COWLES FOUNDATIOK.DISCUSSION PAPER RO. 59¢

Note: Cowles Foundation Discussion Papers are prelimi-
nary materials clrculated privately to stimmlate
private discussion and critical comment. Refer-
ences in publications to Discussion Papers (other
then mere acknowledgment by & writer that he has
access to such unpublished material) should be
cleared with the suthor to protect the tentative
cheracter of these papers.

*
Economlic Theory of Teama
Chapter 3

J. Marschek and R. Radner

March 2, 1959

* Repearch undsrtaken by the Cowles Commission for Research
in Economics under Contract Nonr-358(01), NR ohT—oos with
the Office of Raval Research




ECONOMIC THEORY OF TEAMS

Chepter 3

EXAMPLES

1. Example A: Buying faultlees market information. A firm suffers a

loss if it either underestimates or overestimates the demand for its product.
Agsume this loss to be about proportional to the abeolute value of the error:
i.@., loss = Kk = Ixmalj k >0, where x 1is the true demand and &a is the
amount (called supply) that the firm brings to the market and that is equal
to its estimate of demand. The firm knows the probability distribution of
demand: x can be small {= 1), medium (= 2) or large (= 3), with probabilities
.1, .3, and .6, respectively. The firm is faced with the following alternatives:
1. to determine the supply on the basis of 1its own knowledge of
the probabilities of demand;
2. to pay a market research agency which we shall suppose fault-
less and which provides, for different fees, the following kinds of
information: 1t can tell whether the demand will be

2% : small or not small
2'7: large or not large

27, medium or not medium
%. to pay the market research agency for information om whether
the demand will be small, medium, or large.
Problem:; What are the minimum expected losses under each of the five
alternatives (1; 2', 2'', 29¢7; 3}, not counting the research fees? How
rmach should the firm be willing to pay, at most, for each of the four research
gservices, if it tries to maximize its expected profit; or in other words, to

minimize its expected losses?



Since the main purpose of the example is to illustrate certain abstract
concepts, let us perform & translation. The five cages are identified with
Tive different information structures which can be numbered in the same way.
Thus n = 1, 2%, 2%', 2''*, or 3. To each of the five values of 17 cor-
responds a different set Y of subsets of X {a different partition of X ),
which we represent, by enclosing each relevant subset of X (i.e., each

element of Y )} into brackets:

n=1; ¥ - ({1, 2, 31}; (one subset of X)
n=2' Y= ([1], [2,3]); {two subsets of X)
=2 Y= ([1,2], [3]); (two subsets of X)
n=2'1; ¥ = ([1,3], [2]); (two subsets of X)
n=3; Y= ([1], [2], [3]); (three subsets of X)

*
We can compute and compare the minimal expected losses, Q(q),

* TIn our 1i§t of concepts, section Z..., the minimal expected loss was
denoted by Q(n); but we can here omit the ~ symbol, for brevity.

for each of the five information structures. First let us conveniently
tabulate our payoff function (or, rather, loss function: we shall minimize,
not maximize, and thus save cumbersome minus signs), w(x,a), and the pro-
babllities o{x) of the states of nature. The quantities x and a are

expressed in appropriate units so that k = 1; |x«a| = loss.

Demand (x) 1 2 3
Supply .
(a)
1 0 1 2
2 1 0 L
3 2 1 O

Probabilities I T, TR O



In case 1, the expected losses Ew (%, a) for each of the three actions

are:
Eo(x,1) = (0)(.1) + {1} {.3) + (2)71.6) = 1.5
Ea(x,2) = (1)(.1) + (0) (.3} + (1)(.6) = .7
= = 05

Eo(x,3) = (2)(.1) + {1} {.3) + {0;(.5) =

The best decislon is to comstantly meintain & = 3; resulting in an average
loss of .5. Thus the minimum expected loss Qf{f) is equal to .5 when nq = 1.
We write (1) = .5.

For the case 27, first compute the minimal expected losses conditional
upon each of the two possible communications obtained: x =1 and x # 1,
respectively, Then compute the weighted average of the two conditional
expectations (see Section 2.5 above). When x = 1, the optimal a =1,
minimal loss = O. When x # 1, the optimal a is the one that gives the

smallest of the following expected losses (use columns 2 and 3 of the above

table)
(1)+(3/9) + (2)+(6/9) = 5/3 {shen a = 1)
(0)<(3/9) + (1):{6/9) = 2/3 {when a = 2)

(1)+(3/9) + (0)-(6/9) = 1/5 {vhen & = 3)
Hence best a = 3; yielding the minimal conditional expected loss 1/3.
Since x = 1 occurs with probability .1, and x # 1 ﬁith probgbility .9,
we have

w(2') = (0) (1) + {1/3) {.9) = .3

By similar operations we find:

o(27*) = (0) (.6) + min (3/4, 1/4; 5/4) - () = .1

o(2'1%) = (0) (.3) + min (12/7, 1, 2/7) + (.7) = .2



Finally 1f the research agency identifies the demand precisely, then

always the optimal & = x, o{x, &) = 0; hence, a{3) = 0.

Summarizing our results:

information minimum expected value of informs-
structure lqsg tion structure

- i 2in) 1) - aly)

1 ) 0

2t o o2

ar ol oL

v ) o3

3 0 %)

The ranking of the figures in the second column agrees with the state-
ments made in Section 2.8. Information structure 7 = 3 is finer than any
of the structures 2°'; 2'7, 2''", and, asccordingly, is at least as profitable
as any one of these; information structure 1 is less fine than either 2' or
2'' or 2''f and, accordingly, is not more profitable than any one of these.

No comparison of fineness can be made among 2', 2°', 2''%; the ranking of their
expected loss will vary with the parameters of the problem.

The lowest profit being, under all conditions, associated with information
structure n = 1, the values of Information atructures, in column 3, are as
defined in Section 2.7. The column gives the upper bounds on the research
fees that the firm should be willing to pay for each kind of service.

2. Example B: The speculator. Suppose a speculator cannot buy or

sell more than one unit of & commodity. Iet x be the difference between

tomorrow's and today's price and suppose x is distributed uniformly over



the interval [-1, +1}; or, speaking scmewhat loosely: x can take, with

equal probability, any value between -1 and +1. Our problem is again to
compare the maximum expected payoffs poesible under several slternative
information structures. This time, each will be characterized by a different
number of sub-intervals of equal length intc which the whole interval [-1, +1]
is partitioned. Each of these information structures can be unsmbiguously
labelled a8 n = 1; 2, s.... We have to evaluate {{n) for wvarious integers n.

Denote by & the amount bought {if a > 0) or sold (if & < 0). Then
-1 < a <1, and the payoff u = ax.

Iet n =1; t.e., the speculator is not informed about the amount or
direction of the price change. Since Eax = aEx and he knows that Ex = 0
(in fact this is the only relevant a priori information, in this case), all
decisions & based on this information yield the same expected payoff -- viz.,
zero -- and are therefore equally gocd. Hence Q{1) = O.

Iet n = 2: the speculator knows whether the price will rise or fall;
he will buy or sell, accordingly. That is; if x > 0, the best decision
a=1; if x<0, a = -1 (and if x = 0 any a will be equally good). The
payoff ylelded by this decision rule is u = |x| ; the conditional expected
payeff, in the case of rising as well as of falling prices, is equal to
1/2 {= mid-value between O and 1) and since each of the two cases is equally
probable, the expected payoff Q{2) = 1/2.

Iet n = L4; that is, the epeculator is informed, not only whether the
price will rise or fall, but alsc whether it will change by more or by less
than 1/2 unit. Clearly this additional information will not change the best

decision rule: to buy {sell) when the price is going to rise (fall); at



each x , the payoff will remain u = |x| ; and the expected payoff
a(k) = @(2) = 1/2 . This will remain so no matter in how many sub-
intervals the positive and the negative part of the interval [-1, +1]
is partitioned. Hence Q{(2k)} = 1/2 for any positive integer k . Tt
iz also clear that if x 1is always exactly known to the decision maker,
this will not change the decision rule just given, nor add to the expected
payoff of 1/2. We can say that Q{«) = 1/2 .

But now let n =5 . Although the problem remains simple, we shall
introduce here the information variable y explicitly, to illustrate our
system of concepts more fully. y will now have 3 values, which we can

denote thus:

y_ ["l, "1/3]
y= ¥y, if x is in the interval [-1/3, 1/3]
y+ [1/3, l] .

Clearly if y = ¥y, or ¥y_ the best actions are &(y) =1 or -1, res-
pectively, and u = |x|; the conditional expected payoffs are in each of
these two cases equal to 2/3 (mid-value between 1/3 and 1). But if y = Yy s

any action ylelds the same conditional expected payoff 0 (analogous to the

cage n = 1 above); thus

2/3 Y,
Elo(x, & (Y} |y] =< © ify=4 v,
2/3 ¥

0{3) is the welghted average of these three quantities (with equal weights 1/3);

henée a(3) = 4/9.



The fact that (1) < q(2) = G{4) = a{2k) (with % any integer) = 0(w) agrees
with the "if" part of tﬁe statement of Section 2.8; that, wifh any ﬁayoff
function, meking the information structure finer (in the sense defined) never
decreases but possibly increases the expected payoff. Moreover, our payoff
function happens to be such thet Q{3) < @{2). This is in agreement with the
"only if" part of the statement. For, in thé sense defined, neither of the
structures "2" and "3" is finer than the other {although the latter carries
a larger "amount of information" in Shannon's sense). And our payoff conditions
make it more important to distinguish between, say,.l/5 and -1/5 (which, in
information structure "3" result in the same information Yo but in the
case "2" result in different informations) than to distinguish between 1/5
and 2/5 (which is possible under "3" but impossible under "2")., In fact,
dividing the interval [-1, 1] into any odd number, however large, of equal
sub-intervals, will be always less valuable to our decision maker than
dividing into just two sub-intervals, the positive and the non-positive:
thizs is due to the fact that, when the number of sub-intervals is odd, the
knowledge that x has fallen into the middie sub~interval is of no value
to the sgpeculator who needs to know whether x is positive or negative.

53, Example C: Production with constant returns. Suppose one unit

of input produces ome unit of cutput, and the plant's cepacity is limited to

cne unit. Denote the price of output by m, + Xy

—(m2 + xz) where each x, 1s random with zero mean. We shall assume the

the price of input by

expected profit (ml + m2) to be egual to zero, and each random price



.8 .
deviation x, (i = 1,2) to have only two values, X, = "high" = 8, (> 0)
or x, = "low" = -8,s With equal probabilities; assume the probabilities

of' each of the four possidle pairs to be:

2

Kl: - 32 "]"52
(1) -5 arj/b (Ler)/h
s, [l-T)/h {1+rdfh

where -1 < r < 1. Hence the conditicral probebilities are (for i # j)

it
i}

Pr{x, highlxj high) = Pr {x, low@xj low) = {1 + r})/2

(23

13

{1 -r)/2

i

Pr(xi low |x, high) Pr(xi high]xj Low)

J

It is easily seen that the above distribution implies, for each i ,

2 2 e w
Exi = 0, Exi = 8 and Exlx2 = rslbg

deviation of X, s ard r dis the correlation coefficient. Without loss

. Hence si is the standard

of generality, we shall assume s, > s

1 Our problem will be fto inguire

5 ¢
how the distribution parsmeters §1s So5

of the % information structures denoted as follows:

n = [00]; neither x, nor x. are known;

L 2

[101; x; but not x, 15 known;

[o1]; X, but not x, is known;

[117; X, and x, are both known.
We shall denote Q(n) by Un .
Denote output (= input) by &; then 0 < a < 1 and the profit

u o= ax, + x2).

]

Iet 7m = [00]. Eu = O for any a; therefore Q(00) = 0.

[11]. Then the sum x, + X. is known exactly and a good

Iet 1 1 o

I

decision rule (comparable to that of the case "q = «" of Example B) is:

r influence the expected payoffs



= vf b > 1 E = :.r“: o 3
a=11 Xy + X, 0, a = 0 otherwise, But since 8, > 85y Xy + X, >0

implies x. = &g that is,

1 1°

13 Uy = Ugps
the decision rule being: & =1 if xl is high, a = 0 otherwise. Using

Hence it suffices to observe x =
the conditional probabilities [2} already computed above, we obtain the

following conditional expected profits that this rule will yield:

B {l . (xl + xa)ﬂxl = si} = [{sl - 32)(1~r) + (sl + 32)(1 +r)j/z

E {0 . (xl + xg)lxl = -si} = 0.
Since Pr{xl = sl) = 1/2, 0{10) = af11) = (sl + rsg)/Ea » positive quantity.

Finally, let n = [0l]. Using again our table of conditional pro-
babilities {2) we obtain

E{ulxg high) = [a v(sl + 52){1+r) + a(=sl +52){1-r)]/2=a(rsl+se)
E{ulx low) = [a '(-slmsg)(l+r) + a{sl wse) (1-r)]/2= wa(rsl+52)

The expression in the second line is never positive and is therefore maximized

at a = 0: any good decision rule will require to stop production when X,

iz low., DBut the expresgion in the first line has an ambiguous sign: it can
be poaitive or non-positive according as the correlation coefficient r

exceeds or does not exceed the nsgative fraction - sg/sl. Hence the good decision
-3
rule will depend on the parameters. If r < gg s no production is ever worth-
1

while [because, roughly, & low (high) input price is likely to be associated

with low (high) output pricel; in this Uo1 Y0 =

the critical non-positive number WSB/SI » (which can be as low as -1 or as

0. If, however, r exceeds

high as O depending on the relative variability of the two prices), then the



o 10w

good decision rule will pregcribe production at full capacity (a = 1)

provided X, ig high; and no production if x2 is low. This rule will

result in

Uy = {rsl r s 0/2

a quantity that is always larger thar UOO but never larger than UlO 4

4 A = O if w1 A :' M = = o
To summarize: Uy = 0; Uy, = max {0, rs; + 52)/2, U, (sl + rse)/E U,

The payoffs Ull 1

the correlation coefficient r oxn the following chart, where sl = 1 and

s2 = 1/2 or l. Since UOO = 0 the graphs give also the values of the inform-

ation sgtructures. There is never an advantage in observing the less volatile

{which iz egual to Ulo) and U,, are plotted against

of the two wvariables over observing the more volatile one. The advantage of
observing the more volatile one (xl) approaches zero as the variances tend to
become equal.. The advantage of cbserving the more volatile variable also increases
as the positive correlation appruaches 1; for, roughly spesking, x, can then

be predicted from x, with decressing error. However, prediction might also

2
be made 1f correlations were strongly negative. One might expect the difference

u. = Ub

10 to be symmetrical with respect to the correlation coefflcient, with

1
the maximum at r = 0. This is, however, not the case: the difference between
payoffs of information structures depends on the payoff function and not on
the parameters of the probability distribution.

To conclude, note thet the infurmation amounts (Shannon measures) =-
gay, 1i{n) == of the considered structures obey the following relation:

1(11) > i(10) = i{01} > i{o0);
on the other hand, the paycffs wsre shown to obey the relations:

6{11) = a{10) > a{o1) > of{00);



Expected payoffs U

-1 0 1

Correlation coefficlent

- 3
Graph of Ull {= Ulo) and U

01
When s, = 1/2, U,, ie given by the upper dotted line,
by the lower dotted line. Wiz, 8, = 1, Ull = Ulo = UOl

all given by the solid line.

UOl

are



finally, the relations of fineness were;
[11] is finer thar both [10]} and [01];
both [10] and [0Ll} are firer thar [00];
[10] and [01] not comparable in fineness.

This confirms again the statements of Section 2.8.

4, Example D. A case of decreasirg returns: output a quadratic

function of a single input.

This model is adapted from traditional economists who, with a good
Instinct, exploited the simple mathematical properties of the case when
the marginal productivity of an input smoothly diminishes as the amount
of input increases ("law of diminishing returns"). We make the case more
SPecific by using & quadratic approximation. Deﬁote by b the single
input {or, more generally, of a bundle of inputs which can be applied
orly in constant proportions); and azsume output ¥(b) to be quadratic
in b , with a negative second derivative {this is im@lied by diminishing
marginal productivity). Then it is pessible to choose input_units g0 as
to make the quadratic ferm in Y{b) equal to -1:

¥i{b) = 2 +8b + hy |
say. Assume fhe output to have & constant price. By appropriate choice
of output units it can be made = 1. Dencte by m the mean of input
unit price, and by m + x the current input unit priee. Then the profit

is quadratic in b 3

i

u=Yy{b} « 1 « [m + x)b;

{1} u b2 4 (g -m) b+h - bx,

H

This can be further simplified without loss of generality, by measuring

*
input from an appropriate origin as follecws. Denote by a = b-b the
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deviation of imput from & certain constant, b* = (g - m)/2 {the economic
mearing of this constant will bezosme apparent presently). Then b = a + b¥*

and the profit (1) can be rewritten as
2 . .
{(2) u= ofx, a) = -a” -ax + u¥ . b¥x

where u¥ 1ig another corgtart. learly if x = 0 then the profit u
heg 8 unique maximum at & = O; i.e., when the input b ig equal to b¥
Thus the constant b* ; the new cxigin we have chosen, i1s the input that
is optimal when the input price iz at its mean level; and the constant u¥*
is the maximum profit that is ther chiained. The payoff function o depends
on the environment variable x [input price measured from its mean level)
and the action varisble a (inpu® meazured from that level which is the
best one at the mean input prics).

The terms (u¥ - b¥*x in Equaticnm (2) are of 1little interest since
they do not depend on the decision variable & . The same vaiue of a
that maximizes the profit u meximizes also the profit measured as a
deviation from {u¥ - bx). We can therefore re-define the origin from
which profits are measured, and exprezs the profit thus measured (thus
changing the meaning of the symbcls u and @ 1in a trivial way and making

maximm profit at mean price egqual 2 zerc) as

HH

N 2
(%} u = w{x,8) = -a° -ax .

A%

Our problem iz to derive the hest decision functions, and measure
the resulting expected profits, undsr varicus alternative informstion
structures. We ghall consider two infermation structures:

X, .., the producer is kept informed of the price;

=t
e
":\
™
Sam?
i

2) nfx) = X, i.e., the producer is not so informed (the set

X comprises all real members).



w1l e

As in Fxample B we moy call the first information structure, "o«"

"o n

"
snd the secund "iM. We shall der-te the maximum expected profits, 0{w)
A'. . -
and 071Y by U, and U, s respestively,

If 7 = = the producer will, upon learning the value of x , choose
the loput a that maximizes w for that value of X . Setting the deri-
vative of {?) egual tc zero {thu= "eguating the marginal product to the
price of input"} we obtain as the cptimal decision, 8 = -x/2. The maximum
profit is A = xafh, ince the expestation of x 1s zero the maximum

expected pay-ff

() U= Efh e 85/k
where 32 is the variance of x .

On the other hand, 1f n = 1, s that the producer does not know x ,
the best mction will be some constant independent of x . It is obiained

by maximizing, with respect to a , the expected profit Fu ~a2 . The

1i

optimal input is now g m O, yielding the maximum profit % = 0, a constant.
Hence the maximum expected pay-ff EY under information structure =1 is
Ul = 0.

The advantage of the information structure "«" over "1", i.e., the
advantage cf being kept informed sbcut the current price of input,;

(5) U, - U =&k

Tn termz of Section 2.7 this iz the value of the information structure
"o, 1.e.; the value of getting exazt information about x .

The result {5) seems to agree with common sense: the advantage of
knowing the value of a variable should be the larger, the less "predictable"

it is, or the larger its "variebility." However, variance is not the only

possible messure of the vague prrperty "variability"; variance happens to be



*
relevant in our partlcular case, with the payoff function & quadratic one.

* One might use a different ecomomic illustration of & quadratic payoff
function, also adapted from anciert mathematical economics (Cournot). A
menspoliet chooses & price a of his preoduct so as to maximize the profit
u = oaylal - where VYfa) iz the quantity demanded at price a , and c

is the total cost, assumed corwstant. Assume the demand function ¢ linear,
Then {using appropriate units of measurement) ¥(a) = -a 4+ m + x where

m+ % 1is the intercept of the demand curve and m the average value of the
intercept; thus, x meazures the random "shift"™ in the public's desire for
the product. If x is known the best decision rule is afx) = (m + x)/2;
if x 1= not knmown, the best rule iz @{x) = m/2. The value of information
about x 18 agaln proportisopal to the variasnce of x .

It is also worthy of note that the exemple given in the text extends to
the case of imperfect market., Suppose the price of input is linear function,
m+ x + ka, where x is a random "sghift" with zero mean. Then equation (1)
#t1ll applies, with the coefficients properly re-interpreted.

5. Example E. Output a quadratic function of two inputs. We shall

generalize Example D to the case when twe inputs heve to be used, and the
producer can freely wvary their quantities. This will bring out the role

of an important characteristic of the payoff function, the "complementarity"
or "interaction” between various actions. The distinction between payoff
Punetions with and without interastion will prove of great importance in the
theory of teams, but iz already present in the case of single-person decisions,
Morecver, the example will throw additional light on the role of correlation
between states of the world, already discussed in Example C.

Let x, { i =1, 2) denote the price of the i-th input, measured from
the mean level of that price. Suppose as before that the output price is
constant; set it equal to 1 by & proper choice ¢f the units in which out-
put is measured. Suppose the output is & quadratic function of the two

inputs. It is possible to messure inputs in such units, and from such
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crigings, as to express the profit thus:

(1) u=o(x, a, =8

1 a.x. - &a.%x. + u¥ +

= mae - a2 + 2¢ga. 8
e TR B o R Bl T TR O

2) -

terms linear in X and X, and independent of a; and 8y »

This is analogous to Equation (2) «f Example D. Again, if both prices are

at their mean levels, X @ X, = 0, then the maximum profit (equal to u¥)

is attained at al = 32 = 0.° This is the economic interpretation of the
¥  For, if X, = X, = 0, then {1} can be rewritten thus:
2 22 22 2 2 2
= ¥ - - - = * o - — om
u = u (al 2qa. 8, + q,az) +qa, -8, =u (al qae) &, (1 -4 )

The term -(a - qaa)2 is smallest (=0) when a, = ge,; and the term

1

2 = 0, since we have assumed -1 < q < 1, q? < 1.

8, {l«qe) is smallest when a,
Hence when & = a = 0, the profit attains its maximum value, u*. Thus; the
condition -1 < ¢ < 1 guarantees that the "profit surface™ has a summit. A

more general method of proof is referred to in Chapter 5.

term u* and of the origins chosen for input measurements. Moreover, as in
Equation (3) of Example D, it is convenient to measure the profit from an
origin chosen so as to get rid of the terms that are affected by the action

variables a, and &, . With this new definition of wu (and ),

- & X, - &8.X

a,.) = wae —a2 a
) 1L 12 11 22

{2} u=0wo(x, a .

1 + 2ga

As in Example C, the state of nature is described by two variables
{xlg xe), giving rise to the same four information structures [00], [10],
{011,[11]; but the action that was described by a single variable in

Example C, will now have two dimensions; &y and 8. The economic meaning



of the parameter g of the payoff function follows from the fact that

L]

o) {du} o {3 u) 3
(3) -9/2 = = =
. 0 8y ) a, o e, ) a; 9 8y o ay

Thus ¢ is proportional to the {second) cross-derivative of the payoff

with respect to al and az H

contribution of a; is affected by .the level of a

to which the marginal contributicn &

it measures the extent to which the marginal
2; and also the extent

5 is affected by the level of =&

1
A word used for this measure in older economic literature was "comple-
mentarity"” between two factors of production; it can be positive, negative
or zero. In the work of J. R. Hicks [ ] the term complementarity
has become attached to a property of the utility (or of the production)
funetion which is mathematically somewhat more complicated. To aveid

confusion we shall use the word "interaction." When (and only when)

q = O; the payoff can be represernted as & sum of a function of a, and

1
a function of ae:
("‘!') (D(X, al’ 32) 58 wl{‘xs al) + W (xs 32)5
where
L5 w, (x, a,) = 8% - a.x, =u, .
Nl AR | i i i i

More generally, for a payoff function of any form, we shall say that
there is no interaction between its several action variables if the payoff
rcan be represented as a sum of Independent separate contributions of each
variable, as in {(4). Wher the payoff function has second derivatives
{as in the quadratic case) we can, in addition, measure the degree of inter-

action, as in (3).
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We now proceed to find the optimal decision rules and the resulting
expected payoffs, under each of the four formation structures considered.

If n = [00], i.e., no information about prices is gathered and

actiong are "roatire". the expected profit isg equal to

Lo 2 2
By = al v &, + 298

which 1s te be maximized with respect to al and 32 » The optimal actions
are copstant, 31 = 32 = 0, and the maximum expected profit is

(&Y W= 0,
&) os

bt

Because of (6), the value T U:? of any information structure

f s

n , will be simply equal to the expecied payeff Un -
If 7 = {11}, i.e., both prices are known before the decision is made,

the optimal inputs %., B, are cbtained by maximizing the profit

1° 72

1 32) separately with regpect to a,

each partial derivative %o 0; this will result in a maximm profit

WX , X, &

o and. 8,5 and equating

1

because of the condition -1 < g < 1, as shown in the preceding footncte.

A A
w2al + 2qﬁ2 = xl

{73 N A

aqal - 2&2 = X5
i.e., the "marginal product of each input should equal its price."
Thiz result is, of coursge, well knwim from the economics of certainty.

olring {7} we obtain two decisicn functions, each linear in x, and x,:

1 2
Ql = - 1/2 . T qgﬁ
L -=-aq
8 G+ X
B, = -1/2 - Lot

1 =g
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Thiss the optimal quantity of ap input falls with its price; and it
falls (rises) with the price of the other input if q 1is positive
(negativel. If gq = 0, each optimal input depends on its own price
cnly (in fact, we cbbain again the rewult of Example D).

Substituting (8) imto {2} we obtain, for given %15 %ps the maximum
profit
x? + nglxz + xg
M1 - 4°)

%) WX, Xy, By, B.) = L
. i lB 23 13 o)

The expected maximum profit is therefore

2
s.8. + 8
{10 U, = L2 2

11 w1 - q?)

si + 2gr

where s? is the variance of X and 1 18 the correlation coefficlent;

for by definition, since Exl = Ex2 = (O, those parameters are
2 2 2
g, = f = ] =
¢ = Blx, - Ex,)" = Bx

= f - F l = » =
r = E{x, Exl) {5 Exa}/slsg Exlxa/sls2

The quantity Ull{ = Ull - UOO) measures the advantage of decisicns
taker in full knowledge of both prices, over mere "routine" actions.
Bquation (10) shows that this advantage depends not only on the var-
iances of the prices -- compare the result of Example D -- but also
or. their correlation, provided there is interaction. This advantage is
the larger the larger the product gr of the Intersction and the cor-
reiation coefficlents. Hemce if the correlation is positive but the
interaction is negative the advantage of using information about both
prices (as against using information on none) is smaller than 1f inter-

action and correlation sre both prositive or both negative.
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To compare the value of knowing both prices with the value of knowing

only one, and to compare the value of knowing only Xy with that of knowing

only X, , we have to consider the remaining information structures: [10]
and {011,
Consider the case 17 = [10]: X5 but not x,, is known when the

decision is made. We have to maximize, with respect to a. and 8y the

1
conditional expected profit

4 [ —.,2_2 - - .
"11) E[ulxl] = -8] -8, + 208.8, ~ &.X) - 8, E[xeixl],

equating to zero the partial derivatives of this expression with respect to

&l and a2 we obtaln

24, + 298 =
TEEy hEd, mH
(12) .
2qa, - 28, = E[xllxa];
i.e., "the marginal product of each input should equal the conditional

expectation of its price,” a statement more general than the one we used

after equation (7).
At this point, we have to mske some specific assumptions about the

probability d&istribution of (xl, %) te explicltly evaluate E[x2|xl].

o)

¥*
Tt will be convenient to assume a normal distribution, because then

¥ TIn Chapter 5, in an example of a quadratlc payoff to a 2-person team,
s gimple discrete distribution (that of Example C above) will be used.
Some of the resulis are applicable to the l-person problem.
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E[xelxl] is & linear function of x,:

(13) E[xalxl] =% rsl/625

rs. /8. is the "regressicn coefficient of x
172 2

(13) into (12) and golving, we cbtain two decision functions, each

on xl")° Substituting

linear in X3 the one price that is knowm to the decision-maker:

X

1 =]
e — Gt D)
2{1 - g™ €L
(1)
=X S
aaﬁ -——————}w—————é—- e(q+r-§§)
2{1 - ¢q7)

We note that the decision about a, is simply the routine decision,

A
a, = 0, {(i.e., the knowledge of X, remains vnused in determining a2)3

2

if there is neither correlation between Xy and X5, Or interaction

between ay and 85> i.e., if q=r = 0. This clearly makes sense. It

also makes sense that, if g =0 but r # O, QE does depend on x,. For,

1
although the profit can then be decomposed into independent sub-profits

due to each of the two inputs separately, as in (L4), and in addition,
the sub-profit u, due to the second input depends only on the second
price, as in (5), information about X, does help to increase u,

that knowledge containg some informstion about the correlated varisable X5e

because

Inserting (14) and {13) into equation (1l) one finds the best
conditional expected payoff, given xl . Teking the expected value of

the resulting expression one obtains after some tedious slgebra
2 2.2
8. + 85T + 2gqrs

1 1%2
5
4L(1L - ¢7)

(15) Upg =
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A
15 8y {this time as functions

only) interchanging the subscripts 1 and 2 in {14); and by a

For the case 7 = [0l], one obtains a

of x2

gimilar interchange of subscripts in {15), one gets the expected payoff

SS + sire + 2qrs.s
1l 2

(16) Uy = 5
1 - q7)

It is interesting to compare UlO and UOl . Subtracting:

0y u (-8 -5
10~ CoL L (1 - ¢3)

The formuls shows that if the two prices have equal variances {making
the conditions symmetrical with respect to the inputs measured in appropriate
units), it is equally useful to know cnly x, oronly Xx,. Also, if the
two pfices are strongly correlated, either positively or negatively (so that
the one can be estimated from the other without too large an error), it
does not matter much which one of the two prices is known. On the cther
hend the advantage of knowing the more volatile rather than the more constant
price is the larger the stronger is the (positive or negative) interaction.

What is the advantage of knowing both prices over that of Knowing only

one, say x,? From equations (10) and (15),

2 2
52(1 - r7)

(18) U, - U, = ————
11 - 1o L1 - qg)

Thus the advantage of adding information about X, 1o that about xl

is the larger the stronger the interaction between al and a2. Moreover

this advantage is proportlonate %o sg(l - rg), the square of the go called

"standard error of estimating X from xl.“
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A more complete discussion becomes possible if the costs of information
are known. To illustrate, let ¢ be the cost of getting information about

either xl or xa; and let 2c¢ be the cost of getting information on both. Since

(29) Upy 2 mex (U, Upy) 2 Uy,

the best information structure is [11] when e = 0 and [00] when ¢ is
very large. One may ask whether, for some intermediate ¢ , either the
information structure [10] or [01l] (depending on whether s, or s, is

larger) can be optimal. This depends on whether we have "decreasing returns

to information" in the specisl sense that

(20) Uy - U2V - Voo

The latter condition is satisfied [see (6), (10), (18)] if and only if

(21) r{g+r)>0.
For simplicity, let us assume S, = 8, - The net expected payoffs are
Voo = Yoo = ©
2 2
V= -e= et (L+r° +2 gr)s
b (1 - q")
2
Vllzull_gcz_gc.;. gjij'_ﬂ%s_,
L1 - q)
he (1 - 2)
Denote by k the cost redefined in new units, k = 5 . Then

the condition for [10] to be optimal is

(22) 1 2% <k<1l+ 4 2qr
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But if {21) is not setisfied, 1 + 4 2qr < 1 —re, and no value k will
satisfy (22); thus, in absence of "decreasing returns" in the sense of
(20), the intermediate information structure [10] cannot be optimal: elther
both or none of the variables xl, X, have to be observed.

In & more general case, the cost of information may not double with
the number of variables observed; for example it will less than double if
the information involves some fixed cost. The general method remains to

compute and compare the net expected payoffs of each of the information

structures considered.

6. Example F: Buying inaccurate information. Modify Example D

as follows: the producer learns, not the exact price of a unit of input,
but only some forecast of it, which may exceed or fall short of the actual
price by & random error. The state x of the world is now described by a
palr of variables, x = (xl, x2) where Xq will now denote the true value
of the price variable, measured from its mean; and X, will denote the

*
forecasterts error. The information obtained by the producer is

* See discussion at the end of Section 2.2.

(1) 7(x) =¥ = %, + %,

We may assume without loss of genmerality that the error has no

bias, i.e.,

(2) Ex, = 0 ;

for, if the bias is known the decision meker can always allow for it and

correct the information accordingly.
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Various methods of information gathering will presumably result in
greater or smaller accuracy, measured by some kind of average of the errors
of estimation. To fix the ildeas we shall assume the price X5 and the
error X, to be independent and normelly distributed. This will meke it
possible (as we shall see) to characterize easch informetion structure by
& single parameter, the variance of error. As in the previous examples,
our problem consists in comparing the expected payoffs generated by different

information structures.

The profit is (as in Example D)

3 u = maa - ax. + terms independent of a ,
_ 1

vhere & 1is measured from the level that is best at x, = 0. We shall
now recast the problem in & form that is particularly simple and also
has the advantage of being identical with a well-known problem in
statistics. Since the terms in (3) that are independent of a do not

influence the optimel value of & , and since;we can change the units of

*
meagurement of price so as to replace x, by 2x

1 10 we can redefine the

payoff function as

*¥ The units of input have been already fixed, so as to make the coefficient
of the square term in (3) equal to ~1; the change in the price scale implies
therefore & change in units of money which, of course, we are still free to
make .,

2 2 2
(h) u = -8 -28X, + X = - (a - Xl)

Clearly (a - xl)2 has its minimum, and u has its maximm, at a = Xy -

Our producer is thus in the same position as a statistician whose "decision"
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consists in naming en estimate (a) of a quantity (xl), and who incurs

a penalty (loss) proportional to the square of the difference between
the true value X, and his estimate a . The assumption of & qguadratic
loss function has been widely used in statisties. In later parts of the
present book, we shall exploit the analogy between economic choice and
the decision of & statistician in more complicated contexts.

If no information is obtalned, the best actlon is that constant a

that maximizes the expectation

2 o o
(5} Bu = -a~ + 2aEx, - EX] = -8~ - Ex]

since Exl = 0. Clearly the best action is

(6) 4=0
Thus the maximum expected profit obtainable without information is

(7) U= s,

where si is the variance of Xy This is, of course, the same result

as in equation (4) of Example D, account taken of the changes in the
units of xl and the origin of 1.

On the other hand: if information y (= x, + xe) is obtained, the

1
decision maker maximizes with respect to a the conditional expectation

(8) Bluly] = -E[(a=x3) |y]

A
to obtain the value & = &(y) that is best at given y ; that is, he

minimizes the conditionasl expected loss

-E[u‘y] = 32 - 2aE[xl]y] + E[xily] H
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the last term does not involve & and can be neglected. We minimize

therefore
2 2 &
a8 - 2&E[xl|y] =8 = EaE[(ymxe)ly]
= a2 -2a (y = E[xglyi) .
The value of a +that minimizes this expression is
A
(9) a =y - Elx,|y]

To make the evaluation of E[xely] simple we shall narrow down our

assumption. Assume both Xy and X, to be normally distributed and

denote their variances by s, and 8, » both positive. Then x, and

1 2

¥y are jointly normally distributed, and

(10) E[xaly] = y. (regression coefficient of x, ony)

covariance of x2 and y

variance of ¥y

=yn

Since Ex2 = By = 0,
Ex, ¥ Exz(x2 + xl)
E[ley] =Y ) =y 3

Ey E(x2 + xl)

For further simplicity, assume Xy and X, to be non-correlated.

Then Exlx2 = 0 and .
®o
Elx,lyl =y » 55—

52+Sl

inserting this in (9) gives

2
5

—_—

2

(11) B=y Q-
) 52+S

1
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Hence, under our assumpiions, the best rule of estimating Xy from
inaccurate informetion y is to correct the information by “scaling
down"™ the absolute velue of y , thus bringing it closer to the mean

value (zero) of x, . The correction is the stronger, the larger the

1
variance (sg) of the error x, relative to the variance of x, itself.
As B, increases '3 approaches zerc; this corresponde to equation (6),

the case of "no information.”
The profit ylelded by this rule at a given state of nature
(xl, x2) 1s:

-(& - xl)2 = - [(x2 + X

2 2.2, 2 2,2
=. -(}{231 - xlsa) /(Sl + B )

The expected profit (averaged over all states of nature) is

(remembering that EX X, = 0)

2 4 24 2 2,2
U= - (sgsl + slse)/(sl + 52)

(12) 22
U=-_ %1% - =T -
. 2 (l/sl) + (1/s5)

52 s
1 2

Thus the expected payoff 1s the smaller the smaller each of the
two variances. Morecver as sg s the varlance of the error, increases,
U approaches -si , 28 in equation (7), the case of "no information."
On the other hand, as 32 approaches zero, l.e., information becomes

2

more accurate, we approach

(13) U=0;
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The difference between equations (13) and (7) is in accordance with
equation (5) of Example D.
Given the variance si of the price, the expected payoff U as

expressed in (12) is & function of o

5 2 the variance of the error:

U= Q(s2), say. Suppose one forecaster offers information with error
variance v', at cost c¢'; and another offers information with error

variance v'! at cost c¢'f, then the Tirst forecaster is preferred if

vt) = et > alv'r) - o' .



