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1. Introduction
We consider the fractional process X; generated by the model
(1-L)YX; =w, t=0,1,.. (1)

Our interest is primarily in the case where X; is nonstationary and d > %, so in (1)
we work from a given initial date ¢t = 0, set u; = 0 for all j <0, and assume that u,
(t > 0) is stationary with zero mean and continuous spectrum f,(A) > 0. Expanding
the binomial in (1) gives the form

Z (_]j)kth = wy, (2)
k=0 :
where r(dak
(d),, = % — (d)(d+1)(d+Fk—1)

is Pochhammer’s symbol for the forward factorial function and T'(-) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of differences and higher order differences of X;.
An alternate form for X; is obtained by inversion of (1), giving

Xt = (1 — L)id Uy = Z %ut_k. (3)
k=0 ’

Throughout this paper it will be convenient to assume that the stationary com-
ponent u; in (1) is a linear process of the form

w=C(L)e; =Y cjer—j, Y jlej|<oo, C(1)#0, (4)
Jj=0 Jj=0

for all ¢t and with ¢, = 4d (0,0?) with finite fourth moments. The summability
condition in (4) is satisfied by a wide class of parametric and nonparametric models
for u;, enables the use of the techniques in Phillips and Solo (1992), and ensures that
partial sums of wu; satisfy a functional central limit theorem, which will be needed
later. )

Under (4), the spectrum is fy,(\) = % )Z;‘;O cje”’“ and f,(0) = %C’(l)2 > 0.
In view of (1), it is natural to define

Fe(N) =1 =72 fu (V). (5)

! Zeros everywhere in f,(\) are ruled out if the last condition of (4) is strengthened to C(e*) # 0
for all X € [0, 7].




The function f;(\) gives the spectrum of X; when it exists and X; is stationary (i.e.
for |d| < 3 and under infinite past initialization of X; in (3)) and is the analogue of
the spectrum in the nonstationary case when d > % even though it is not integrable.
In that case, Solo (1992) gave a formal justification of f,()) as a spectrum in terms
of the limit of the expectation of the periodogram. Taking logarithms of (5) produces
the equation

In(fa(A)) = =2dIn(|1 = ™)) +In(fu(N)), (6)

which motivates a linear log periodogram regression for the estimation of d, in which
fz(A) is replaced by periodogram ordinates I;(\) evaluated at the fundamental fre-
quencies Ay = %7 s =0,1,....,n — 1. Here, I,(As) = wq(As)wa(As)*, wa(As) is the
discrete Fourier transform (dft) w,(As) = ﬁ i, aget™s of a time series a;, and
w* is the complex conjugate of w. With this substitution (6) becomes

In (I, (As)) = —2d1In )1 — ™|+ 1n (fu (\s)) + U (Ns) (7)

where U (As) = In[I; (As) /fz (As)] . By virtue of the continuity of f,, fu (\s) is effec-
tively constant for frequencies in a shrinking band around the origin, suggesting a lin-
ear least squares regression of In (I (As)) on In ‘1 — ei/\S) over frequencies s = 1,...,m

(with m a truncation number). The method has undoubted appeal, is easy to perform
in practice and has been commonly employed in applications. However, (6) is a mo-
ment condition, not a data generating mechanism, and the analysis of this regression
estimator is complicated by the difficulty of characterising the asymptotic behaviour
of the dft wg(As), which is the central element in determining the properties of the
regression residual U (\g) in (7).

An important contribution by Kiinsch (1986) showed that, for fractional processes
like (1), wgy(As) has quite different statistical properties from the corresponding dft,
wy(As), of the stationary process u; for frequencies in the immediate neighbourhood
of the origin. In particular, for A\s = % — 0, with s fixed as n — oo, the dft ordinates
are asymptotically correlated, not uncorrelated. Recent analysis by Robinson (1995a)
and Hurvich, Deo and Brodsky (1998) for Gaussian u; has provided an asymptotic
theory in the stationary case, thereby placing log periodogram regression on a rigorous
footing. Another semiparametric estimation procedure (suggested by Kiinsch, 1987)
is the Gaussian estimator which maximises a local version of the Whittle likelihood,
and it is known to have a smaller variance than log periodogram regression in the
stationary case (Robinson, 1995b). This estimator also relies on the behavior of
wy(As) for frequencies in the vicinity of the origin.

The present paper provides some new methods for studying the asymptotic be-
havior of wg(As) for nonstationary values of d. The approach relies on an exact
representation of wy(\s) in terms of the dft w,(As) and certain residual components.
This representation aids in the analysis of the properties of wg(As) and, thereby, in
the study of log periodogram regression and local Whittle estimation. The represen-
tation also provides a frequency domain version of the data generating mechanism
(1) above. As such, it is useful in motivating some alternative approaches to inference
about d that we will propose here and which are being explored in other work.



The paper is organised as follows. Section 2 gives the new frequency domain
representation of wy(\s), derives another useful representation and studies some of
their features. Section 3 develops some asymptotic approximations that help to
simplify the representation and suggest new approaches to inference about d. Section
4 describes some statistical applications of the results to spectral estimation and to
semiparametric estimation of the memory parameter. Particular attention in the
latter case is given to log periodogram regression and local Whittle estimation. Some
modified versions of these procedures are suggested which conveniently extend their
range of applicability to the nonstationary case. Proofs and some technical results
that are of independent interest are given in Section 5. Notation is summarized in
Section 6.

A final word of introduction. While our focus is on the case where d € (3,1),
the methods introduced here are applicable when d > 1, and in modified form when
|d| < 1. A particularly useful approach is to combine the exact representation (14)
that applies when d = 1 with results for fractional d to produce valid representations
for the d > 1 case. Paragraphs 2.6 - 2.8 indicate some of these possibilities.

2. Frequency Domain Decompositions

It is convenient to manipulate the operator (1 — L)d in (1), with its polynomial ex-
pansion (2), in a form that more readily accommodates dft’s. This can be done
algebraically, as in Phillips and Solo (1992), by expanding the polynomial operator
about its value at the complex exponential e**, leading to the following decomposi-
tion.

2.1 Lemma Define D, (L;d) = > 1 _g (_—]j)’&Lk. Then
D, (L;d) = D, (e“; d) + Dy (e’“‘L; d) (e’ML - 1) , (8)
where Dy (e*i/\L; d) = ZZ;& JApe*ip/\Lp and JAp =D hepi1 %’ieik/\.

The representation (8) is an immediate consequence of formula (32) in Phillips
and Solo (1992) and can be obtained by straightforward algebraic manipulation.
No summability conditions are required here for its validity since it is a finite sum.
However, the value of d does affect the order of the terms in this expansion and,
consequently, the order of magnitude of these terms when n — oo, a fact that does
affect subsequent theory. Additionally, when A depends on n, the order of these terms
is affected and this too needs to be accounted for in the asymptotic theory. Much of
the present paper is devoted to this accounting to assist in characterizing the limit
behavior of the dft w, (A) = \/#—n S Xpelth,

Using the operator (8), we may write the model (1) in the following form for all
t<n

U = Dn (L, d) Xt
D, (eM; d) X; + Dy (e_“‘L; d) (e_“‘L - 1) X;. (9)
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Taking dft’s of the left and right sides of (9) now yields an exact expression for wy (\)
in terms of wy, (A). The result is stated as follows.

2.2 Theorem

— i, _ inAy
wy (N) = wy (A) Dy () + Ve (Xn0(d) = 6™ Xyn(d)) (10)
where Dy, (ei/\; d) => o —’i(_kc? ek,
~ ~ . n_l ~ .
Xn(d) = Dy (e"/\L; d) Xo =3 dye "X, ,
p=0
and
) —iA (e —ipA TP . 7 . (_d)k ik
D, (e L; d) = Zod)\pe LP,  with dy, = kzl e (11)
p= —p+

2.3 Remark Equation (10) provides an exact representation of wy (A) in terms of
wy, (A) and a residual component involving n~3X an(d). Explicitly,

1
\V2mn

In fact, (10) or (12) may be interpreted as a frequency domain version of the original
model (1). In terms of periodogram ordinates, we have the corresponding equation

wy (V) = Dy (M) () - D, (Xd) " (Rao(d) — ™ Knn(d)) . (12)

L) = o O = D (25d) ™ i () = J;T_n(XAO(d)—ei”ASXASn(d))]Q
— |Da (Mia)| 1) —2Re ] ﬂlﬂ—n (on0(d) = Bon@) w0 (0"}
5 | (Bnold) = Ton@) ] (13)

which may be interpreted as the data generating mechanism for the ordinates I (\s)
that are used in a log periodogram regression. Equation (13) reveals the model

, —2
that is implicit in (7) above. To the extent that ‘Dn (eMS; d)) can be replaced by

)1 - e“S‘_M and the component n~2 X A,n(d) is small enough to be neglected, (13)
and (5) might seem to suggest that U (As) = In[I; (A\s) /fz (As)] will behave like the
corresponding functional, log [I,, (As) /fu (As)], of the errors in (1). However, as will
become apparent in our analysis, the residual component n~2X A.n(d) in (12) and
(13) cannot be neglected, in general, and its importance grows as d increases.



2.4 Remark When d = 1, the forward factorial (—d); = 0 for all £ > 1, so that
series involving these coefficients terminate at £ = 1. In this case D, (ei/\; 1) =
(1 - e“‘) L dxo = —e?, X3o(1) = —e* Xy, and X),(1) = —e**X,,. Equation (10) then
reduces to the simple form

i
V21

an expression obtained by the author in earlier work (lemma B of Corbae, Ouliaris and
Phillips, 1999). In this case, it is apparent that n=2 Xy, (d) = e*n~2 X,, = O,(1) for
all A;. Thus, in the unit root case, the residual correction term n~3X A.n(d) definitely
matters, plays a role in the asymptotic behavior of wy (As) at all frequencies and
thereby affects the asymptotic theory of estimators of d like those arising from log
periodogram regression and local Whittle estimation. Indeed, in those cases the
author has shown in other work (1999) that the estimators have a limiting mixed
normal distribution rather than a normal distribution when d = 1.

wa (\) = (1= ) w, (V) + (e X0 — Xo), (14)

2.5 Remark When u; = 0 for ¢t <0, in (1), it follows that X; = 0 for ¢ < 0 and
hence X g(d) = 0. In this event, expression (10) becomes
einA _ "
D (e PL:d) X,
V2mn A ( )

ezn/\

\V2mn

wy (N) = wg(N) Dy (ei)‘; d) -

= w, (\) Dy (e™5d) - Xn(d), (15)

or, in the unit root case,

or
M, (16)

wy (V) = (1 - eM) we (V) + ——

in place of (14). Since these initial conditions are assumed in (1), and since the effect
of relaxing them will usually be apparent, we will henceforth use (15) in place of (10).

2.6 Remark Another useful representation for the dft of X; can be obtained by
combining the representation (15) with the unit root decomposition (16). It is espe-
cially useful when d > 1. Write (1) as

(1-L)X; =1 —L)" %y =2 (17)

so that X; = Y°%_q z; + Xo. Then, taking dft’s in (17), we first apply (16) to write
wyg (As) in terms of w, (As) and then use (15) to reduce w, (As) in terms of wy, (As)
and a correction term. The outcome is formalized in the following theorem.



2.7 Theorem If X; follows (1), then

wy (V) (1 - ei’\> = w,(\) —e? \/ﬁ: (18)
ix en NG, o
= Dy (6 ) f) Wy, ()‘) - \/27T—nU)\n (f) - \/27_(—” (19)

where f =1 —d and

n—1 n
p=0 k=p+1
(20)

2.8 Remark Some further decomposition beyond (18) and (19) is possible. As
in Phillips and Solo (1992), we can decompose the operator C' (L) that appears in
us = C(L)es as

C(L)=C (ei)\> +C (e*i)‘L> (e’i)‘L — 1) , C(L)= jZOEijv G = k;ﬂ k>

where 377° ¢; < oo in view of the summability condition on ¢; in (4). Then,
u=C(L)eg =C (eM) e+ e e — e (21)

is a valid decomposition of u; into the 7id component C (ei/\) g and a stationary error

that telescopes under the dft operation, with ey, = C (e*”‘L) e =520 cje Negy
In particular,

wa (V) = C () we () + \/217T_n (230 — ™er) = € () w: (V) + 0, <%) |

Using this representation in (19) we get

e _ i ei)\an

wy (V) (1= ™) = Dy (¢ ) € () w. (V)
Additionally, z; in (17) can be written as
z=C (e“‘) (1-L)Y e+ (1-L1) (e_i’\L - 1) Ext- (23)
Set n, = (1 — L) &1, my, = (1 = L) 5 in (23) and take dft’s, giving
W) = (M) )+ 5= (o= ™0y,
= (M), +0, (%) , (24)
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since 7,, is stationary with finite variance for all d & (%7 %) because then |f| < %
(Note that 7y, = ext when d = 1). Next write

me=(1—L) e =[Dn(Li f) + R (L; f)] & (25)
with -
RoLi= Y e
k=n+1 '

and note that 1
€nt1:Rn(L§f)5t:Op< )

n3tf

Applying (10) to the dft w,, (A) calculated from (25) we have

g () =10z () D (¢4 1) + = (B0lf) = ™ 5nal)) + 1 (). (20
with - .
g/\n(f) = Z ]?Apei 4p)\5n—pa _)?:\p = Z (_k;}:)keik)\, (27)
p=0 k=p+1
and -
_ Y
Wpe (A) = o 2 entl
Now wye (A) = O, (n*f ) because
E [wne (A) wpe (V)] = 27%” ) Zei%ﬁ(t—s)E (EntEns) = 27%” Y'Y o (n—1—2f> —0 (n—2f> _
t=1s=1 t=1s=1
(28)
Using (26) and (28) in (24) we get
w. () = O (¢?) [Dn (5 1) we (V) + ﬂlﬂ_n (Ba0(f) — ™ f))} L0, (%) ‘o, (%) |
(29)

Then, combining (29) with the unit root decomposition (18) leads to the representa-
tion
ix_Xn

2mn

wy (As) (1 — ei/\) = C (ei/\> D, (ei/\; f) ws (A) —e

() (ot - zn) 0, (3

This representation is likely to be most useful when A = A\; = %

— 0 and s — oo.



2.9 Remark The representations (15), (18), and (19) hold for all fundamental

frequencies \s = QLnS They are helpful in providing asymptotic representations of
wg (As) . In such expansions, it is useful to allow for situations where s — co as well
as n — 00. In some cases, as in spectral density estimation at some frequency ¢ # 0,
we want the expansion rate of s to be the same as n, so that we can accommodate
As — ¢ asn — oo. In other cases, as in log periodogram and Gaussian semiparametric
regression, interest centres on frequencies A, in the vicinity of the origin, so then we
consider cases where s is fixed or s — co and > — 0 as n — oo. The following section
gives results that are helpful in the determination of the asymptotic form of these

representations as n — oo under these various conditions.

3. Asymptotic Approximations

3A. Component Approximations

We start with the sinusoidal polynomial D, (e”‘; d) => 1o %’iei“ that appears
in the decomposition (8) and theorems 2.2 and 2.7. The series can be summed in
terms of hypergeometric functions and the asymptotic form taken as n — oo depends
on A. The behavior is described in the following lemma.

2

3.1 Lemma* Suppose d > 0 and is noninteger. Then

D, (¢*;d) = (1~ ei)‘)d - ei(’Hl)/\% 2P (n+1—d,lin+2e), (31)

and, for cos(\) < %,

D, (e“‘; d) = (1 — eD‘)d +

i(n+1)A (_d) i
€ n+1 €
z Fi[1+d1; 2 —. 2
e'L)\_l (n+1)| 2 1( + 3 7n+ ﬂez)\_l) (3)

The following asymptotic representations hold:

(a) For fized A # 0

. . inA
D, (eM;d) = (1 —eM)d— F(—dl)nlerle—ei)‘ [1+0 (%)} .

(b) For A=\, =22 — 0 and s — 00 as n — 0o

D (eed) = (1) sy [0 (3)] 0 ()

?Here, and elsewhere in the paper, where fractional powers of a complex variable are given they
are taken to be evaluated at their principal values.




(c) For A=)\, =22 — 0 and s fized as n — oo

1 1
g 1F1(1,1—d;—27‘(i8)—|—0( )
n

Dn(ei/\s5d>zw T

(d) For A=0

1 1 1
Dp(lid) = ——1+0(=)].
020 = rr =g [0 (5).
In the above formulae, 1Fy (a,b; z) and o F} (a,b, c; z) denote the confluent hypergeo-
metric function and the hypergeometric function, respectively.
From part (d), it follows that D, (1;d) differs from zero by a term of O (n*d) .

From part (c), the same also applies to D,, (ei/\S; d) when s is fixed and Ay = 2“—n” — 0.
Of course, in the event that d is a positive integer, we have the following terminating
polynomials

n o/ d d
D, () =y Ee oy~ e v (Z) (—)F = (11t =0,

and L .
. " o(— iAs LNk N
D (i) = 32 EOE =32 (1) () = (1)
k=0 k=0
in this case.
Our next focus of interest is the correction term in (15) that involves Xy, (d). We
are especially interested in deriving an asymptotic approximation to X an(d) at the

fundamental frequencies A;. As in Lemma 3.1, the asymptotic behavior of Xy ,(d) is

sensitive to the value of s in \; = % In particular, when d € (%, 1) , the asymptotic

form of X ao,n(d) differs, depending on whether s is fixed or whether s — oo as n — oo.
In the latter case, nfé)@\s,n(d) = 0p (1), while in the former nfé)@\s’n(d) =0,(1).
On the other hand, when d =1, n_%)N(As,n(d) = O, (1) for all s # 0. The results are
given in the following theorem.

3.2 Theorem Suppose d € (%7 1) . Then

(a) For fired A #0 as n — oo,

Bl X (1) (1)
N (1_ei)\)1—d\/ﬁ Op\i—a ) =Y\ 1=d

(b) FOT‘)\:)\S:%_}OGndn%_)OO; asn—>00,f07“50mea€<%a1>

vn (1-— ei)‘S)lfd vn o P\ std (—2mis) ¢ nd—3 P\ sl-d




(c) For A=) = % and s fived, as n — oo,

X)\sn(d) lFl (17 1- d; _27”-8) ! TiST
T = T—d) /0 e? Xn,a(r)dr

1 1 o 1
_m /0 1F1 (1,1 —dy —2misr) r= %Xy, q(1 — r)dr + O, (W)
= Op (1) I
where Xy, 4(r) = )i[ﬂ] )
n 2

(d) When d =1, the equation

Vi NT

holds for X\ fixed, or)\:)\sz%ﬂ()withseoo, or)\s:%e()withs
fized.

Banll) _ o Xo _ o

In parts (a) and (b) of theorem 3.2 the leading term in the asymptotic approx-
imation of n~3X an(d) is the same and so, although the error order of magnitude
differs, we may write

X,\m(d) - ei)\ & o eiA ﬁ
Vn (1- ei/\)lfd N (1-— e“‘)lfd vn)’
for both these cases. Further, the leading term of n~2 X An(d) is Op(nll_d) for fixed

A # 0,18 Op(s7) for Ay = 222 — 0 and ;% — oo, and is Op(1) for A, = 222 — 0 with

s fixed. Thus, the correction term n3X an(d) is nonnegligible in a region around
1

the origin when d € (

PR
case (c), with A, = 22 and s fixed) is more complicated than the other cases and it

involves hypergeometric series. The representation given in case (c¢) actually includes
s = 0, for which we have the simpler form

1) . The asymptotic form of n_%)@\,n(d) in that case (i.e.

Xagn(d 1 1 1 1 1
)\:}ﬁ( ) _ T d /O Xp,a(r)dr — m/o r ded(l —r)dr+ O, <W> .
(33)

When d = 1, the formula given in (d) is exact, as follows directly from (16).

Finally, we look at the correction term U, (f) that appears in (19). We concen-
trate on the interesting case where A is in the vicinity of the origin and give the result
corresponding to part (c) of theorem 3.2.

10



3.3 Theorem Suppose d € (%7 %) and f =1—d. Then, for A = Xy = % and s
fized, as n — oo
ﬁksn(f) 1 1

1 )
N2 \/ﬁr(l—f)nf{lFl (171—f;—27m's)/0 e mTAX, (1 —7)

_/1 r R (1,1 — f; —2misr) dX, (1 — r)} +0, (%) ;o (39)

0

where X, (r) = n-2 ZLZ(]) ug. When f =0, Uy,n(0) = 0.

3B. Approximations for w, ()\)
Evaluating (15) at A, we have
1

Xy n(d)] .
2mn Aenld)

we (As) = Dy (%) {wu (h) +

We use lemma 3.1 and theorem 3.2 to obtain explicit expressions for wy (As) in terms
of wy, (As) and a correction term. When d = 1, the following exact form comes directly
from (16)

eirs X,
T Vo
and holds for all s = 1,2,.... When d € (%7 1), it is convenient to separate the
following three cases:

wy () = (1- ™) wy () (35)

(a) Case \s —» ¢ #0

Here, from lemma 3.1 we have

. . iNAs
D, (eMS; d) = (1 — el)‘s)d T (_dl) nl+d 16_ eiAs [1 +0 <%>}
= (1- e”s)d +0 <#> :

uniformly for As € By = {¢ — &7, ¢ + 5} where M — oo as n — oo. Similarly, from
theorem 3.2,

Bonld) _ e Xa ( 1 )
Vo (1 —er)dyn P \nt-d
uniformly for A; € Bg. It follows that
A —d ers X 1
a:)\szl_Ms uAs_il—n AR
w0 = (=) ) - T e () @

uniformly for Ay € By.

11



(b) Case A\; = 2% — 0 and s — oo
From lemma 3.1 (b) when s — oo as n — oo
e\ i\ 4 1 1 1 1
Dy (¢™3d) = (1= ™) Tyt zmis | T O

And from theorem 3.2 (b) with -% — oo for some o € (%7 1) ,as n — 0o,

et o ()

Vi —<1 RN

It follows that if & + % — 0 as n — oo, for some a € (%, 1) , then

. —d
. As
B I —<1 —) (37)
1— e fann P sl d :

Observe that the first two terms of (36) and (37) are the same. Although the order
of magnitude of the error differs in the two cases, we may write

ixg) ¢ et X, ers X,
w0 = (=) e O - m e (g ) @Y

for both these cases, and (38) is valid for all A, = 2% with 2= — 0.

wy () = (1-e) ", (A) -

(c) Case A\, = &% — () and s fixed

From lemma 3.1 (c) when s is fixed as n — oo, we have

, 1 1
iAs. J—
Dn<e ’d)_il“(l—d)nd VB (1,1 — d; 2ms)+0( 1+d> (39)
and it follows that
1 1 1 1 \1!
wa ()‘S) = W l:m 1F1( d 27TZ$)+O< 1+d>
1 -~
X Wy (As) + —=Xo.n d] ,
|:w ( ) \/ﬁ As ( )
giving
wg (As) I'l-d 1 = 1
nd  1F (1,1 —d;—2mis) [wu ) + \/27mX>\Sn(d)] O <n> . (40)
Further, from theorem 3.2 (c),
)?Asn(d) _ 1F1 ( —d; 27”8) e2misT
s T
—;/1 B (1,1 —d; —2misr)r— X, 4(1 —r)dr + O, (L>
TA—d) o "' ’ n.d oid )
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so that

1 I'(l—d 1,
_ x S = - » s . WZSTXn d
nd” () 1F1 (1,1 —d; —27rzs)w (As) + ‘/_27'('/0 € d(r)dr
1

(2m) 2 1 . »

- Fi(1,1—-d;-2 X, 4(1 —7r)d
11 (1,1 —d; —27m's)/0 1A (1 ; —2misr) T a1 =r)dr

1

+Op (nl—d> . (41)

Unlike (36) and (38), the term

e Xn
1 —ets \/omn
does not figure directly in (41). In fact, as the alternate representation shown in the

next section shows, the term (42) is absorbed into the series expression in (41), so it
is still present and figures in the leading term of the dft w, (As) when s is fixed.

(42)

(c) Case \; = % — 0 and s fixed: An alternate form.

Theorem 2.7 gives

we () (1) = Dy (%5 ) () = = () =M=, (43)

with f =1 —d, Lemma 3.1 (c) gives

4 1 1
iAs . — _ f._ )y -
Dn<e ’f)_l“(l—f)nf V(L1 - f 27rzs)+0(n1+f>,
and theorem 3.3 gives

ﬁAsn(f) _ 1 1 . . ! —2Tisr
o~ RTA= il { 1F1(171—f,—27ms)/0 e 2™ dX, (1 —7)

_ /1 r R (L1 = f;—2misr) dX,, (1 — r)} O (%> .

0
Also,
Wy, )\S — eQﬂszzu — = eQﬂszT n — _/ e—Qﬂ'ZSTan 1—1p +O (_)
() V21 ; ! V2T ];1 Vn V2m Jo ( J+0p n

Combining these last three representations in (43), we get
wy (As) (1 - ei/\s)
1

1 . 1 . —27isr
= Ta—nf 1F1 (1,1 — f; —2mis) \/%/0 e dX, (1—r)+0, (ﬁ)

13




1 : ) t ST
V2r (1= f)nf 1F1 (1,1 = f; _27”5)/0 e 2EIT X, (1 — )
41 1 /1 P LF (11— f—2misr) dX (1 — r) — 6 —n
VIRT(A—fyad Jo " . V2

1
0, (75)
1 1 1 oy
- -7 — [ — ) _ A n
V2r T (1= f)nf /0 r 1 F (1,1 — f; —2misr)dX, (1—r) —e = +0, (

leading to

1 1 1 1
—wy () = : IR (1,1 = f;—2misr) dX,, (1 —
W (As) _27r1“(1—f)n(1—eMS)/o =1 ( [ —2misr) (1—r)
1 eihs X, 1
— : — 44
V2 n (1 — eids) pd—3 O <nd—%>’ 4

which shows how (42) continues to play a role in the leading term of w, (As) .

3C. Limit Theory

Under (4), partial sums of u; satisfy the functional law

fr]
Xo(r) = % Sy, —q B(r), (45)
t=0

where B is a Brownian motion with variance w? = ¢2C(1)? (e.g. Phillips and Solo,
1992). There is a corresponding functional law for suitably standardized elements of
the time series X;. Akonom and Gourieroux (1987) showed such a functional law for
nédet when the components wu; follow a stationary ARMA process and the following
simply extends their result to the linear process u;.

3.4 Lemma For u, satisfying (4) and with ¢, iid (0,02) and E|g|P < oo for
P > max <d—;l’ 2) ,
2

_ Xpor] d 1

b Bu(r) = g | (= 9" aBCe) (46)

Xn,d(r) F(

- 1
nd=3

a fractional Brownian motion where B(s) is Brownian motion with variance w?.

Like X¢, the fractional Brownian motion Bg_;(r) is initialized at the origin, and
therefore has nonstationary increments, in contrast to the other fractional process

Wi (r) = ﬁ |- [{(r —o, ) {(—s)+}Hé] AB(s), H=d-3, (47)

—00
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. 1
C (H) = {% + [Tlavet- SH%rds}Q C0<H<1

introduced by Mandelbrot and Van Ness (1968) and studied by Samorodnitsky and
Taqqu (1994, p.321) in this form. Both processes reduce to Brownian motion for
special cases of the parameters, viz. d = 1 for (46), and H = % for (47).

1T;hese functional laws enable us to get limit representations of the correction term
n~2 Xy, (d). The case where where s is fixed as n — oo is especially interesting, the
other two cases following immediately from (46) and the respective expressions (36)
and (37).

3.5 Lemma For \; = % — 0 and s fized

Xon(d) a1 b omi : e
2 T By 1(r)dr 1F1 (1,1 — d; —2 — ™rAB (1) .
\/ﬁ - P (1 _ d) /0 e d 1(r) T 1 1 ( ) ) 7-(-1/8) /0 e (r)
(48)

The next result gives formulae for the stochastic Fourier integral [j e*™dB(q)
that appears in (48) and (when s = 0) for the constituent Brownian motion B in
terms of the fractional Brownian motion B;_1.

3.6 Theorem For fixed integer s

T . 1 T
| e dBtg) = fs [ 1B (11 = ds—2ris(r = ) (= @)™ Bus(0)da
0 r1-d Jo
(49)
and, in the special case where s =0,
1 " ~d
BO) = m—g |, =9 Bea(ada (50)

The equality (50) is the inverse (integral) transform of the fractional Brownian
motion Bg_1(r). In effect, the right side of (50) is the (1 —d)’th fractional integral of
the (d — 1)’th fractional derivative of Brownian motion. Formula (49) extends this
representation to the case s # 0. When r = 1, (49) becomes

1

/o1 e*™ 4B (q) = T(1—d) /01 1Fy (1,1 — d; —2mis(1 — q)) (1 - q) " Ba—1(q)dg.

3.7 Theorem Suppose d € (%, 1). The following limit results apply.

(a) Let ¢ >0 and suppose s, € By = {¢ — 557, ¢ + 557 | for a finite set of distinct
integers sj (j = 1,...,J). When M — oo as n — oo, the family {wz(Xs;)}]—;
are asymptotically independently distributed as complex normal N (0, fz (¢))

where £, (6) =1 -] " £u(6).
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(b) Let {s;}]_; be distinct integers with 0 < | < s; < L for each j and with
L4120 asn— oo, for some a € (%,1). The family {(Xs;)%we(As;) 37:1

are asymptotically independently distributed as N, (0, fy, (0)).

(c) Let {s;}]_, be a finite set of distinct positive integers which are fized as n — oo.
Then, for each j

1 d 1 ! 2Wis;r
—qWs ()\Sj) — E/O e ™" By_q (r)dr, (51)

where Bg_1 is the fractional Brownian motion given in (46). Joint convergence
also applies.

When d = 1, the following limits apply.

d) Let ¢ > 0 and suppose s, € By = {¢ — &=, 0+ &} for a finite set of distinct
j ¢ M M
integers s; (j = 1,...,.J). When M — o0 as n — oo, the family {wz(Xs;)}
are asymptotically distributed as

1 't 7
{1_€¢¢§j_ 1_62-(1)77}3':17 (52)

where the {gj}jzl are iid N, (0, fu (¢)) and are independent of

(53)

where B is Brownian motion with variance w?.

(e) Let {sj}‘j]:1 be a finite set of distinct positive integers for which 2 — 0 as
n — 00. The family {As;wz(As j)}‘jjzl are asymptotically distributed as

i(&-n), (54)
where £; and 1 are as in (52) and (53).
(f) When s; is fired as n — oo, the §; in (e) have the representation

_ L ! 2wis T
£ = \/%/0 e dB (1), (55)

and

lwm ()\sj) 4,

n

1 .
/ e*™55" B (r) dr, (56)
0

9~
3

which also holds for s; = 0.
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Parts (a) and (d) show that Hannan’s (1973) result for the limit theory of dft’s of
stationary processes extends to fractional processes at frequencies removed from the
origin when d € (%, 1) but not when d = 1. In the latter case, the leakage from the
the zero frequency is so substantial that it affects the limit theory of the dft at all
frequencies, although the limit distribution is still normal. Moreover, as is apparent
from the form of (52), the limit variates are spatially correlated across frequency
by virtue of the presence of the random component 7, through which the leakage is
transmitted.

Part (b) shows that, when d € (%, 1), a version of Hannan’s result applies to
the scaled transforms (2)%w;(Xs,) in a (distant) vicinity of the origin where Ay, =

—LQ”:L'i — 0 but = — 0 as n — oo, for some « € (%,1) - However, when d = 1, the
J

scaled transforms iniwm (As;) are asymptotically dependent across frequency. '
Part (c) shows that in the immediate vicinity of the origin (i.e. for A\;, = 27::7' L =0
with s; fixed), the n™%w;,(),,) are asymptotically dependent for d € (3,1] and each
converges weakly to an integral functional of fractional Brownian motion that involves
the integer s;. In earlier work, Akonom and Gourieroux (1987) gave (51) in the case

of ARMA wu;. An alternate expression for (51), which relates to (44) is

Eww (ASJ') — m/o 1F1 (17 1+ d, —27'('7/3]'7“) r*dB (1 — T)

and can be obtained from the formula

1 1
] / 1Fr (1,1 +d; —2misr) rédB (1 —r),
0

1
2misr
By_ dr = ————
/oe a-1 (r)dr = w75

which is proved in Lemma E in the technical appendix.

4. Some Statistical Applications

4A. Spectrum Estimation for fractional processes

The limit theory in section 3C is useful in obtaining the asymptotic behavior of
spectral estimates for fractional processes. We give some results for smoothed pe-
riodogram estimates for frequencies at the origin and away from the origin. The
former are of interest in procedures that are used to estimate the memory parameter
d. The latter reveal any leakage from low to high frequencies that occurs in spectrum
estimation.

For frequencies away from the origin such as ¢ # 0, the usual smoothed peri-
odogram estimator of f; (¢) is given by

Fre @ =2 3w (A O 67)
As€B(¢)

where By, (¢) = (¢— 557, ¢+ 577), M is the bandwidth parameter that determines the
number of frequencies m = # {\; € By, (¢)} = [n/2M] used in the smoothing. At the
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zero frequency ¢ = 0, we consider a one sided average of m periodogram ordinates
at the origin

Foe (0) = 23w, () (00" (59)
s=0

The following theorem gives the asymptotic behavior of fm (¢) for these two cases
and for d € (3,1) and d = 1.

4.1 Theorem

(a) For ¢ #0 and 3 <d <1

N o fu (¢)
frpm (¢) —>p fm (¢) - ‘1 ——ew)‘Qd'

(b) For ¢ #0 and d =1

-2

Foa (0) =a £ (@) +5- 1= " B,

(c) For%<d<landmsuchthatnﬂaﬂoowithaZ%

m - 1 /1
Wfa:x (O) —d %/0 Bd—l (T’)Qd’f’.

(d) For d =1 and m such that % — 00
m 1 ! 9

According to part (a), spectral estimates like fm (¢) at frequencies removed from

the origin are consistent for f, (¢) = )1 — eid"iQd fu (¢) provided d < 1. When d = 1,
the estimate is inconsistent and converges weakly to a random quantity. In this
case, the leakage from low frequency behavior is strong enough to persist in the
limit at all frequencies ¢ > 0. Part (d) was given in earlier work by Phillips (1991),
where it was shown to be useful in analysing regression in the frequency domain
with integrated time series. A new and simpler derivation is given here based on
the decomposition (16). Part (c) can be expected to be useful in similar regression
contexts with fractional processes.
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4B. Semiparametric Estimation of d

We now indicate some potential applications of the present theory for the estimation
of the memory parameter d in (1). This is a large subject which goes beyond the scope
of the present paper and for which the theoretical development is now underway. It
will therefore be reported in detail in later work. The presentation here will focus on
the new ideas and not the technical details.

Our concern is with the case where little is known about the short memory com-
ponent u; of (1) and its spectrum f,(\) is treated nonparametrically. In both log
periodogram estimation and local Whittle estimation, this is accomplished by working
with the dft w, (A;) of the data X; over a set of m frequencies {A\s = 22 : s = 1,...,m}
that shrink slowly to origin as the sample size n — oo by virtue of a condition on
m of the type 7 — 0. It has been suggested that, in view of the asymptotic corre-
lation of the ordinates in the vicinity of the origin (Kiinsch, 1986) that it may be
useful to trim this set of frequencies away from the origin and restrict attention to

{A\s = % : s =1,...,m} where [ is a trimming number that satisfies [ — oo and

M — 0 (Robinson, 1995a), although it is now known that this trimming is not
necessary (Hurvich, Deo and Brodsky, 1998).
From (37) we know that for d € (1, 1), the dft w; (\s)

X — eits
w, (/\5) _ (1 B ei)\s)_dwu (/\5) — %\/% + 0p <151€7—d> , (59)

when %—}—% — 0 asn — oo, for some a € (%, 1) . The asymptotic behavior of wy (As)
is dominated by the first two terms of (59), and as d — 1 the importance of the second
term in (59), which is Op(n?/s), rivals that of the first term, which is Op,(n?/s?).
Apparently, therefore, it would seem desirable to correct the dft w, (As) for the effects
of leakage in semiparametric estimation of d simply by adding the correction term
supplied by the known form of the expansion (59). For log periodogram regression
this amounts to using the quantity

ei)\s Xn

1 —es \/2mn

in place of wy (As) in the regression. Thus, in place of the usual least squares regres-
sion (over s =1,...,m)

Ve (As) = wy (Ns) + (60)

~ . 2
In (L, (A)) =& —dIn 1 — e

-+ error

that is inspired by the form of the moment relation (6) in the frequency domain, the
argument above suggests the linear least squares regression

- 2
In(I,(Xs)) =¢—dln )1 — e™+|” + error, (61)
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*

in which the periodogram ordinates, I, (\s) , are replaced by I, (As) = vy (As) vz (As)™ .
We call this procedure modified log periodogram regression. This replacement is in-
spired by (59), which approximates the data generating process of the dft wy (As)
over the relevant set of frequencies as m — oo in the regression. In place of the
‘regression model’

In(I; (N\s)) =c— dln)l — et ? +u(As),

with ¢ =1In(f, (0)) and

uw(As) =In [l (Ns) /fu (As)] +1In(fu (As) /fu (0))

as in (7), we now have from (59)

b0 = [ eaa o (%)

2

o 1—2d ond d

= |1 — ¢ I, (Xs) ll + (1 — eMS) Wy ()\3)71 op (n_)]
s

ixs| 24 1 2

= 1 —e Iu()\s) |:1+0p <m>:| y
which leads to the new regression model
o2
In (I, (\s)) = c—dln‘l — ™| ra(N), (62)

with
@) =L () /£ )] + () /. 0) <0y (55 ) (69)

This relationship holds for frequencies A, satisfying > + % — 0 as n — 00, in view
of (59).

The new regression (61) seems likely to be most useful in cases where nonstation-
arity is suspected. Note, however, that when d < %, the correction term in (60) is
op(1) when 3@ — 0, so that use of (61) can also be expected to be satisfactory in the
stationary case. When d = 1, the correction is exact for all frequencies, as is clear
from (16). In that case, therefore, (62) is an exact regression relation whose error is
given by

a(As) =In[Ly (As) /fu (As)] +1n (fu (As) / fu (0)) - (64)

It is then a relatively straightforward matter to show that the modified log peri-
odogram estimator has the following limit theory

m(&@izv(og—g, (65)

i.e., the same limit distribution as the log periodogram estimator in the stationary
case (Robinson, 1995a, and Hurvich, Deo and Brodsky, 1998). By contrast, the usual

20



log periodogram estimator d has a mixed normal limit theory when d = 1, as shown
in Phillips (1999). (The mixed normal limit arises because of the presence of the
term (27r)_%ei)‘5n_%Xn in (16) which is Op(1) as n — 00).

The modified regression (61) appears to be even more useful in the nonstationary
case when d > 1. In that case, the usual estimator dis inconsistent, and d —p 1, afact
that can be established using the expansions obtained in sections 2 and 3, whereas
d is consistent and has the same limit distribution as that shown in (65). Details of
this work will be reported later.

The intuition leading to the modified regression (61) can also be employed in
the case of the local Whittle estimator (Kiinsch, 1987; Robinson, 1995b)). We will
not go into details here. Suffice to remark that we would simply replace I,,(Ag; d)
in the extremum estimation problem (72)-(74) given below by I,()s), which can
be computed from v, (As) as in (60). The resulting estimator is a modified local
Whittle estimator, and, like the modified log periodogram regression estimator in
(61), its asymptotic properties can be expected to be the same for stationary and
nonstationary values of the memory parameter, including those for which d > 1.
Details of these results and related applications will be reported in subsequent work.

Our theory also suggests some other possibilities. In particular, we may build on
the idea noted above that (62) gives an exact relationship when d = 1 with error
(64). Indeed, the decomposition (15) implies the following exact relation between the
transforms wy (As) and wy, (As)

; -1 1 -~
Wy (/\S) =D, (e /\s;d> |:wu (/\5) —+ \/27r_nX>\n(d) .
Define the new transform
i -1 1 =
vr (Asi d) = wy (As) = Dy (€3 T (@), (66)

which is dependent on the memory parameter d and for which the equation
ire. 7\t
ve (Asid) = Dy (€3d) 1wy (A) (67)

holds exactly. Extending the ideas that led to (62) above, we have the exact peri-
odogram relation

, —2
In (I, (As; ) = e+ 1In [ Dy (¢3d)| " +a(n), (68)
with I, (As;d) = vy (Ns;d) vz (A\s;d)™, and
a(Xs) =1In[ly (As) / fu (As)] +1n (fu (As) /fu (0))

just as in (64). In place of linear least squares regression, it is now possible to apply
nonlinear regression directly to the regression model (68). Let Ys (d) = 1n (I, (As;d))

. )
and A; = In )Dn (e’/\S; d)‘ . Then, nonlinear regression leads to the following ex-

tremum estimator
@# = argmin Q. (d),
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where

0= 235 (50 - 510) - afa, - Y] [0 - %@} - T

=1

vl

and Ay = m 13, Ag, m = m 13", Y,(d) The advantage of d* is that it is
the natural estimator of d that emerges from the exact formulation of the regression
model in the frequency domain, i.e (68). Its disadvantage is that it is more com-
plicated to compute than the conventional log periodogram regression estimator d
and the modified estimator J, neither of which require numerical methods. Some
simplifications in computation can be obtained by using some of the approximations
developed in section 2.

Finally, we remark that the exact relationship (67) can be used to obtain an exact
form of local Whittle estimator under Gaussian assumptions about w;. The local
Whittle likelihood suggested by Kiinsch (1987) and studied by Robinson (1995b) has

the form
m

K (G, d) = % 3 llog (Gx*) +

s=1

A
ol (AS)] : (69)

and is minimised jointly with respect to the parameters (G, d), where Gy = f,,(0) is
the true value of G. The (negative) Whittle likelihood (e.g. Hannan and Deistler,
1988, pp. 224-225) based on frequencies up to A, and up to scale multiplication is

Z log fu (A Z (70)

The objective function (69) is derived from (70) by using the approximate relationship

wy () ~ (1= )y () ~ (=A0) ().

or
I () ~ AT, (),

to transform (70) to be data dependent, in conjunction with the local approximation
fu(As) ~ Go. We may now proceed to transform (70) using the exact relationship
between wy, (As) and wy (As) that is given by (67) and (66). We get

U D, MS;d QIU (/\5§d)
5 o tos{[Dn (i) a0} + el ﬂ&> 7

] 1

and this leads directly to the following ‘exact’ version of the local Whittle likelihood

1o Ao, )| 2 D (em?dﬂz
. EZ ()Dn (ez/\s;d)) G> +TL, As;d)| . (71)
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The new estimates are obtained from the joint minimization

(G™,d™) = argmin Ly, (G, d).

Concentrating out G, we find that d** satisfies

d*™ = arg ma%an (d), (72)
with
1 :
Ry, (d) =1og G** (d) —2— Y log | Dy, (e+;d)], (73)
S e[ ()
where
1 ) 2
G** (d) :EZ)Dn (e“s;d)) I, (\s;d). (74)
j=1

The estimator d** would seem to offer an attractive semiparametric procedure because
it is based on likelihood principles and involves the exact data generating mechanism
for the discrete Fourier transforms. Some small scale simulations the author has
conducted seem promising, but are more computationally intensive than those of
the usual Whittle estimator. The asymptotic properties of the estimator are under
investigation and will be reported later.

5. Technical Appendix and Proofs

5A. Preliminary Results

We provide some technical lemmas that are useful throughout the paper. Lemmas
A and B provide results on binomial coefficients and hypergeometric functions that
are either standard (e.g. Erdélyi, 1953) or follow from standard results. We give
them here to facilitate our own derivations and to make the paper more accessible.
Lemmas C and D provide some more specific results on sinusoidal polynomials and
hypergeometric functions of sinusoids that are immediately relevant to formulae in
the paper. Lemma E gives a useful inverse transform of fractional Brownian motion,
an inverse transform for a hypergeometric series of fractional Brownian motion and
some useful relationships between certain integral functionals of fractional Brownian
motion and Brownian motion. Lemma F provides a new asymptotic expansion for hy-
pergeometric series that allows for increasing coefficients as well as an argument that
tends to unity. The expansion should be useful in other work with hypergeometric
series.

Lemma A
@) () =(-DF L3,

(b) (p+a); = T, (@), = (@)jla+ )
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() Spo e = Wdag (g £0,1,.) + o S2x1(d=0,1,..).

@ Ty =n 7 [1+0(3)]

Proof Part (a) is immediate from the definition

A\ A dd—1)..(d—k+1)
k)~ d—k)k k!

(—d)...(—d+k—1)

The second formula in Part (b) is immediate from the definition of the forward
factorial. The first formula in Part (b) follows from

pia), = Lletati) T+atj)T(G+a)/T(a)
! I'(p+a) T(j+a) L(p+a)/T(a)
G+ o)y gt

For part (c), we write the sum as a terminating hypergeometric function, and use
Lemma B (a) & (c) to obtain

Xn:<_d)’f = <_Tf?n oFy (—n,1;d —n +1;1)

(-d), T(d)T(d—n+1) T(-d+n)d—n
n! T(d+1)T(d-n) T(=d)n! d
I'(—-d+n+1) (1-4d),
F(—d+1)n!  nl ~’

ai L simply terminates at k = d.
Part (d) is a standard result that follows from the Stirling approximation (e.g.
Erdélyi, 1953, p. 47). ®

for d #0,1,2, .., while for d = 0, 1, .. the sum Y7o &

Lemma B In the following formulae, 2F1(a,b,c;z) = 5oy ((,?,’(“(b 2% is the hyper-

geometric function.

(a)
" (—d —d
Z ( k|)kzk = (n—')”z" o F (—n, 1;d—n+ 1;2_1) 1(d#0,1,..)
k=0 " '
d k
(=d)y, 2 _
+;;) o Hd = 0,1,.),
(b) S5y Stat = 2 ot 0B (m 1~ d, Lim + 2;2),
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(c) 2Fi(a,b,c;1) =T ()T (c—a—0)/[I'(¢c—a)T (c—0b)] for Re(c—a—0b) >0and
c£0,-1,-2, ...,

(d) If || <land |2/(z—1)| <1
aF1(a,byc;2) = (1 —2)7% 9F1(a,c — by 2/(2 — 1)), (75)

the right hand side giving an analytic continuation of the hypergeometric func-
tion to the half-plane Re(z) < 3.

(e)

n (—d)y (e*“)k (1 —d), e~ ;
Z o = n:L QFl(—n,l;l—d;l—el)\)]-(d#()ala")

—iAk

d
Z kS 1d = 0,1,.),

(f) If Re(c) > Re(b) >0

oF1 (a,b;c;2) = 0 b /01 (1 =) (1 —t2) T, (76)

TO)T (c—

which gives an analytic continuation of 2F1(a,b;c;z) to the entire z plane cut
along [1,00], i.e. to all z for which arg(l — z) < .

Proof Part (a) is given in Erdeélyi (1953, p. 87, 101) in terms of binomial coeffi-
cients. Using the form given there and Lemma A (a), we have for d # 0,1, ...

n —d V3
S - 3 () o
— () 2F1 n,1;d—n+1;z—1)

= af z2" 2F1< n,l;d—n+1;2z" )

When d = 0,1, .. the sum simply terminates at £k = d and the stated result follows.
For part (b) we have

- (_d)k k m+1 Z m+1+k
> = st
(m+1+k)!

_ il m—i—l—l—k‘ d)
- Z T(m+2+k)
_ gl (m+1-d), T(m+1-d) ,
- Z (m+2), T(-d)T(m+2)"

25



gmt1_L(m+1-d) i(mﬂ—d)k(l)xk
P(=d)T(m+2) = (m+2), k!

m-+1 F(m+1_d)
T (~d)T (m+2)

oFy (m+1—d,1;m+2;2) (77)

—d
mm"'l()imﬂ oFi(m+1—d,1;m+2;2),

(m+1)!

The hypergeometric function 2 F1 (a, b, ¢; 2) = Y72, (a) ’“ b) k2% is absolutely convergent

for all |z| < 1 when Re(a+b—¢) < 0 (Erdélyi, 1953 p 57). Hence, the series in
(77) converges absolutely for all |z] <1 when d > 0.

Part (c) is a well known summation formula (Erdélyi, 1953, p. 61). Part (d) is
Euler’s formula (Erdélyi, 1953, pp. 64, 105). The series for oF}(a,b,c; z) converges
absolutely for all |z] < 1 and converges absolutely for |2| = 1 when Re (¢ —a —b) >
0 (Erdélyi, 1953, p. 57). The series for oFi(a,c — b;c;z/(z — 1)) Converges for
|2/(z — 1)| < 1. Since the latter inequality holds for all z for which Re(z) < %, it
follows that the right side of (75) gives the analytic continuation of 2 F(a, b; ¢; z) to
the half plane Re(z) < 1 (Erdélyi, 1953, p. 64).

Part (e) is obtained by direct calculation. Using (a), we proceed as follows for
the case d #£ 0,1, ...:

k

i (_d)’“lgf_ik) - (_j)n (e_ik)n 2P <_n> Ld-mn+ LeM)
k=0 ! : j
e e, o)
— o P jl(d—n—i—l)
() e E (=n); (i ‘
= ] _O(d_n+1)j(IZ(J<iI)< ' 1)q
(—d), e"n (=n); : : !
— n! o(d—n—i—l)quo(j j‘])'ql <e/\ 1>q

Since (—n),,, = (-n), (~n+¢q),,and (d —n+1),, = (d—n+1),(d —n+1+q),
from Lemma A (b), (78) becomes

(=d), e & (=n), (e - 1>q’§ (¢—n),(g+1),

n! S d-n+1), Z(d—n+1+q),s!
(—d), e Iy (—n), Y
" q:zo(d—n—i—l)q(e ) 2F1 (g =g A (79)
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In this expression, the 2 F7 series terminates, so Lemma B (c) holds and (79) sums to

(=d), e~ & (—n), ; ¢T(g—n+d+1)T(d—q)
Z(d—n+1)q (2 =1) T(d+1)T(d—n)

q=0

R R
e S e GRS

S e M e ek
- (o e (o)

- U=y e dq)ﬁ O R(en 11— di1— ),

giving the stated result for the case d # 0,1,.... The result for d = 0,1, .. follows
immediately because the series terminates at k = d.

Part (f) is a standard result (Erdélyi, 1953, p. 59). W
Lemma C Assume d # 0,1, .. . Then:

(a) For fized X #0 as n — oo

o (=D o ( 1 >
Z e =0 .
d
k=n-+1 k! nit
(b) For Ay =2% — 0 and s — 00 as n — o0
$ Gl L fo(1]o(.L)
L k! 2mi T (—d) nds s nitd )~
=n+1

(c) For Ay =25 — 0 and s fived as n — oo

i %e”‘sk =0 (%) :

k=n+1

Proof Using Lemma B (b), Lemma A (d) and Lemma F (b) we get

i (_d)k ei/\k

k=n+1 k!

_ oyt T'(n+1-4d) . i

— (e ) NEICES) o (n+1 d,1;n+2¢ ) (30)
. 1 1 1 1

— iA(n+1) - - —
e 0 ()] == o ()] -0 ()
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27s

giving part (a). For A = Ay = <2
F (a),

— 0 and s — 00 as n — oo we have, using Lemma

(e”\s>n+1 I‘I(‘—(Tcll)_;l(n_—f)Q) oI (n +1—-d,1;n+2; e“‘s>

iAs 1 )
14+0 (—)} 2 F1 <n+1 —d71;n+2;el)‘s)
n

__°
T (—d)nitd

- e { e 5 s Do ()]

(o @)}
- F(—d1)n1+d1 eMs {HO( ) G)]
- T [HO( )]0 ()
- ‘r<—1d> T o ()] o ()
- v [0(5)| o G=). &)

giving result (b). Finally, for s fixed as n — oo, we have

i (—]:!l)k ( ix ) ( > k1+d> = <%>7

k=n+1 k=n-+1

giving part (c).
|

Lemma D Assume d#1,2,... , let r € (0,1) and let Ay = % — 0 with s fized as
n — o0o. Then:

2P (=[], 1,1 = di1 = e™) = (F (1,1 = d; 2misr) + O (n7t), (82)

JFi(—=[nr], 1,1 —d;e™™s — 1) = 1F1(171—d;27risr)+0<n_1>, (83)

and for nonnegative integer p < n
2Fi(—p, 11— dil— ™) = | ( —d; 27Tzs—> o). (s

Proof The same argument gives both results (82) and (83). We prove (82).
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7=0
0,520 j
= — 2 (27isr + O (n”
= (1—d)jj' ( ( ))
= (1), ; 1 > (1), .
= Y —L—=Q@nisr)) +O(n7") = Y = —L— (2misr)’
— | — |
= (1—d);j! ( ) i1 (1—d); !
= 1F (1,1 —d;2misr)+ 0O (nfl) ,
because
i (l)j @’ — N+l Z
G=N+1 (1- d) J! d>k+N+1
+1 2k
T T(-d)! Z I'(k+2+ N —d)

_ N“F( —d) - (D),
- F(N+2—d)kzzo(2+N—d)kk!

(85)

e SO Ly [ff( U k!] 1+0(3)]

V21 (N +2 - )Nt d | =

1
- ofxka)

2+ N —d),

for all 6 > 0 and all finite =. Line (85) above follows because, for 1< j < [nr],

O
and
%g : 1(?]65;;! (2misr)!
= 0 (%?2(1(153—35]]. (27Tisr)j)
= 0O <% 1F1(3,1—d, 27rz'sr)> =0 <%> ,

since the 1 F} function is everywhere convergent.
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Next, for (84) we have
2Fi(—p 11— d;1— ™)

- S (o)

- (5 0 ) R (5 0o )
(_

o (B o ()

-1 , 1 1) (-1+0(pt , 1
= 1—|—Hi<2msr—l—0<n ))—i—( )((ljd)Q(p ) (27”3%4—0(71 ))

140 (p~1H))? . N
—l—...+( (t g; ) <2ms%—|—0<n )>

-3 <”?§,))j (<2msl 40 (u )Y
-

< 27ris%>j +0 (pil) ++0 (nil) (87)
3:0

— i %(—2%1’8%)]'

Jj=p+1

+...+

_ 1F1<11 d&; —2mis? >+0( N+o (),

giving (84). Again, line (87) above follows because

(1)9 j% ] <—27ri3%)j
(Z () ) =0 ()

Lemma E

(a) For j=1,2,..
PG+1-a7 [ =9 Bia (9ds =T ()" [ (r—a) ' Blayda
0 q=0
and for j =0,1,2,...

PG+1=d)7 [ (=9 Ba (5)ds ru+n*4;v—m%wm»

30



(b)
T(1—d)" /0 "R (1,1 = d;—2ris (r — q)) (r — g)~ Ba_i (q) dg = / ’;0 e 2mis(r=0) 4B (g)

(c)
ﬁ /01 1Ry (1,1 + d; —2misr) rdB (1 —r)
! ' 1
T T f)(~2nsi) /0 AR (1,1 - fi=2misr)dB (1 - 1) + (Tomsi) D1 (1).
(d)
ﬁ/ol 1Fy (1,1 + d; —2misr) r%dB (1 —r) = /01 2™ By (v) dr.

In the above formulae, B(r) is Brownian motion with variance w* and Bq 1(r) =
ﬁ Jo (r — $)*VdB(s) is a fractional Brownian motion initialized at the origin, as
m Lemma 3.4.

Proof To prove (a) we use an operator approach with D = % and allow for frac-
tional powers of D with a Weyl integral interpretation (see Lavoie et al, 1976, and
Phillips, 1986, for the approach used here). The operator e?” is treated at the trans-
lation operator, so that e? f(x) = f(x + q). Setting Bg_1 (s) = 0 for all s < 0 we
have

1 r i—d 1 i
S —s) By (s)ds = —— I=4B,y 1 (r —q)d
rGTT=d (T B = g [ P -0
1 g
= RGE T ?T B ()
q:

- Dd_j_le—l (w) T=r
_ Dd—j—lDl—dB (33) |w=7"
D7IB () |p—r

= F(j)_l/qroqle(r—q)dq
= TG [ - B@d (9

giving the first of the stated results and, consequently,

r . '1—-d)((1-d). rr .
/O(T—s)ﬂ—dBd,l(s)dsz : r)(;) ! /qO(T_Q)J_lB(q)dq.

To obtain the second form of the result we use integration by parts to give

T

v [ e By = 5 G)T [C -a B

= TG+ [ r—oldB@).  (39)

q=0
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Combining (88) and (89), we have

r

1 T j— B . _ g
m/o (r—s) *By_1(s)ds =T (j +1) l/q (r —q)’ dB(q)

which holds also when j = 0, giving the inverse relation

1 r iy
—_— — By ds =B
Foa , (o) B () ds = B, (90)
(see Theorem 3.6). An alternate weak convergence proof of (90) is given in the proof
of Theorem 3.6 below and, from this result, (89) can alternatively be obtained by
subsequent integration.

To prove (b) we proceed as follows:

ﬁ /O By (1,1 — d; —2mis (r — q)) (r — @)~ Ba_1 (q) dg
- a9 2 (@2_7:0) fy = e
= g;f_gﬂis;;j(lrzj?)j /q T:O (r—q)’~" B(q)dg
_ 2% [ =2 B
= i(_%fs)j/qlo(r—Q)de(Q)

3 O

efQWis(rfq)dB ((]) 7
=0

Il
S~

using (89) in the penultimate line. This proves (b).
To prove (c), we expand the 1 F} function on the right side of the formula and use

1 ) 1,
By 1(1) :W/o (1— )41 dB(s) :_W/o PR — 1),
to get
1 ! 1
F(l—f)(—Qwsi)/o P B (11— fi=2misr) dB (1= 7) + g Baa (1)
- 1 x (1), (—27si)’ 1 i a1 1 - .
N F(l—f)(—QWsi)jZO J1 (A= f); /0 rdB {1 =) (—27rsi)F(1—f)/0 dB(1 =)
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_ 1 = (1), (—2msi)’ 1rj‘f .
B r(1—f)(—27rsz')jz:: A=), /0 dB (1 —r)

1

. = (—2msi)? I n s -

B jzlr(]‘f’l—f)/oﬂ dB (1 —r)

I ) Y TR

N ,;)F(kﬂﬂz)/or dB(1—r)

= 1 > (1), (—2msi)* 1

- F(1+d),§ kf(l—kd)k /Ork+ddB(1—r)
- ﬁ/{)l 1By (1,1 +d; —2misr)rddB (1 —r)

giving the stated result.
To prove (d) we use the exponential expansion for e?™" in the integral on the
right side, giving

I T 1 ;
/ eQﬂzsrBd_l (’I“) dr = / eQﬂzs(lfr)Bd_l (1 - ’f‘) dr — / 6727r157"Bd_1 (1 _ ’f‘) dr

0 0 0
© (_9rgi)d 1.
= —( ;SZ) / ’I“]Bd_l (1 — 7“) d’/“
=0 0
X (=2msi)? 1 ;
-y % /0 (1 =) By, (r) dr- (91)
=0 7

From part (a) we have

T

TG+1-a7 [ 0=/ Bus (s =T (G +1)7" / (r - q) dB(q),

and setting k = j — d and r = 1 gives the formula

P+ [0 =0 Bra(ds =T d4 )™ [ (1= 0aB(o),

1 1
T (k+ 1)—1/ By (1—s)ds=T(k+d+ 1)—1/ UdB(1—q).  (92)
0 g=0

Using (92) in (91) we get

1 0 (o Vi
/ eQmsrBdil (7,) dr = Z ( 27T8'L)
0

1l
— 7!

L E (e TG [

1
/ " Bg1(1—r)dr
0

<

g=0
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27rsz (1)j

- 3

1
/ ¢HdB(1 - g)
0

= F'GG+d+1)
1 L& (_27TSiQ)j (1)j d
= — dB(1 —
F(d+1)/ 2;) T (ara),d B9
1 1 , d
= m/o 171 (1,1 + d; —2misq) ¢"dB(1 — q),

giving the stated result.
[ |

LemmaF Let o and (3 be constants for which Re(3), Re(8—a) > 0. The following
asymptotic expansions to some given order k hold

(a) Let Ay =25 If £ —»0asn— oo and s — oo, then

o (04, n— B;n; GMS>

o [ o ()] o (s b0 ()]

(b) Let X\ # 0 be fized as n — oo. Then

2 Fy (Oé, n — B;n; 6M)

e[S (12 o ()] <o )]
7=0 ‘

(c) Let A\g =25 f £ + 45 — 0asn,s,p— oo, then

o F (a,p — B;p; 6”5)

- e RO o Q) -o(( b0 Q)]

J=0

Proof Since Re(f—a) > 0, the series for o F} (a, n — B;n; ei/\S) converges absolutely
for all As. Using (75) from Lemma B (d), we write

. . ei)\s
o Fy (a,n — B 6“5) = (1—e™) 2 |, B5n; — : (93)

ers — 1

where the right side has a convergent series representation for suitable A, viz. when
e /(A — 1)| < 1, or cos(As) < 3. Although the domain of convergence of the
series on the right side series is restricted, the right hand side has a valid asymptotic
expansion for large n that applies to all A; as we shall now show.
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First observe that as n,s — oo with £ — 0, the complex quantity

0 <%>] = oo (14 o(1) (94)

lies inside the plane cut along [1,00], i.e. |arg(l — Z,,)| < 7. Hence, we may use the
analytic continuation of the right hand side of (93) based on the following integral
representation (Erdeélyi, 1953, p. 59; Lemma B (f)):

I'(n)
F'a)T'(n—a)

ei)\s

n
Zns = eirs —1  2mis {

1
2 F1 (B, ;5 Zns) = /Ot“"l (1= > 11 —tZy) Pdt.  (95)

An asymptotic series that is valid even for |Z,,s| > 1 for large n may now be obtained
using a method due to MacRobert (see Erdélyi, 1953, p. 76) as follows. Expand the
last binomial factor in (95) in MacLaurin’s expansion up to k terms with remainder
as

(1— Z 5 (tZs) + 2% (17, / k(1= )" (1 = qtZns) P dg.

Now scale this expansion by %)—n%to‘ ¢! t)”f‘)‘f1 and integrate term by term,
using the formula

I'(n) ati1 (] _ pn—a—l 3, _ I'(n) Fla+)l(n-a) ()
I’(a)I’(n—a)/ot A= At = T m—a) Tntj) ),

This leads to

2F1 (67 a5 n; Zns)

_ = (a)J(ﬁ)J Z] + Rkn

=0 (n);j!
(@09 - N
B Jz%) O(énj)jj!j (271:@'3 _1+0(%>_) + Ry
E—1 oy i ) |
) JX%) (a);(’ﬁ)j (2;’3 1O (%> [HO(”l)D] + Ry
_ k: <a>;§ﬁ>j (2 ; :1+ 0(%>:>j+ka "
where
e = %/jtal(l 0" (tns) / k(1—q)" " (1= qtZps) ™" dgdt

M8k (35 [1+0 ()"
(n)gk!B (o + k,n — «)

X /01 etk — gyt /01 (1—q™! <1 - qtﬁ [1 +0 ( >Dﬂk dqdt,
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since the beta function factors as follows

1 B I'(n)
B(ay,n—a)  T(a)T(n—a)
Pla+k)T(n)  T(n+h) ()

F(@T(n+k)T(a+k)T(n—a) @rB(a+kn—a)

In view of (94) there exists a constant ¢ > 0 for which [Im(Z,s)| > c. Then, for any
given § and k, there exists an M, independent of n and s, such that

sup )(1 — thns)fﬁfk‘ < M.

t,4€[0,1]
Then,
E(e)r(B)r (22 [1+0 ()" - -
< mis n a+k—1 _ p\n—«a 1/ k—1
|Rin| < M (n)gk!B (e + k,n — « /0 t (1) 0 (1=q)"" dg

B(a+k,n—a)B(k,1)

( )

) )
k()r(B)k (5 [1+ 0 (2)])" (

) )

( )

=

B (LT,

k! 2718

o(2)])"

so that Ry, has the same order of magnitude as the first neglected term in the
expansion (96). Thus, (96) is a valid asymptotic expansion of the form

(g o ()])
5 (o ()Y <o (e Lo ()]))

giving the required result for part (a). Part (b) follows in an identical manner using

in place of Z,;.
To prove (c) we proceed as in the proof of part (a), setting Z,s =
(94). Then

e :
oixs 1 as 1

(5 ;D5 Zns)

Z ]ZJ + R/mp
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_ 3 @40 <2:is {1 P <

(p);3!

e
>] [1 +0 (p—l)Dj + Rinyp.

)Y e

Slow

N (a);gﬁ)j <27:;Sp {1+O

(
_ Sl

J! 2misp

> .
= o

> .

[

= o
S|w

<.
Il
o
S|w

since p—ns — 00. The remainder is

(B)k Lot —a—1 k[t k—1 —B—k
s Lo/ EE— T (N (7 /kl— 1 — qtZps) P * dqat
Rinp k!B(a’p_a)/O (1-1) (tZns) ; (1-q)" " (1 —qtZns) q

BBk (725 1+ 0 (2)])"
(p)xk!B (a + k,p — )

1 1 n S Bk
o / gtk (1 _ t)p—oﬁl/ (1—¢q)f ! <1 — qt—o [1 +0 <—>D dqdt.
0 0 2mis n

As in the case of Ry,,, we have

N )
— M(a)l;(!ﬁ)k <27:;Sp [1 0 <%>]>k7

again since ¥2 — oo. Thus, Ry, has the same order as the first neglected term in
the series and we get the asymptotic expansion

ei)\s
2471 67aap7 €Z>‘S—1

- (o)) so((ss o ()

which leads to the stated result. W

5B. Proofs
5.1 Proof of Lemma 2.1 See Phillips and Solo (1992, formula (32)). W

5.2 Proof of Theorem 2.2 From (9) we have the following alternate form for the
model (1) for all t <n

= (1= L)' X = Dy (Lid) X; = Dy (€d) X + Dy (7P L;d) (7L — 1) X,.
(97)
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Observe that
D (e‘“‘L; d) (e_i’\L - 1) X, = (e_“‘L - 1) X = e P Xy 1(d) — Xnu(d), (98)
where Xy;(d) = Dpa ( e ML d) X¢ = Y073 dype P X, . Since the right side of (98)

is a telescoping Fourier sum, taking dft’s of (98) leaves us with \/— (X 2 (d) — A X An(d)) .
It follows that when we take dft’s of expression (97) we have

[Dn (e”‘ d)] we (As) + \/% (XAO(d) - em/\jﬁn(d)) =wy (A), (99)

giving the required formula (10). H

5.3 Proof of Theorem 2.7 Equation (18) follows immediately from the defin-
ition (1 —L)X; = 2 and (16). Equation (19) follows by applying (15) to z =
(1-L)Y"%u. =

5.4 Proof of Lemma 3.1 Using the hypergeometric series representation from
Lemma B (b), and the asymptotic expansion in Lemma A (d), we have for d > 0

Dh, (e“ d)
= (Z Z) i
k=0 k=0 k=n+1

I'(n+1—d) »
1- et~ LR 1—d, 1;n+2;
) F( d)(n+1)!2 1<n—|— s ,n+ ;€ )

et(nt1)A
1- ) T (—d)ni+d

1 ,
1+0 (5” o F1 (n +1—-d,1;n+2; e”‘) (100)
giving (31). Formula (32) follows immediately from Lemma B (d), noting that
le* /(e —1)| < 1 when 2cos()\) < 1.
Next, using Lemma F (b), we have for fixed A # 0,
. . 1
P (n +1—d 1n+2 e“) = (1—e)! [1 +0 (—)} . (101)
n
It follows from (100) and (101) that as n — oo and for fixed A # 0
~ B o d B 1 ei(n+1))\ l
Dn<e ,d)-(l e ) T (=) it 1= o 1+0 Ik
giving part (a).
When A\, = 2“—n” — 0 asn — oo and s — 00, we proceed as follows. Using Lemma
F (a) in the hypergeometric factor in the second term of (100), we have

o F) (n+1—d 1-n+2-e“s)

-y e () o (@l @)
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Then, as in the argument leading to (81), the second term of (100) admits the fol-
lowing valid asymptotic expansion for A = Ay — 0 as n — oo and s — 00 :

s 1 )
. . iAs
W 1+O(E>:| 2F1(n+1—d,1,n+276 )
1 1 1 1
= g 0 ()] o () 1)

and so from (100) and (103) we get

(0= (02" g0 ()] 0 ().

giving part (b).
For part (c), we start by using the following summation formula from Lemma B
(e) .
n (=d);, (e 1 —d), e?sm ,
Z k<' ) — ( )7" oF1(—n,1,1—4d;1 —e_MS).
= ! n!

Since s is fixed, we have from Lemma D (84) with p =n
SFi(—n, 1,1 —d;1—e™™) = 1F (1,1 — d; —27is) + O (n—l) .

It follows that

n (_d)k (ei)\s>k (1 N d)n etrsm _ .
y— S = et [ 1F1(1,1—d;—27ms)—|—0(n )}

1—-d 1
_ - Jo B (1,1 — d; —2nis) + O (nw), (104)

and, then, for fixed s as n — oo, we have

Dn<e ,d)_z AR g 1Py (1,1 = d; =2mis) + O (7 )

k=0
(105)

as required for part (c).
Part (d) follows as a special case of formula (105) with s = 0. We also get the
result directly from Lemma A (c), viz.

D, (1:d) = :g (_]j)k _ (1(;_d)1n)71 _ I‘(ll— d)% [1 + 0 (%)} )

It follows that D,, (1;d) differs from zero by a term of O (n*d> . B
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5.5 Proof of Theorem 3.2

Parts (a) and (b). We write Xy,(d) as the sum of two components, the first
involving L + 1 components, with 1 < L < n and where the choice of L will be
discussed below. We then have:

n—1 n—1 n
)’Z)\n(d) — EnA (e—iAL; d) Xn — Z Cfi;\pe_ipAanp — Z ( Z (_k;d')keikk> G_Z‘pAXn,p
p=0 p=0 \k=p+1 ’

L > (_d)k ik —ipA = S (_d)k ik —ipA
=y (5 Elem) g 5 (0 Cllem) g,
k ’ k ’

p=L+1 \k=p+1

1 " (=d)p aon | —sor X
+n17d ( Z ( k')kekk> e DA dilp (106)

Next, look at the sinusoidal sum Y~y 4 (_Ij)’“ e™ that appears in (106). We use the
truncated binomial series formula from Lemma B (b) in this sum, giving

i (_d)k ei/\k

Ml k!
— (=i ik — (=D ik
D DR D Dl
k=p+1 k=n+1
e+t (=d)p 1 i
(e ) pT 1) 2F1<1—|—p d,1;p+2,e )
i)+ (=D)pig . i
_(e ) TS QFl(n+1—d,1,n+2,e ) (107)
For large n and fixed A # 0 we have, using Lemma C (a),
o (=i ixe 1
2. e :O<n1+d>’ (108)
k=n-+1

while for A = A\, = 2Z% — () and s — 0o as n — oo we have from Lemma C (b)

— (=d), iXsk _ _ 1 1 [ <1>] ( 1 )
k;-u R I (—d)nd 2mis 1+0 s +0 itd ) (109)

So, neglecting the second term of (107) in view of (109), we get

Xn: % (emy - (eMs)pH Fr(gj'd;(;:?)! 2Py (14+p—d, 1;p+2,6™)+0 <%)

t=p+1
(110)
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for all s — 0o, as n — oco. Finally, for s fixed as n — oo, we have from Lemma C (c)

£ G -o(3)

k=n+1

so that (110) also holds with s fixed.
Using (110), we deduce that

L = d) zk/\s —ipAs
n1 d Z ) ¢

k=p+1
1 & (=) L
i p+1
= s oF (1 d, 1; 2, —
oSG o (1t 2et) +o ()
1 & (—d) ,
J— iAs P+1 . s
- nl*dzo( +1)| 2F1 <1+p_d71)p+27e )
p:

a1 & (=) I
_ iAs p+1 L
RS > P +1) 2F1(1+p d, 1;p +2,e? )+O(n8).(111)

Now

> (=d)pi1
pzo(pfl) F1(1+p d1p+2e)

_ i( Dpi1 > (L+p—d), (1), k ik
(

= +1)! = E'(p+2),
e Dy L4 p—a), k gidk
a kz_;)];] p+1)! (p+2),
SR (R, 01—,
= e+ D1 =d), (k+2), (2),
- X §%<p+ﬁw< F e b i 12
Next, since (2), = (p+ 1)! and

( d)p+1 F(—d) F(l—d) (_d) (l_d)p
we have
< ( d)p (1 d+k‘)p(2)p B s (1—d+l<:)p
];0 (p+1+)! 1—d),(k+2), (_d);) (k+2),
 (1—d+k), (1),
— d)p; N
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= (=d) 2F1 (k+1—-4d,1;k+2;1)
T (k+2)T(d)
(= )P(k+1)P(1+d)
= —(k+1), (113)

where the penultimate line follows by the summation formula of Lemma B (c¢). Using
(113) in (112) we get

_ , (114)

Thus,

PRI (1+p—dLip+2.e™)

(=d)py 1 —d+ k), (2),

RS (1= d)y i,
- ZLZO(]H—U! (1-d),(k+2), st

(2)x
= i (115)

Next, using Lemma F (c) we find that for 2 + &~ — 0 (which holds under the
conditions on s and L that are given below),

© (~d .
3 ((p +)p1+ﬁ 2Fy (1+p—d Lip+2,¢™)
p=L+1 '

- (pi ((;i)pf; 1 —16”5 [1 e (%)])

=L+1

- ofte 5 ot [eo(2))

p=L+1

_ 0(1#) (116)

Ld1 — eirs

It follows from (111), (115) and (116) that

1 & (=) i —ipA 1 e L
nldpz (kz e € = T (1= eyl +0 (E)

—(0 :pJ,»l




1 & (—d)yn i
i 2 (p+1)! QFl(Hp_d’l;p”’e )
p=L+1 '

et n
B _mld(l_eixs) +O(L> +O< 1>' (17)

The first term in (117) is O ( = d) and dominates the second term. The first term
also dominates the third term when 1~ — 0, which will be the case when %5 — oo,
as n — oo, for some a € (0,1) and L = [n'7*] and when d < 1. (Note that for s
fixed the last term of (117) does matter, and this distinguishes the s fixed case, which
will be considered below in the proof of part (c)). Hence, when n — oo, As — 0 and

- — oo (with L chosen as L = [n!7?]), we have

(=d)y, gikAs | =i X
nl d Z (kz %l - ) e nd*f

=p+1 2

- 5 Z( > Cl ms) e | S0, (1) (118)
k ) n

1
1 2

B 1 s X 1
N _nl—d(l_ez‘)\s)kd -1 T\ 514

eths Xn 1
= gy (=) e

Line (118) above is justified by a separate argument, which we now develop. We use
the fact, from Lemma 3.4, that néden,p = O,(1) and p < L = [n'=%] . We proceed
as follows. Select K = [n!™7] — oo with 0 < < a (we will place a further condition
on 71 below). Then, £ + £ — 0 and we may write (for large n)

anp 1 g (d)j 1 ' (d)j K d)j
= g Up—p_j = E — Un— E 7 Un—
ndi% ndf% = ]! p—j ndi% K j! p—j T+ ndi? = ]! ]
n—p 1 un—p—j |: 1 K d*a 1 K d .
N1-d P _1 E: p—J
oK1 (‘%) v K " K2 55 )
[ R R 1 ( K\43
- () o ((5)
N 1—d P D
j=K+1 (%)1 \/ﬁ K n
n—p 1 o (DT d 1 K d—1
B e () rolg)e((B)
j=K+1 (%ﬂ) v J "
= +0, + 0O,
1-d
k=K +p+1 (%) vn \k-p K n
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n
o Z 1 Un—k _ (
- 1—d
— (& Vn n —
k=1 (n) =17
" 1 K\% 2
o D D= +0( )+O (( > ) (120)
2 k=K+p+1 "
Observe that for any § > 0, 333 | 575 Un—k converges almost surely since 3 7% | 5 Elupn k| <
0o. Then,
" 1 “ 1 > 1
E Z mun—k < Z —dE|Un—k| < Z 5 E [un—kl
k=K+p+1 k=K+p+1 k=K+p+1
1 > 1 1
< — Z E]ukfzo(i)
> 1—d—6 n 1—d+6
K k=K+p+1 K=o
and so
S =0 <—1 )
2—d ‘'n—k = % TF1—d=5
k=K+p+1 & K
It follows that
N M P
i3 o L2—d mk P\ a1 n(-m(1-d-9) P\ 5 n(-d-8)-5
— Y Vi
- P\ po—n(l—d—6)—06
uniformly for p < L. For K = [n'~"] and with 7 satisfying
a J— l —
0<77<m1n<a 1—5—5)7
and choosing ¢ such that 0 < 6 < a — %7 we have
p - 1
1 Z T5 gUn—k = Op (1), (121)
N2 k=K+p+1 K

K+p
n

uniformly for p < L.
Using (121), we find that (120) can be written as
-3 1 K\
> +o0p (1) + Oy ( )+O <<n> )

n (C]iiunk + 0p (1)‘| +Op (

Xy [ 1
it [Z -
1
1 X
0 (30) +osl1) = 55 + (1),
n

X, K d*a
O _
O n) K

n=3
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uniformly for p < L = n'=% with a > %7 thereby establishing (118).

When n — oo with fixed A # 0, we have, in view of the use of (108) rather than
(109) in the above arguments, the same expression but with an o, (n*(lfd) ) error.
Specifically,

D s\ _ion, X
(S o) on Xy

k=p+1 2

B 1 e X, 1
- Tid (1 A)l d, a1 +0p ni—d

1n 1 1 1
o(-2X_ 1 )io(—~=
+ (nLdl—elA)+ <n1_dnd)

1 et X, 1
S (1— eM)lfd -1 +0p (nl—d) : (122)

In both cases the dominant approximation is given by the first term and we can write

Z Z d) otk —szXn P _ _ e e Xn .
nl nl—d — My k! nd_% ( 67)\)1 d\/_ ( €Z>\)1 d\/’

It remains to show that we may neglect the second term of (106). Using Lemma
C(b), Lemma 3.4, (110) and Lemma F (c), we have, when n — oo, Ay — 0 and

i—>ooanclL—n1 @

na
—1
15 i (_d)keik)\s o—iDhs Xn—p
nl—d k! nd—3

(]

1 n—1 etAs(p+1) (_d)p+1 ‘ 1 oy
= Fi(l+p—d1;p+2,e*)+0 (_> oA TP
ni= p—LZH ( (p+1)! 2 ( P P ) nds nd—3
’L)\
s ] X B 1
-y p“ 2B (1+p—d Lp+2,6) | 2210, ()
s n¢=2 s
oihs . n ¥ .
(1 eie nl ni= p= %1 ( +1)! Sp nd-3 P\s

- 0, (;j)+0 (i) (123)

which is op(sl%d) since 7% — 0.
For the case of fixed A # 0 and with L = n!~® we get

1 = . (_d)k ik ipA Xn*
I S IR oWRAs | oTtP s2N—P
DS (z <

p=L+1 \k=p+1 2
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1 1 1

In both cases (123) and (124), the order is smaller than the leading term of (119) and
(122), respectively. Hence, for both fixed A # 0 and Ay — 0 and % — oo as n — oo,
we have

=p+1

Xu(d) Dy ik | —iprs Xn—p
N nl —d Z kz k! c nd—3%
ez)\ _n eiA ﬁ
_(1 —ei/\)l_d\/ﬁ o (1 —e“‘)l_d\/ﬁ ’
giving the required results.

Part (c). Our interest is in

stn(d) - 1 = . (_d)k ks 7zp)\s Xon— —p
\/ﬁ T opl—d p;o Z k! € _1:

k=p+1

From Lemma B (e) we have

m_(—d)y (ei)‘sy (1—d),, ersm ,
3 - — ™ o F1(=m, 1,1 —d;1 — e ), (125)
—0 . me

Since s is fixed, 1 — e~ ™« = 225 4 O (n"2) and using Lemma D and (125) we get

k - 1
PR S EE L N 2wwy+o< Hd) (126)

v (=) (M) (1 a, e |
Yo ——— = —F—R(-pll-dl-e™)
P k! p!
(1-4d), eiAsP
— TIFI( d —2mis— >—|—O( 1+d> (127)

Now n%_an_p = O, (1), uniformly in p <n, so that

D ikr, | -iprs X I G v CDiane | —ipa
(5 o) tp LS (82 G ) o

k=p+1




Using (126) and (127) and noting that 377 p 174 =0(1), we have

1 & (=D ik, | —ipre Xn—p
n—l_dz(z B R R
p=0 \k=p+1 noo2
1 i (1—=d), 1F(1,1—d;—2mis) (1-4d), ™ 1 Fi (1,1 — d; —2misf) e nhs Xnp
nl-d =0 n! p! n? 3

1

Next observe that, since s is fixed as n — oo,

1 (1-4d), " _iphs Xnp 1 1 & —iphs Xn—p 1
Tt - g ™ e o ()
B 1 1 & —mis? Xn Knp 1
= o a2t 3 O (n>
p=0
_ 1 /1 727rz'srX (1 )d —I—O 1
= —P(l—d) ) e n,d T)ar D "
_ 1 /1 27risrX ()d —I—O 1
= —P(l—d) 06 n,dr T D " .
Further,
1 i (1—d)p 1P (1,1—d; —2’7'('2'85) anp
nl_d p! ndf%
B 1 "1 F (1,1 —d; —2misE )Xn —p 1
B F(l— d) ni= dz pd nd—1 +0p (nl—d)
1 & (1,1 —d; —2mis2) X,,_, 1
- st o)
npz (n) ndfé P\nt-d

1 1 g 1
= m/o 1F1 (1,1 —dy —2misr)r=“Xpq (1 —7)dr + O, <W>

We deduce that

- d) 3 —1 SXTZ
nle(Z i mS)ep’\ d%p

k=p+1

d), 1F (1,1 —d; —2mis) (1—d),e™? 1 [ (1,1-d; —2m'sr)} i X
e S

_ ( — y L — % P
- nl—d];){ n! B p!

1
0, (-1)

1 ! —2misr .
T T(1—d {/0 e 1F1 (1,1 — d; —2mis) Xy q(1 —r)dr
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' 1
_/0 1F1 (1,1 — d; —2misr)r— Xnd(l—r)dr] + 0, (W)

1F1 (171—d; —27Ti8) 1 oi
— ﬂ'ZST‘Xn d
T(1—d) /0 c alr)dr

1 1 _ 1
_m/o 1Fy (1,1 — d; —2misr) 14X, 4(1 — r)dr + O, (nl d) ,

giving the stated result.

Part (d). When d = 1 the series expression for nsX an(d) terminates because
(=d), =0 for all k£ > 1, so that only the term involving p = 0 is retained. We then

have
an(l) _ ix Xn

Jno O

which holds for all . W

5.6 Proof of Theorem 3.3 By definition, z = (1 — L)' %u; = (1 — L)' u, and
from theorem 2.7 we have

_IA o Y n
wg (A) (1 e) = w,(\)—e s—
. iAn X
= Dy 2/\; u (A) — c Usn — L ,
(58 wa ) = =D () = P
where
U D —ix N7 i 7 (=i ik
Un (f) = D (e L;f)u”:Zpre P U —p, and fiop = Z e
p=0 v K

Now, as in Lemma B (e), we have

2F1(_na1a1 - fﬂl - e_iAs)

————FR(p L1~ fil1- e‘“S)} e‘imu”—\/g’-

As in the proof of theorem 3.2 and using the fact that Y7 p~'~fu,_, = O, (1) as
n — 00, we proceed as follows

ﬁksn(f)

2mn
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_ Z{ (1= f), 1F1 (1,1 — f; —2mis)

n!

_(1 -, esP Py (1,1 — f; —2misk) +O( 1 > o—iPAs Un—p
pl+f Vn

i
- \/1271)2: { (1- f)nplFl (711' 1 — f;—2mis)
(A=), 1F1p(!1>1—f; —QMS%)}e_ipxsu%p ‘o, ( % >
- 127T( — ) 1Py (71L!,1_ f; —2mis) ;e_%un_ﬁ
_\/1272 (1—1), 1F1 (1];!1—f; —2misL) u\%p -0, <%>
_ \/127( — ) 1F1 (;,1_ f; —2mis) /01 i (1)
e o ()] (1) e o, (1)
- \/12_7T (1= f)y 171 (;; 1 — f; —2mis) /01 g (1)

1 Upy— 1
\/27rr(1 il Z f W <1 1=/ 2msn> vn O (\/ﬁ>
1 (1 - f)n 1F1 (17 1 - f7 —27‘(28) 67271'2'57‘ —r

/0 X, (1-7)

V2T n!
1
_\/12_7TP 1 —1f) T /0 r— By (1,1 — f; —2misr) dX, (1 —7) 4+ Oy (%)

. ! ; ! —2misr
- \/ﬁF(l—f)nf{lFl( - f 27?23)/0 e 2T AX, (1 — 1)

_/01 r=l LB (1,1 — f; —2misr) dX,, (1 — 7’)} +0p (%)

So we have

Onlf) 1 1
v o oy TR R

—/01 r=F R (1,1 — f; —2misr) dX, (1 — 7“)} +0, (%) )

1 .
| — f; —2mis) / 2R, (1 — 1)
0

as required. Note that when f = 0, we get
1P (1,1 =2mis) = e 2™ =1, 1Fy(1,1; —2misr) = e 2™,
and Uy,,,(0) =0. W
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5.7 Proof of Lemma 3.4 Akonom and Gourieroux (1987) prove the result when
uy follows a stationary and invertible ARMA process. Using the device in Phillips
and Solo (1992), we write

Ut :C(L)ét :C(l)ﬁt—f—gtfl—gt

where & = C'(L)er = Y72 Cjer—j and ¢ = 3757 i cg. Under (4), & is stationary
with mean zero and finite variance o2 >0 g]z Then

X;=(1-L) %y =C(1)1-L) % —(1-L)" %z,

Now for % <d<1,{=(1- L)lfd € is stationary with mean zero and finite variance,
so that n%_dg‘[m] —p 0. On the other hand, X7 = (1 — L)™%¢, is a fractional process

constructed from #id (0,02) innovations with Ele/|P < oo, and so from Akonom and
Gourieroux (1987)

1 o

£ - £ d T _ d—1
nd(r) - nd_%X[nr] - T (d) /0 (T S) dW(S)

It follows that

1 c () [ _
Xnalr) = EX[nr]ﬂBd—1<r>:” o /0 (r =)t dW(s)

as stated. W

5.8 Proof of Lemma 3.5 By theorem 3.2 (c¢), lemma 3.3 and the continuous
mapping theorem we have

XAn(d) 1F1 (1,1—d; —27Ti8) 1 omi
— 7T’LST’Xn d
N Ta—d /Oe d(r)dr
1 1 o 1
_m/o 1F1 (1,1 —dy —2misr) r “ X, (1 —r)dr 4+ O, 1)
d 1F1 (171—d; —27Ti8) 1 Y
7TZS7"B - 1 _ d
T(1—d) /oe a-1(1=r)dr
1 1
_m/o VFL (1,1 — d; —2misr) r4By_1(1 — r)dr. (128)

In the above, we can replace X, 4(r) by a continuous polygonal version up to an op(1)
error uniformly over r € [0,1]. The continuous mapping theorem then applies since
the mapping [ —— fol r~@f(1 — r)dr is continuous when d < 1 for all continuous
functions f, and since the confluent hypergeometric function 1 Fi (a, c; x) is an entire
function of x.
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Now observe from Lemma E that

1 1 .
ru—dyﬂé Lﬂ(Ll—dﬁQﬂSﬂ—q»ﬂ—qfdﬂkﬂwdq:/‘Jf%”@ﬂMB@)
q:

It follows that (128) is

1F1 (1, 1-— d; —27Ti$)

1
/ 6727”57‘3(1,1(1 —r)dr

T'(1—d) 0
#/11?(11 d; —2misr) r~4By_1(1 — r)d
F(l —d) 0 141 (L, N Tsr)r d—1 r)ar
1F1 (1,1 — d; —2mis) /1 Sris(1—r) /1 _omis(1—
’ ! e By (1 —r)dr — e~2misl—a4p
T(1—d) 0 a-1( ) =0 (9)
— 71'287"B _ d _ WZSQdB . 12
g [ e — [ eman g (129)

Then,

X/\n(d) d 1F1 (17 1— d? _27Ti5) ! 2misr ! 2misq
i A T d) /0 ™" By_1(r)dr /q:O e“™dB (q), (130)

giving the first stated result.
|

5.9 Proof of Theorem 3.6 We offer two proofs of (50). The first is by operational
techniques and is given in the proof of Lemma E (a) - see (90). The second is by way
of weak convergence of the two sides of (15) as n — co. At As =0, (15) is

1 n 1 n 1 =
- XDy (1,d) — —— X, n(d). 131
\/27rntzzlui/ \/27rntzz1 tDn (1,d) V2mn Yon(d) (131)
From Lemma A (c) for d € (3,1]
_ () (—d),
k=0
_ 1 -1
T(1—dnd 1o (n )],
so that
1 & B 1 1 X ~1
\/ﬁ;XtDn(l,d) - r(l—d)n;nd% [1+0(n )}
¢ 1 ‘B (r)d (132)
- :
r(1—d)/0 a-1\7J67
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From theorem 3.2 (c), (33), lemma 3.4 and the continuous mapping theorem we have

XA\O/%(d) = —F 11_ /1 X, a(r)dr — Ti=a (11_ 3 /01 72X, 4(1 —7r)dr + O, (ﬁ)
(1 [/ By_1(r)dr —/ By (1 — r)dr] : (133)
It follows from (131), (132) and (133) that
1 & d o 1 ! ) Pdr

Applying the same argument to the relation

[nr]

1 ~
X;D - —X d),
\/27rn Z \/27m Z ! V2T AO’[nT]( )

instead of (131), we obtain the more general formula

1 T B
m/o (r —q)"* Ba_1(q)dg.

To prove (49), we can proceed in the same way using (15) and theorem 3.2 (c).
Or we can employ operational techniques, as in the proof of Lemma E (b), which
gives the stated result directly. B

B(r)=

5.10 Proof of Theorem 3.7 Part (a) follows from the representation (36) and
standard results on the asymptotic behavior of the dft of a stationary process whose
spectrum is continuous. Indeed, from (36) and using lemma 3.4 we have

' _ s,
o () = (=) o )~ o ()
= (1—ei¢)_dwu ()\Sj> [1—#0(]\14)} + O, ( 11 d>

where the error magnitudes hold uniformly for A;; € By = {¢ — 37,6 + &5} . Theo-
rem 3 of Hannan (1973) implies that the quantities {w,(Xs;)}7_; are asymptotically
independent and distributed with the same complex normal distribution N,(0, fy(¢))
as n — oo. The stated result for the quantities {w,(A,;)};7—; follows directly.

Part (b) proceeds as follows. From (37) we have

ixs, | 9 e X, (1 B D\Sj)_d
Wy, ()\Sj) = (1 —e J) Wy ()\Sj) - m% top | ———"—
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i)\s, .
() () = () (=) i (0) = () o e

_< > wa (N [1+O<%>}
+<27T5J> 27:;3] [1+0(%>] mlnl a fzi— o <ﬁ>

= e%ﬁwu< )—i—O( >—|—op(ﬁ>

d J
uniformly over s;. It follows that the family {(/\s j> Wy ()\S j> } are asymptotically

j=1
ndi J
{eFun ()}

that is, the members of the family are asymptotically independent and have the same

distributed as

complex normal distribution, s N(0, £u(0)) or simply N(0, f,(0)), as n — oo.
For part (c) note that for each j

1 _ L1 Xi 27s; z— _ 271'2'547"
e () = S et = o [ a0, 1)

t=17
and so, by the continuous mapping theorem,

1

271'25]7"3 d
- d—1
nd (r)

w .

¢ 8] \/ 2 /
giving the stated result for each s;. It is clear from the Cramér-Wold device that
joint convergence for {n*dwm()\sj) :j=1,...,J} also applies. Another approach to
this result is to note from (40) that (dropping the subscript on s;)

wgcn(dA = 1Ry (11j1(1—_dfl)—2m's) [w“ (o) + \/%w—nxksn(d)} +0p (%) (135)

Now

wy (As) =

n Lt ]_ 1 .
Zute%rslg — \/_2_7]-/0 e?ﬂ'szran (7") + op (1)7 (136)

V2mn

where X, (1 [W] 1 ug, and from (130) it follows that we may write
\/_

X'/\ n(d) 1B (1,1 —d;—2mis) [, LN
n T X, (r)dr — 844X, 1).
v I'l1—a /0 € a(r)dr /qoe (q) +0p (1)
(137)
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Combining (136) and (137) in (135) we get
Wy (/\5) ! 2misr 271'257‘
o :/0 e de(’r’)d’r’—l-op \/%/ By 1 d
as above.

Part (d) follows from (16) and (45). Explicitly,
o i,
) ) - 1 o ()]

i> (1 — ei(b) f] i(i;d)n

where the family {¢;}7_; are iid N. (0, fu (¢)) as in part (a), and the £; are indepen-
dent of

B{1)
= , 139
= (139)
where B is the Brownian motion in (45), since the ordinates wy()s;) are asymptoti-
cally independent of w, (o) for all s; # 0.

For part (e), (16) yields
1 Ry X,
() () = () T () = () T 7
1 1 1 1 1 X,
= () o ()] 5 o ()] 7m

gi(&j—@,

where the family {f j}i=1 areiid N, (0, fy (0)), and the £; are independent of 7, which
has the same form as 1n (139) above. Finally, when s; is fixed, (45) and the continuous
mapping theorem imply that

1 _ Xi 27rzs-— 27rzs i
T Wy e

which gives (56). Since €*™%" is continuously differentiable we may apply by inte-
gration by parts to (140), giving

1 |:627r'i8j7"B (7‘)

1

1 .
o 1 / eQmsjrdB (7“)
2mis; Jo

1 1 L o
: =—=-—|B( —/ ™" dB ry
Vor 2mis; V2T 2mis; { (1) 0 (r)

which leads to the representation

) QWzs]rdB
] V2T / ),

giving (55). Obviously, (140) also holds for s; = 0, and part (f) is proved. W
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5.8 Proof of Theorem 4.1 From (36) and lemma 3.4 we have

_ x4 et X, 1
wr ) = (1=e™) () - T =+ o (o

- (1 - ei¢)7dwu (As) [1 +0 (%)] +0, (ﬁ) :

where the error magnitudes hold uniformly for Ay € By = {¢ — 77,6 + 77} . Then,
as n — oo with % — 0, we have

Z Wy ()\S) Wy ()\5)*

AsE€EB(p)

11 . 1 1

1
" e @ "

1
m

fou (9) =

by virtue of the consistency of the smoothed periodogram estimate in the stationary
(linear process) case (e.g. Hannan, 1970, ch. IV ), giving part (a).
For part (b), when d =1 we have from (138)

we (Ns) = l(1 - ew)*l wy (Ns) — %\/%] [1 +0 (zvi)} ,

and, as n — oo with % — 0, we have

- 1 i
foz (@) = m Z wg (As) wg (As)
As€B(¢)
1 1 . 2 1 e X,
= ———5— Z Wy (As) Wy (As) —ﬁRe — Z Wy, (As)
[1—e?" ™\ THs) 1 — e ™ 5\ €B(#) V2mn

e () O (57)
11— ei?|* \V2mn PA\M

a 1 1 B(1)\?
Tk O+ T <m> 7

in view of (141) and (45).
To prove part (c), we write the sum (58) as the sum over the full set of frequencies
{A\s}"Z; and a residual, i.e.,

m—1 *
m - wy (As) wy (As)
—afea 0) = 2. 1
T we () wa (A)* "i we (As) we (As)*
- — nd nd = nd nd




t=1 s=m
11& X, \2 o, (As) wy (Ag)”
_ 11 _ 142
1) T LS o

Since % — oo we have by (38)

iAs

1 1 i) 4 e X eths X
wa ()\S) — ﬁ [(1—6 ) Wy, ()\5) - 1_62')\5 /_27'("]?, +Op ((1_ei/\s)1d \/ﬁ>‘|

1
- 0(5)

uniformly for s > m. When m is such that % — oo, it follows that

1 1
wa (As) = 0p <W> )
and then .
' wy (Xs) we (Ns)* n
2T = (_n2ad> =0p (1) (143)

for a chosen such a > z5. We deduce from (142), (143), (45) and the continuous
mapping theorem that

11 2 1/t 9
wares 0= 522 3 () + o) —a g [ By (97

t=1

giving the stated result (c). Part (d) follows in an analogous fashion with d = 1 and
a>i N
=3
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6. Notation

—as. almost sure convergence
=4 distributional equivalence
= definitional equality
0as. (1) tends to zero almost surely
op(1) tends to zero in probability
—p convergence in probability
i,’ —d weak convergence
[] integer part of
(a), (@) (a+1)...(a+ k — 1) forward factorial
1F1 (a, ¢ 2) > reo %’fkak, confluent hypergeometric function
oK
oF1 (a,b,¢c;2) > o %zk hypergeometric function
1(A) indicator of A
Xu(r) s S
1_
de(’f’) nz dX[nT]
I'(2) Jo° e “*1dt gamma function (Re(z) > 0)
B (z,w) %%5_%2 beta fgnction
wg (A) Worm S ae™ discrete Fourier transform
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