
∞X
j=0

¡
δ2/2

¢j
j!

e−δ
2/2 zj−1/2e−z/2

Γ(j + 1/2)2j+1/2
j

z
(38)

is positive for all zα and δ.

According to Corollary 3, the local asymptotic test power, as measured by
P{
¯̄̄
(δ +W (1))Ξ

−1/2
b

¯̄̄
> zα,b}, decreases monotonically with b at least when b is small.

Fig. 4 graphs the surface f(zα, δ) = z4αKδ

¡
z2α
¢
for different values of zα and δ. For a

given critical value, f(zα, δ) achieves its maximum around δ = 2, implying that the power
increase resulting from the choice of a small b is greatest when the local alternative is in
an intermediate neighborhood of the null hypothesis. For any given local alternative, the
function is monotonically increasing in zα. Therefore, the power improvement due to the
choice of a small b increases with the confidence level 1− α. This is expected. When the
confidence level is higher, the test is less powerful and the room for power improvement
is greater.

4 Expansions of the Finite Sample Distribution

This section develops a finite sample expansion for the simple location model. This devel-
opment, like that of Jansson (2004), relies on Gaussianity, which facilitates the derivations.
The assumption could be relaxed by taking distributions based (for example) on Gram-
Charlier expansions, but at the cost of much greater complexity (see, for example, Phillips
(1980), Taniguchi and Puri (1996), Velasco and Robinson (2001)).

The following assumption on ut facilitates the development of the higher order expan-
sion.
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Figure 4: The graph of f(zα, δ) = z4αKδ

¡
z2α
¢
as a function of zα and δ.

Assumption 3 ut is a mean zero covariance-stationary Gaussian process withP∞
h=−∞ h2 |γ (h)| <∞, where γ (h) = Eutut−h.

We develop an asymptotic expansion of P{
¯̄̄√

T (β̂ − β0)/ω̂b

¯̄̄
≤ z} for β = β0 + c/

√
T .

Depending on whether c is zero or not, this expansion can be used to approximate the
size and power of the t-test.

Since ut is in general autocorrelated, β̂ and ω̂b are statistically dependent, which
makes it difficult to write down the finite sample distribution of the t-statistic. To tackle
this difficulty, we decompose β̂ and ω̂b into statistically independent components. Let
u = (μ1, ...uT )

0, y = (y1, ..., yT ), lT = (1, ..., 1)T and ΩT = var(u). Then the GLS estimator
of β is β̃ =

¡
l0TΩ

−1
T lT

¢−1
l0TΩ

−1
T y and

β̂ − β = β̃ − β +
¡
l0T lT

¢−1
l0T ũ, (39)

where ũ = (I− lT
¡
l0TΩ

−1
T lT

¢−1
l0TΩ

−1
T )u, which is statistically independent of β̃−β. Since

ω̂2b can be written as a quadratic form in ũ, ω̂2b is also statistically independent of β̃ − β.
Next, it is easy to see that

ω2T := var
³√

T (β̂ − β)
´
= T−1l0TΩT lT = ω2 +O

¡
T−1

¢
, (40)

and it follows from Grenander and Rosenblatt (1957) that

ω̃2T := var
³√

T (β̃ − β)
´
= T

¡
l0TΩ

−1
T lT

¢−1
= ω2 +O

¡
T−1

¢
. (41)
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Therefore T−1/2l0T ũ = N(0, O
¡
T−1

¢
). Combining this result with the independence of β̃

and (ũ, ω̂b), we have

P
n√

T
³
β̂ − β0

´
/ω̂b ≤ z

o
= P

n√
T
³
β̃ − β

´
/ω̂b +

√
T (β − β0) /ω̂b + T−1/2l0T ũ/ω̂b ≤ z

o
= P

n√
T
³
β̃ − β

´
/ω̃T + c/ω̃T ≤ zω̂b/ω̃T − T−1/2l0T ũ/ω̃T

o
= EΦ

³
zω̂b/ω̃T − c/ω̃T − T−1/2l0T ũ/ω̃T

´
= EΦ (zω̂b/ω̃T − c/ω̃T )− T−1/2Eϕ (zω̂b/ω̃T − c/ω̃T ) l

0
T ũ/ω̃T +O

¡
T−1

¢
= P

n√
T
³
β̃ − β

´
/ω̃T + c/ω̃T ≤ zω̂b/ω̃T

o
+O

¡
T−1

¢
, (42)

uniformly over z ∈ R, where Φ and ϕ are the cdf and pdf of the standard normal distrib-
ution, respectively. The second to last equality follows because ω̂2b is quadratic in ũ and
thus Eϕ (zω̂b/ω̃T − c/ω̃T ) l

0
T ũ = 0. In a similar fashion we find that

P
n√

T
³
β̂ − β0

´
/ω̂b ≤ −z

o
= P

n√
T
³
β̃ − β

´
/ω̃T + c/ω̃T ≤ −zω̂b/ω̃T

o
+O

¡
T−1

¢
,

uniformly over z ∈ R. Therefore

FT,δ (z) := P
n¯̄̄√

T
³
β̂ − β0

´
/ω̂b

¯̄̄
≤ z

o
= P

½h√
T
³
β̃ − β

´
/ω̃T + c/ω̃T

i2
≤ z2ω̂2b/ω̃

2
T

¾
+O

¡
T−1

¢
= E

©
Gδ(z

2ω̂2b/ω̃
2
T )
ª
= E

©
Gδ(z

2ςbT )
ª
+O

¡
T−1

¢
, (43)

uniformly over z ∈ R+, where ςbT := (ω̂b/ωT )2 converges weakly to Ξb.
Setting μbT = E (ςbT ) and following the same argument that leads to (18), we have

FT,δ (z) = Gδ(μbT z
2) +

1

2
G00δ (μbT z

2)E (ςbT − μbT )
2 z4

+
1

6
G000δ (μbT z

2)E (ςbT − μbT )
3 z6 +O

³
E (ςbT − μbT )

4
´
+O

¡
T−1

¢
(44)

where the O (·) term holds uniformly over z ∈ R+. By developing asymptotic expansions
of μbT and E (ςbT − μbT )

m for m = 1, 2, .., 4, we can establish a higher order expansion
of the finite sample distribution for the case where T →∞ and b→ 0 at the same time.
This expansion validates for finite samples the use of the second-order corrected critical
values given in the previous section which were derived there on the basis of an expansion
of the (nonstandard) limit distribution.

Theorem 4 Let Assumptions 2 and 3 hold. If bT →∞ as T →∞ and b→ 0, then

FT,δ(z) = Gδ(z
2) +

£
c2G

00
δ (μbz

2)z4 − c1G
0
δ(z

2)z2
¤
b

− gqdqTG
0
δ(z

2)z2(bT )−q + o
©
b+ (bT )−q

ª
+O

¡
T−1

¢
(45)

where dqT = ω−2T
P∞

h=−∞ |h|
q γ(h), ω2T = T−1l0TΩT lT and the o(·) and O(·) terms hold

uniformly over z ∈ R+.

14



Under the null hypothesis, δ = 0 and Gδ(·) = D(·), so
FT,0(z) = D(z2) +

£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b

− gqdqTD
0(z2)z2(bT )−q + o

©
b+ (bT )−q

ª
+O

¡
T−1

¢
. (46)

The leading two terms (up to order O(b)) in this expansion are the same as those in the
corresponding expansion of the limit distribution F0(z) given in (30) above. Thus, use of
the second-order corrected critical values given in (35), which take account of terms up
to order O (b) , should lead to size improvements when T qbq+1 → 0.

The third term in the expansion (46) is O (T−q) when b is fixed. When b decreases
with T, this term provides an asymptotic measure of the size distortion in tests based
on the use of the first two terms of (46), or equivalently those based on the nonstandard
limit theory, at least to order O (b). Thus, the third term of (46) approximately measures
how satisfactory the second-order corrected critical values given in (35) are for any given
values of b and T .

If critical values from the standard normal are used, then the ERP is approximated
by the sum of the O (b) and O((bT )−q) terms in 46, viz.,

eT (b) =
£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b− gqdqTD

0(z2)z2(bT )−q, (47)

which is a simple rational function in b. In (47) the O (b) term is negative, and the
O((bT )−q) term is also negative for time series with dqT > 0, as is typical for economic
data. In this case, the ERP function eT (b) is negative, has a negative asymptote at b = 0,
and a simple maximum at

b =

µ
− qgqdqTD

0(z2)

c2D00(z2)z2 − c1D0(z2)

¶ 1
q+1

T−
q

q+1 . (48)

For this choice of b, eT (b) is closest to zero, and the resulting best rate of convergence of
the ERP to zero is O

¡
T−q/(q+1)

¢
. This rate increases with q and can be arbitrarily close

to O
¡
T−1

¢
if q is large and the autocovariance decays at an exponential rate. Examples of

kernels with q > 2 include the familiar truncated kernel and the flat top kernel proposed
by Politis and Romano (1995, 1998). These kernels are not positive semidefinite. We
consider only the commonly-used positive semidefinite kernels with q ≤ 2 in this paper
and leave the analysis of higher order kernels for future research.

If we construct a two-sided confidence interval based on the asymptotic normality,
then the ERP is also the coverage error. Therefore, the optimal b that achieves the
greatest coverage accuracy is of order O

¡
T−q/(q+1)

¢
for typical economic time series. As

we discuss below, this rate is different from O
¡
T−2q/(2q+1)

¢
, the rate that is appropriate

for point estimation of the standard error. So, some undersmoothing is required to achieve
improved coverage accuracy in confidence intervals.

In the case where dqT < 0, the ERP-optimal b is different from that given in (48).
When dqT < 0, the ERP function eT (b) has a positive asymptote at b = 0 and is monotoni-
cally decreasing and passes through the origin as b increases, so the optimal b that achieves
the greatest coverage accuracy is the value for which eT (b) = 0, i.e.,

b =

µ
gqdqTD

0(z2)

c2D00(z2)z2 − c1D0(z2)

¶ 1
q+1

T−
q

q+1 . (49)
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This choice of b completely removes the O (b) and O((bT )−q) terms in (46), leading to a
coverage error of a smaller order, i.e. o

¡
T−q/(q+1)

¢
instead of O

¡
T−q/(q+1)

¢
.

The optimal b given in (48) and (49) is not feasible as it involves the unknown para-
meter dqT . In practice, we can estimate dqT using a nonparametric approach. A minimal
requirement for this estimator is its consistency. Based on the sign of this estimator, we
can decide which of the two formulae to use in practical situations. We leave investigations
along these lines to future research.

Velasco and Robinson (2001) established an Edgeworth expansion of P {tb ≤ z} for
the Gaussian local model. Note that P {tb ≤ z} = 1

2 (1 + FT,0(z)) for z ≥ 0 under the null
hypothesis, and we have

P {tb ≤ z} = 1 + 1
2
D(z2) +

1

2

£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b

− 1
2
gqdqTD

0(z2)z2(bT )−q + o
©
b+ (bT )−q

ª
+O

¡
T−1

¢
. (50)

Using the identity

D0(z2) =
φ(z)

z
, D00(z2) = −φ(z)

2z
− φ(z)

2z3
, (51)

we deduce for z ≥ 0

P {tb ≤ z} = Φ(z)− 1
2

hc2
2

¡
z3 + z

¢
+ c1z

i
φ(z)b

− 1
2
gqdqT zφ(z)(bT )

−q + o
©
b+ (bT )−q

ª
+O

¡
T−1

¢
. (52)

Combining this with P {tb ≤ −z} = 1 − P {tb ≤ z} , we can show that the preceding
expansion also holds for z ≤ 0. The expansion (52) is identical to equation (11) in Velasco
and Robinson (2001) after notational changes and a small correction1.

Under the local alternative hypothesis, the power of the test based on the second-
order corrected critical values is 1 − FT,δ(zα,b). Theorem 4 shows that FT,δ(zα,b) can be
approximated by

Gδ(z
2
α,b) +

£
c2G

00
δ (z

2
α,b)z

4
α,b − c1G

0
δ(z

2
α,b)z

4
α,b

¤
b− gqdqTG

0
δ(z

2)z2(bT )−q,

with an approximation error of order o
¡
(bT )−q + b

¢
+O

¡
T−1

¢
.

These results on size distortion and local power are formalized in the following corol-
lary.

1There is a mistake in Theorem 5 of Velasco and Robinson (2001). Given their Theorem 4 and equation
(11), the second order corrected critical value should be

wα = zα −
zα
−∞ rN (x)φ(x)dx

φ(zα)

M

N

= zα +
1

2
z3α − 3zα π kKk22

M

N
− 1

2
zα b1NM−d−1 − 4π kKk22 − 2πK(0)

M

N

= zα +
1

2
z3α + zα π kKk22

M

N
+
1

2
zα {2πK(0)}

M

N
− 1

2
zαb1

1

Md

Since 2πK(0) = c1 and kKk22 = c2, the correction terms of order O(M/N) are the same as that given in
(35) in this paper.
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Corollary 5 Let Assumptions 2 and 3 hold. If bT →∞ as T →∞ and b→ 0, then:
(a) the size distortion of the t-test based on the second-order corrected critical values

is

(1− FT,0(zα,b))− α = gqdqTD
0(z2α)z

2
α(bT )

−q + o
¡
(bT )−q + b

¢
+O

¡
T−1

¢
. (53)

(b) under the local alternative H1 : β = β0 + c/
√
T , the power of the t-test based on

the second-order corrected critical values is

1− FT,δ(zα,b) = 1−Gδ(z
2
α)− c2z

4
αKδ

¡
z2α
¢
b

+ gqdqTG
0
δ(z

2
α)z

2
α(bT )

−q + o
¡
(bT )−q + b

¢
+O

¡
T−1

¢
. (54)

5 Accuracy of the Nonstandard Approximation

In the previous section, we have shown that when b goes to zero at a certain rate, the ERP
of the standard normal or chi-squared test is at least of order O(T−q/(q+1)) for typical
economic time series. This section establishes a related result for the nonstandard test
when b is fixed and then compares the ERP of these two tests under the same asymptotic
specification, i.e. either b is fixed or b → 0. As in the previous section, we focus on the
Gaussian location model.

In view of (43), the error of the nonstandard approximation is given by

FT,0(z)− F0(z) := P
n¯̄̄√

T
³
β̂ − β

´
/ω̂b

¯̄̄
≤ z

o
− P

n¯̄̄
W (1)Ξ

−1/2
b

¯̄̄
≤ z

o
= ED(z2ςbT )−ED(z2Ξb) +O

¡
T−1

¢
. (55)

To evaluate the difference ED(z2ςbT )−ED(z2Ξb), we proceed to compute the cumulants
of both ςbT − μbT and Ξb − μb. Since ω̂2b = T−1û0Wbû = T−1u0ATWbATu, where Wb is
T ×T with (j, s)-th element kb((j − s)/T ) and AT = IT − lT l

0
T/T , ςbT is a quadratic form

in a Gaussian vector. It is easy to show that the characteristic function of ςbT − μbT is
given by

φbT (t) =

¯̄̄̄
I − 2itΩTATWbAT

Tω2T

¯̄̄̄−1/2
exp {−itμbT} , (56)

where ΩT = E(uu0) and the cumulant generating function is

ln (φbT (t)) = −
1

2
log det

µ
I − 2itΩTATWbAT

Tω2T

¶
− itμbT :=

∞X
m=1

κm,T
(it)m

m!
, (57)

where the κm,T are the cumulants of ςbT − μbT . It follows from (57) that κ1,T = 0 and

κm,T = 2
m−1(m− 1)!T−m

¡
ω2T
¢−m

Trace [(ΩTATWbAT )
m] for m ≥ 2. (58)

By proving κm,T is close to κm in the precise sense given in Lemma 2 in the Appendix,
we can establish the following theorem, which gives the order of magnitude of the error
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in the nonstandard limit distribution of tb as T → ∞ with fixed b. The requirement
b < 1/(16

R∞
−∞ |k(x)|dx) on b that appears in the statement of the result is a technical

condition in the proof that facilitates the use of a power series expansion. The requirement
can be relaxed but at the cost of more extensive and tedious calculations.

Theorem 6 Let Assumptions 2 and 3 hold. If b < 1/(16
R∞
−∞ |k(x)|dx), then

FT,0(z) = F0(z) +O
¡
T−1

¢
, (59)

uniformly over z ∈ R+ when T →∞ with fixed b.

Under the null hypothesis H0 : β = β0, we have δ = 0. In this case, Theorem 6
indicates that the ERP for tests with b fixed and using critical values obtained from the
nonstandard limit distribution of W (1)Ξ

−1/2
b is O

¡
T−1

¢
. The theorem is an extension to

the result of Jansson (2004) who considered only the Bartlett-type kernel with b = 1 and
proved that the ERP is of order O

¡
T−1 log(T )

¢
. It is an open question in Jansson (2004)

whether the log (T ) factor can be omitted. Theorem 6 provides a positive answer to this
question.

In the previous section, we showed that when b→ 0, T →∞ such that bT →∞,

FT,0(z) = D(z2) +O
³
T−q/(q+1)

´
(60)

for typical economic time series. Comparing (59) with (60), one may conclude that the
error of the nonstandard approximation is smaller than that of the standard normal
approximation by an order of magnitude. However, the two O(·) terms are obtained
under different asymptotic specifications. The O(·) term in (59) holds for fixed b while
the O(·) term in (60) holds for diminishing b. Since the O(·) term in (59) does not hold
uniformly over b ∈ (0, 1], the two O(·) terms can not be directly compared, although they
are obviously suggestive of the relative quality of the two approximations when b is small,
as it typically will be in practical applications.

Indeed, F0(z) andD(z2) are just different approximations to the same quantity FT,0(z).
To compare the two approximations more formally, we need to evaluate FT,0(z) − F0(z)
and FT,0(z) − D(z2) under the same asymptotic specification, i.e. either b is fixed or
b→ 0.

First, when b is fixed, we have

FT,0(z)−D(z2) = FT,0(z)− F0(z) + F0(z)−D(z2) = O(1). (61)

This is because FT,0(z) − F0(z) = O(1/T ) as shown in Theorem 6 and F0(z) −D(z2) =
O(1). Comparing (61) with (59), we conclude that when b is fixed, the error of the
nonstandard approximation is smaller than that of the standard approximation by an
order of magnitude.
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Second, when b = O(T−q/(q+1)), we have

FT,0(z)− F0(z) =
£
FT,0(z)−D(z2)

¤
−
£
F0(z)−D(z2)

¤
=
£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b

− gqdqTD
0(z2)z2(bT )−q + o

©
b+ (bT )−q

ª
+O

¡
T−1

¢
−
£
c2D

00(z2)z4 − c1D
0(z2)z2

¤
b+ o(b)

= −gqdqTD0(z2)z2(bT )−q + o
©
b+ (bT )−q

ª
+O

¡
T−1

¢
, (62)

where we have used Theorems 1 and 4. Therefore, when dqT > 0, which is typical for
economic time series, the error of the nonstandard approximation is smaller than that of
the standard normal approximation, although they are of the same order of magnitude
for this choice of b.

We can conclude from the above analysis that the nonstandard distribution provides
a more accurate approximation to the finite sample distribution regardless of the asymp-
totic specification employed. There are two reasons for the better performance: the
nonstandard distribution mimics the randomness of the denominator of the t-statistic,
and it accounts for the bias of the LRV estimator resulting from the unobservability of
the regressor errors. As a result, the critical values from the nonstandard limiting distri-
bution provide a higher order correction on the critical values from the standard normal
distribution. However, just as in the standard limiting theory, the nonstandard limiting
theory does not deal with another source of bias, i.e. the usual bias that arises in spectral
density estimation even when a time series is known to be mean zero and observed. This
second source of bias manifests itself in the error of approximation given in (62).

6 Optimal Bandwidth Choice

It is well known that the optimal choice of b that minimizes the asymptotic mean squared
error in LRV estimation has the form b = O

¡
T−2q/(2q+1)

¢
. However, there is no reason

to expect that such a choice is the most appropriate in statistical testing using nonpara-
metrically studentized statistics. Developing an optimal choice of b for semiparametric
testing is not straightforward and involves some conceptual as well as technical challenges.
In what follows we provide one possible approach to constructing an optimizing criterion
that is based on balancing the type I and type II errors.

In view of the asymptotic expansion (53), we know that the type I error for a nominal
size α test can be expressed as

1− FT,0(zα,b) = α+ gqdqTD
0(z2α)z

2
α(bT )

−q + o
¡
(bT )−q + b

¢
+O

¡
T−1

¢
, (63)

Similarly, from (54), the type II error has the form

Gδ(z
2
α) + c2z

4
αKδ(z

2
α)b− gqdqTG

0
δ(z

2
α)z

2
α(bT )

−q + o
¡
(bT )−q + b

¢
+O

¡
T−1

¢
. (64)

A loss function for the test may be constructed based on the following three factors: (i)
The magnitude of the type I error, as measured by the second term of (63); (ii) The
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magnitude of the type II error, as measured by the O (b) and O((bT )−q) terms in (64);
and (iii) The relative importance of the type I and type II errors.

For most economic time series we can expect that dqT > 0 and then both gqdqTD0(z2α)z
2
α >

0 and gqdqTG
0
δ(z

2
α)z

2
α > 0. Hence, the type I error increases as b decreases. On the other

hand, the (bT )−q term in (64) indicates that there is a corresponding decrease in the type
II error as b decreases. Indeed, for δ > 0 the decrease in the type II error will generally
exceed the increase in the type I error because G0δ(z

2
α) > D0(z2α) for δ ∈ (0, 7.5) and

zα = 1.645, 1, 960 or 2.580. Fig. 5 graphs the ratio G0δ(z
2)/D0(z2) against δ for different

values of z, illustrating the relative magnitude of G0δ(z
2
α) and D0(z2α). The situation is

further complicated by the fact that there is an additional O (b) term in the type II error.
As we have seen earlier, Kδ(z

2
α) > 0 so that the second term of (64) leads to a reduction

in the type II error as b decreases. Thus, the type II error generally decreases with b for
two reasons – one from the nonstandard limit theory and the other from the (typical)
downward bias in estimating the long-run variance.

The case of dqT < 0 usually arises where there is negative serial correlation in the
errors and so tends to be less typical for economic time series. In such a case, (63) shows
that the type I error decreases with b while the type II error may increase or decrease
with b depending on which of the two terms in (64) dominates.
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Figure 5: The graph of G0δ(z
2)/D0

δ(z
2) as a function of δ for different values of z

These considerations suggest that a loss function may be constructed by taking a
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suitable weighted average of the type I and type II errors given in (63) and (64). Setting

eIT = α+ gqdqTD
0(z2)z2(bT )−q,

eIIT = Gδ(z
2
α) + c2z

4
αKδ(z

2
α)b− gqdqTG

0
δ(z

2
α)z

2
α(bT )

−q, (65)

we define the loss function to be

L (b; δ, T, zα) =
wT (δ)

1 + wT (δ)
eIT +

1

1 + wT (δ)
eIIT , (66)

where wT (δ) is a function that determines the relative weight on the type I and II errors
and this function is allowed to depend on the sample size T and δ. Obviously, the loss
L (b; δ, T, zα) is here specified for a particular value of δ and this function could be adjusted
in a simple way so that the type II error is averaged over a range of values of δ with respect
to some (prior) distribution over alternatives.

We focus on the case of a fixed local alternative below, in which case we can suppress
the dependence of wT (δ) on δ and write wT = wT (δ). To sum up, the loss function we
consider is of the form:

L (b; δ, T, zα) =
£
gqdqT

©
wTD

0(z2α)−G0δ(z
2
α)
ª
z2α(bT )

−q + c2z
4
αKδ(z

2
α)b
¤ 1

1 + wT
+CT ,

(67)

where CT =
£
wTα+Gδ(z

2
α)
¤
/[1 + wT ], which does not depend on b. In the rest of this

section, we consider the case wTD
0(z2α) − G0δ(z

2
α) > 0, which holds if the relative weight

wT is large enough.
It turns out that the optimal choice of b depends on whether dqT > 0 or dqT < 0.

We consider these two cases in turn. When dqT > 0, the loss function L (b; δ, T, zα) is
minimized for the following choice of b :

bopt =

(
qgqdqT

£
wTD

0(z2α)−G0δ(z
2
α)
¤

c2z2αKδ(z2α)

)1/(q+1)
T−q/(q+1). (68)

Therefore, the optimal shrinkage rate for b is of order O(T−q/(q+1)) when wT is a fixed
constant. If wT →∞ as T →∞, we then have

bopt =

½
qgqdqTD

0(z2α)

z2αc2Kδ(z2α)

¾1/(q+1)
(wT/T

q)1/(q+1) . (69)

Fixed b rules may then be interpreted as assigning relative weight wT = O (T q) in the loss
function so that the emphasis in tests based on such rules is a small type I error, at least
when we expect the type I error to be larger than the nominal size of the test. This gives
us an interpretation of fixed b rules in terms of the loss perceived by the econometrician
using such a rule. Within the more general framework given by (68), b may be fixed or
shrink with T up to an O

¡
T−q/(q+1)

¢
rate corresponding to the relative importance that

is placed in the loss function on the type I and type II errors.
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Observe that when b = O((wT/T
q)1/(q+1)), size distortion is O (wTT )

−q/(q+1) rather
than O

¡
T−1

¢
, as it is when b is fixed. Thus, the use of b = bopt for a finite wT involves

some compromise by allowing the error order in the rejection probability to be somewhat
larger in order to achieve higher power. Such compromise is an inevitable consequence
of balancing the two elements in the loss function (67). Note that even in this case,
the order of ERP is smaller than O(T−q/(2q+1)), which is the order of the ERP for the
conventional procedure in which standard normal critical values are used and b is set to
be O

¡
T−2q/(2q+1)

¢
.

For Parzen and QS kernels the optimal rate of b is T−2/3, whereas for the Bartlett
kernel the optimal rate is T−1/2. Therefore, in large samples, a smaller b should be used
with the Parzen and QS kernels than with the Bartlett kernel. In the former cases, the
ERP is at most of order T−2/3 and in the latter case the ERP is at most of order T−1/2.
The O

¡
T−2/3

¢
rate of the ERP for the quadratic kernels represents an improvement on

the Bartlett kernel. Note that for the optimal b, the rate of the ERP is also the rate
for which the loss function L (b; δ, T, zα) approaches CT from above. Therefore, the loss
L (b; δ, T, zα) is expected to be smaller for quadratic kernels than for the Bartlett kernel
in large samples. Finite sample performance may not necessarily follow this ordering,
however, and will depend on the sample size and the shape of the spectral density of {ut}
at the origin.

The formula for bopt involves the unknown parameter dqT , which could be estimated
nonparametrically (e.g. Newey and West (1994)) or by a standard plug-in procedure
based on a simple model like AR(1) (e.g. Andrews (1991)). Both methods achieve a valid
order of magnitude and the procedure is obviously analogous to conventional data-driven
methods for HAC estimation.

When wTD
0(z2α)−G0δ(z

2
α) > 0 and dqT < 0, L (b; δ, T, zα) is an increasing function of

b. To minimize loss in this case, we can choose b to be as small as possible. Since the
loss function is constructed under the assumption that b→ 0 and bT →∞, the choice of
b is required to be compatible with these two rate conditions. These considerations lead
to a choice of b of the form b = JT/T for some JT that goes to infinity but at a slowly
varying rate relative to T. In the simulation study below, we set JT = log(T ) so that
b = (logT ) /T.

To sum up, for typical economic time series, the value of b which minimizes the
weighted type I and type II errors has a shrinkage rate of b = O

¡
T−q/(q+1)

¢
. This rate

may be compared with the optimal rate of b = O
¡
T−2q/(2q+1)

¢
that applies when min-

imizing the mean squared error of estimation of the corresponding HAC estimate, ω̂2b ,
itself (Andrews (1991)). Thus, the AMSE optimal values of b for HAC estimation are
smaller as T → ∞ than those which are most suited for statistical testing. In effect,
optimal HAC estimation tolerates more bias in order to reduce variance in estimation. In
contrast, optimal b selection in HAC testing undersmooths the long-run variance estimate
to reduce bias and allows for greater variance in long-run variance estimation through
higher order adjustments to the nominal asymptotic critical values or by direct use of the
nonstandard limit distribution.

22



7 Simulation Evidence

This section provides some simulation evidence on the finite sample performance of the
t-test based on the plug-in procedure that optimizes the loss function constructed in the
previous section.

We consider the simple local model with Gaussian ARMA(1,1) errors:

yt = β + c/
√
T + ut (70)

where c = 0 or 2 and

ut = φut−1 + εt + θεt−1, εt ∼ iidN(0, 1). (71)

Under the null c = 0, and under the local alternative c = 2. The latter value of c is
chosen such that when φ = 0.3 and θ = 0, the local asymptotic power of the t-test is
60%. In other words, c = 2 solves P {|(c(1− φ) +W (1))| ≥ 1.645} = 60% for φ = 0.3.
The qualitative results are similar for other nonzero values of c.We consider three sample
sizes T = 50, 100 and 200.

For the ARMA(1,1) process,

d1 =
2(1 + φθ)(φ+ θ)

(1− φ2) (1 + θ)2
, d2 =

2(1 + φθ)(φ+ θ)

(1− φ)2 (1 + θ)2
. (72)

To estimate d1 and d2, we employ the AR(1) plug-in procedure. More specifically, let

ρ̂ =

PT
t=2(ut − ū)(ut−1 − ū)PT

t=2(ut−1 − ū)2
(73)

be the OLS estimate of the AR parameter, then we estimate d1 and d2 by

d̂1 = 2ρ̂/(1− ρ̂2), d̂2 = 2ρ̂/(1− ρ̂)2. (74)

It is easy to see that

ρ̂→ (θ + φ) (1 + θφ)

θ2 + 2θφ+ 1
, as T →∞. (75)

Therefore

d1/d̂1 →
(1− φ)

¡
θ2 − (1− φ) θ + 1

¢
θ2 + 2θφ+ 1

n¡
1− φ2

¢
(1 + θ)2

o−1
> 0

d2/d̂2 →
µ
1− (θ + φ) (1 + θφ)

θ2 + 2θφ+ 1

¶2 n
(1− φ)2 (1 + θ)2

o−1
> 0. (76)

Since both limits are positive when |φ| < 1, d̂q and dq have the same sign with probability
approaching one as T →∞.We can thus choose b based on the sign of d̂q.More specifically,

b̂opt =

⎧⎨⎩
∙
qgq d̂q{wTD0(z2α)−G0δ(z2α)}

c2z2αKδ(z2α)

¸1/(q+1)
T−q/(q+1), d̂q > 0

T−1 log T, d̂q < 0

(77)

23



We consider the following relative weights: wT = 10, 20, 30, and 40. We set the
significance level to be α = 10% and the corresponding nominal critical value for the
two-sided test is zα = 1.645. For all the DGP’s considered, we let δ = 2 in computing
the optimal bandwidth parameter. For each choice of wT , we obtain b̂opt and use it to
construct the LRV estimate and corresponding tb̂-statistic. We reject the null hypothesis
if
¯̄
tb̂
¯̄
is larger than the corrected critical values given in (35) and (36). For the Bartlett

kernel, the second-order corrected critical value is used. For the Parzen and QS kernels,
the third-order corrected critical value is used. Using 50,000 replications, we compute the
empirical type I error (when c = 0) and type II error (when c = 2). We construct the
empirical loss by taking a weighted average of the type I and type II errors. The weights
associated with the type I and II errors are wT/(1 + wT ) and 1/(1 + wT ), respectively.

For comparative purposes, we also compute the empirical loss function when the band-
width is the ‘optimal’ one that minimizes the asymptotic mean squared errors of the LRV
estimate. This bandwidth rule is given in Andrews (1991) and the AR(1) plug-in version
is

b̂BTMSE = 1.1447

µ
4ρ̂2

(1− ρ̂)2(1 + ρ̂)2

¶1/3
T−2/3,

b̂PRMSE = 2.6614

µ
4ρ̂2

(1− ρ̂)4

¶1/5
T−4/5, or (78)

b̂QSMSE = 1.3221

µ
4ρ̂2

(1− ρ̂)4

¶1/5
T−4/5.

Tables III-V report the empirical loss only for the sample size T = 100, as it is
representative of other sample sizes.

First, we compare the new plug-in procedure with the conventional plug-in procedure
for a given kernel. It is clear that the new plug-in procedure incurs significantly smaller
loss than the conventional plug-in procedure when dq > 0, which is typical for economic
time series. This is true for all values of wT and parameter combinations considered.
When dq ≤ 0, the performance of the new plug-in procedure is better than that of the
conventional plug-in procedure for both the Bartlett and Parzen kernels. However, for
the QS kernels, the former is slightly outperformed by the latter for some DGP’s.

Second, we compare the performance of the new plug-in procedure based on different
kernels. For all values of wT and the DGP’s, the Parzen and QS kernels lead to more or less
the same loss. This is not surprising as both Parzen and QS exhibit quadratic behavior
around the origin. Compared with the Bartlett kernel, the Parzen and QS kernels incur
smaller losses for almost all the cases. For the few exceptional cases, the Bartlett kernel
outperforms the Parzen and QS kernels by only a small margin. This result is consistent
with the faster rate of convergence of the loss function for the Parzen and QS kernels as
compared with the Bartlett kernel.

To sum up, our simulation results reveal that the new plug-in procedure works well
in terms of incurring a smaller loss than the conventional plug-in procedure. Compared
with the Bartlett kernel, the Parzen and QS kernels both seem to offer the prospect of
smaller loss.
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8 Concluding Discussion

Automatic bandwidth choice is a long standing problem in time series models when the
autocorrelation is of unknown form. Existing automatic methods are all based on min-
imizing the asymptotic mean square error of the standard error estimator, a criterion
that is not directed at statistical testing. In hypothesis testing, the focus of attention is
the type I and type II errors that arise in testing and it is these errors that give rise to
loss. Consequently, it is desirable to make the errors of incorrectly rejecting a true null
hypothesis and failing to reject a false null hypothesis as small as possible. While these
two types of errors may not be simultaneously reduced, it is possible to design bandwidth
choice to control the loss from these errors. This paper develops for the first time a theory
of optimal bandwidth choice that achieves this end by minimizing a weighted average of
the type I and type II errors.

The type I and type II errors are measured by the first dominating terms in the asymp-
totic expansions of the distribution of the test under the null and alternative hypotheses.
The rule for selecting the optimal bandwidth (M) according to the above principle has an
expansion rate of O

¡
T 1/(q+1)

¢
for typical economic time series. This rate is slower than the

rate O
¡
T 1/(2q+1)

¢
for optimizing the asymptotic mean squared error in HAC estimation.

Thus, optimal bandwidth selection for semiparametric testing is different from optimal
bandwidth selection for point estimation of the long-run variance. Semiparametric testing
along these lines actually undersmooths the long-run variance estimate to reduce bias and
allows for greater variance in long-run variance estimation as it is manifested in the test
statistic by means of higher order adjustments to the nominal asymptotic critical values
or by direct use of the nonstandard limit distribution.

The asymptotic expansions of the finite sample distribution of β̂ could be extended to
the regression model of the form: yt = β + x0tγ + ut where xt is a strongly exogenous and
stationary mean zero vector process. In this case, the OLS and GLS estimators of β satisfy
var

³√
T (β̂ − β)−

√
T (β̃ − β)

´
= O(1/T ) and

√
T (β̂−β)−

√
T (β̃−β) is independent of

√
T (β̃ − β). These properties ensure that FT,δ (z) = E

©
Gδ(z

2ςρT )
ª
+O (1/T ) , a crucial

step in establishing the asymptotic expansions. Replacing u by u∗ = (I−X(X 0X)−1X 0)u
for X = (x1, ..., xT )

0 in Assumption 2 and using the same proofs, we can establish the
asymptotic expansions in Section 4 conditioning on X.

The results in this paper suggest areas of future research. Using asymptotic expansion
formulae, we have derived the optimal bandwidth that achieves the highest coverage
accuracy. It is desirable to investigate the finite sample performance of this procedure
when a consistent nonparametric estimate of dqT is plugged into the optimal bandwidth
formula. In this paper, we have focused on the Gaussian location model. The basic
ideas and methods explored here can be used to tackle the bandwidth choice problem
for nonparametric studentized testing and confidence interval construction in a general
regression setting.

25



Table III: Empirical Loss Using Different Plug-in b’s for
AR(1) Process with AR Parameter φ (T =100, Number of replication =50000)

wT = 10 wT = 20 wT = 30 wT = 40

bopt bMSE bopt bMSE bopt bMSE bopt bMSE

Bartlett kernel
0.9 0.2707 0.3682 0.2478 0.3547 0.2393 0.3500 0.2345 0.3475
0.6 0.1941 0.2395 0.1685 0.2186 0.1606 0.2112 0.1577 0.2074
0.3 0.1621 0.1878 0.1429 0.1722 0.1373 0.1666 0.1342 0.1637
−0.3 0.0912 0.1006 0.0851 0.0960 0.0830 0.0944 0.0819 0.0935
−0.6 0.0564 0.0902 0.0531 0.0905 0.0520 0.0906 0.0514 0.0907
−0.9 0.0294 0.0914 0.0181 0.0940 0.0141 0.0949 0.0121 0.0953

Parzen kernel
0.9 0.2122 0.3621 0.1756 0.3480 0.1624 0.3430 0.1556 0.3404
0.6 0.1737 0.2265 0.1417 0.2040 0.1309 0.1960 0.1244 0.1919
0.3 0.1530 0.1786 0.1301 0.1617 0.1220 0.1556 0.1175 0.1525
−0.3 0.0956 0.1038 0.0904 0.0998 0.0886 0.0984 0.0876 0.0977
−0.6 0.0777 0.0904 0.0772 0.0911 0.0770 0.0913 0.0769 0.0914
−0.9 0.0658 0.0709 0.0670 0.0725 0.0674 0.0730 0.0676 0.0733

QS kernel
0.9 0.2067 0.3516 0.1689 0.3364 0.1545 0.3310 0.1457 0.3282
0.6 0.1724 0.2242 0.1398 0.2014 0.1280 0.1933 0.1218 0.1892
0.3 0.1521 0.1783 0.1292 0.1613 0.1209 0.1552 0.1163 0.1521
−0.3 0.1053 0.1021 0.1008 0.0979 0.0992 0.0964 0.0984 0.0956
−0.6 0.0938 0.0904 0.0944 0.0911 0.0946 0.0914 0.0947 0.0915
−0.9 0.0865 0.0858 0.0890 0.0884 0.0899 0.0893 0.0903 0.0898
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Table IV: Empirical Loss Using Different Plug-in b’s for an MA(1) Process
with MA parameter θ (T = 100, Number of replications = 50,000)

θ wT = 10 wT = 20 wT = 30 wT = 40

bopt bMSE bopt bMSE bopt bMSE bopt bMSE

Bartlett kernel
0.9 0.1722 0.1911 0.1483 0.1687 0.1422 0.1607 0.1395 0.1567
0.6 0.1654 0.1821 0.1447 0.1624 0.1387 0.1555 0.1363 0.1519
0.3 0.1526 0.1664 0.1361 0.1509 0.1317 0.1455 0.1290 0.1427
−0.3 0.0736 0.0789 0.0688 0.0747 0.0670 0.0733 0.0661 0.0725
−0.6 0.0095 0.0185 0.0090 0.0189 0.0088 0.0190 0.0087 0.0191
−0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Parzen kernel
0.9 0.1620 0.1885 0.1335 0.1657 0.1235 0.1575 0.1185 0.1534
0.6 0.1557 0.1789 0.1307 0.1587 0.1219 0.1515 0.1168 0.1478
0.3 0.1463 0.1612 0.1258 0.1449 0.1183 0.1391 0.1147 0.1361
−0.3 0.0741 0.0802 0.0693 0.0762 0.0676 0.0748 0.0668 0.0741
−0.6 0.0099 0.0136 0.0094 0.0135 0.0093 0.0135 0.0092 0.0135
−0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

QS kernel
0.9 0.1608 0.1849 0.1327 0.1616 0.1219 0.1533 0.1165 0.1491
0.6 0.1548 0.1753 0.1302 0.1546 0.1208 0.1473 0.1155 0.1435
0.3 0.1456 0.1595 0.1250 0.1430 0.1178 0.1371 0.1139 0.1341
−0.3 0.0930 0.0769 0.0903 0.0724 0.0893 0.0708 0.0888 0.0700
−0.6 0.0433 0.0119 0.0452 0.0115 0.0459 0.0114 0.0462 0.0113
−0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table V: Empirical Loss Using Different Plug-in b’s for an ARMA(1,1) Process
with AR parameter φ and MA parameter θ (T =100, Number of replications =50,000)

wT = 10 wT = 20 wT = 30 wT = 40

(φ, θ) bopt bMSE bopt bMSE bopt bMSE bopt bMSE

Bartlett kernel
(−0.6, 0.3) 0.0996 0.1126 0.0926 0.1075 0.0901 0.1056 0.0888 0.1047
(0.3,−0.6) 0.0392 0.0392 0.0356 0.0350 0.0344 0.0335 0.0337 0.0327
(0.3, 0.3) 0.1754 0.2019 0.1520 0.1814 0.1461 0.1741 0.1436 0.1704
(0.0, 0.0) 0.1261 0.1312 0.1152 0.1208 0.1119 0.1171 0.1096 0.1152
(0.6,−0.3) 0.1815 0.2362 0.1591 0.2214 0.1508 0.2161 0.1468 0.2134
(−0.3, 0.6) 0.1473 0.1551 0.1321 0.1400 0.1278 0.1346 0.1256 0.1318

Parzen kernel
(−0.6, 0.3) 0.1064 0.1168 0.1005 0.1124 0.0984 0.1109 0.0974 0.1101
(0.3,−0.6) 0.0355 0.0371 0.0310 0.0329 0.0294 0.0313 0.0286 0.0306
(0.3, 0.3) 0.1627 0.1957 0.1343 0.1742 0.1245 0.1665 0.1195 0.1626
(0.0, 0.0) 0.1244 0.1319 0.1123 0.1215 0.1083 0.1178 0.1061 0.1159
(0.6,−0.3) 0.1700 0.2208 0.1420 0.2039 0.1307 0.1979 0.1257 0.1948
(−0.3, 0.6) 0.1422 0.1522 0.1234 0.1365 0.1165 0.1309 0.1131 0.1281

QS kernel
(−0.6, 0.3) 0.1111 0.1155 0.1053 0.1110 0.1032 0.1093 0.1022 0.1085
(0.3,−0.6) 0.0596 0.0347 0.0587 0.0296 0.0583 0.0277 0.0581 0.0268
(0.3, 0.3) 0.1619 0.1920 0.1333 0.1700 0.1224 0.1622 0.1173 0.1582
(0.0, 0.0) 0.1267 0.1308 0.1145 0.1202 0.1099 0.1165 0.1080 0.1146
(0.6,−0.3) 0.1695 0.2237 0.1402 0.2072 0.1293 0.2013 0.1242 0.1983
(−0.3, 0.6) 0.1416 0.1500 0.1234 0.1341 0.1165 0.1284 0.1128 0.1255
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9 Appendix

A.1 Technical Lemmas and Supplements

Lemma 1 Let c∗1 = 4
R∞
−∞ |k(v)| dv, then under Assumption 2 the cumulants of Ξb − μb

satisfy

|κm| ≤ 2m(m− 1)! (c∗1b)m−1 for m ≥ 1 (A.1)

and the moments αm = E (Ξb − μb)
m satisfy

|αm| ≤ 22mm! (c∗1b)m−1 for m ≥ 1. (A.2)

Proof of Lemma 1. Note that¯̄̄̄
¯̄Z 1

0
...

Z 1

0

⎛⎝ mY
j=1

k∗b (τj , τj+1)

⎞⎠ dτ1 · · · dτm

¯̄̄̄
¯̄

≤
Z 1

0
...

Z 1

0
|k∗b (τ1, τ2)k∗b (τ2, τ3) · · · k∗b (τm−1, τm)| |k∗b (τm, τ1)| dτ1 · · · dτm

≤ 2
Z 1

0
...

Z 1

0
|k∗b (τ1, τ2)k∗b (τ2, τ3) · · · k∗b (τm−1, τm)| dτ1 · · · dτm

≤ 2 sup
τ2

Z 1

0
|k∗b (τ1, τ2)| dτ1

Z 1

0
|k∗b (τ2, τ3)k∗b (τ3, τ4) · · · k∗b (τm−1, τm)| dτ2 · · · dτm

≤ 2 sup
τ2

Z 1

0
|k∗b (τ1, τ2)| dτ1 sup

τ3

Z 1

0
|k∗b (τ2, τ3)| dτ2... sup

τm

Z 1

0
[k∗b (τm−1, τm)] dτm−1

= 2

µ
sup
s

Z 1

0
|k∗b (r, s)| dr

¶m−1
. (A.3)

In view of the definition

k∗b (r, s) = kb(r − s)−
Z 1

0
kb(r − p)dp−

Z 1

0
kb(s− q)dq +

Z 1

0

Z 1

0
kb(p− q)dpdq, (A.4)

we have

sup
s

Z 1

0
|k∗b (r, s)| dr ≤ 4 sup

s

Z 1

0
|kb(r − s)| dr

= 4 sup
s∈[0,1]

µZ 1−s

−s
|kb(v)| dv

¶
≤ 4

Z ∞

−∞
|kb(v)| dv

= bc∗1. (A.5)

As a result ¯̄̄̄
¯̄Z 1

0
...

Z 1

0

⎛⎝ mY
j=1

k∗b (τj , τj+1)

⎞⎠ dτ1 · · · dτm

¯̄̄̄
¯̄ ≤ 2 (c∗1b)m−1 , (A.6)
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and

|κm| ≤ 2m(m− 1)! (c∗1b)m−1 . (A.7)

Note that the moments {αj} and cumulants {κj} satisfy the following relationship:

αm =
X
π

m!

(j1!)
m1 (j2!)

m2 · · · (jc!)mc

1

m1!m2! · · ·mc!

Y
j∈π

κj , (A.8)

where the sum is taken over the elements

π = [j1, · · · j1| {z }
m1 times

, j2, · · · j2| {z }
m2 times

, · · · jc, · · · jc| {z }
mc times

] (A.9)

for some integer c, sequence {ji}ci=1 such that j1 > j2 > · · · > jc and m =
Pc

i=1miji.
Combining the preceding formula with (A.7) gives

|αm| < 2mm! (c∗1b)m−1
X
π

(j1)
−m1 (j2)

−m2 · · · (jc)−mc

m1!m2! · · ·mc!

≤ 22mm! (c∗1b)m−1 , (A.10)

where the last line follows becauseX
π

(j1)
−m1 (j2)

−m2 · · · (jc)−mc

m1!m2! · · ·mc!
≤
X
π

1

m1!m2! · · ·mc!
< 2m. (A.11)

Lemma 2 Let Assumptions 2 and 3 hold. When T →∞ for a fixed b, we have:
(a)

μbT = μb +O

µ
1

T

¶
; (A.12)

(b)

κm,T = κm +O

½
m!2m

T 2
(c∗1b)

m−2
¾
, (A.13)

uniformly over m ≥ 1; .
(c)

αm,T = E (ςbT − μbT )
m = αm +O

½
m!22m

T 2
(c∗1b)

m−2
¾
, (A.14)

uniformly over m ≥ 1.
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Proof of Lemma 2. We first calculate μbT =
¡
Tω2T

¢−1Trace(ΩTATWbAT ) . Let W ∗
b =

ATWbAT , then the (i, j)-th element of W ∗
b is

k̃b

µ
i

T
,
j

T

¶
= kb

µ
i− j

T

¶
− 1

T

TX
p=1

kb

µ
i− p

T

¶

− 1

T

TX
q=1

kb

µ
q − j

T

¶
+
1

T 2

TX
p=1

TX
q=1

kb

µ
p− q

T

¶
. (A.15)

So

Trace (ΩTATWbAT ) = Trace (ΩTW ∗
b )

=
X

1≤r1,r2≤T

n
γ(r1 − r2)k̃b

³r1
T
,
r2
T

´o
=

TX
r2=1

T−r2X
h1=1−r2

γ(h1)k̃b

µ
r2 + h1

T
,
r2
T

¶

=

⎛⎝T−1X
h1=1

T−h1X
r2=1

+
0X

h1=1−T

TX
r2=1−h1

⎞⎠ γ(h1)k̃b

µ
r2 + h1

T
,
r2
T

¶
. (A.16)

But

T−h1X
r2=1

k̃b

µ
r2 + h1

T
,
r2
T

¶
=

T−h1X
r2=1

kb

µ
h1
T

¶
− 1

T

TX
r1=1+h1

TX
p=1

kb

µ
r1 − p

T

¶

− 1

T

T−h1X
r2=1

TX
q=1

kb

µ
q − r2
T

¶
+

T−h1X
r2=1

1

T 2

TX
p=1

TX
q=1

kb

µ
p− q

T

¶

= − 1
T

TX
r1=1

TX
p=1

kb

µ
r1 − p

T

¶
− 1

T

TX
r2=1

TX
q=1

kb

µ
q − r2
T

¶

+
TX

r2=1

1

T 2

TX
p=1

TX
q=1

kb

µ
p− q

T

¶
+ Tkb

µ
h1
T

¶
+ C(h1)

= − 1
T

TX
r=1

TX
s=1

kb

µ
r − s

T

¶
+ Tkb

µ
h1
T

¶
+ C(h1)

=
TX

r2=1

k̃b

³r2
T
,
r2
T

´
+ T

½
kb

µ
h1
T

¶
− kb (0)

¾
+ C(h1), (A.17)

where C(h1) is a function of h1 satisfying |C(h1)| ≤ h1. Similarly,

TX
r2=1−h1

k̃b

µ
r2 + h1

T
,
r2
T

¶
=

TX
r2=1

k̃b

³r2
T
,
r2
T

´
+ T

½
kb

µ
h1
T

¶
− kb (0)

¾
+ C(h1). (A.18)
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Therefore, Trace(ΩTATWbAT ) is equal to

T−1X
h=−T+1

γ(h)
TX

r2=1

k̃b

³r2
T
,
r2
T

´
+ T

T−1X
h=−T+1

γ(h)

½
kb

µ
h

T

¶
− kb (0)

¾
+O (1)

=
T−1X

h=−T+1
γ(h)

TX
r2=1

k̃b

³r2
T
,
r2
T

´
+ T (bT )−q

T−1X
h=−T+1

|h|q γ(h)
½
k (h/(bT ))− k (0)

|h/(bT )|q
¾
+O (1)

=
T−1X

h=−T+1
γ(h)

TX
r2=1

k̃b

³r2
T
,
r2
T

´
+ T (bT )−qgq

∞X
h=−∞

|h|q γ(h)(1 + o(1)) +O(1). (A.19)

Using

T−1X
h=−T+1

γ(h) = ω2T (1 +O(
1

T
)), (A.20)

and

1

T

TX
r2=1

k̃b

³r2
T
,
r2
T

´
=

Z 1

0
k∗b (r, r)dr +O(

1

T
), (A.21)

we now have

μbT =

Z 1

0
k∗b (r, r)dr − (bT )−qgq

Ã
ω−2T

∞X
h=−∞

|h|q γ(h)
!
(1 + o(1)) +O

µ
1

T

¶
. (A.22)

By definition, μb = EΞb =
R 1
0 k

∗
b (r, r)dr and thus μbT = μb +O

¡
T−1

¢
as desired.

We next approximate Trace [(ΩTATWbAT )
m] for m > 1. The approach is similar to

the case m = 1 but notationally more complicated. Let r2m+1 = r1, r2m+2 = r2, and
hm+1 = h1. Then

Trace [(ΩTATWbAT )
m]

=
TX

r1,r2,...,r2m+1=1

mY
j=1

γ(r2j−1 − r2j)k̃b

³r2j
T

,
r2j+1
T

´

=
TX

r2,r4,...,r2m=1

T−r2X
h1=1−r2

T−r4X
h2=1−r4

..

T−r2mX
hm=1−r2m

mY
j=1

γ(hj)k̃b

µ
r2j
T

,
r2j+2 + hj+1

T

¶

=

⎛⎝T−1X
h1=1

T−h1X
r2=1

+
0X

h1=1−T

TX
r2=1−h1

⎞⎠ · · ·
⎛⎝ T−1X

hm=1

T−hmX
r2m=1

+
0X

hm=1−T

TX
r2m=1−hm

⎞⎠
mY
j=1

γ(hj)k̃b

µ
r2j
T

,
r2j+2 + hj+1

T

¶
= I + II, (A.23)
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where

I =

⎛⎝T−1X
h1=1

T−h1X
r2=1

+
0X

h1=1−T

TX
r2=1−h1

⎞⎠ · · ·
⎛⎝ T−1X

hm=1

T−hmX
r2m=1

+
0X

hm=1−T

TX
r2m=1−hm

⎞⎠
mY
j=1

γ(hj)k̃b

³r2j
T

,
r2j+2
T

´
, (A.24)

and

II = O

⎧⎨⎩
⎛⎝T−1X

h1=1

T−h1X
r2=1

+
0X

h1=1−T

TX
r2=1−h1

⎞⎠ · · ·
⎛⎝ T−1X

hm=1

T−hmX
r2m=1

+
0X

hm=1−T

TX
r2m=1−hm

⎞⎠
mY
j=1

|γ(hj)|
µ
|hj+1|
bT

¶⎫⎬⎭ . (A.25)

Here we have used¯̄̄̄
k̃b

µ
r2j
T

,
r2j+2 + hj+1

T

¶
− k̃b

³r2j
T

,
r2j+2
T

´¯̄̄̄
= O

µ
|hj+1|
bT

¶
. (A.26)

To show this, note that

1

T

TX
p=1

kb

µ
p− r2j+2 − hj+1

T

¶
=
1

T

T−hj+1X
p=1−hj+1

kb

µ
p− r2j+2

T

¶

=
1

T

TX
p=1

kb

µ
p− r2j+2

T

¶
+O

µ
|hj+1|
T

¶
, (A.27)

and ¯̄̄̄
kb

µ
r2j − r2j+2 − hj+1

T

¶
− kb

µ
r2j − r2j+2

T

¶¯̄̄̄
= O

µ
|hj+1|
bT

¶
, (A.28)

so that

k̃b

µ
r2j
T

,
r2j+2 + hj+1

T

¶
= k̃b

³r2j
T

,
r2j+2
T

´
+ kb

µ
r2j − r2j+2 − hj+1

T

¶
− kb

µ
r2j − r2j+2

T

¶
+O(

|hj+1|
T

)

= k̃b

³r2j
T

,
r2j+2
T

´
+O

µ
|hj+1|
bT

¶
. (A.29)
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The first term (I) can be written as

I =

⎛⎝ T−1X
h1=1−T

TX
r2=1

−
T−1X
h1=1

TX
r2=T−h1+1

−
0X

h1=1−T

−h1X
r2=1

⎞⎠ · · ·
⎛⎝ T−1X

hm=1−T

TX
r2m=1

−
T−1X
hm=1

TX
r2m=T−hm+1

−
0X

hm=1−T

−hmX
r2m=1

⎞⎠ mY
j=1

γ(hj)
n
k̃b

³r2j
T

,
r2j+2
T

´o
=
X
π

X
h1,r2

· · ·
X

hm,r2m

mY
j=1

γ(hj)
n
k̃b

³r2j
T

,
r2j+2
T

´o
, (A.30)

where
P

hj ,r2j
is one of the three choices

PT−1
hj=1−T

PT
r2j=1

, −
PT−1

hj=1

PT
r2j=T−hj+1,

−
P0

hj=1−T
P−hj

r2j=1
and

P
π is the summation over all possible combinations of

³P
h1,r2

· · ·
P

hm,r2m

´
.

The 3m summands in (A.30) can be divided into two groups with the first group consisting
of the summands all of whose r indices run from 1 to T and the second group consisting
of the rest. It is obvious that the first group can be written as⎛⎝X

h

mY
j=1

γ(hj)

⎞⎠X
r

n
k̃b

³r2j
T

,
r2j+2
T

´o
.

The dominating terms (in terms of the order of magnitude) in the second group are of
the forms

T−1X
h1=1−T

TX
r2=1

· · ·
T−1X

hp=1−T

TX
r2p=T−hp+1

· · ·
T−1X

hm=1−T

TX
r2m=1

mY
j=1

γ(hj)
n
k̃b

³r2j
T

,
r2j+2
T

´o
,

or

T−1X
h1=1−T

TX
r2=1

· · ·
T−1X

hp=1−T

−hpX
r2p=1

· · ·
T−1X

hm=1−T

TX
r2m=1

mY
j=1

γ(hj)
n
k̃b

³r2j
T

,
r2j+2
T

´o
.

These are the summands with only one r index not running from 1 to T. Both of the
above terms are bounded by

T−1X
h1=1−T

TX
r2=1

· · ·
T−1X

hp=1−T
· · ·

T−1X
hm=1−T

TX
r2m=1

mY
j=1

|γ(hj)| |hp|
Y
j 6=p

¯̄̄
k̃b

³r2j
T

,
r2j+2
T

´¯̄̄

≤
"
sup
r4

TX
r2=1

k̃b

³r2
T
,
r4
T

´#m−2⎛⎝X
hj

|γ(hj)|

⎞⎠m−1⎛⎝X
hp

|γ(hp)| |hp|

⎞⎠ ,

using the same approach as in (A.3). Approximating the sum by an integral and noting
that the second group contains (m − 1) terms, all of which are of the same order of
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magnitude as the above typical dominating terms, we conclude that the second group is
of order O

h
2mTm−2 (c∗1b)

m−2
i
uniformly over m. As a consequence,

I =

⎛⎝X
h

mY
j=1

γ(hj)

⎞⎠X
r

n
k̃b

³r2j
T

,
r2j+2
T

´o
+O

n
2mTm−2 (c∗1b)

m−2
o

(A.31)

uniformly over m.

The second term (II) is easily shown to be of order o
³
2mTm−2 (c∗1b)

m−2
´
uniformly

over m. Therefore

Trace [(ΩTATWbAT )
m]

=

ÃX
h

γ(h)

!mX
r

n
k̃b

³r2j
T

,
r2j+2
T

´o
+O

n
2mTm−2 (c∗1b)

m−2
o

(A.32)

and

κm,T = 2
m−1(m− 1)!T−m

¡
ω2T
¢−m

Trace [(ΩTATWbAT )
m]

= 2m−1(m− 1)!
(
T−m

X
r

k̃b

³r2j
T

,
r2j+2
T

´
+O

∙
2m

T 2
(c∗1b)

m−2
¸)

= 2m−1(m− 1)!

⎧⎨⎩
Z mY

j=1

Z 1

0
k∗b (τj , τj+1)dτjdτj+1 +O

∙
2m

T 2
(c∗1b)

m−2
¸⎫⎬⎭

= κm +O

½
m!2m

T 2
(c∗1b)

m−2
¾
, (A.33)

uniformly over m.
Finally, we consider αm,T . Note that α1,T = E(ςbT − μbT ) = 0 and

αm,T =
X
π

m!

(j1!)
m1 (j2!)

m2 · · · (jk!)mk

1

m1!m2! · · ·mk!

Y
j∈π

κj,T (A.34)

where the summation
P

π is defined in (A.8). Combining the preceding formula with part
(b) gives

αm,T = αm +O

(
2m

T 2
(c∗1b)

m−2X
π

m!

m1!m2! · · ·mk!

)

= αm +O

½
m!22m

T 2
(c∗1b)

m−2
¾
, (A.35)

uniformly over m, where the last line follows because
P

π
1

m1!m2!···mk!
< 2m.
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Lemma 3 Let Assumptions 2 and 3 hold. If b→ 0 and T →∞ such that bT →∞, then:
(a)

μbT =

Z 1

0
k∗b (r, r)dr − (bT )−qgq

Ã
ω−2T

∞X
h=−∞

|h|q γ(h)
!
(1 + o(1)) +O

µ
1

T

¶
; (A.36)

(b)

κ2,T = 2

Z 1

0

Z 1

0
(k∗b (r, s))

2 drds(1 + o(1)) +O

µ
1

T

¶
; (A.37)

(c) for m = 3 and 4,

κm,T = O
¡
bm−1

¢
+O

µ
1

T

¶
. (A.38)

Proof of Lemma 3. We have proved (A.36) in the proof of Lemma 2 as equation (A.22)
holds for both fixed b and decreasing b. It remains to consider κm,T for m = 2, 3, and 4.

We first consider κ2,T = 2T−2
¡
ω−4T

¢
Trace

h
(ΩTATWbAT )

2
i
. As a first step, we have

Trace
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2
i

=
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:= I1 + I2 + I3 + I4, (A.39)

where
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,
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T
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I2 =
T−1X
h1=1

T−h1X
r2=1

0X
h2=1−T
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,
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T
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and

I4 =
0X
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TX
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0X
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k̃b

µ
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T
,
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T

¶
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We now consider each term in turn. Using equation (A.29), we have
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It follows from (A.40) and (A.41) that
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Following the same procedure, we can show that
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and

I4 =
0X

h1=1−T

TX
r2=1

0X
h2=1−T

TX
r4=1

n
k̃b

³r2
T
,
r4
T

´
k̃b

³r4
T
,
r2
T

´o
γ(h1)γ(h2) +O (T ) . (A.45)

37



As a consequence,
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and
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= 2
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µ
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The proof for κm,T for m = 3 and 4 is essentially the same except that we use Lemma 1
to obtain the first term O(bm−1). The details are omitted.

A.2 Proofs of the Main Results

Proof of Theorem 1. It follows from Lemma 1 that

|α4| = O(b3), |α3| ≤ |α4|3/4 = O(b9/4) = o(b2). (A.48)

As a consequence,
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uniformly over z ∈ z ∈ R+ where
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and
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We first develop an asymptotic expansion of μb and α2 as b→ 0. Let
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then
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For the integral that appears in both μb and α2, we haveZ 1
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where the last equality hold becauseZ ∞
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as b→ 0, where we have used the Riemann-Lebesgue lemma. In view of the symmetry of
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Similarly, Z 1
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Combining (A.57), (A.58), and (A.60) yields

μb = 1− bc1 − b2c3 + o(b2), (A.61)

and

α2 = 2bc2 + b2(c4 − 2c21) + o(b2). (A.62)
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Now
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Proof of Corollary 2. Using a power series expansion, we have
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i.e.
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Let

z2α,b = z2α + k1b+ k2b
2 + o(b2), (A.66)
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and thus

D00(z2)

D0(z2)
=

1

4z3
¡
−2z − 2z3

¢
,
D000(z2)

D0(z2)
=

1

4z4
¡
2z2 + z4 + 3

¢
. (A.72)
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Proof of Corollary 3. For notational convenience, let
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Note that
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and
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completing the proof of the corollary.

Proof of Theorem 4. It follows from Lemma 3 that when b→ 0,
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uniformly over z ∈ R+, using (A.84) and (A.85). But
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uniformly over z ∈ R+, and
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uniformly over z ∈ R+. So
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uniformly over z ∈ R+, as desired.

Proof of Corollary 5. Part (a) Using Theorem 4, we have, as b+ 1/T + 1/(bT )→ 0
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Part (b) Plugging z2α,b into (45) yields
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where the last equality follows as in the proof of Corollary 3.

Proof of Theorem 6. First, since D(·) is a bounded function, we can rewrite (18) as
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where the last line follows because the infinite sum
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uniformly to D(z2Ξb) when |Ξb − μb| ≤ B. Uniformity holds because D(·) is infinitely
differentiable with bounded derivatives.

Since D(z2) decays exponentially as z2 → ∞, there exists a constant C such that¯̄̄
D

(m)
(μbz

2)z2m
¯̄̄
< C for all m. Using this and Lemma 1, we have¯̄̄̄
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provided that b < 1/(4c∗1). As a consequence, the operation limB→∞ can be moved inside
the summation sign in (A.93), giving
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when b < 1/(4c∗1).
Second, it follows from (43) that
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where the right hand side converges to E
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uniformly over z ∈ R+.
It follows from (A.95) and (A.98) that
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uniformly over z ∈ R+ as desired.

47



References

[1] Andrews, D. W. K. (1991): “Heteroskedasticity and Autocorrelation Consistent Co-
variance Matrix Estimation,” Econometrica, 59, 817—854.

[2] Andrews, D. W. K. and J. C. Monahan (1992): “An Improved Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix Estimator,” Econometrica, 60,
953—966.

[3] de Jong, R. M. and J. Davidson (2000): “Consistency of Kernel Estimators of Het-
eroskedastic and Autocorrelated Covariance Matrices,” Econometrica, 68, 407—424.

[4] Gourieroux, C. and A. Monfort (1995): Statistics and Econometric Models, Vol 2,
Cambridge University Press.

[5] Grenander, U. and M. Rosenblatt (1957): Statistical Analysis of Stationary Time
Series. New York: Wiley.

[6] Hansen, B. E. (1992): “Consistent Covariance Matrix Estimation for Dependent
Heterogenous Processes,” Econometrica, 60, 967—972.

[7] Hannan, E. J. (1970): Multiple Time Series, New York, Wiley.

[8] Jansson, M. (2002): “Consistent Covariance Matrix Estimation for Linear Processes,”
Econometric Theory, 18, 1449—1459.

[9] Jansson, M. (2004): “On the Error of Rejection Probability in Simple Autocorrelation
Robust Tests,” Econometrica, 72, 937—946.

[10] Kiefer, N. M., T. J. Vogelsang and H. Bunzel (2000): “Simple Robust Testing of
Regression Hypotheses,” Econometrica, 68, 695—714.

[11] Kiefer, N. M. and T. J. Vogelsang (2002a): “Heteroskedasticity-autocorrelation Ro-
bust Testing Using Bandwidth Equal to Sample Size,” Econometric Theory, 18, 1350—
1366.

[12] ––– (2002b): “Heteroskedasticity-autocorrelation Robust Standard Errors Using
the Bartlett Kernel without Truncation,” Econometrica, 70, 2093—2095.

[13] ––– (2005): “A New Asymptotic Theory for Heteroskedasticity-Autocorrelation
Robust Tests,” Econometric Theory 21, 1130-1164.

[14] Newey, W. K. and K. D. West (1987): “A Simple, Positive semidefinite, Heteroskedas-
ticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703—
708.

[15] ––– (1994): “Automatic Lag Selection in Covariance Estimation,” Review of Eco-
nomic Studies, 61, 631—654.

[16] Parzen, E. (1957): “On the Consistent Estimates of the Spectrum of a Stationary
Time Series,” Annals of Mathematical Statistics, 28, 329—348.

48



[17] Phillips, P. C. B. (1980): “Finite Sample Theory and the Distributions of Alternative
Estimators of the Marginal Propensity to Consume,” Review of Economic Studies,
47, 183—224.

[18] Phillips, P. C. B., Y. Sun and S. Jin, (2005a): “long-run Variance Estimation and
Robust Regression Testing Using Sharp Origin Kernels with No Truncation,” forth-
coming, Journal of Statistical Planning and Inference.

[19] –––, (2005b): “Spectral Density Estimation and Robust Hypothesis Testing us-
ing Steep Origin Kernels without Truncation,” forthcoming, International Economic
Review.

[20] –––, (2005c): “Improved HAR Inference Using Power Kernels without Trunca-
tion,” Yale University, mimeographed.

[21] –––, (2005d), “Balancing Size and Power in Non Parametric Studentized Test-
ing with Quadratic Power Kernels without Truncation,” Department of Economics,
UCSD.

[22] Politis, D. N. and J. P. Romano (1995): “Bias Corrected Nonparametric Spectral
Density Estimator,” Journal of Time Series Analysis, 16, 67—103.

[23] Politis, D. N. and J. P. Romano (1998): “Multivariate Density Estimation with
General Flat-top Kernels of Infinite Order,” Journal of Multivariate Analysis, 68,
1—25.

[24] Taniguchi, M and M. L. Puri (1996): “Valid Edgeworth Expansions of M-estimators
in Regression Models with Weakly Dependent Residuals,” Econometric Theory, 12,
331—346.

[25] Velasco, C. and P. M. Robinson (2001): “Edgeworth Expansions for Spectral Density
Estimates and Studentized Sample Mean,” Econometric Theory, 17, 497—539.

[26] Vogelsang, T. J. (2003): “Testing in GMM Models Without Truncation,” Chapter
10 of Advances in Econometrics Volume 17, Maximum Likelihood Estimation of
Misspecified Models: Twenty Years Later, ed. by T. B. Fomby and R. C. Hill, Elsevier
Science, 199—233.

49


