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Introduction |

The Statistical Decision Problem, as developed in recent yesrs, in
concerned with an individual who mekes a decision and is thereupon rewarded
according to hia choice and the prevailing state of Nature. As an extension
of this we might comsider several individuals each deciding about something
different, but receiving a common rewerd as & result of their joint choice.
Prof. Marschak has called such & group a team, to emphssize that the group
members have a common goal, end distinguish it from a group whose members
kave conflicting interests and whose study is therefore threatened with all
the uncertainties of the gemeral theory of gemes. This discussion of the
teem will be devoted to the implications of the fact that different decisions
may be based on different mformation.

In the one person problem part of the decision mede by the individual
way be concerned vith obtaining information about the atate of nature. We
suppose that ultimately the individual is to take some action e andthat his
Rayoff will be u(a,x} where x denctes the gtate of Nature, which is
random. Which action is chosen may depend upon the information y =7 (x},
80 that a = ay), where & 1is called the decigiom function. For any
given function v, which we will call the information structure, we assupe
that the individuel will choose his decision function & so as to maximize

the expected value "

E ula(y),x)

provided, of course, that he knows the probability distribution of x. In
general, however, the information structure will cost something; we will
assume that this cost Cin) can simply be subtracted from the expected
payoff above, so that the complete decision problem for the individual is:

*. 'ﬂme symbol E will dencte expected value.



“cheose an information structure 17 and a decision function & which
meximizes the net expected payoff E u{aly),x) - c{g)"

A few words may be necessory at this poimt, to wern the reader the:
the definition of "state of Nature" in eny problem will usually be relative
to the set of altermative information structures being considered. For
example, some cookbocks say that a roast of beef is done {rare) when the
inside temperature of the roast reeches 140 degrees. Thus one might first
say that for the decision about when to take the roast cut of the oven, the
relevant atate of nature is the internal temperature of the meat. But if
one's information sbout this temperature conmsists of the reading or & cheap
theimometer, then immediately one must include the error of the themmometer
in the description of Naturz. On the other hand, one's ifaformation might
be the length of time the roast has been in the oven, the weight of the
roast, etc., in which cese these variables would have to be included in
the state of nature, together with some statements about the {statictical)
relationship between them and the temperature.

For the team problem there will be seversl action variebles s, and
as many {(in genersl different) information variables ¥,, vhere y, = nyixd,

and as many decision functions o The set of funstions Ny together

i ,
e ted
constitute the information structure. ‘Ihe‘net payoff for the teem in thus

E w{a,{yy),---, Aplyp)e) = Clngseeeany) -

If we call & = (a.l,....,am) the tesm action, Q@ = (al,....,c:m) the teem

decision function, etc., we see that the team can be formally reduced to an

individual. In fact we mey say that

deecision pro n ch the action




If & is the best team decision function for a given v, then we

will call the expectation
ry ;
U (&1) = E @ (y),-....5 (), x)

the value of the information structure 1. Our aim here is to study methods
of finding best decision functions for givem 1%, and to investigate how
the value of an information structure depends upon the properties of the
payoff function u{al, «++,8 ,x) and the probability distribution of the
state of Nature x.

The two simplest {ypes of peyoff functions u ve can consider are
either linear or qusdratic in the =ction variables 8. In ‘;he lineser
cagse the "gross expected payoff" E u{al(yl),....,x) is the sum of terms

each of which depends on only one decision function &, so that each com-

1
ponent of | makes a contribution to the total value of the information
structure which Ais independent of the other information camponents. Thus
for our purposes, the quadratic case 1s the simplest one of real interest,
and this paper will be entirely restricted to consideration of a quadratic
payoff runct;ogl'[

In the first part of this paper, we will consider the situatiom in
vhich the probability distribution of the state of Nature i known. It
will be shown that for any given information structure there is a unique
best team decision function, which 18 in fact the projection, in a certain
Hilbert space, of the decision function which would ds best under complete
information onto a subspace which represents the given information structure.
From this we will be able to show how the best payoff depends upon the

interactions between the different decision variables and upon the corre-

lation between the information (in e certain sense) and the decision fumctiocn

J,/ This 12 not to say that cousidzration of the gost of information cannot
lead to many interesting problams of interdependence in the linear case. .
See, for exsmple, M. Beckmonn, "On Marschak's Model of an Arbitrage Form",

CCDP: o cg No. 2058,



which would be best under complete information. A necessary and sufficient
condition for a best decision function is then givan together with an
application to the case of normally distributed information. Finally, the
praceding geperal remsrks are applied to a discussion of certain special
types of information structure.

In the second part of this peper we will consider the situation in

vhich the probgbility distribution of the state of Nature is unknown.



Pert I: The Cese of Known Disiribution of the State of Nature

Information Structure.

The cquadretic team decision problem for Pixed information structure

is defined by
{1) & real n-dimensional space of decision variebles a = (al,“..,e.njﬂj
{11) & probebility spece X with eclements x which describe the
state of Rature, and a given probability measure on X.
{i11) & payoff function u{e,x), vhich is & quadratic function of the

a for almost every x. Without loss of geperality we cen

37
represent this quadrstic function in matrix temms by:

{3) u{a,x) = - 2 @{x) a' + 2r{x) a'

vhere Q{x) 1s a mairix snéd r{x) is a vector whose clements ere
real-valued functions of x, and Er{x) = 0. We will assume

that (x) is sysmetrix positive defini‘e for almost every i

and that E [1’_1‘_(.;:)]E exists for all 4.

{iv) an n-tuple of information variables Y- ‘_(yl,....,yn) which are
defined by v, = ni(x}) vhere n = (ql,,.;.,nnj ie a given n-tuple
of fuactions, called the information structure. ~ The variables A
can be considered to be elemnsnts of ‘pro'babili‘ty spaces Yi s, with
probability measures which are induced by the measure onm X +through
the functions vy g°

{v) a space & of n-dimensional decision functions a = (al,..,.,,an}
such that oy iz & resl valued function on -‘i!i., In general a
will be taken to be all funcitions @ of this’ form for which the

expectation



B loy(y,)1?
exists.

Given the information structure n , an optimsl set a of decision

functions is defined ss one which maximizes
U{G) = B [u(al(yl)’ seow Jan(yn)’ x]

The matrix Q(x} 1s of central importance in our discussion for it
1s the thing that gives our problem its many-person character. For any

given x,

ou {a,x) . -
63139.

3 13

or in economic terms, the marginal contribution of ome action varisbie a,
depends upon the value of amother action variable aJ only insofar as "y
is different from zero. The term { -q, ﬂ might be called the interaction
between the 1 and J decision varisbles. We shall see thet unless Q{x)
is {almost always) ﬂiagonal the consequences of a change in one information

ny ¥ill ueually depend upon the mature of the other information variabler
1) 3 end it will be one of our principal concerns to iovestigate this ipter-

action betveen informetion veriebles. iIn the special case in which Qlx)

is disgonal the expected payoff becomes
W) = LB (g (x) {oyly, )" + 2r, (x) @, ()]
= LU
" 1(2y)

and the problem degenerates into pany "one -person”problems.

a, iz a linear subspace of the linear space % ‘of all functions v
Eucljdean 2 1./
from X to n-dimensional| space such that E[vi(x)} exists for all {.

1/  Strictly speaking, it is the set of all 8 of the form By(x) = a,(n,(x) )
which forms this subspace of Jf ; we will call this (L, too. 1
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¥e can define an inner product between any v and w in % by
(v,w) 2 B v{x) Qx) wix)'

where Q 45 the matrix in equation {3) above. The norm of u is then of

course

1
Wil = {Euix et wx)'} 2

Tt is easy to see that {u,v) is ectually an inner product and that M is
thue a Hilbert spece. Furthermore, since L2 of Yi is complete {for each
i), (, 1a & closed lineer subspace of % .

Completing the square in equation {3) above:

{3a) ula,x) = - {a - r{x} a{x}"") &x) {a - r{x) Q(x) 1}’

+ r{x) @lx)™ rix)'
and the expected payoff using the decision function o 'is

U(a) = E [alndx)) - r{x) Q(x)"1] Qlx) [aln{x)) - r{x) o(x) 1}’

+ E r(x) afx) " r(x)’

or more briefly, letting =z{x) = r{x) Q{x)'l :
W v =]z |®- ez

The deecision problém 15 to find that a in (I which maximizes u{a), which

according to {4) is equivalent to minimiring the distance between o and

z. Since (I, 1s closed we immediately have the following theorem:

Theorem L. For (& es defined above, there exists s unique optimsl

decision function & in Cb; £ 1s the orthogonal projection of 2z on .
It follows from {4) and the Pythogoream Theorem that the best expected

payoff is the square of the length of a, i.e.
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{5) U@ = || 3|7

Ite maxioum value is, of course, || z Ha, vhich occurs when z 1= in
a, » and i{ts minimuww is zero, vwhich oecurs when 2z 1is orthogonal to @J;

If we are to say something more explicit about' & wve must describe
(b aore explicitly. One such description 18 by means of .an orthonormal
besis {ﬁ‘j} of y. In this case & can be described simply as

(6} 2 -« Lipd, vy pd
J

ad U@ = I (8, 2)2
This reduces the problem one where the main task is to translate the

description of the information setructure v into the epecification of en
orthonormsl basis of @

To gain further insight from this approach let us look more carefully
at the special character of our inrer product. For simpliclity, supposa
thet the matrix Q(x) 1s just e constent matrix Q. Using the fact that

there 1s a non-singular metrix P such that

QR = PP

we can rewrite the inner product as

(v,) = E{(VP) (wP)‘}

* "
If wva let VP = {vl, ceey V)

» »
WP = (wl,.,..,, wn)

Then

-

k-2

(v,w) = ZEv A
' i

=



if Ev-mio,

That 1s,|thg ipper product of v end w is the sum of the coveriances of
the correspondiong coordinste variables of vP and wP.

Heuristically, we might say that the best payoff for a given information

structure is measured by the "total covariance"” between the transformed
rapdom vector 2zP and the transformed subspece GJP. Reeell nov the

definition of g:

2(x) = r(x) @

As is clear from equation {3a), for every x the best possible decision
18 & = z{x). That is, z is the correct decision function when there is
full information. On the other hend, we have seen how the subspace A 1s =

complete characterization of the information structure. Hence we might say,

again heuristically, that the best payoff for a given structure of information

is measured by the "total covariance" between the transfoymed correct de-

cision and the transformed information, the transformation being the one

waich diaegonalizes the matrix Q of 1nteractiona.y
(12 Q{x) does actually vary with x, then instead of P we have a
random matrix P{x) end the transformation discussed ebove is a random cne.]
It is interesting to mote that the quedratic team problem reduces to
the familiar minizum mean squared error prediction problem when thers is
only one action varisble. In that case the best predictién of z{x} on
the basis of the information 9u{x) 1s the expected value of z(x) given
1{x). The thing to note here is that this rule does pot go over simply iato
the many dimensional problem, 1.6., it 18 not true in general that the best
decision ai{qiix)) is equal %o the expected value of z,(x) given ny (),
unless the matrix Q(x) 4is almost elweys the 1dentity matrix. The form of
the best @y Will in general depend not only on the form of the information

function Ny, but on all the other 1q 3 as irell_.

- ——— -

At R B e A i 8 T, 0 T B T VY I i ¢

2/ Recall that Bz = O.



2. A Kecessary end Sufficient Condition for Best Decision Functions

Ir 31,.. "&n ere optimzl decision functions for a given informatlcn
structure § then certainly 3‘1 meximizes U{a, Gyyeneep@ ) With respess

to G’.l. But

n;lx U(dl, 3%,- ---,3,3:5)' glax E {E [u(alﬂsrl), 32(:!2),- ---,sn(ynlrﬂ 3’1]}

: ~ "
= B B ( ] ( ’oano, 3 j
{”;’1‘ RS CAIRREACA Y 3’1}}

Bence for every ¥y 3‘1 must take on a velue which maximizes

 futay, By0rp),--- B0 | )

A
a

with respect to '1 Similsr statements cen be made for 2,....,39.

This can all be summarized as follown:

A _necessary copdition that al,....,an be optimal is thet they simul-
taneocusly satisfy the n conditions

(H) 31(y1) = mAx'er E{“(al(yl)"""‘i"“"an(yn)'dlyi}’ I »l,¢eeyn
8, A .

In general {that is, for s general payoff function) condition (M)
will not be sufficient to ensure a maximm. We should mention a trivial
case in vhich it is sufficient; namely vhen the payoff function is a sum
of teorms each of which depends upon one decision variable only, 1.e.

u(al,....,ah, Xx) = ul(al, x) + o0 + un(nn, x). In this case

U(al,....,an) N {u(ctl(yl), x)} 4+ ... +E {u(an(yl), x)}

and our"many-person“decieion problem has degenerated into n independent

"one person”problems.



- -

The main object of this section is to prove the following:
Theorem 2. For the quadratic team problem defined in section 1, Condition
(M) 1s both necessary and sufficient to determine the optimal decision
function for any given information structure, and has a unique solution.
Proof. By Theorem 1 it will be sufficient to show that if (M) has a solu-
tion, 1t is unique. Suppose on the contrary that a and f are two dis-

tinct solutions of (M). Form a convex combination 7y of the two.
73(0) =ay{y,) + (1 -2) B ly,), OgaAg1

Taking the derivative of U(y) with respect to A, (see (4):

r e TR TR IR [

- - g—;ir'z,w'z)
- -2y -2, & [y -2l

an
fg-; Wy) = -2 {yz,a-8)
and
2
—4—9y) « -2(a-p, a-p)
a

Since a - P 40,

2

(n ﬁ? u(7) < 0

On the other hand, we can rewrite —g%* as:
L.-2 E)j. [, y,) - B5(3,)] {}E qia(x) ACARERC)

- -25Zlo0) -6y, 8 ﬁ: (21 730,) = x4 | ’a}



Consider one of the conditionsl expectations B { .e IyJ} in the above

expreseion. For A = 1 this equals
{8 E jL -
) { L Yy 4(x) 01(31) ry(x) | yJ}

This is in fact equal to {for fixed YJJ

% &‘3%?—37 E {a(ﬁ alx) aly)' - 2 r(*? aly)’ | VJ}

But since a sat:lsf:lea condition (M) this partisl derivative must be gero.

Bence
as Am]

and by a simliar argument sbout 8

(9v)
8 —%2—-'1-0.0

But (9a) and {Sb) together contradict {7}, which shows that there can be

only one solution of condition {M). Q.E.D.

5. Hormality god Linesrity

One who is familier with the theory of minimum variance estimation
and prediction might gue#s that the normal distribution would have a2 special
pPlece in our theory vhen the payoff function is quadratic. Such a guess
would be correct as will be shown in the present section. The main result

information variables and the
here is essentially that if all the|given rendom varisbles which enter into

and matrix Q is constant,
the payoff function are normally distributed, [then the best decision functions

are Jipear in the information variebles.



¥We now make the assumption:

{H) {(a) The information variebles ¥;s vhich are vectors, and the
variables ri(x) in equation {2.1} all have a joint normal distribution.
Without loss of generality ve msy esaume that Eri(x) = 0 for all i.

{v)} The elements 9 J(xD of G{x) are comstant {for almost all values
of x).

Toueorem 2. Assumption (N) implies that for the best decision function
3= é’&l,....,&\n) each 31 is linear in y,.
Proof.

According to Theorem 1, the present theorem will be proved if ve can
show that coudition (M) is satisfied by a decision function & = (&l, cones@ )
such that 3&1 is a linear function of Vye As ve saw in the proof of
Theorem 1, in the quedratic cese ccndition (M) 1s equivalent to setting

expression (8) equal to zero for eech J; that is:

{10) fq“ Eloyly,) | yyd =8 [rdad [ y,), al2 g

If @ 4is linear we can represent it as

2N
pi
{11) a,j(yj) - kgl.ndk ydk’ J=1l,....,0

where Y 3k (k = 1,....,mJ) ere the coordinstes of ¥y The linearity of
cri together with the normality of the yi's together imply that

E [a{y,) | yJ} is & linesr funciion of y,, the coefficients in this
linecar function being determined by the 8 and the means and coveriances
of the coordinates of y, and y,. Similerly, E [rJ(x) | yJ) is a

lipear function of yJ.



We may esssuma, without loss of geperalily, that for each ] the
coordinates ¥y 1k are independent, with means zero snd variacces one.
The correlation matrix R of sll the veriables yll’““’ylml’“” .

can be partitioned into blocks Ri 3 where R is

1J
between the varigbles Yin and the

yn1’ T e C ey "ymh
the matrix of correlations o;i
variasbles ¥ Ik’ Bote that the matrix R 1is non-negative semi-definite,
and the blocks Rii on the diegonal are m, by a; identity metrices.

In terms of these correlstions:

g mg:
Fy b Iy
{12} B [ai(yiB I .VJ] = hﬁl amk“l Ppie Yk

The copditional expectations E {r.j(x) | yJ] will be of the form:
R

Substitution of {11) (12) and {13) in condition {10) gives the condition:

- fo. | Bo B 2
{1h) a y - Lu. ¥ J ® Lycees,n
T Uy | Mt oo ok Y gk o 3s Vg 2 :

Coniition (11} must hold for simost all values of the y,; hence 1o each
equation, the coefficients of corresponding variebles on each side must be
equal, which glves:

By

(15} z La 1 s T kal,coc. m
13 g th w7 Tk ’ ’ J

J = 1,««.-,31

The coefficients of the unknown mmbers &y 1o {15) form & matrix B
vhich is made up of blocks Bid oY By {1, =1,....,0n). Our odject

is to show that equations (15) cen be solved for the Bs this wiil be



i_!

accomplished if we can show that the matrix B is non-singular, em! this
in turn will be true if B 1is positive definite.
let v be eny vector with L m, coordinates, and let these coordinetes
i

be denoted v, (1 = 1,....,n; b = 1yeeessmy)

(16) vBv' = L I 1) 1 .4
$h 3,k U3 Phx Yn Yk

Since R is non-negative, it can be expressed as the sum Z Rip) of
b
P non-negative matrices R{p} esch of rank one. For any non-negative
matrix C = (013) of rank one there 15 & vector ¢ = (eij such that

13 i)

¢,, =cC,C oy For each matrix R{p) let {p; (p)} be the corresponding
vector, i.e. :

oyl = %p; (o) o) (p)

Substituting this in {16) gives

« 2L v, {p) w,(p)
p 1y 1 R

wers  wi(p) 2 Ioy ()

Hence vBv' 2 0 for all v. HNow let v be different from zero; then for

some 1 the m, dimensional vector a’(vi,....,v;' ) is different from zerao.
i

For that 1 consider the sub-matrix Rﬁ of R, and the corresponding

sub-matrices Rn(p) of the matrices R X

1/  Halmos, Finite Dimensicnal Vector Spaces, $69, Theorem 1.




R,, = LR, {(p)
14 pnp

Each Rn(p) is of rank one and the corresponding vector is of course

i
(pl(p),...., p::l(p) }. Since R,;, is the m; demensiopal identity matrix

these P wvectors mst span mi dimensional space, snd hence for some p

oy
v,(p) = hi'- o(p) v, $ O
=1
and for that »p

z w,{p) v.(p) > O and hene
idquipwJp ence

vBv" > ©

wvhich proves that B 1is positive definite. Q.E.D.



k. Some Specisl Information Structures

Throughout this section it wiil be assumed that the elements of the
matrix X constants nient. of value of x.
A. tity and ndence

Idsnticel Information

Since the team problem is distinguished from the simplest one-person
problem by the poesibility of different camponents of action belng besed
on different information, it is interesting to have as a besis for comperison
the value of an information structure in which all decisions are based on
the ssme information. Let y = n{x} bYe this common information variable.
Condition (M} immediately gives us the best decision function as

(17) a(y) =& (ry) Q*

and the corresponding expected payoff as

(28) U @) =Bz} ) @ E (rfn) )

= |1 B (z{n)]}3
Since the maximum expected payoff is obtained vwhen E(z]y) = z {see remarks
following equation (5) ), and equals || = ||°, subtrscting (18) from this
gives us the “"loss” which is suffered by using the "incomplete"” information
atructure 1: '
il 2 - & (e }}°
B[z - B(sty) ) @ (z - Be|y) )]
E{E [(z - Blzfy) ) Q {z - E(z}y} }' | :'}}

{19) L{n)

The expression E [(z ~Blzyy) ) a(z - E(z'y)'y] might be thought of as a
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conditional generalized variance of z given y.y Thus the loss due to
incomplete information is equal to the expected value of the conditional
generalized variance of 2z given y.

independent Information

At the opposite extreme from identical information is independent in-
formation; by the latter we mean an 1 such that the Y, eve statistically
independent. In this case application of comdition (M) gives:

(20) QJJ aj(yj) + 1%3%3 E ai‘(yi) = E (rd ' JJ) J = l,a....,n
One can easily verify that
(21) aJ(YJ) bd ai; E (r.'}'y.') Jel, e,

s & solution of{20) and tlierefore is the best team decision function. The

value of n 18

[ z ___]:__ 2
(22) wGa) - 5L - k (rd.lyj)]

Thus the value of an information structure with independent components is
the sum of the values the components would have in‘"bns-person"games with

payoff functions
-q aa +2r, s
33 4 34

Conbining Identity and Independence

It 18 but ope step further to combine these two types of information --
identical and independent ~~ in the following way: Suppose that the set of

action variables is partitioned into groups {‘1} iﬂk’ k=1,,...,K; and
1

1/ Mot to be confused with Aitken's generslized variance.



suppose that for all variables in the seme group » the information is idantical,
different

vhereas the].tnromtion componente for the different groups are independent.

If we dencte by vy the information variable which is common to the k'th

group, by ak and rk that part of o and »r, respectively, corresponding

to the k'th group, and by Qk the submatrix [qu], i,J‘Mk, then by reason-

ing similar to that already used sbove we find the best decision function to

be

(23) R NE PSRy
and the value of % to be
(2‘&) u (E,q) =RELE (rkl'ﬁk) Q;l E (rk.wk)'
. 4
« BL (%) 7 (%)
Z r Qk {x
oL [ - m M) [ - 8 Gy

Thus partitioning the team in this way has the effect of reducing the problem
to & corresponding number of simple problems, with ideatical information.

All or Nothing Components
Suppose that the decision variables are divided into two groups such that

the decisions in the first group are all based upon complete information, while
the decisions in the second group ere based on no information &t all. Thus
for 181, ni(x) =x, ad for J ¢ 1, Qd(x) = ¥,, 8 constent independent
of qu This is really a special cese of the structure Jjust discussed. ILet

@ aod r refer to those components of & and r for which 4 €« I, and

let G be the corresponding submatrix of Q. Then by (23) the best decision
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functions sre:

a(x) = ¥(x) (7

(25)

uJ-O EN

and the best payoff is {from {2k)

(26) Un) = Ex (L5

BED i‘ii'j
13ex 1

-13

vhere p,, = Br,r, and are the elements of (@)t
1) 13

B. Information Subject to Error

We have already noted that for any fixed x the best decision is

a = z{x) = r{x) Q'l. Thus the value of the information structure
0, (x) = z,(x)

is equal to (z,z), the highest possible value. Suppose now that the infor-
mation zi(x) is received with some error; ‘vhat vill be the effect on the
best decision function and on the value of the information? If we maks the
assumption (N) of normality (section 3) and further assume that the errors

are distributed independently of each other and of the zi(x) s then an explicit
ansver can be given to this question.

The information structure is defined by
yi - Tli{x) - 21{1) + ei

where the e, are independent ard each e, 1s independenf of each zJ(x).,



Further, the e, and g g are norpally distributed. We can assumz withcout

losa of generality that the e, sod 2y have zero meens. let

c“sszizi and -rf-kei". Bylheofenaeachdecisionrulemf:be

of the form aifyi) = byy,; then the team decision functions of the form
Bi L (o,e---,o, yi.' G,--.n,O)

span the space Q@ of a1 teanm decision functions. PFrom the definitions of

the Bi wa get the inner products

Yy oy , 1f 1 43
(Bi’pd) b 2
Yy (au + 1'1), if 1 =3

(a7}

(ﬂi:z) = 23‘ q'id ciJ

If we let F = ((f”)) be the inverse of the matrix of imner products (31"33}'
then by the well known projection forumla, the projection of z on a; is

G- %, 8
y 9 J
"~
vhere bJ = ftid (pi,z)
= g . L 3
"1 ¢ Uk Yk
By using the definition of ¥, a simple computation reduces the above to

(28) o g.j - ] - ‘lE ka qkk 1‘}:

The sum on the right of (28) is thé modifitation of the decision function



@ » z made necessary by the errors. Furthermore » the formla for ths
length of the projection gives us the corresponding expected payoff:

U (&3") = Ej fiJ { 51,23 (BJ:Z)

= }3;3 £13 %q:lh ®ih E‘ Uy yx

which after some computation reduces to

{29} U (as'l) = (2,2) '[E %h %ﬁ - Ek fhk Y tﬁ Doy '::]

The term in brackets at the right of {29) is the loss due to the presence
of the error terms e,

Unfortunately formula {29) is not very simple, and seems to admit no
easy interpretation. To drematize the effects of interaction let us evaluate

{29) in the degenerate cese in vhich quBO if 1 4 j. We then have

{29a) U (G,n) = {(2,2) - g _T__ilth
%y | g2
C. Coding

Often information about a continucusly varying variable can take only a
finite mumber of values. We shall call such an information function a gode.
Since most information functions caa be epproximated by a code, one would not
expect that there is much which can be said about coding iv gemeral which can-
not also be said ebout the genersl team problem. However some special coding
problems bave interesting properties, and we shall illustrate this by discussing

& particular two person problem.



Suppose x-(xl, X5), vwhere X; end x, are independent real random

variaebles. It will be convenient 4o thick of xi as the vartasble correspond-

ing to person i. Consider the class of information structures of the form
(30) " (x) = (x), 8,) 1f x, 1n Xas J=l,em,
nolx) = sy, x5) 1f x in X, k= 1,ee,m

where the 8,4 8&re Just m, erbitrary symbols, and XQJ apd X, ere both
partitions of the real line. In other words » each perason cbgerves his own
varieble, but receives only coded information about the other variasdle.

The payoff function considered will be

{z1) u(alx) - - a,f - 2q a8, - 3'2 + 2 (xlel + xaaa)

Fotice that we have specialized the general quadratic payoff by making
r,{x) = X, {[We have also teken ‘444 = 1, this can be done by choosing
suitable units for 8,.] Without loas of generality we can assume that
g xi = 00

Any declsion function for person 1 must be of the form

@ (y,) = “13("1’ it x; o X,
Condition (M) thus takes the form:

ule) + 3B laglx) 15, - o) = 5
(32)
Gpglep) + 9 Bl lx) | x, c 551 = xp



Suppose the decision functions had the form

aylx) « x +vd , J = 3x))
{33)
Oylng) = xp+ 05, k = k(x,)

Substituting (33) in (32) would give the condition
o)+ bk, & - qE (x,la.) kel
1kt Q 23 q Xot8y, ) IRRAEFL

qbij.k+bgk = -qE(xllglj) ,J-l,....,ml

This does have the sclution

2... -
o C I - -
1k 2
l-gq
2_ -
o . > Fa T aXy,
2J 2
l-q

vhere §13 =B ("1|91 J): and hence the best decision rule for a given 1

is

2 - -
ro;lk{xl) = % "9 [xl-le]-quk

{35) 1, 1-¢°

L and similarly for ae

From (35) we get the expected gross payoff:



- al -

(36) U o) = Bl P+ Gy
e

. Ex.f - Eq2 Var(xlls“)

1--::12

2
. BEx5 - Eq® Ver(x,|s,, )

l-q2

2 2
Since Eh‘l + "a) i@ the best that can be achieved under full informaticn,

1-q2

the loss due to incomplete informetion is

Q£

(37) - B [Var(x]_]s”) + Var(x,la,,))
It is noteworthy here that the total value of the information structure is
the sum of two terms, each depending on cne information couponent only. Thus
even though q 4 O and the two information variables are not independent,
thers 1s no "interaction" between the two components of the information
gtructure.

Formula {37) telis us that we want to minimize the average varisnce

within the sets Xi IR

only upon the nmumber of symbols m, and the probabilities Pr(xic X, J), the

Thus if the cost of the information structure depends

sets Xi 3 must be intervals.



