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Abstract

One set of n objects of type I, another set of n objects of type II,
and an amount M of money is to be completely allocated among
n agents in such a way that each agent gets one object of each
type with some amount of money. We propose a new solution
concept to this problem called a perfectly fair allocation. It is a
refinement of the concept of fair allocation. An appealing and
interesting property of this concept is that every perfectly fair
allocation is Pareto optimal. It is also shown that a perfectly fair
allocation is envy free and gives each agent what he likes best,
and that a fair allocation need not be perfectly fair. Furthermore,
we give a necessary and sufficient condition for the existence of
a perfectly fair allocation. Precisely, we show that there exists
a perfectly fair allocation if and only if the valuation matrix is
an optimality preserved matrix. Optimality preserved matrices
are a class of new and interesting matrices. An extension of the
model is also discussed.
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1 Introduction

The subject of this paper is the distribution of a collection of objects (such
as houses and cars) and an amount of money among a group of people. It is
concerned with fairness, equity, justice, and efficiency of such distributions.
These problems arise naturally in many situations, and are both difficult and
controversial. Recall that given an allocation, we say agent ¢ envies agent
j if agent ¢ prefers the bundle of agent j to his or her own. An allocation
is envy free or fair if no agent envies any other. As it has been noted,
the concept of fairness may not exactly correspond to the everyday notion
of fairness. In fact, how we define equity, fairness, and justice has been,
and remains a most provocative question in the course of mankind’s endless
quest for equity, fairness, and justice. The goal of this paper is to propose a
new solution concept to a class of fair allocation problems and to investigate
what conditions can ensure the existence of such a solution which is both
fair and Pareto optimal.

The study of fair division problem can date back at least to Steinhaus
(1948). But most of the literature has evovled from Foley (1967) in which
the concept of envy free allocation is precisely formulated. A major defect
of this concept is that an envy free allocation may not be efficient (i.e.,
Pareto optimal). Various criteria on equity and justice are discussed in
Rawls (1971). Furthermore, in Varian (1974) a general formulation of fair
division of divisible goods is given. He proved the existence of an envy free
and efficient allocation by imposing certain conditions on the model.

The fair allocation problem of indivisible objects is investigated by Svens-
son (1983), and further studied by Maskin (1987), Alkan, Demange and Gale
(1991), Su (1999), and Yang (1998). In these papers it is shown that in an
economy if each agent consumes only one indivisible object and there is a
divisible good (say money), then the set of envy free and efficient allocations
is not empty under certain mild conditions. In these models a fundamental
assumption in common is that each agent has no use for more than one
indivisible object. As noted by Svensson (1983) this assumption leads to
a nice conclusion that an envy free allocation must also be efficient. Un-
fortunately, this property does not automatically carry into more general
situations where agents are allowed to consume more than one indivisible
object. Sun and Yang (2000) have recently developed a more general model
in which there are no restrictions on the agents’ consumption of indivisible
objects. A sufficient condition is introduced for the existence of an envy
free and efficient allocation. On the other hand, an algorithmic procedure is
proposed by Klijn (2000) to find an envy free allocation in a setting where



agents have quasi-linear utilities in money and there are the same number
of agents as objects. Furthermore, Alkan et al. (1991) and Tadenuma and
Thomson (1991) have given two different sets of criteria for selecting desir-
able envy free allocations when there exist multiple envy free allocations.

In this paper we consider the following problem: One set of n objects of
type I, another set of n objects of type II, and an amount M of money, are
to be completely allocated among n agents in such a way that each agent
gets one object of each type with some amount of money. We propose a
new solution concept to this problem called a perfectly fair allocation. It is
a refinement of the concept of fair allocation. An appealing and interesting
property of this concept is that every perfectly fair allocation is Pareto
optimal. It is also shown that a perfectly fair allocation is envy free and
gives each agent what he likes best, and that a fair allocation need not be
perfectly fair. Furthermore, we give a necessary and sufficient condition for
the existence of a perfectly fair allocation. To be more precise, we show that
there exists a perfectly fair allocation if and only if the valuation matrix is an
optimality preserved matrix. We stress that optimality preserved matrices
are a class of new and interesting matrices and might be worth being studied
in their own right. An extension of the model is also discussed.

The rest of the paper is organized as follows. In Section 2 basic con-
cepts are introduced, and the formal model is defined. In Section 3 several
existence theorems are established. Finally in Section 4 an extension of the
basic model is discussed and existence results are derived.

2 The Model of Perfectly Fair Allocation

We first introduce some notation. Let I}, be the set of first k£ positive integers
and R the k-dimensional Euclidean space.

Our model consists of a finite number (n) of agents, denoted by I,,,
the same number of indivisible objects of type I, denoted by O;, the same
number of indivisible objects of type II, denoted by Os, and a fixed amount
of money, denoted by M. One might think of O; and O3 as the collections
of houses and cars, respectively. Here M can be any real number. If M is
negative, this will be the case in cost sharing problems. Here money will be
treated as a perfectly divisible good. It is assumed that each agent demands
or consumes exactly one of the indivisible objects of each type and a certain
amount of money. The preference relation of each agent ¢ € I, can be
represented by a utility function w; : O1 X O3 X R +— R. Throughtout the
paper it will be assumed that u;(h,c, m) is a nondecreasing and continuous



function in money (i.e., in m).

A feasible allocation is a 3-tuple of vectors (m,p,z = (x,y)) where
m = (n(1),---,m(n)) and p = (p(1),---,p(n)) are the permutations of the
elements in O; and Oy, respectively, and where > i ;(x; + y;) = M. Thus,
at a feasible allocation, all objects and money will be completely distributed
to the agents in a way that every agent gets exactly one indivisible object
of each type and a certain amount of money. More precisely, each agent ¢
receives a bundle of goods ((i), p(4), Tr(;) + Y,(;)) consisting of object (i)
of type I and object p(i) of type I and the amount @, ;) +¥,¢; of money. If
Tr(iy +Ypai) < 0, then agent i pays others the amount |2(;) +¥,(;)| of money.

Let T = {z = (z,y) € R*" | Sii(xj +y;) = M }be the (2n — 1)-
dimensional hyperplane and let © = {7 | # = (7(1),---,7(n)) a permu-
tation of I,,}. Thus a feasible allocation (m,p,z) is merely an element of
Ox0OxT.

We can now introduce the major solution concept of the paper.

Definition 2.1 A feasible allocation (w,p, z) is a perfectly fair allocation if
1t holds

wi(7(3), p(1), Triy + Yp(iy) = wi(m(), p(K), Ty + Ypiy)s Vi Js b € I

Recall that a feasiable allocation is fair or envy free if no agent prefers
any other agent’s bundle to his own. Clearly a perfectly fair allocation must
be a fair allocation but the reverse is not true in general. Furthermore, a
perfectly fair allocation gives each agent what he likes best. The concept
of perfectly fair allocation can be also explained as follows. An auctioneer
chooses a compensation scheme vector z = (z,y) € T for the pairs of objects
in O1 x O3 in such a way that every agent can pick up a pair of house and car
with their compensation which he likes best without conflicting his interest
with any other’s. The following concept is a familiar one.

Definition 2.2 A feasible allocation is efficient or Pareto optimal if there
s no other feasible allocation which makes everyone at least as well as before
and at least one agent strictly better off.

The problem of the concept of fair allocation lies in the fact that it is not
necessarily efficient. The following example indicates that a fair allocation
indeed need not be efficient.

Example 1. Consider the case in which there are two agents 1, 2 and there
are two houses hl, h2, and two cars cl, ¢2, and total money (say, dollar)



M is equal to zero. Both agents have quasi-linear utilities in money (i.e.,
ui(h,c,m) = a(i,h,c) +m, i = 1, 2) and the values of the agents for the
different pairs of house and car are given in Table 1.

In this example when agent 1 gets house hl and car ¢2 with $1 and agent
2 gets house h2 and car ¢l by paying $1, this allocation is fair but not Pareto
optimal, because another allocation in which agent 1 gets house h2 and car
c2 by paying $0.5 and agent 2 gets house hl and car ¢l with $0.5 makes
both agents strictly better off.

Table 1: The values of objects for both agents

a(l,h,c) | C1 | C2 | a(2,h,c) | cl | 2
hl 2 3 hl 3| 2
h2 4 5 h2 4 | 4

One of the most appealing and interesting properties of perfectly fair
allocation is that it is also efficient as shown below.

Theorem 2.3 Ewvery perfectly fair allocation is Pareto optimal.

Proof: Let (m,p, z) be a perfectly fair allocation. Then it follows that

wi(7(2), p(4), T () TYp(i)) = wi(T(F)s p(K), Tr (i) tY0ii)), Vi, 5, K € Iny(2.1)

Now suppose to the contrary that (m, p, z) is not efficient. Then there would
exist a feasible allocation (7, p, zZ) weakly preferred by all agents and strictly
preferred by at least one agent. That is, it holds

wi(7(2), p(2), Tr i) + Up()) = wiT(1), p(), Tris) + Yp(i)), Vi € Ins (2.2)
and there is some j € I, satisfying

wi(7(4), P(5): Tx(5) + Ta() > wi(7(4), P(4)s Tr(j) + Yo(s))- (2.3)
Inequalities (2.1), (2.2) and (2.3) imply that for all i € I,,,

wi(7(2), p(4), Tr(iy + Ypiy) = wilT(2), p(8), Trgy + Yp(i))
and



Since w;(j, k,-), 1,7,k € I, are nondecreasing in money, we have that for all
1 € I,

Zr) T Yp(i) = Tr) T Yp(a)
and

Tz() T UpG)) > TxG) T Yp0)-
This implies that

n n
M:Z(jj_FyJ >ij+yj M,
j=1 7j=1

yielding a contradiction. Therefore, (7, p, z) must be efficient as well. O

In Example 1 there is a perfectly fair allocation, namely, agent 1 gets
house ¢2 and car ¢2 by paying $1 and agent 2 gets house hl and car ¢l with
$1. However, perfectly fair allocations may not always exist as shown in the
following example.

Example 2. Consider the case in which there are two agents 1, 2 and
there are two houses hl, h2, and two cars cl, ¢2, and total money (say,
dollar) M is equal to zero. The values of the agents for the different pairs
of house and car are given in Table 2, and utility functions are given by
u;(h,c,m) = a(i,h,c) +m,i=1,2.

In this example there is only one fair and efficient allocation, namely,
agent 1 gets house hl and car ¢l and x$ with 2 <z < 2.5, and agent 2 gets
house h2 and car ¢2 by paying x$. Suppose that this allocation is perfectly
fair. Then for agent 2, the following system of inequalities must have a
solution.

S+mxe+y: = T1+)
dS+xo+y2 > 45+x1+Y2
S+mxo+ys > 45+x0+U1
vty = —(v2+y2)
rn+y =
2 <x<25

It follows from the second and third inequalities that x < 0.5, yielding a
contradiction to the sixth inequality. Thus there does not exist any perfectly
fair allocation in this example.



Table 2: The values of objects for both agents

a(l,h,e) | el | 2 | a(2,h,c) | cl | 2
hl 5 | 4.5 hl 0 |45
h2 451 9 h2 45| 5

In the next section we will establish several existence theorems for per-
fectly fair allocations in the case that agents have quasi-linear utilities in
money. Relaxing the assumption of quasi-linearity in money still poses a
difficult challenge to us.

3 Existence Theorems

Given an n X n X n trimatrix A = (a(, h,¢)), an assignment (7, p) € O x O
is an optimal assignment if 3 ,c; (i, 7 (i), p(i)) > Yiep, ali, ( ),7(2)) fo
every (7,7) € O x O. Similarly, given an n x n matrix B = (8(4, ))
we call an assignment 7 € © an optimal assignment if 3 ,c; B(i,7(i)) >
>ier, B(i,7(i)) for every T € ©.

When we restrict to the case where every agent has quasi-linear utilities
in money, then the model described in Section 2 can be simply represented
as € = ((a(i, h,c)),n, M) where (a(i,h,c)) is an n X n x n trimatrix, n is
the number of agents, and M is the total amount of money. Recall that
a(i, h,c) is the value of a pair of house h and car ¢ to agent 7. We call
(a(i, h,c)) the valuation matriz. Furthermore, for a specific model where
objects are only houses or cars, we will simply represent such a model by
&€ =((B(i,0)),n, M), where (8(i,0)) is an n x n matrix, n is the number of
agents, and M is the total amount of money. [3(i,0) is the value of object o
to agent <.

Recall the following duality theorem from linear programming, which
has been used by Shapley and Shubik (1972), and Alkan et al. (1991) for
related models.

Lemma 3.1 Let B = (((i,0)) be an n x n matriz. If 1 € © is an optimal
assignment, there exist two n-vectors v and w such that

v +w, > B(i,0), Vi € I,0 € Oq
and

Vi + Wr(5) = B(i,7(3)), Vi € L,.



Lemma 3.2 Given a model € = ((B(i,0)),n, M), then there exists at least
one optimal assignment with respect to the matriz (5(i,0)). For each optimal
assignment m, there exists a distribution n-vector x of money M such that
(m,x) is an efficient and fair allocation.

Proof: The first statement is obvious, since there are only a finite number
of assignments. The second statement can be seen as follows. Since 7 is an
optimal assignment, it follows from Lemma 3.1 that there exists v and w
such that

v +w, > B(i,0), Vi € I,,,0 € Oy
and
Vi + Wa(y = B4, (i), Vi € In.
From the above inequalities we obtain
B(i,7(i)) — wr(s) = B(i,0) — wo, Vi € In,0 € O1.

Let y; = —w;, 6 = (M — > ;¢ ¥i)/n, and x; = y; + 6 for each i € I,. Define
x = (x1,---,xy). Then we have

B(i,7(i)) + Tr(y = B(3,0) + o, Vi € In,0 € O1

and
i€ln
Thus, (7, x) is an efficient and fair allocation. O

Using the same argument of the above lemma or Theorem 4.1 of Sun

and Yang (2000), we have

Theorem 3.3 Given a model £ = ((a(i, h,c)),n, M), then there exists at
least one optimal assignment with respect to the matriz (a(i,h,c)). For
each optimal assignment (7, p), there exists a distribution 2n-vector (x,y)
of money M such that (7, p, (x,y)) is an efficient and fair allocation.

As Example 2 indicates that perfectly fair allocations may not always
exist, this motivates a natural question: Under what circumstance does a
perfectly fair allocation exist? The remaining section is to present a neces-
sary and sufficient condition for the existence of a perfectly fair allocation.



Condition 3.4 The trimatriz (a(i,h,c)) has the following property: For
every i € I, it holds

a(i,hl,cl) 4+ a(i, h2,c2) = a(i, hl,c2) + a(i, h2,cl),
Vhl,h2 € O1,cl,c2 € Os.

Condition 3.5 The trimatriz (a(i,h,c)) has the following property: For
every i € I, there exist two n vectors H(i) = (Hy(7), -+, Hy(i)) and C(i) =
(C1(3),---,Cy(i)) such that it holds

a(i,h,c) = Hp(i) + Cc(i), Yh € O1,c € Os.
Lemma 3.6 Conditions 3.4 and 3.5 are equivalent.

Proof: Condition 3.5 clearly implies Condition 3.4. Now we prove that
Condition 3.4 implies Condition 3.5. From Condition 3.4, we see that

a(i,1,1) + ai, h,c) = a(i, 1, ¢) + a(i, h, 1) for allh € O7 and ¢ € Os.
Thus we obtain that

a(i,h,c) —ai,h,1) = a(i,1,¢) — a(i,1,1) for all h € O7 and c € Os.
For each h € O7 and ¢ € Oy, let

Hp(i) = a(i,h,1), and C.(i) =a(i,1,¢) — (i, 1,1).

Then we have that a(i,h,c) = Hp(i) + Ce(7) for all h € Op and ¢ € Os.
That is, Condition 3.5 holds. O

Definition 3.7 Given an nxnxn trimatrix A = (a(i, h,c)) and an assign-
ment (m,p) € © x O, the following process is called an M-transformation of
A from (m,p) if each element (i, h,c) except for a(i,n(i),p(i)), i € I,
is added with a nonnegative number 6(i,h,c) so that the new trimatrix

T = (a(i, h,c) + 6(i, h,c)) satisfies Condition 3.4.
The trimatrix T above will be called an M-matrix resulted from (7, p).

Definition 3.8 Annxnxn trimatriz (a(i, h,c)) is an optimality preserved
matriz if there exist an optimal assignment (w,p) € © x © and an M-
transformation from (m, p) such that (m, p) is still an optimal assignment in
the M-matrix resulted from (m,p).



Obviously, a trimatrix satisfying Condition 3.4 is an optimality preserved
matrix. We are now ready to introduce the main existence result of this
paper which states a necessary and sufficient condition for the existence of
a perfectly fair allocation.

Theorem 3.9 Given a model £ = ((a(i,h,c)),n, M), there exists a per-
fectly fair allocation if and only if the valuation trimatriz («(i,h,c)) is an
optimality preserved matrix.

Proof: Since (a(i, h,c)) is an optimality preserved matrix, then there exist
an optimal assignment (7, p) € © X © and an M-transformation from (7, p)
such that (7, p) is still an optimal assignment in the M-matrix resulted from
(m,p). Let T = (a(i, h,c)) be the n x n x n M-matrix resulted from (7, p).
So we have

c‘v(z, h7 C) 2 a(iv h7 C)

a(i, (i), p(2)) = a(i, (i), p(i))
for all i € I,, (h,c) € O1 x Og, and
S ali,7(0),p(0) > 3 ali,7(0),1(),¥(r,) € © x 6. (3.4

1€l 1€ly

Since T satisfies Condition 3.4, then there exist two n-vectors H(¢) and C(7)
for each i € I, so that a(i, h,c) = Hp(i) + C.(7) for every h € Oy, ¢ € Os.
Then we can rewrite equation (3.4) as

> (Hi(m(0)+Ci(r(0)) = D (Hilr(0)+Ci(7(0)), ¥(7,7) € ©x6.(3.5)

icly i€ln

It follows from equation (3.5) that

> Hi(m(i) = Y Hi(r(i)

Z Ci(p(i)) > Z Ci(v(7))

for all (7,7) € © x ©. By Lemma 3.2 there exist two n-vectors x and y such
that >7,c; o= M/2, Y c; yi = M/2, and

Hi(m(i)) + xry > Hi(J) +
Ci(p(?) + Yoy = Ci(l) +yi

10



for all 4, 7,1 € I,. It follows that

Oé(i, W(i)a IO(Z)) + Lr(3) + Yp(i) = @(i, ﬂ-(i)a p(Z)) + Lr(s) + Yo(3)
H;(m(i)) + Ci(p(i)) + Ta(i) + Yp(a)
Hi(j) + x5 + Ci(l) + i

a(i,j, l) +x;+y

a(i, j,1) + x5+ y

AV IRAVAN

for all 4, j,1 € I,,. Thus (m,p, (z,y)) is a perfectly fair allocation.
Now suppose that (m,p, (z,y)) is a perfectly fair allocation. Then it
holds that

Oé(i, W(i)u p(Z)) + Lr (i) + Yo(3) > Oé(i, h, C) + Th + Ye

for all i € I,, h € O1, ¢ € Oz. Tt is readily seen that (m,p) is an optimal
assignment with respect to (a(i, h, c)). Let A; = a(i, (i), p(2)) + T +Yp0)
foreachi € I,. Let d;(h,c) = Ai—a(i, h,c)—xp—y. for every h € Oy, ¢ € Os.
Clearly, d;(h,c) > 0. Furthermore, d;(7(i),p(i)) = 0 for all i € I,,. Let
Hy (i) = A;—xp, and C(i) = —y.. Now define a(i, h,c) = (i, h,c)+d;(h, c).
Clearly a(i,h,c) = Hp(i) + C.(i) and a(i,n(i),p(i)) = a(i,7(i), p(i)) for
all i € I,,. Thus (a(i,h,c) satisfies Condition 3.4. Furthermore, for any
(1,7) € © x ©, we have

> ali,w(@),pi) = Y ali,w(i), p(i))

i€ln 1€y
= > (A = Te() = Yp)
icl,
= Z (@(i, T(Z.)7 W(Z)) + Lr (1) + Yy — L) — yp(z))
icl,
= Z a(ivT(i)vv(i)) - Z Lr(4)
icly icly
= DY) T D Ty D Ui
icly i€l, i€l
= > a(i,7(i),7(i)).
icly

This means that (a(i, h,c)) is an optimality preserved matrix. This com-
pletes the proof. a

One can easily verify that the matrix (a(i,h,c)) in Example 1 is an
optimality preserved matrix and thus there exists a perfectly fair allocation,

11



whereas the matrix (a(i, h,c)) in Example 2 is not an optimality preserved
matrix and therefore there is no perfectly fair allocation in the example.

To make the reader more acquainted with optimality preserved matrices,
we give one more example.

Example 3. Consider the case in which there are two agents 1, 2 and there
are two houses hl, h2, and two cars cl, ¢2, and total money (say, dollar) M.
The values of the agents for the different pairs of house and car are given in

Table 3.

Table 3: The values of objects for both agents

a(l,h,e) | el | 2| a(2,h,c) | cl | 2
h1 4 |5 h1 3|45
h2 410 h2 515

The matrix (a(i, h,c)) is an optimality preserved matrix. This can be
seen from the optimal assignment ((1,2),(2,1)) which is underlined in the
tables 3 and 4. The transformation operations are indicated in Table 4.

Table 4: The changed values of objects for both agents

a(l,hye) [ el | 2 | a(2,h,c) cl c2
hl 4 5 hl 3+15|45
h2 4 10+5 h2 5 5

Up to this point, as the reader may have noticed, the class of optimality
preserved matrices is fairly large and includes the matrices resulting from
separable and additive value functions as its special subclass.

4 An Extension

In this section we consider an extension of the previous model. Suppose there
are m different types of objects. There are n objects of each type, denoted
by O;, j € Inp,. For example, one might think of 7 as the collection of
houses, of Oy as cars, of O3 as trucks, and so on. The utility function of
each agent is defined as u; : O1 X Os X - - - X Oy, X R +— R which is assumed to

12



be a nondecreasing and continuous function in money. Then we can extend
the definition of perfectly fair allocation as follows.

Definition 4.1 An allocation (z!,--- 7™ at,--- ™) is a perfectly fair al-

location if it holds that ™ € ©, j € I,,,, D el 2ojeln x] =M, and

ui(ﬂ'l(i),' ",Wm(i),$}r1(i) + - +$;nm(l)) 2 Ui(hl,' '-,hm,x,lll + - +$;an)
Vi€ I, h; € Oj,j € I,.

One can show that every perfectly fair allocation is also Pareto optimal.
To obtain an existence result, once again we will focus our attention on
the case where every agent has quasi-linear utilities in money. In this case
we can represent the model by & = ((a(, hi,ho, -+, hy,)),n, M) where the
matrix (a(i, h,- -+, hy)) is an n™ matrix, n is the number of agents and
M is the total amount of money. Each entry a(i, hy,- -+, hy,) represents the
value of the combination of objects hy, ho, -, hy, to agent 4.

Conditions 3.4 and 3.5 can be appropriately modified as follows:

Condition 4.2 The n™ ' -matriz (a(i,hi,---,hm)) has the following prop-
erty: For every i € I, and j, k € I, with 1 < j <k <m, it holds

aliy by, gyl i) iy e Wy Bl i)
= a(i,hay - hyy oo By ) + iy by B By B,

V(hl,"',hm)GOlX"'XOm h;GOj, h%EOk

Condition 4.3 The n™ -matriz (a(i, hy,- -+, hm)) has the following prop-
erty: For every i € I, and j € I, there exists an n-vector H;(j) =
(H;(j,1),---, H;(j,n)) such that it holds

a(i,hl,---,hm) = Z Hl(j,h]), V(hl,,hm) 601 X - X Om

J€Im
Lemma 4.4 Conditions 4.2 and 4.3 are equivalent.

Proof: That Condition 4.3 implies Condition 4.2 is obvious. Now we prove

that Condition 4.2 implies Condition 4.3 by induction. We have proved the

case of m = 2 in Section 3. Suppose that the case of m — 1 is true. Now let

us prove the case of m. It follows from Condition 4.2 and the assumption

that for every i € I,, j € I, \ {m}, and each fixed h,,, € Oy, there exists an

n-vector H!(j, hy) = (H.(J, 1, hum), -+, HI(j,m, hy)) such that
m—1

Oé(i,hl, cee ,hmfl, hm) = Z H{(j,hj, hm), V(hl, BRI hmfl) €01 X+ X Op1.

j=1

13



Note that: for each fixed j € Ip,, (H.(j, hj, hm)) can be looked as a trimatrix
for all i € I,, h; € Oy, and hy, € Op,. Recall that from Condition 4.2 we
have: for every j(# m) € I,

Oé(i,hl,"',hj,"',hm)+Oé(i,h1,"',h;-,"',h;n)

:a(iahla"'ahjf"ah;n)+O‘(i7h17"'7h;'7"'7hm)'

This implies that
Hi(j, hj, hm) + Hi (4, 1, hi) = Hi(§, by, hon) + Hi (5, 15, han),

72''m 72" m

for all hj, b € O, and hm, hy, € Op. Then by Lemma 3.6, we see that
for each j(# m) € I, there exist two n-vectors H;(j) and H(j) such that
H(j,hj, hm) = Hi(j,hj) + H](j, hm) for all h; € O; and hy, € Op,. Define
H;(m) = Y H!(j). Then we obtain that

a(iha, - hn) = Y Hy(j, hy), Y (hi,-- hy) € O1 X -+ X Opy.

Jjelm

This says that Condition 4.3 is true for the case of m. O

Definition 4.5 Given an n™" ! -matrivr A = (a(i,h1, -, hm)) and an as-

signment  (mwl ... ™) € © x -+ x O, the following process is called an

M-transformation of A from (m',--- ™) if each element a(i,hy,-- -, hy)
except for a(i,m1(i), -, Tm(1)), i € I, is added with a nonnegative num-
ber 6(i,hy,- -, hm) so that the new n™-matriz T = (a(i,h1,-- -, hm) +

0(i,hi,- -+, hm)) satisfies Condition 4.2.

The n™tl-matrix T above will be called an M-matrix resulted from
(7L, -, ™).

Definition 4.6 Ann™'-matriz (a(i,hy,- -+, hy,)) is an optimality preserved
matriz if there exist an optimal assignment (7!,--- 7™) €O x --- x O and
an M-transformation from (ml,--- 7™) such that (z!,--- &™) is still an

optimal assignment in the M-matriz resulted from (7!, --- 7™).

+tlmatrix satisfying Condition 4.2 is an optimality pre-

Clearly, an n™
served matrix.

Having these preparations, we can now establish the following existence
theorem on this more general model. Here we render a complete proof, which
we believe will provide some additional insight into the problem, although

some part of the proof is similar to that given in Theorem 3.9.
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Theorem 4.7 Given a model € = ((a(i,h1,- -, hm)),n, M), there exists a
perfectly fair allocation if and only if the valuation n™-matriz (a(i, hy, -+, hyp))
s an optimality preserved matric.

Proof: Since (a(i,hi,---,hy)) is an optimality preserved matrix, then
there exist an optimal assignment (7!,---,7™) € © x --- x © and an
M-transformation from (7!,---,7™) such that (z!,--- 7™) is still an op-
timal assignment in the M-matrix resulted from (7! --- 7™). Let T =
(@(i,hy,-++,hp)) be the n™F1 M-matrix resulted from (7!, -+, 7™). So we
have

a(iahlf' ) Oé(Z hl,"',hm)

a(ivﬂ-l(i) T ( )) _a(i’ﬂ'l(i)’---’ﬂ'm(i))
for all i € I,, (hi, -+, hm) € O1 X -+ X O, and

Z @(i, ﬂ-l(i)7 e 77Tm(2)) > Z @(i, Tl (Z)a T 7Tm(i))7 (46)

i€l i€ln

for all (71,---,7™) € © x --- x O. Since T satisfies Condition 4.2, then for
every i € I, and j € Iy, there exists an n-vector H;(j) so that a(i, hy, -+, hpy) =
> el H;(j,hj) for every (hy,---,hp) € O1X---XOp,. Then we can rewrite
equation (4.6) as

Z ZH j, T Z ZH], ), (4.7)

i€ly jEIm i€ly jEIm

for all (71, m) €0 x .-+ x 0. It follows from equation (4.7) that
> Hi(j,7 (1) > > Hi(j, 7
iCln iCln

for every j € I, and all 77 € ©. By Lemma 3.2 for each j € I, there exists
an n-vector o7 such that 2ohjel, w?_bj = M/m, and

H(j, 7 (i) + x5 ) = Hi(j, hy) +
for all i € I,, j € I, and h; € O;. It follows that

a(i, 7t (i), -, 7" (1)) + > jeln xij(i) = a(i, ' (i), -, 7" (0)) + djeln mij(i)
Yjer, Hi(d,m (@) + dicln xfrj(i)
Sy (G, 7 (0) + a3, )
Sier, (Hi(j, hy) +3,)
a(i, by, hm) + Yjer, mflj
a(i b, ) + Sier, 23,

I AV [ |

v
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foralli € I, and (hy,- -, hy) € O1x- - -XOp,. Thus (71, -+ 7™, 2! ... 2™)
is a perfectly fair allocation.

Now suppose that (7!,--- 7
Then it holds that

ali, 7t (), )+ waﬂ(z > a(i,hi, oy i) + ngz]

m gl ... 2™) is a perfectly fair allocation.

for all ¢ € I, and (h1,--+,hpm) € Op X -+ X Op,. It is readily seen that
(mh, -+, @™) is an optimal assignment with respect to (a(i, ha,- -+, hy)). Let
A; = a(i, 7 (i), - @)+ e, erJ‘(z‘) foreachi € I,. Let di(hy, -, hm) =
Ai —aliyhy, - hin) = Yier, xij for every (hi,-+-,hpy) € O1 X -+ X Opy,.
Clearly, d;(hy,- - -, hy) > 0. Furthermore, d; (7' (i), -+, 7™ (i)) = 0 for all i €
L. Let H;(j) = —a’ for all j € I,,,\{m} and H;(m) = (A; x;n, cee A=),

) = "
Now define &(i,hy, -, hy) = ali,hy, - hy) + di(hy, - ). C]early
a(ivhla'”vh ) Z]EI H(.]7h )anda(z 7(1() T, T ()): ( () T(m(l))
for all ¢ € I,. Thus (a(i,hq,---,hp)) satisfies Condition 4.2. Furthermore,

for any (71,---,7") € © x .-+ x O, we have
Zie[n @(i, ﬂ-l(i)v e 77Tm(i))
=Y ier, ali, 7 (4), '~~,7Tm(i))
- ZzEIn (A Z]GIm ﬂ](z )
= Zz’e[n(a(zu 1( )y e, T(E)) + Zje[m xij(i) - Zje[m mij(i))

= Yier, @i, 7 (@), -+, TM(0) + Yies, 2 jeln xiy‘(i) — Ziel, 2jeln mfrj(i)
= Zz’e[n O‘(iaTl (Z)7 ST (Z))
This means that («(i,hq,- -+, hy)) is an optimality preserved matrix. This
completes the proof. O
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