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1. Introduction

The purpose of this paper is twofold. First, I prove an "average" version of
the Lyapunov convexity theorem. Inspired by the original Lyapunov convexity
theorem, many authors have derived other useful results in the literature. In a
recent paper ( Zhou (1991) ) I proved the following result: The set of average
integrals of a point-valued mapping fis convex; moreover, it is the essential
convex hull of the range of f. The latter feature of this result provides a
characterization that previous convexity results do not. In Section 2, I will
extend it to average integrals of a set-valued correspondence.

Second, I use this new convexity result to investigate the core of an atomless
economy. It is well-known that the core coincides with the set of Walrasian
equilibria for an atomless economy in which agents' preferences are continuous
and locally nonsatiated (Aumann (1964), Hildenbrand (1982)). .Many economists
might consider this conclusion very general since the assumptions of continuity
and local nonsatiation seem quite weak. But these two assumptions still impose
substantial restrictions on an economy. For instance, they rule out indivisibility
of consumption goods, an issue many economists believe should be seriously
addressed in economic theory.] Hence, an even more general core equivalence
theorem is desirable. In Section 3, I apply the new convexity result to derive a
simple yet powerful core equivalence result for an atomless economy without
making any explicit assumptions on individual agents' preferences. It yields the
original Aumann core equivalence theorem as a special case but covers a much

wider range of economies, and in particular, economies with indivisible goods.

1 In fact, the literature on core equivalence as a whole has few results to offer for general

economies with indivisible goods other than some special cases ( Shapley and Scarf (1974) ).



I also strengthen the Aumann theorem in another direction by establishing an
equivalence result for some concepts of approximate cores and approximate
equilibria.

Finally, in Section 4, I try to relate the analysis in previous sections to the
core convergence of general large but finite economies. Recently, Manelli (1991)
constructed some sequences of finite economies without monotonic preferences
for which the cores do not converge even in the conventionally weak sense ( as
in Anderson (1978) ). But the cores in some of these sequences do converge
according to an even weaker notion of convergence suggested by our new core
equivalence result. It remains to be seen when this type of core convergence

holds for more general large but finite economies.

2. A Convexity Result on Average Integrals of a Correspondence

Consider a complete measure space ( 2, 4, i) of a finite atomless measure p.
The Lyapunov convexity theorem asserts that for an integrable point-valued
mapping f from 2to R!, the following set A is convex and compact,

A={xeR |x=[fduforsomeEe 2 }.
In Zhou (1991) I considered the set of all average integrals of an integrable

point-valued mapping f. I proved:

(i) the following set B is convex,

[efdu
U(E)

(i) f(w)e B for almostall e £2, in which B is the closure of B.

B={xeR |lx = for some E€ 4 with u(E)>0 }; and



Conclusion (i) is quite standard. Conclusion (ii), however, is a novel feature
that previous Lyapunov-type results do not possess; it relates the set of average
integrals of an integrable mapping to its essential convex hull. This second
feature makes this result very useful in many applications. I now extend it to a
set-valued correspondence.

Assume that Fis a set-valued correspondence F from Q2 to R\. We say that f
is a measurable selection of F if f is a measurable point-valued mapping from Q
to Rl such that flw) € F(w) for almostall we Q. Let ¥ be the set of all measurable

selections of F. The integral of F is then defined by

[pFdp = {x e Rl | x =], fdu forsomefe 7 }.

For a systematic treatment of integrals of set-valued correspondences, readers
are referred to the book by Klein and Thompson (1984).

Vind (1964) (also see Hildenbrand (1974)) generalized the Lyapunov theorem
to integrals of a set-valued correspondence. He proved: For any set-valued

correspondence F from Qto R!, the following set C is convex:

C={xekR |x=JEqu for some Ee A with u(E)>0 }.

Vind's result is valid for any correspondence F even if the set C might be empty.
To guarantee that integrals such as fg Fdu are nonempty, however, one has to
introduce other conditions on F. A natural and important condition is the
measurability of F.

A correspondence F from (2 to R'is measurable if its graph {(0,x) e Q2 xR |
we 2, and x € F(w) } is a measurable set in A®B, in which B is the o-algebra

generated by open sets in R! and A®B is the product c-algebra of 2 and B.



I now state and prove the main result in this section.

Theorem 1. Assume that F is a measurable set-valued correspondence from

to R!, which is also bounded from below by an integrable mapping. Then:

(i) the following set D is nonempty and convex:

[efdu
u(E)

(i) F(w)c D for almost all we Q.

D={xeR |x = for some f € ¥, and Ee A with p(E)>0 };

Proof. (i) Let us construct a correspondence G from 2 to R*1 as follows:
G(w = (F(w), 1) foreverywe £2.

Now consider the set C in RP*! defined by:

C={(x,z)eR* | x= fEfdu, and z = u(E) for some E in 4 with u(E) >0} .

Since F is measurable and bounded from below by an integrable set-valued
mapping, so is G. By a measurable selection theorem of Aumann (1969), there
is a measurable selection g of G. Being a selection of G, g is obviously bounded
from below. Hence g is integrable. This shows that C is nonempty. In addition,
C is convex by Vind's result. We now form cone(C) - the cone generated by C.
Since C is convex, cone(C) is convex. So is the intersection of cone(C) with the

hyperplane L= {(x,2) € R*! [ z=1}. Itis clear that
cone(CYML = (D, 1).

Therefore, D is convex.

(ii) ForeachxeD , thereis an open ball O, around x such that OxﬁD = .
Consider H,, the subset of £, such that w e H, if and only if O, NFlw)=J.

Since F is measurable and O, is open, H, is a measurable subset of Q2 by the



projection theorem ( see Hildenbrand (1974) ). Suppose u(H,) >0. We consider
F, =0,MF as a correspondence from (H,, Aly )to R*.. Then again by the
Aumann measurable selection theorem, there is a measurable selection f, of F,

that is also integrable because it is bounded. Since f, (@) € O, forall we H,, itis

I
easy to verify that x =TH{I{)L € O,. This contradicts the assumption O,(MD = Q.

Hence, we have shown
WH,) = ploe 2 10,MF(w) = J) = 0.
Because RI\D is open and separable, we can find countably many O, like this

such that their union is RI\D . Since {we Q |F(@)cD} =0\ O, and p(£)

is finite, we have

wWoe 2 | Fw)cD) = p). Q.E.D.

Theorem 1 can also be viewed from a slightly different angle. It presents an
explicit expression for the essential convex hull of the range of an integrable
correspondence in terms of average integrals of this correspondence. The
convex hull of the range of a correspondence is not intrinsic in the sense that
two correspondences that are identical almost everywhere can have different
convex hulls for their ranges. But one can define ess co (F), the essential convex
hull of the range of a correspondence F, which is analogous to the essential

bound of an integrable real-valued function, as follows:

ess co (F) = #(E)le) co ( wke)E F(w) ).

Corollary. Given the assumptions and the notation of Theorem 1,

essco(F) = D .



Proof. Obviously, (ii) of Theorem 1 implies ess co (F) ¢ D. We now show that
the converse is also true.
. Jefdu

Take any x € D. By definition, x = LE forsomefe ¥, and H € 4

with p(H) > 0. Suppose that x & co ( KJE F(w) ) for some E with u(E) = u(£2). By
we
the Minkowski separation theorem, there is a vector p € R! such that p-x > py
for any y e co ( UE F(®)) . In particular, px >p-f(w) for any ® € HME. But
we

Iefdu
this contradicts the condition that x =E—f-—~. Hence xe co ( U F(w)) for
U(H) we E

all E with p(E) = p(£). This shows that D < ess co (F). Therefore, D c ess co (F)

since ess co (F) is closed. Q.E.D.

3. Some Core Equivalence Theorems for An Atomless Economy

In this section we apply Theorem 1 to investigate the core of an atomless
exchange economy.

Aumann, in his pioneering paper (1964), formalized the notion of perfect
competition by introducing the model of an atomless economy. He proved that
in such an economy the core coincides with the set of Walrasian equilibria if
agents' preferences are continuous and monotonically increasing. A different
proof was given in Hildenbrand (1974) who ascribed it to Schmeidler. The
original proof of Aumann was later modified by Hildenbrand (1982) to derive an
improved core equivalence result in which the condition of monotonicity used

in Aumann’s result was replaced by local nonsatiation.



Here I offer yet another approach, one which is extremely intuitive and
simple given Theorem 1. Furthermore, it leads naturally to some important
strengthenings of the Aumann core equivalence theorem. First, I show that a
single measurability condition is virtually all one needs for a core equivalence
result. No conditions on individual agents' preferences are necessary. This
enlarges considerably the domain of economies to which the core equivalence
relation applies. Second, I show that the core equivalence relation is quite
robust. It also holds for some properly defined concepts of approximate cores
and approximate equilibria. To make both points conceptually clear, I discuss

them separately although they can be formally combined into one result.

3.1. A core equivalence result with no explicit conditions on agents’ preferences

The set of agents is represented by a complete measure spacé (2,4, pu)witha
finite atomless measure. For simplicity, we assume that the commodity space is
RL -- the nonnegative orthant of some Euclidean space.

Each agent o has a preference relation >, on R. and an initial endowment
e(w) e RL . It is assumed that fne du << o1, where 11is the vector in which all
components are one.

An allocation f is an integrable point-valued mapping from £2 to R. such that
fgfdu =JQe du .

A coalition E of agents is a measurable set in 4. A coalition E can improve
upon an allocation f if there is another allocation g such that g(w) >, f(w) for

almost every w e E, and JEg du = ,[E edy. An allocation fis a core allocation if

no coalition E of positive measure can improve upon it.



A quasi-equilibrium is a pair (p, ) in which p is a nonzero vector in R!, and f
an allocation such that inf x> g fin PX = p-f(w) = p-e(w) for almost all w e Q.

The Aumann core equivalence theorem ( Hildenbrand (1982) ) states that any
core allocation is a quasi-equilibrium allocation when agents' preferences are
continuous and locally nonsatiated. For many people this result is considered
quite general.

In my view, however, continuity and local nonsatiation are still two rather
restrictive assumptions. For example, when there is consumption indivisibility,
an agent may have a preference relation > on the set of all integer points only.
Assuming free-disposal of any good in fractional amount, > can be extended to a
preference relation >'on R/ by lettingx >'y iflx]> Lyl 2 Obviously, >'is
neither continuous nor locally nonsatiated. Another example is as follows. Let
> be a preference relation that is represented by a continuous and increasing
utility function u on R} . Again the preference relation > represented by the
utility function Lu] is neither continuous nor locally nonsatiated, where Lu] is
defined by Lul(x) = lu(x)] for all x € R, . Notice that reference relations >' and [>]
in these two examples are quite natural. In fact, a continuous and increasing
preference relation is usually thought as an idealization of preference relations
of these types.

Of course when discontinuous and locally satiated preference relations are
allowed, a core allocation may not be a quasi-equilibrium. Hence we have to
find another weaker yet natural notion of equilibrium to which core allocations
are related. The next example is suggestive to this point.

Let the set of agents be the unit interval [0, 1] with the Lebesgue measure.

The commodity space is R2. All gents in interval [0, 0.5] have an identical

2 Lx]is the vector in which I.xJi is the largest integer that is less than or equal to x; for every i.



preference relation represented by u(x,x,) = x;-x,, and agents in [0.5, 1] have a

preference relation represented by v(x;,x,) =Lx;-x,]. All agents have the same

initial endowment (1.5, 1.5). It is easy to verify that the allocation that assigns
(2, 2) to agents in interval [0, 0.5], and (I, 1) to agents in [0.5, 1] is a core
allocation. This is not a quasi-equilibrium since the only efficient price for this
allocation is p = (1,1) under whichinf ., oo Px =4, pf(®) =2, and p-e(w) =3
for agents in interval [0, 0.5], and inf ofoPX =% pflw) =4, andp-e(w) =3
for agents in [0.5, 1]. Butunderp = (1, 1) this allocation is still at equilibrium in
a weak sense that no agent can afford a better consumption bundle given his
initial income since inf wopfw PX=4>3= p-e(w) for all agents. This leads to our
definition of a pseuo-equilibrium.

A pseudo-equilibrium is a pair (p, f) in which p is a nonzero vector in R},

and f an allocation such that inf ;, ¢, p-x> pe(e) for almost all v € Q.

As we have seen, it is possible at a pseudo-equilibrium that inf ., far PX >
p-e(w) or pflw) < p-e(w) for some agents w. But when agents' preferences are
continuous and locally nonsatiated, inf », o P-X = p-flw) = p-e(w) must be true
for almost all we 2 at any pseudo-equilibrium; so a pseudo-equilibrium is now
a quasi-equilibrium. Finally, when agents' preferences are continuous and
increasing, a pseudo-equilibrium becomes a Walrasian equilibrium.

Our main result here is that any core allocation is a pseudo-equilibrium. In
order to prove it, we still need some conditions on the economy or on the
allocation under consideration. So far we have not assumed any conditions on
individual agents' preferences, and we won't. The only condition we need is an

aggregate measurability condition (M) on an allocation f:



(M) The set-valued correspondence F from £ to R! is measurable:

Fl) = {xe R | x + ele) > o) }.
Condition (M) enables us to use Theorem 1 to establish the following result.

Theorem 2. Assume that f is a core allocation. If f satisfies the measurability
condition (M), then there is a nonzero vector p € R'such that (p, f) is a pseudo-
equilibrium.
Proof. For such an f we consider the correspondence F:

Fl@) = {xe RN | x + e(w) >0 flo) }.
Fis measurable since f satisfies condition (M). F is bounded from below by - ¢
from definition. Thus, according to (i) of Theorem 1, the set D is convex:

lrgdu
D={xeR Ix = -%?E—)— forsomeg € 7, and Ee 4 with u(E)>0 }.
f is a core allocation implies 0 ¢ D. By the Minkowski's separation theorem,
there is a nonzero vector p € R! that separates 0 from D. According to (ii) of
Theorem 1, F(w) c D for almost all we 2. So we have
p Flw) 20, orequivalently,

inf g5 ofiy PX 2 pe(w) foralmostallwe Q.
Hence (p,f) is a pseudo-equilibrium allocation. Q.E.D.

Since Theorem 2 needs only the measurability condition (M), it highlights
the significance of the use of various measurability conditions in the core
equivalence literature; they are far from being as mild and merely technical as

one might have thought. Our condition (M) is similar to the Aumann-

10



Hildenbrand measurability condition ( as in Hildenbrand (1982) ) in that they
both are imposed on the core allocation itself. Strictly speaking, our condition
(M) is slightly stronger because it requires that the set { (0, x) e 2xR! | we Q
and x € F(w) } be measurable in A® 3B while the A-H condition only requires
that almost all x-sections of this set be measurable in A. But the gain is
considerable since we no longer assume the continuity of agents' preferences
that Aumann's proof needed to reach the conclusion of Theorem 2. If one
considers the space of continuous and irreflexive preferences endowed with the
topology of closed convergence, then condition (M) can be derived from the
condition that the preference mapping is measurable, which was assumed in
the proof of the Aumann theorem by Hildenbrand-Schmeidler ( Hildenbrand
(1974) ). But condition (M) or the A-H condition does not have a direct
interpretation in terms of its economic content, which the H-S measurability

condition possess ( see Anderson (1991) ).

3. 2. Equivalence of approximate cores and approximate equilibria

Another advantage of our approach is that it immediately leads to an equi-
valence result for approximate cores and approximate equilibria. The concept of
an approximate core recognizes that there exist various tangible or intangible
costs that prevent free coalition formation. Similarly, by using the concept of an
approximate equilibrium we recognize that many forces might keep individual
agents from full utility maximization and the market from complete clearing. If
the core equivalence relation is robust, it should extend in some form to

approximate cores and approximate equilibria.

11



For ease of exposition, we assume that each agent w has a preference relation
>, on R} that satisfies continuity - { (x,y) € RIxRL | x >,y }is open in RIxR! —
and monotonicity -- x 2y and x # y = x >,y. We also assume that the prefer-
ence mapping is measurable with respect to the topology of closed convergence
on preference space.

A coalition E can e-improve upon an allocation fif there is an allocation g
such that g{w) >, f(w) for almostall we E, and ngd/.t 5-[5 e dp ®gu(E)L. ( The
operator @ is defined by (a@b); = max {4; - b; ,0}.) Here £l can be interpreted as
the cost vector per capita of coalition formation. An allocation fis an e-core
allocation if no coalition E of positive measure can e-improve upon it. Let C(g)
denote the set of all e-core allocations.

An g-equilibrium is a pair (p, f) in which pis a price vector (p; 20, Zp;=1)
and f an allocation such that inf x> fte) PX 2 p-e(®) - £ for almost allwe Q.
An allocation f is an g-equilibrium allocation if there is a p such that (p, f)
constitutes an e-equilibrium. Let W(e) denote the set of all e-equilibrium
allocations.

The definition of the &-core used here is standard ( Kannai (1970) ) with the
0-core being the conventional core.

Similarly, given the assumptions on agents' preferences, a 0-equilibrium is
a Walrasian equilibrium. The definition of a general gequilibrium here is close
to, but weaker than that used by Khan (1974). Although both require that
compensated expenditures be no less than initial incomes by more than & for
almost all agents, we do not require, as Khan did, that budget deviations --

| p-f(®) - p-e(w) | -- be less than € for almost all agents. But parts of Khan's

12



conclusions with his notion of e-equilibria are incorrect.? I soon will give an
example that illustrates this point.
The equivalence of the gcore and the set of g-equilibrium allocations can be

easily established.

Theorem 3. (i) C(g) ¢ W(e) for all g;
(ii) W(e) ¢ C(e) when e(w) = €1 for almost all w € 2.

Proof . (i) The proof is the same as that of Theorem 2.

(ii) When the initial endowment e is uniformly bounded from below by ¢,

IE edu Ogu(E)1 = JE e dp - gi(EY1. The proof is straightforward. Q.ED.

Notice that (i) in Theorem 3 is as strong as possible. For any e-core allocation
one can only find a price p such that compensated expenditures are no less than
initial incomes by more than & for almost all agents. But one cannot conclude
that budget deviations are less than € for almost all agents. The intuition is
clear. By definition, an &-core allocation only prevents almost every agent from
being worse off by £ It does not, however, prevent a sizable set of agent from
being better off by more than £. Here we give a simple example. Let the set of
agents be the unit interval [0, 1] with the Lebesgue measure. The commodity
space is R2. All agents have an identical preference relation represented by the
utility function u(x,,x,) = ¥;-x, and an identical initial endowment (1, 1). For any
€< 1, consider an allocation f, that assigns (1-g, 1-£) to a set of agents with a
measure of 25 and (1+2g, 1+2¢) to all other agents. This is obviously an &-core

allocation. But the set of agents whose budget deviations are more than £ has a

measure of 15 regardless of how small €is. In fact, for any large number M, we

3 Consequently, Khan's comments on his conclusions and the result by Arrow and Hahn ( later

generalized by Anderson (1978) ) were also incorrect.
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can find an e-core allocation in which there is sizable set of agents who are better
off by more than Me.

This is a major correction that Theorem 3 makes to results in Khan (1974).
There are also other differences. First, Theorem 3 does not assume a uniformly
boundedness condition that Khan needed to assume for his nonstandard
analysis approach. Second, Theorem 3 can be proved under condition (M) only,

but Khan's proofs required the monotonicity of agents' preferences.

4. A Remark

The notion of an approximate equilibrium ( or a pseudo-equilibrium ) used
here is different from those used by other authors ( Khan (1974), Arrow-Hahn
(1971) and Anderson (1978) ). Instead of considering both budget deviations and
compensated expenditure gaps, an approximate equilibrium here considers only
compensated expenditure gaps and, furthermore, only gaps from below. One
advantage of this definition, as shown in Theorem 3, is that this definition
fully characterizes the standard approximate cores in an atomless economy. I
now want to speculate on a possible implication of this notion for the core
convergence of large but finite economies.

Anderson (1978) proved a core convergence result for finite economies in
which agents' preferences are monotonic and weakly transitive. The notion of
convergence used there was the mean convergence of both budget deviations
and compensated expenditure gaps. Recently Manelli (1991) constructed several
examples of sequences of finite economies without monotonic preferences for

which the cores do not converge in that sense.
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A natural question suggested by Manelli's examples is: In what sense, if not
in Anderson's, do cores of general large economies converge? Based on the
analysis in Section 3, especially Theorem 2, we introduce the following notion

of core convergence, which is even weaker than that used in Anderson (1978):

A sequence of large finite economies weakly converges if for any &> 0, there
exists an integer n such that any core allocation in economies after the n-th has a
normalized vector p for which the proportion of the agents whose compensated

incomes fall by more than & below their initial incomes is less than 8.

This type of convergence does hold in some of Manelli's examples, although
it fails in some other examples of his. But given Theorem 2, it is tempting to
conjecture that this type of convergence should hold in a large class of well-
behaved sequences of large finite economies. At the present time, however, we
are still unable to provide a precise answer, one which might require first a

meaningful finite version of Theorem 1.

15



References

Anderson, R., 1978, An elementary core equivalence theorem, Econometrica 46,
1483-1487.

Anderson, R., 1991, The core in perfectly competitive economies, in: Handbook
of Game Theory with Economic Applications { North-Holland, Amsterdam ).

Arrow, K. and F. Hahn, 1971, General competitive analysis ( Holden Day, San
Francisco ).

Aumann, R., 1964, Markets with a continuum of traders, Econometrica 32,
39-50.

Aumann, R., 1969, Integrals of set-valued functions, Journal of Mathematical
Analysis and Applications 12, 1-12.

Hildenbrand, W., 1974, Core and equilibria of a large economy ( Princeton
University Press, Princeton ).

Hildenbrand, W., 1982, Core of an economy, im: Handbook of Mathematical
Economics ( North-Holland, Amsterdam ).

Kannai, Y., 1970, Continuity properties of the core of a market, Econometrica
38, 791-815.

Khan, A., 1974, Some equivalence theorems, Review of Economic Studies 41,
549-565.

Klein, E., and A. Thompson, 1984, Theory of correspondences ( Wiley, New
York ).

Manelli, A., 1991, Monotonic preferences and core convergence, Econometrica
59, 123-138.

Shapley. L., and H. Scarf, 1974, On cores and indivisibility, Journal of

Mathematical Economics 1, 23-38.

16 --



Vind, K., 1964, Edgeworth-allocations in an exchange economy with many
traders, International Economic Review 5, 165-177.
Zhou, L., 1991, Strictly fair allocations in large exchange economies, Cowles

Foundation Discussion Paper #972, Yale University.

—-17 -



