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' *
some Models of a Sales Organization

by C. B. McGuire

1. Introduction

The modele presented in this paper grew out of an attempt to apply

the theory of teams of Marschek and Radner [1], [2], [3], [4] to the

organization of the sales force in a typical wholesale bakery. As

organizations gO» the one we have chosen to analyze is an extremely

simple one, even when =~ as is quite obviously not the case in what
3

follows -- it is viewed in its full complexity. At the risk of achieving

t

results of quite 1imited general interest, a "simple," easily quantified

cubject was geliperately chosen as the best place to begin to apply a

theory that pretends to prescribe optimum decisions of a team in a pre-

cise way.

We shall not here €0 beyond a mere discussion of some mathematical

models which deal only with the day-to-day problem & bakery sales force

A n " s .
faces in attempting to "properly” supply its regular customers with a

single product. Problems of advertising, of price policy, of product

design, and of obtaining new customers are ignored. For the present
2

discussion all the reader needs to know is that the sales force consists

of truck-driver salesmen who daily visit each of their given customers

(i.e. grocery stores) leaving, on consignment, an amount of bread to be

aecided by the palesman. At the end of the day the salesman returns to

the plant and submits an order for the next day. For our purposes here

the “organization" is characterized by the way in which these orders are

jointly formed.
A suggestion of Badner's, [3], [4] that certain organization problems

can be formulated in 1inear programming terms, has been followed assiduously.

The present exampless insofar as they are successful, hint that the appli-

cability of this approach may be quite wide.
oints discussed in this paper first arose in my discussion

:itgfgzcgi Egisﬁhak and Martin Beckmenn. I am heavily indebted and grateful




2, The Team Problem of Marschak and Radner

2.1. A General Formulation

In the Marschak-Radner formilation of the team problem,decision
(or "action") functions a.i(x), (i=1, ..., N), are to be determined
whicﬁ tell each of N team members how to act when the state of the
world is x . If each member is perfectly informed about the value
of x , then the payoff to the team as a whole for given =x and given
functions @ is a real number u[al(x), . mN(x); x] minus what-
ever costs are incurred in making the value of x known to each of
the members. If observation and communication are costly it will
generally not be best to fully inform each member. In order to specify
systems less costly in this respect let the function qi(x), (i=1,..., N},
denote the information about x that is made available to the iEE-temn
member. Thus if x is an M-tuple (%,5 voey xM), cne ﬁarticularly simple
example of an information function might be qi(xl, ceey xM) = X,
More generally m; is some function from the set X of states of the
world to the set of all subsets of X. With each of these information
structures 1n = (ql, ciny nN) is associated a cost k(y). With a given
structure then and a known probability distribution over X of states
of the world the N-tuple of decision functions & = (&l, ...,aN) is to

*
be found which maximizes the expected payoff to the team

1) B oula(ni(x)), -ens ap(ng(=)); =1 - k(n) .

Notice that k(n), the cost of the informetion structure, is here
taken t0 be a function of 1 independent of the state of the world.
This need not be so. Whenever costs of communication depend on the
intensity of use of certain communication links -- as in the case of
long-distance telephoning -- k will depend slso on x and will occur
under the expectation sign in (1).



Once & procedure is found for determining, for any given structure 1q ,
the corresponding optimum set of decision functions & , then the goodness

of different structures can be compared.

2.2 A More Specific Formulation

In this section a more specific, but still quite general formulation
of the team problem is proposed. Let the state of the world be represented
by & (2N+1)-tuple, x = (Zl’ cees Tgd Yys vees Yy w). The y; are
demand parameters in each of several markets. No particular real inter-
pretation of the 2, will be adhered to; we suppecse only that they are
statistically related to the respective Y5 and yet are very much easier
to observe. That different states of the world can affect matters of
production is recognized by distinguishing such states by the single
variable w . (Through most of this paper w is fixed and known.)

Each of N salesmen will have an information function 1,

(i =1, ..., N) which.will be a function only of the z

cesy 2., And

1’ N

the Yo cees Yy oo The latter are supposed to be prohibitively expensive
to observe. In this limited context a completely coordinated organi-
zation would imply an information structure v in which

qi(zl, rees Zd Vis e yN) = (zl, ceny ZN)’ or more briefly qi(x) =z,
for each i ; that is, where every salesman knows all that can "reasonably"
be known about the defand parameters in all markets. The most obvious

example of 7 in an uncoordinated system is qi(x) = g for every 1 .

i
Since our investigation of the set of information structures will not
in any case be exhaustive, we shall be concerned with picking out these

"obvious" structures for analysis.



The action variables a, = ai[ni(x)] will be interpreted as supply

actions or "orders" by the salesmen: in response to the information
ni(x) , Salesman 1 supplies 8y units of product to his market.,

The payoff to the team will be taken to be the expected profit of
the firm: expected revenue from sales minus expected cost of production

minus cost of information structure. More specifically the payoff is

(2) ER(al, cees Brd Vs nees yN) - EC(al, es By w) - k(n)

where R 1s & revenue function and € a production cost function. It
is assumed that the z; influence profit only through their rdle as
arguments in the action functions. The ¥ do not influence production
costs, and w does not influence demand.

For a team problem to be something more than a collection of N
one-person problems there must be a source of what Marschak has called
"interaction" among the actions of the N members: the effect of one
man's decision of the payoff must not be quite independent of the actions
of all of the other men (in continuous terminoclogy, Baplbaiaaj is not
always zero for all i and Jj ). In the present instance interaction
among decisions comes only from the production cost relationship. It
will be sgpposed that production costs depend only on the sum of the
individual orders; revenue from one market will be assumed to depend
only on the state of the world in that market (v, in market i ) and

on the supply decision in that market. The payoff function {2) can

therefore be further specified:

N N
(3) izl ER, (a;, ;) - EC( ? et w) - k()

where Ri is the revenue function in market i .



Payoff function (3) represents the general situation to be
investigated in this paper: one plant supplying N markets. Three
analogous problems suggest themselves. We shall do no more than mention
them.

The first is the "opposite” of (3): N plants supplying one

market, with payoff

N N
(%) ER(Z a5, ¥) -

£ EC,(a,, w,) - k()
i=1 1=2 - - *

where the state-of-the~world variables are appropriately and analogously
redefined. One would expect a strong similarity between the results.
that analysis of (3) yields and results from (4).

The second ie N plants supplying N markets with no plant-

Impinging on ancther's territory:

N N

i= i=l

The team aspect has disappeared, leaving N one-person problems.

The third anslog is N plants Jjointly supplying N markets:

N N
(6) ER(Z &, y) -E(Z a;,w -Xk(n)
i=1 i=1

In this very simple form, where the team is indifferent as to which
plant supplies a unit of product or in which market a unit is sold, it
might appear that agein the problem degenerates into a one-person

situation. Put the very multiplicity of solutions that makes the pro=-



o
blem look easy causes trouble in the absence of coordination: no amount

* The term "coordination" is used here in the sense of a once-and-
for-all coordination, as opposed to the coordination supplied day-to-day
by a team member (absent in our model) whose actions vary as the states
of the world changes. The once-and-for-all type is exemplified by the
(legally enforced!) convention among drivers to use their respective
right-hand sides of a road. The example is from Marschak, who has empha-
slzed the relstion between the need for coordination and the uniqueness
of & .

of information about the external state of the world is sufficient for
one team member to act in & way that complements the action of his fellows.
If the optimum N-tuple of action functions were unique, coordination

would contribute nothing and a one-person problem would result.

3. Model T

One of the simplest interesting models with payoff function of the
form (3) is the following one.

Iet the random variable ¥y be the price in market 1 , and

suppose this price is unaffected by the supply action a., of salesman 1 .

i
The total revenue curve in market 1 will then be some straight line

through the origin, the slope of which is, in general, not precisely
known at the time the supply decision is made. The random variable Zy
ig observed by salesman i1 on the preceding day and is used to predict |
vy - If we like, we may regard zy as the price prevailing in the
earlier period and suppose that the price series ig autocorrelated., The
joint distribution p(zl, vees Zyd Fysoeees yN) is known. We will

suppose Tarther that the Zs and the y; vary discretely.



Total cost of production is, in accord with (3), a function of

the sum of the supply actions

{7} e, ? a; + (cbgca) Max [ % a; - W, 0]

with w>o , % > g > 0 . The parameters Cur Oy and W are assumed
to be fixed and known to all participants, although in a more comprehensive
study of this organization it would be necessary to include these three

cost parameters in the state-of-the-world vector where they would be observed

and communiceted at some cost.

3.1. Centralization

If the information structure is such that every member has all
obtainable information sbout demand in all market then, for every i,
ni(x) = z . @iven this structure, the problem is to find a set of action
funections ai(z), i=1, .., N, which maximizes expected profit. In order

to write payoff as a linear functlon of the ai(z) » let us define a

non-negative function b{z) with
(8) ©b(z)> = ui(z) -V .
- 1
If b(z) is chosen to be as small as possible for any set of mi(z),
then payoff can be written
(9) = z Z(y =, )ay (2)-(c =c_)2(2z)  p(z,¥)

where the summation signs on the left stand for
Z

and

Fmtﬁm
zutﬂ?

K X
L ... I respectively, K being some high integer beyond the ranges
yl=o YN=O

of variation of the Zs and the y; -



We must now select ai(z) for each i and z and b{z} for
each z so0 as to maximize (9), subject only to constraint (8) on
b(z) and non-negativity of b{z) and ai(z). In case the range of
vy extends above % it will be necessary to put an upper bound on
the ai(z) , 88y & , otherwise the maximum of (9) will be unbounded.
Since both the maximand and the constraints are linear in the b(z)
and the ui(z) , the necessary and sufficient conditions for the
optimum values of these variables can be found by differentiating the
Lagrangean expression. Iet A(z)> 0 be the multiplier associated

with constraint (8). Then the conditions are

(0) _* _ . 3 (v;-c, )p(z,¥) - a(z) E’ 0 if 2::?2:;< a
Say(z) ¥ > ay(2)= &
and
. < =
(11) ab?:) -l Ryl Lo ar v Lo

with A(z) vanishing if strict inequality holds in (8).
Constructing a solution will be easier if (10) and (11) are
rewritten in more familiar terms:

5 0 = G‘.i(Z)

[ad + )L( Z)
& p(z)

(12) E(yilz) if o< ai(z) <a

1V
jul

a,(z) =



and
S =
(13) Mz) (ep-c )p(z)  if B(z) 0
= >
where p(z) = % p(z,y).
¥
Iet us fix our attention on a particular value of z . If the conditional

price expectations in all markets are below e, the lowest extreme of
marginal production cost, then intuition and (12) both assert that ai(z) =0
for all 1 .

If the highest conditional price expectation exceeds c¢_ , then, by (12),
either ai(z) = & in this high market or A(z) is positive. But by assumption,
g2 is a high mumber so, by (8), b{z) must be positive and hence, by (13},
x(zi/p(z) =€ -C . In either case a price expection exceeding . implies
a positive value of A(z) . This in turn implies equality in constraintf(S),

vhich meens that X mi(z) >w.
5 zZ

If the highest expected price falls between c = and ¢ then (12)

and % ai(z)_z_w can be simultaneously satisfied only by mi(z) = w in the
1
high market and zero in other markets.
If one or more of the price expectations exceeds ¢ ‘then ai(z) = a
in all such markets and a,i(z) = 0 1in the others since the left side of (12)

.can never exceed cb .

*
This elliptical argument has been presented only in an effort to

motivate the following solution, the validity of which is easily checked

against (8), (12), and (13):

* The distinction between < and < was ignored for one thing.
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Let k denote the maximizer of Max E(yi|z) for a given z .

Then

(1) 4if E(yk]z) <ec, , set al(z) = oee. = aN(z)zb(z)ék(z)= 0 ;

if e, < E(yk|z) < ¢, set a(z) = w
a.i(z) =0 forigk
b (z) =0
M (z) = (e -c )p(z)
if e < E(yilz)
and set cx.i(z) =a
E(yjlz) <o aj(z) =0
b{z) = & a(z)-w
Mz) = (e -c )p(z)

The solution is not (guite) unique, the choices between < and <
having been made arbitrarily in (14). For those values of 2z however
vwhere the delicate issue of < versus < in applying (14) never arises
the values for the - ai(z) (but not necessarily A(z)) are unique. In
the case N=2 & graphical representation of (14) indicates the areas of
non-uniqueness. In Figure 1 the optimum values of ai(z) are shown over
various regions of the space of conditiona} price expectations. A%ong
the borders common to two regions (or the points common to three or four
regions) all interpolated values are optimal. As long therefore as z is

in the interior of a region, the intelligent salesman will know how to act
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E(y,l2)
(0, &) (a, &)
“b
(O: W)
c&
(0,0) (W: 0) (és 0)
y , E(y, |2)

Figure 1. Optimum Supply Actions (al(z), ae(z))

optimally, but if =z occurs on a border he will not. Complete information
about the external state of the world in these cases does not lead to

auvtomatic coordination.

3,2 Decentralization

Here we suppose the information structure n to be such that
ni(x)=zi for every i ; each salesman knows his own market predictor,
but not those in other markets. The action functions to be determined
are now ai(zi) instead of “i(z)=ai(zl’ cens ZN) as in the complete

information case of the preceding section.
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The constraint on b(z) is now
(15) b(z) > z a,(z,)- v
and the function to be maximized (which of course represents the payoff
if bz} is properly chosen) is

(16) z= ;(yi-ca)ai(zi)-(cb-camz)} p(z,¥).
zy (1

Proceeding just as before we find conditions on the mi(zi) and b(z):

< “0=a, (2,)
Jdu i .
(17) & =2 ... % I ...5% {X(y.-c yp(z,y)a(z) { =L 0if /0 <aq,(z,)<
{ i a iV
day(z) 2y myy 7 Py |V 2> \' a, (2, )=
2 ( 1121
and for gu( ) condition (11) again. And as before, when (17) is trans-
bz
lated into terms of conditional expectation we have
< =
< 0 = ay(zy)
(18) E(y.jz){=} ¢c +2 .. 5 £ ... z M2 irJo<a(z)<a
i1 & g z Z z p(z.)} it
1 i1 “i+l N i N
2 ui(zi) =a ,
where P(Zi) stands for £ ... & L ..Z2 p(z).
1 %11 Zisl B
For convenience, we repeat
< (=
(13) M) {7 (epep(m) o b(z)i 0.
= >

In attempiing to construct a solution, we start by concentrating on a
given i and given value of Zg . We assume that a solution exists in
which the A(z) take only the values zero or (cb-ca)p(z) (sometimes of

course this assumption is violated, as will become clear in a moment -- in

any case no harm is done by investigating the construction it leads to).

[N

o
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If E(yi|zi) < c_ then ai(zi) must be zero from (18). If
E(yilzi) > c_ ‘then the sum on the right of (18) must be evaluated.
From the above assumption about the possible values of the A(z) we know
that when z is such that I exceeds W, (cb»ca)p(z) will enter the
sum for A(z), and when z is such that e falls short of w , no
contribution results. The right-hand sum in (18) therefore can be
written (cb-ca)p' » where p' is the conditional probability given =z,

that Za > w ., We have therefore that

| < 0 =a(z)
E(y, |2;)=c A
1 ,
St S M P! if 0<az)<a
c,=C
b e > a,(z.) =a
—} S

with the qualification thet the A{z) must take their extreme values only.
A graphical interpretation of the uses to which (19) can be put will

be given for the very special case where N=2 and when E(yilzi) =2z, .

Suppose one suspects that both action functions ai(zi) are non-decreasing

. 1
in Zy - If this were so then =z, >z, and ml(zl) + aa(za) > w would
1

1
imply al(zl) + GE(ZE) >w end similerly for z, > 2z, .

l(z) would therefore occur in the Northeast part of the =z space of

All the positive

Figure 2. Condition (19) then suggests the definition of a function

*
gl(zl) by
(20) 3 (o yn) = ot (c. < z. <e)
plz,,2 = z c Z c
2, =g. (2 1’72 Qb ca a— "1 b
2781 \%

* In the present discussion we can ignore the discreteness of the z;




v 4
a 4 al
1
Figure 2
and a function ga(za) in the seme fashion. When z, =¢, , & must

be at the "top" of the conditional z, distribution, and when Zy = Cps
g mist be at the "bottom". Figure 2 shows & pair of very well behaved
g functions -- well behaved in the sense that they intersect only once
and are monotonic. Functions of this simple kind will result if z, and
z, are independent, or if they are inversely correlated and plz) 1is
not too misshapen.

Now set A{z)

(cb—ca)p(z) when =z 1is in the shaded area of

]

Figure 2 and A{z) = O otherwise. Next define three-step action functions

as in Figure 2 with ordinates 0, w, and a, with the first steps occurring



- 15 -

at the cocrdinates of gl-g2 interseetion, and the second steps at Cy
That the three functions A(z), ml(zl), and GQ(ZQ) so0 defined are optimum
is easily established by checking against (18) and (13). Also, it should
be noted, the solution is unique.

When zy and Zp are positively correlated the procedure just
described will quite often not work, because the g curves intersect
in more than one place and/or lack the monotonic properties on which

the earlier construction rested. Figure 3 portrays one such case. It

will be recalled however that the definition of the g curves was prompted

Z
2 gl
Y
e &>
a4
: ) | Z l
Ca Cb
Figure 3

by a hunch that the action functions were non-decreasing. But when

zq and z, are positively correlated, we would expect rather that

one of the action functions will be non-decreasing and the other non-

increasing. By "reversing" one of the g functions (i.e.,

gl(zl)

z,=C,
z EO p(zl’ZQ) =

2 Cp"%s

) and making the obvious changes in the
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construction (i.e., the positive A(z) are put in the Northwest or
Southeast corner of the =z space) similarly simple step-function solutions
for‘these positively correlated distributions can sometimes be found.
Still another class of "easy" solutions occurs with positively
correlated discrete distributions which are nearly symmetric about the

line In these cases the action functions are constant in the

2=,
interval [ca’ cb] and zero and a respectively below and above this

interval. The middle levels a, heed only be chosen so that a w3

ptay =
here of course the need, discussed earlier, for coordination in selecting
complementary action functions is again acute.

The geometric methods suggested above for comstructing solutions to
the decentralized problem are obviously very limited: the changes required
to replace z, with the original E(yi|zi) are minor, but the extension
to N >2 raises quite new questions. Moreover, it will have been
observed that maximizing (16) subject to (15}, with the restriction that
the variables be non-negative, is a standard problem of linear programming:
the armory of established techniques for these problems can be put to
use. The point is however that the number of variables (amlconstraints)
in our linear programming formulation is so extremely high as to make
ordinary computational techniques quite impracticable for many interesting
problems. The formulation is uneconomic in the sense that it makes no
use of regularity properties the p(z,y): distribution might have (e.g.,

a single mode); but rather is ready to deal with bizarre checkerboard
distributions which never occur. One hopes that geometric arguments like
those presented will provide & time-paving guide for machine computation,
both by suggesting computational methods geared to the peculiarities of

the problems, and by classifyling problems.
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5.5, A Mixed Case ~ Partial Spread of Information

ILet N=2, nl(x)zzl, and ne(x)z(zl,ze). The maximand becomes

(21) 23 {(r)-2,)ay (2 +lrpmc day(z 2p) (e (@)} 2(z,)
zy

and the constraint on b(z)
(22) b(z) > ml(zl) + aE(zl,ze)- w .

The optimum condition on ul(zl) is

(@) & {Epen(ey) - M)} =0, ete.

22 ¥y

o o (21, 22 _
or E(yl|Zl) Ca §2 -—P(Z—ly—l =0 , etc.

And for al(zl,ze)

(24) = (Yg'ca)P(Z,y) - a(z) = 0, ete.
¥

or  Ely,|z.,z,)-c - X 21372) = 0, ete.
2lP10%77% = 000
1?72
If in the middle range of z We can manage to keep Za=w then A(z)
can take any non-negative value not exceeding (cb-ca)p(z), from (13).
Tn particular it can teke the value it has when equality holds in (2k).

Subsﬁituting this value in (é5) we get

(2%)  Elyylz)-c,- = {E(y2|zl,z2)_ca} p(z52,)
Z
2

or

»(z;)

E(yl|zl)—E(y2|zl) =0 , etc.
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Thus when 2z, is in the interval [ca,cb}, Man 1 supplies W whenever
his conditional expectation of I17Y5 exceeds zero. When Zq is in
the [ca,cbl interwval Man 2 supplies w vwhen Man 1 is not acting and
nothing when he is. The total then is alweys w in the middle =z
range, so the substitution for A(z) in (24) was permissible. As before
both men order zero and a respectively below and above the [ca,cb]
interval.

An interesting question suggested by this result is whether the
function al(zl) just derived differs from the al(zl) of the centralized
case of the preceding section. In other words, does Man 1 act differently
when Man 2 has more information? I cannot prove the two functions are
the same, but neither can I prove that they are different. In the event
that they are the same, the formidable computation problem of the last

section is immensely simpiified.

b, Model II

#*
In the market facing & bread salesman price is constant and the

* The wholesale prices of baked goods do change of course, but only

as a result of relatively infrequent and ponderous decisions at the
highest levels of management. To ignore these price changes is not to
deny their importance as an element of a theory of organization. We
simply wish to limit ourselves here to & smaller more manageable problem -
one which almost surely can be safely "factored out" of the grander price-
decision problem.

quantity of fresh bread demanded at this price is one of the random
variables characterizing the state of the world x . Normalizing our

money measure, we can let price in this model be unity. The demand in
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Market i will be written Y5 and whatever advance information the
salesman can lesrn about demand Zg Ignoring the production cost
parameters, we have then x = (z,y)z(zl, vees Byd Yis eves yN). Just
as in Model I, the salesman's action a; = ai(ni(z,y)) is the amount of
fresh bread he supplies his market. ILacking precise knowledge of the
demand ¥y that will materialize, he will sometimes supply too much
and sometimes too little.

Throughout this section we shall assume that bread delivered fresh
to the market in the morning remains saleable as "fresh" bread only to

*
the end of the day -- i.e., its "shelf-life" is one day. Any excess

%* "Shelf-life" ig. of course a policy decision, not a technological
parameter. Iike price, we suppose it to be given.

ey of the amount 8 supplied by the salesman ovér the amount ¥s
demanded by consumers must be picked up by the salesman at the beginning
of the next day and returned to the plant where it is sold in an (I\I+l)3-'-1—1
market at a price l-r , with le-c <Tr <1 . Demand for "stale" bread
in this special market will be supposed infinitely elastic.
If Salesman i "undersupplies" his market the reaction of dis-

appointed consumers will be supposed to bring about a diminution of the
firm's future profits the present discounted value of vhich is directly

proportional to the deficiency di of supply. Let such loss per unit

of deficiency be the same in all markets and denote it gq .
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To simplify the analysis, both r and q will be regarded as

*
given; in fact, they vary from time to time and from place to place,

¥  Variation in r would arise if the assumption of elasticity in the
demand. for stale bread were dropped. Failure to meet the demand of a
particularly good customer, or of an ordinary customer on &n occasion
particularly important to him, could give rise to changes in ¢ .

but probably less than the Y5

In these terms total revenue in Market 1 is

(25) a; - re; - qdi
vhere e, = max (ai-yi, 0)
d, = max (yi-ai, 0) .

In Figure 4 total revenue curves are shown for two different values of vy -

Totai
Revenue
in Market i.

Figure 4. Total Revenue in Market i as Function of Amount Supplied
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From a formal standpoint the present problem now appears nore
elosely analogous to the Model I problem than one might have suspected
at first. Once again the problem is to determine how each salesman
should behave in the face of a shifting total revemue curve. To be sure,
the curves are somewhat more complicated in the present case than in
Model I, but the analysis based on them can proceed in the same fashion.
For purposes of the analysls, the interpretation given these revenue
curves is unimportant: whether we say that when the amount supplied
exceeds Y5 merginal revenue is lower because the stale returns are
higher or because the "price" must be lower to clear the market makes
no difference. The only new feature of general interest introduced by
Model II is the dependence of marginal revenue on the amount supplied

to the market; in Model I marginal revenue was unaffected by the supply

decision.

k.1, Centralization

Iet the information structure be specified by ni(x) =2z . The
problem then is to select non-negative ai(z), di(z,yi), ei(z,yi) for

-each i , and b{z) 8o as to meximize

(26) fz {g[(1-ca>ai(z>-rei(z,yi)-qai(z,yi)1-(cb-ca>b(z)} p(2,¥)
subject to the constraints

(27) di(z,yi) > yi-ai(z) , (i=1, ..., N)

(28) ei(z,yi) > ai(z)-yi , (i=l, ..., W)

(29) p(z) > Za(z) -w
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let ggzayi)s ¥§Z:Yi} and M\(z) be the lagrange myltipliers respectiVely
associated with (27), (28), and (29). The partia] derivatives of the
Lagrangean maximand with respect to a,(z), di(z,yi), efz,7;)> and b(y)

are respectively

(30) (L~ )p(z} - M(z) + §1 [u (2,5,)-7,(2,5;)) = 0, ete.

(31)  wy(z¥) - ap(z,y,) =0, ete.
(32)  7,(z¥y) - rp(z,y,) =0, ete.
(33)  Mz) - (e -e )p(z) =0, ete.

Let us first look at (27) and (28) in relatlon to (31) and (32)

for given 1 . IT vy > mi(z) then di(z’yi) 20 , so equality must
hold in (31) and strict inequality in (28}, in twen impiying 7i(z’yi)$ o
If y, < ai(z) the same argument yields equality in (32) and “i(z’yi)= o

If y,; = ai(z) then both py end y, can be pogitive.
With these results the third term in (30) c&n be written
(30 {a - (o)l ()1} o(2)

vhere Si[ai(ZJJ, which we shall call the "(conditional) probability

of no sell~out," is defined by
(35)  Probly; <o (z)]z] < 8 la (2)] < Probly; < a,(z)|z] .

We can now rewrite (30) as

l+q ~ ¢ ___5_%_?\,2
(36) st

r+q

A

Si[mi(z)] if mi(z) o .

[}
\'4
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With knowledge of his own demand distribution a salesman can easily
choose his ai(z) so as to put Si at any preseribed level between zero

and one. Suppose the ai(z) are tentatively set at values which make

l+q-ca
(37) 5, la;(2)] = ——— .

r+q

For all =z such that I ai(z) < w , these tentative ai(z) are optimal,
because in these cases A{z) = 0 and (36) is the same as (37).
Now, for the remaining z , set the ai(z) tentatively at values

which make

l+g- c.b

(38) 5,0, (2)] =

r+q

These values Will be correct for all z for which X mi(z) > w , since
now (36) is the same as (38).
For the still remaining z , the ai(z) must be selected so as to
make o = ¥ and S, = Sj , at a level intermediate between (37) and (38).
The solution iIs easy to see in a graph for the case N=2. To simplify
the picture let =z, = E(yilz) . The solid lines dlvide the 2z space into
the three regions Jjust described. 1In a practical case of centralization
one might wish to compute a whole famlly of contours of the function
»(z); the dotted line in Figure 5 is an intermediate member of this
family. ﬁotice that all any individual salesman need know in order to
act optimally is the value of A(z); the particular =z that gave rise

to this A(z2) is of no importance. This suggests that from the computational



Figure 5

point of view the optimal set of actions given & 2z , might best be
found, not by tabulating M(z) and informing all members of 2z , but
rather by playing a "market game" in which individuals repeatedly submit
tentative orders on the basis of their own Zy and a tentative value
of A . A custodian (of overtime labor) then revises A in the light

of FSa , the procedure continuing until a "centralized" solution

satisfying (36) is found.

4.2. pecentralization

The information structure is now ni(x) = z; . The condition

analogous to {36), namely,

ligmc = M%)
2" Tplzg

(39)

Si[ai(zi?] if ai(zi) 0

i

r4+q
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follows by exactly the same argument. In (39) the abbreviated notation
for sums, used up to now only for probasbilities, is applied to the A(z):

x(zi) = I ..o I ...X AMz) .

21 Zia1 B Iy

In looking for a method of computation we can, as in the decehfralizatign
cage of Model I, fall back on the standard techniques available for
linear programming problems. But just as in Model I, this alternative
cannot be regarded as much more than a last resert -- the number of variables
is so high. Again we wish to make use of whatever special characteristics
the problem may have that were not incorporated in the mathematical
formilation.

Results == or rather weak computational hints -- analogous to those
obtained for Model I are slightly harder to derive and, once derived, are
probably of less direct usefulness. Since they are suggestive, however,
they follow.

Ietting p and p' dJdenote the conditional probabilities that
Yo, < w and > w , respectively, for a given Z5 s the left side of (39)
can be written*

l+g~-c l+gec
(80) p[——2)+p{ B 1},
r+q r+q

* Recall (35), which allows us to ignore occasions where A(z) has
an "intermediate" value.

An optimal action function is therefore seen to be one vwhich results from
setting Si[ai(zi)] equal to a linear interpolation between the extreme

values of (39), the weights being the conditional probabilities p and p!
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Designate the two hypothetical action functions that would be optimal
when w=0 and w=w by a? and, a: , respectively (if w=0 then
cy always prevails; if w=ew , Ca always prevails). For any given Zy 5

the value mi(zi) of the function we seek is a non-linear interpolation,

. 0 ©
via Si[mi(zi)], between ai(zi) and mi(zi).

Figure 6, a four quadrant disgram analogous to Figure 2, shows the

functions referred to for the case N=2 , Zi=E(yi|Zi)'

g2(22,0'7)

Figure &
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If 24 and Z, are independent or negatively correlated, then both
@, and a, are probably non-decreasing, so the positive A(z) will

oceur in the Northeast region of the 2z space. Define a family of

gl functicons as follows:
o
Z p(zl’ZE) = b 0<ty <1l

Z2=gl( Zl)tl)

and a similar family of 85 functions. Just as in Model I, much will
depend on how well behaved these g functions are. If they are monotonic
as in Figure 6 , and as would be expected with a "reasonable" probability
distribution with no positive correlation, then the following procedure
will yield & solution without too much difficulty.

Pick a 2z . Observe the tl and t2 asgociated with the g

curves through z . Select tentative ai(zi) so as to make

l+q-ca-ti(cb-ca)

si[ai(zi)] = If S >w, mark z with a "+".

r+g

If Zo<w, mark z with a "0". HNext, 1f 2z is "+" +then so is any

z' > z (in the vector semse); if 2z is "O" then so is z' < z .
When either plus or zero has been associated with all z (except those
dividing the two regions, which we will ignore), we set L(z)=(cb—ca)p(z)
if z is "+",and A(2)=0 if =z is "O". Set the final values of aitzi)‘
by the values of ti along the border of the "4+" region (shaded in
Figure 5).

That the solution so constructed satisfles (39) is easily verified.
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Notice that by no means all the =z need be investigated, and hence
not all the g curves need be constructed. It is here that the saving
of effort over a straightforward linear programming calculation is most
evident. The qualifications mentioned earlier about extensions to
N > 2 still hold, of course. Furthermore, the difficultles of adapting
the procedure (e.g. by making one of the g functions cumlate pro-
bability from the bottom of the z, distributions instead of the top)

to positive correlation seems more difficult than in Mcdel I.

5. Model IIT

In most wholesale bakeries the shelf-life of the leading product is
set at two days rather tﬁan -= &8 in Model II -- one day. In this
section we attempt to investigate the consequences of changing Mbdel IT
in this one single respect.

No longer is one day's profit independent of ancther day's profit;
the supply actions taken on Tuesday affect not only Tuesday's profit
but also Wednesday's since some of the bread supplied fresh Tuesday
morning may not be taken by consumers on Tuesday. This carryover, not
yet "stale", affects the probability of sell-out on Wednesday, hence
the optimum amount to be supplied fresh on that day, hence the carry-
over into Thursday and the profit on that day, etc.

In order that the profit function be bdunded, wve must introduce
either a discount factor or s beginning and end to the period considered.

*
Since Sundays are the salesman's day off, they provide a natural break

* And perhaps Wednesdays also in plants on a five-day week.
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in the interrelatedness of profits on successive days, so the second

*
alternative will be chosen here. Wherever necessary, variables will

# TIf «= ag is the cage for some products -- ghelf-life were three or
four days, a discount factor would be unavoidable.

- be laebeled with superscript t +to denote day of the week (%=1, ..., T).
We shall speak of three clagses of bread on any one day: fresh,
day-old, and stale, corresponding respectively to ages less than one day,
between one and two, and greater than two. The consumer will be supposed
indifferent or unable to distinguish hetween fresh and day-old. We
assume however that a "FIFO" rule of consumption prevails: that the

*
consumer alweys takes the oldest loaf of bread from the store shelf.

¥  The alternatives are "LIFO" or random selection. The first could
Just as well have been used here, but it leads to problems of non-
concavits in the problem (not treated in this paper) of optimum allo-
cation of a given total order among stores. This was pointed out to me
by Robert Summers. Random selection is probably realistic, interesting,
and complicated.

The definition of “excess" and "deficiency" must be extended to

day-old bread. In accordance with the FIFQ assumption, demand will be

first applied to the stock of day-old to determine é'it and ait , the
excess and deficiency of day-old, and ait will be the "demand" that is
applied to the stock of fresh bread to determine eit and dit , the

excess and deficiency of fresh bread.
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t
i

and the yit » As the week of length T days progresses a salesman

The state-of-the-world vector now becomes a TN-tuple of the =z

learns more and more about the true x: at the beginning of Day t we
suppose he has cbserved zil, coes zit and eil, .a._,&it-2 in his own
market and, in the centralized case, the same variables in the other
markets. If we follow the formmlation of Model IT the eit are pseudo
action functions, optimum values of which must be determined in the profit
maximizing problem. Yet here we find they also play the rfle of information
variables given by x and information structure 1 , supposedly fixed.

This conflict is resolved by supposing that the salesman on Day t learns
yesterday's demand yit—l instead of the carryover eit-l from yester-

day. We then make an assumption that yit+l

it+l, thus ensuring that the extra information

is statistically unrelated
to all variables but =z
that yitbl represents over ey “" is useless to the salesman. Thus we
can gtill regard the eit ag pseudo action functions without vieclating
the assumption of fixed 17 .

A convenient formalism is to regard Salesman i on Day t as a
team member distinct from Salesman i on Day (t+l). For each "member"

then there is an information function nit .

Proceeding just as in Model IT we have the constraints

(k0) B > = a.it

. i
(1) 311; > yit ) eit-l
(h2) git > eital ] yit
(43) ;"> 4% -q°
(4b) &> a,"-&"
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where the information vectors upon which the variables depend have been
omitted for brevity. (For clarity we emphasize that given 1 and given
t each of the constraints above is still a vector comstraint, with a
component of the vector for each value assumed Dy the information vector.)

The maximand of the problem, again leaving out the information

variablesg is

(45) § {:i §[(l-ca)aitﬁréit“qditj'(cb”ca)i bt‘rieiT}’ p(x)

Just as in Model II, {(45) represents gross profit only if in the solution
the pseudo action vafiables take on values consistent with the inter-
pretations of them that determine their Tole in (45). Thus in (15)

Eit represents the excess of day-0ld on Day t. If in the solution non-
zero &,% were found for which strict inequality held in (42), then

(45) would be incorrect; extra day-old bread would have been generated
mathematically.

In Model IT this trouble never arose: dit and eit always
correctly represented deficlencies and excesses. That the trouble is
present here is easily seen. Set ait = mit = e« and eit = dit-= éit =0
for all i, t, and x. Constrainta (40OR(44) are satisfied and (45) is
unbounded ~~ but of course none of the pseudo action variables play
correctly the roles assigned them in (45).

Throughout ﬁhis paper we have been maximizing piecewise linear concave
functions of unconstrained (except for positivity) variables by first

finding equivalent linear functions of linearly constrained variables.

The trouble in the present case seems to be that the true gross profit
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function, in terms of unconstrained action variables; is not concave,.
If so, this is somewhat of a surprise. It need not mean however that
hope of an "easy" approach to a solution must be abandoned. Modified
Model II technlques should first be tried. One can, for instance,
blithely go ahead with the argument as before, meanwhile foreing the
pseudo action variables when positive to satisfy equality in the con-
straints. A reasonable looking solution results but its relation to

the optimum is not clear.
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