COWLES COMMISSION DISCUSSION PAPERS, STATISTICS NO. 319

Identification Problems with Serially Correlated Disturbances I

by Herman Rubin

November 18, 1948

Suppose we have a stochastic difference equation

(1)
$$\sum_{r=0}^{n-1} B_r y_{t-r}^r = u_t^r$$

with u satisfying

(2)
$$u_{t}^{i} - Pu_{t-1}^{i} = v_{t}^{i}$$

with independent v . Substituting (2) in (1), we obtain

(3)
$$\sum_{\mathfrak{T}=0}^{n} B^{*} y_{\mathfrak{t}-\mathfrak{T}}^{\prime} = v_{\mathfrak{t}}^{\prime},$$

with

(4)
$$B_{\mathcal{C}}^* = B_{\mathcal{C}} - PB_{\mathcal{C}-1}$$
.

We know that the matrices $B_0^{-1}B_C^*$ are identified. Let us assume $B_0=I$. We would like like to obtain identification conditions on B_{T^*}

Multiply (4) by $P^{n-\tau}$ and sum. We obtain

(5)
$$\sum_{\tau} P^{n-\tau} B_{\tau}^* = \sum_{\tau} \left(P^{n-\tau} B_{\tau} - P^{n-\tau+1} B_{\tau-1} \right) = 0.$$

Conversely, if P satisfies (5), then

(6)
$$B_{\tau} = B_{\tau}^* + PB_{\tau-1}, \quad \tau \ge 1,$$

satisfy (4). Thus we must study the solutions of (5).

According to MacDuffee*[1], consider the polynomial

(7)
$$f(\lambda) = |\sum \lambda^{n-3}B_{\tau}^{*}|.$$

The polynomial $f(\lambda)$ is of degree nG. It is shown in [1] that f(P) = 0. We shall here give a domonstration of that theorem which yields all solutions of (7).

^{*}This reference was pointed out by Professor MacLane.

Let $P = V^{-1} \Lambda V$, V non-singular, Λ in classical canonical form.

Let A_1, \ldots, A_p be the decomposition of Λ corresponding to distinct characteristic roots of P. Then each A_i is essentially a polynomial in Λ . Also we have

(8)
$$\sum A_i^{n-t} V_i B_t^* = 0.$$

Now $A_i = \lambda_i I + C_i$, C_i nilpotent.

Let $g(\lambda)$ be the matrix polynomial

$$(9) g_{i}(\lambda) = \sum \lambda^{n-\tau} V_{i} B_{\tau}^{*}.$$

Then

(10)
$$\sum_{i}^{1} c_{i}^{j} g_{i}^{(j)}(\lambda_{i}) = 0.$$

Let $h(\lambda)$ be the matrix polynomial

(11)
$$h(\lambda) = \sum \lambda^{n-T} v B_{T}^{*} v^{-1}.$$

Then we see that λ_i is a root of $f(\lambda) = |h(\lambda)|$ to at least its degree in c.f.P, and consequently $|\lambda I-P|$ divides $f(\lambda)$.

We know that A_i is a root of $g_i(\lambda)$. Consider the matrix polynomial

(12)
$$k(\lambda) = \sum \lambda^{n-c} B_c^*.$$

Let λ_i be a root of $f(\lambda)$. Reduce $k(\lambda_i)$ to classical canonical form. Let W_i mediate this reduction, i.e., we take $W_i k(\lambda) W_i^{-1}$. This is

(13)
$$W_{1}k(\lambda)W_{1}^{-1} = \sum_{i} \lambda^{n-i} W_{1}B_{1}^{*}W_{1}^{-1} = \begin{pmatrix} E_{1j} & 0 \\ 0 & E_{2j} \end{pmatrix}$$

where E_{1j} has 0's down and below the main diagonal. Then we see that V_{i} is a block of some W_{i} corresponding to some block of E_{1j} and conversely,

if V_i is a block of some W_i , we can find exactly one suitable C_i .

Consequently, we may construct all solutions of (5) as follows: Let \mathcal{M} be a root of $f(\lambda) = 0$; form $k(\mathcal{M})$; select a possible block V_1 and C_1 , hence A_1 ; put the V_1 's together to form V, and the A_1 's together to form A; then calculate $P = V^{-1}A.V$.

Corollary: Equation (5) has a finite number of solutions if and only if the rank of $k(\lambda)$ is at least G-1 for all λ .

REFERENCE

1. C. C. MacDuffee, The Theory of Matrices, Ergebnisse der Mathematik und ihrer Granzgebiete, Berlin: Julius Springer, 1933, pp. 11, 5.