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Intreduction

1., FKotation mnd tez;inolgn.

Weo shall introduce the followlig notations for sequemces of numbers;
J= fjl 2 .0 !.ij;g
I w [13 sop nJ
G=;12..n,)
Wo shall supposs thg’@mj % By 74 ng, 80 that doIDG, If S 1s sny socquence oom-
taining the sequence S¢,.the difforence S-8' will be defined as the soquence
which contains the slements of S which are not in S?, the elements boing taken-
in the seme order as in §, If §° ’ai g5 oe0 03-'md 8 - {'_si’ 8L eso 3119:’ s
the sequmce '@ ...w) 8;' ... s will be denobed bty 8's'e.
in slemant of a sequence will bs densted by the correspmding saall
letter. For instance the subseript g shall bs talen to mesn an elsment in the
saquencs G. The number of elements in a sequonce will be denoted by n with
tha small letter of the sequence es subscript. A letter with o capital lettor

as sudbseript will denote e vector whoes 9lcments have as subscripts the elements

‘of the segquence, for instanoce

A similay notation will be used for metrices, for instance
P e S P

or =

e T

&1l
let x; be o got of cbservable variables whick are (or may be ) subject to errors.
Let the efror-free purt of x; be ¥; md Jet the error be

——
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- -
(1) fu; = 56 Y5
Lot 3-,., {,}{, ) denote a vootor function of r with rr; components, ed let 8o ¥
denote the veotor 4;}. at tims t. We shall suppose that ¢ !ﬁ,av‘utisfias the

following equations | i
(2) %_{’;- (?t-r , ”é"t“l S -m“».l')z “e &

(8) /(gp;j_c.(?c-J"-f} e~ J-G) e 6, '?‘r:-.f L it le TG
Equations (2) and (3) will be uupposs_d to be such that they oen be solved
wiquoely in terms of f&{% G and r{%'}‘gr@ap@eﬁiﬂ]&. U , “3- _G_md "ﬁ'- will be
suppoged to be random vectors with mem value zero, Before making any
further assumptions about the nature of these rendom vectors we shall
distinguish between two cases: |
Case At The mhbhn 3{ ocour only at time ¢ in equation (2)
and do not occur at all in equation (3). In this case we assume ﬁnt
(4L, is independent of Byl Jg™m «=0,/, -2
Cace Bz At 10&;# one varisble g;_ ocours with a time lag either in
equetian (2) or in equation (3). In this case we shall atill make assumpticn
{4) and in sddition to that elso the assumpticm
(5) U, 18 independent of “° ‘Va_when- w=he, -
For both cases we have

(8) U, 5 is independent of all variables ? in equaflm (2) except ?t‘ o

We shell suppose that, at lesast for the time being, we are only interested
in getting information about Squation (2). This notor equatim will be
called the mwst&timl oy-tn of oquaticns and the set of wvariables

ocourring in it will be oo,lhd the investigstionel set of warisbles. Syat- ¢)]
will be callad the outside system and the variables ~ will be called outside

wariablea. The variables will be called wﬁm__u_
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snd the olher varisbles y in system (2) will be called Jeo-detemined.
The seme distinctioms will be applied to the corresponding x's.

Te shall now change our notations for the variables, listing each
variable Yt-u.i s & new Mahlo Yy 750 Ve shall use the notation I for the
sequence of integers from 1 to the total number of mhblu after this renumber-
ing, end the soquence I - @ shall be donoted by K. We shall suppose that aystem
(2) 1s linear and shall write it in matrix foarms

(0 Xgrvt =wg
whore ¢(3c§ is supposed to be ncu-singuler.

Ve shall aupﬁo tlut the variables involved are statiomary. This
is no necessary assuaption but will be mede for oonveniemce. Weo shall meke
no assump;ion about system (3) which is not alresdy ocatained in this essump-
tion and assumption (_4)._ Wo shall suppose that
E(yg) = B(xy) =0 |

&, Reduotion %0 & pure error wodel.

Lot the reduced form of 7 be

(8) yg ¢+ %.x vx = %§a ug

Weo shall now introduce the structurel part sy and the disturbanoe
wy of the vector x; by the following definitianss |

(9) 3¢ = ¥g ~X5la ug

(10) g * ¥x
md

(A1) wy=x1 - sy

It should be noted that if y, 4s & lagged valw of y‘; %, "ill no
'langqr be o lagged walve of Sgo

From (1), (9), (10) end (i1) we obtain

(12) wg =vg +X3lgug



and

(13) wg = Ve
Fram (8) and (9) we obtain

(14) ZL + e Zx =0
80 thet our model tn & formal way is reduced to & pure error model, This
kind of model has been ‘utud:lod by several authors. (Bef {2 azo_‘ )
But not all the work doue on pure error models is applioable here, because
- soms of 1t pmauppous that all the w's are un;:omhhd and there is no
reascn to make that assumption kera, excopt for the oﬁ- when there is wnly
one post-determined variable. The previous work on the pure error model has
partly been concerned with models leading o identiflabllity’ of st lesst
some of the perameters, partly it has been conserned with finding boumds for
the parameter point in cases where there 1is no identifiability. The latter
problem has previously been studied anly for the pure error medel with all
errors wncorrelated. The main purpose of this paper will be to find bowmds
for the parameter point in osmses of nen-identifiability. I shell, however,
mention briefly some previous work on identifiable models. |
3. Models where the ooceffiolent metrix of the system is identifiable.

Wo shall partioularly cansider the case of one postedetermined variable
and one equatiocn in the investigations) system

(18) @, Ef -0
Supyoco that we have enother set of veriables %Qq which are correlated with the
structural parts z; but not with the digturbances wi. (Ref (6!, last part of
Section 11; Ref, (4!, Section 2; Ref {7' , Section 5.) We shell call the
set xq en Instrimentel set of warisbles. From (11) snd (15) we obtain

o) oy E(x/ X = O |

The vestor Xy will'be identifisble if the renk of B(xy xy) 18 ny-1. The

T:men.-.ia.if.‘..gblo will in this pajor always be taken to mesn what is called wmiquely:
1dentifiable in Cowles Cammiseicn Momograph No. 10. '
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rank oennot be grester than _n-i-l ir oué model is correct, In Ref, [7] 1

have oansidered a model whish iu cne way is more genersl, in sncther way more
speolal. It is more general in the sense that I hawe not smpposed all covarianoces
E('i’q) to be zero, It is more apecial in the sense that the number of
instrumental variables is equal to ﬁze nwxber of :lnvutigltiml variables,

In this model we ustally do not have idantifiability but may be able to find
bounds for the structural veotor Q’.I. Ta the case where all covarianoes

B(wixq) are oqual to zero, my thsorems about howds in Bef. {8 emd Bot.f_u:" N
Teduce to theorems about identdfiability of the veotor 04  provided that
certain matrioces are different from zero,
As Instrumentel variebles we mey introduce some of the variables x -1
or fwaotions of them. Sinoce we have sasuned u, indepemdent of us.gr U mr
be supposed to be independent of all swsh verigebles. If we also assume the
error v, to be independent of ths error V. then g will be indepmdent of
Xg.1+ If the set xy ; cmteins lsgged walues of the variables Xys this leads
us %o introduce lagged valws of the investigationsl wariables as Instrumental
variables. We may also use lagged values of the vuiab}p- Xy not osowrring
in the sot %j.1- (Compare Ret [67], Section 4 snd Bef. {7] . coapter v1).
Other models leading to 1dentification have been studied by Wald (Ref. : 10,
Goary (Rof.[5)), and Tintmer (Ref. {81 and {3] ). .
In spite of the different mcdels leading to identifiability, we still

have oases, @ortnnt in praotice, whore there is ne identifiability and we

' are now going to coasider such oases.

Nodels Where tis Paremeter Point Is Not Identifiable Bub’

Bounded Begiom,
4. Definitions and assusptions.

We shall introduce notatims for the following covarisnoe matrioces:
ur‘r = E (&zf ﬂr)

a (érf )




and

rpp= E(wg awp)
We shall meks the following assumptions

an £ (v ¥c)=0

as) [ {(wg g O

(19) £ .t’."”"c: Vi )= 0

(20) E(VI{ VL ) aa atagomai

(21) 7, 20 whers VCK
Ve shall write L e X « Vend H= I -V, As a particular case V may be empty
go that L = K end ¥ » I, |

Fron cesumptions (8) mmd (17} follows that

(22) prr=VprtArr

From ascvmpiiong k(ls) - {£1) follows that }\I.I is of the form
N O 0.[
(28) )\}_"» o 0O X_ O 3

“lo o ol

> .3
where we havo written }\L ingtend of r\L_Lto point out that it is &

diagonul matrix.

At this point we shall alsc it roduce some mathematioal concepts whioh
will be wsed in the following: |

A polytope 1z the extensica to n dimensions of a polygm in 2 dimensiocns
sod a polyhedeon in 3 dimensiona.

An orthant is the o_xtgnsian to n dimemeims of a quadrant in two
¢imengions and sn ostant in § dimensions. |

A p-flat is o linesr menifold of p dimensions.

| A metrix jua. 3 will be said to hm‘ compatible signs if there exist
disgonel matrices £, and fl such that EG/”G.I 21 is positive {1.e. that
all elements of this matrix m positive,)
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6. The case of ;n_o__mm_ t-detorminéd varisble.

We shall now -mo the single equation of tho i.nmtiga:kimal systun
in the form

. 2_ f - /".
() Z,+ T Zr =¥
~ T .

Lot iz, ; be the adjoint of jiy ., snd let 3, be the metrix obtained
from 1o, by dividing each row by the first elment of that rav. Lot the
veotors ;2. , and the vestor X be interpreted as points in an (ny-1)-dimensional
spsos, The convex polytope with the n, points ﬁ%xu vertices will be
denoted vy B, |

¥e bawe the fullowing theorems:

Theorem I3 If the utri.x [_,F - bas conpetible sigas, the strustural
point T, is onfined bo the polytope L7, .. .
Theorma IIs If 2 - and~zare nomelly distributed end if [z 0 '.’-1-

independent of 'z oy t‘l’mﬁ&t » then sach point inthpolmp ropmaants

mniblo ltruotm wder the 5 assunptions and the given probability
distribution of EZI.

If the asswaption about normality end independence does not hold good,
we can still stats thet the bounds gziven in Theorem I are the best possidle
Af we have no uthorulmt information than that gim by the ooveriance
matrix /u. L1 and the comditims of eho theorem.

All these statements follow immedistely fram Theorea 17,3 in Ref{ 7!,
The apscial case of Theorem I when H =« I was first giv!;n in a s cacwhat differmt
form by Koopmans (Ref. Lﬁ' o Po 101).. Priach had previously proved the theorem
in the cass of tio variables and had anticipated the ganeral thsorem and used
it as = argment for his bunch analyais. (Ref.| 2|, Sestiomn 9). i
6. The genersl oase, | | .

We shall find bounds for the row-vectors of the reduced form matrix

JC  + We shall ensider cne pn.rtimzhr equatice

oK .
(85) $ +7(.' ,./ D
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If we coneider the set cf rariablos L}«the matrix )\?hh disgonal so

tl:;;:l’rswom I may be appl:lod. Lat us wrtbe/,t?h,*mtuﬂ of,u?r ',md let
,Bzr e b6 the matrix which is obtained from }&? i after dividing each row by
the firet slement of this row, If the matrix/&a‘_‘_ has oompatible signs, the

structural point 7 , is sonfined to the polytope B{ !\2" If we do not
ingist on the narrowest poselble bounde we cm forofom still apply Friach's
timech snelynie, but only to the sets cﬁntaining all piu-datarmined variables
end one sisgle post-determined varlable,

in ths Qollowing we shalli sasume that

(26) there sxists no edmissible point }~ such that v, . is singuler,

K
Thig asrumption will certainly hold good Af
{27) thore existe st least wne g cmhcl% P L&u compatible signs.
This followe from a generalisation of Theorems 12 end 13 in Ref. [ 6,
Lot us now egain oconsider the whole reduced form (14). Postmultiplying by
2 end taking the methenatical sxps otabien, vo obtain
@) vor + Mo ¥y =0
which may be split into two equaticms
(29) VG"G" + }Z'—(} F}LLK-!'}
_ vl =0
(30) /LLGE"( K’.}K o
Prom (20) anc (30) we obtain -
- SN ¥
(1) T, =~ Mox
and ' ;
- ) - '{'/ V ) “A ; .. J

Using (33) we obtain the following :Idmt‘.lty
o

To Ak s Fox { ¥ 0 A
o In||Mue *“if-n:;j‘?w‘ﬁ-@ I

G
)

(34)

o

—— "



Sinas the mabyiz m ths right-bend side of tha squation is non-nogative

definite, we have also

., W .
G R K '
{35) /_,( -G N >‘f\' i. is non-negative definite.

Therefore )y, is bownded by the insquaiity

{56) )\L 20
«d by sonditio (35). We shall ghow thaet these bounds are the narriwest
posaible if the distributions of 2, ond wy are nomel and independent for
different valws of T, snd if amdition (26) holds good. let ), be may
diagonal matrix satisfying (36) and (36). Ws find Vi . from the ecuetim
V,{. K ‘;J{",’“'.,a( - ‘\K o Since \/K-,‘; iz & prircipal miner of a nom-nsgstive
dofinite matrix by (35) it mwt itsell be ron-negative definite, and on mocount
of (26} it must be positive definite. Honce we om find a set 3. of norually
distributed variables which have V. . as covariancs matrix, Hext we determine
T, i trom (31) sad form @ sot of varichles % by equatim (14).
Tor the ccvarignes matrix of ‘&'I roelations {29) and (30) must hold good,
s that 2_tas the soveriance metrix /;y. Hext we oompube ro.c =Mo" Ve &
Fran (3¢) follows that N 18 non-uegative doflite. We cannow find a
sot of normally distributed variables iy, which takesn together with z-r has the

[
eovariance ratrix

/’“ wr 0 0l
{ O )\6-'(;- O ,
L0 0 M

Finelly we Zcrm the vuw’fe Evidently Lp bes (i, . e

covarience motrix, This provea l%*h om' cholice of )s‘_ oomcpmds toa possible

bt

gtruature,
The region where emdition {35) holds good is bounded by the sheet of
the hypersurfaoce.

’/LG-'GP - Mex 2 ()

| o MrnK™T AK |

(s7)
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Baleh 16 moerest Lo orlgin dn the poaivive orthemt (i.e. thﬂ-l orthent where
ell coordinates are positive) in )\mepmm

Fram (31) folliows that TC'%K:lu & uniqus and comtinucus functian of
N, . Benos ‘Itg #c "ill be oonfined to a regim whose boundaries correspend
to the boundaries of the admiseiblo region for A . In order to find the
toundaries ino Jr?}(mpaaa, we use the exﬁmuim

(38) Mok +Tlq K fp-k = TgrAg
obtained from (30). The equatian N\ =Ogives the n -flat

(39) Ay +TC?,,</L(.K‘, =0

in vhiok the point .. Kwuat lle,

From (36) md(?(ﬂs) we obtain that the admissible region m)’%";-paca
1s bounded by the hq;perplﬁom
(29) u«? [+ Ji'?. w Moy =0
These mrperplamas ars identicel witk the bownding hyperplenes of tho polytope

Q69"
e LK exsapt for tha hyporplanen '

(41) + Xg.x frig =0
| Mgy Tgr fug )
which ig a bouading hyperplane of the polytopo B L Kbttt which doss not oceur
iv. (40). Zhe hyperplane (41) 3z now replaced by a sheet of the hypersurface
3,ﬁwapmw which we obtain whea Isertirg the valve of ,\‘_ foumd from (38)
in equstion (37). This equatiocn will ts |
!/b _ ,‘u(}-l_. : /uﬁ" v
TP, T b Ty s
42) lﬁ‘:.,r‘“’i.:ﬁi- AT R T My s
R alds Avo Sy
vhare Tl" in & diagonal matrix cm%sining the olements of the vectorJ]_ .

§+
ﬂ: e a disgomal metrix cou%aining the elements of the wvector /LLg L+ 7% 1Y /U-K L

The shect of the hypcrnur:wo (42) whioh we went is the ane which is

§R
nearest to the ‘point KO

Bxample: Let G ={1 23811 ~{¢5], v empry.




e

/A T
’j }7-:;5' '\{
s TN
! 4 ~
A-‘ ‘\\\ \"
Y
i E

- T

The triengle (145) is the elementary rogression trianglo L’;;"’; ) ..The are AB
-

i3 a branch of the curve (42),

We ohell now aum up our results in two theorsms,

gh #)

L ==
oopetible signs, than the structural }g__int ’ Ku ocnﬁ.nod £0 t}nt part _of

Theorcn 33 1f tlere exists a q ' such that the matrix /w

)
the polytoge Lé @7 ehich ocntains tte vertex ;39* and which iu out off by

the sheot of th Mrsurm (422 which is nearut o this vertex.

Thearon 41 If 2, and . are normally distribubed and hdogndent

Jor difleren’: values of L than the bowads given by Theorem 3 are the

narrowsnt poss ible under the given ssnmptions,
There Cheorems give hownds for the coSfficimt vwectors of the equaticuns

of vhe rodussd form. ¥The results of course apply to sny equation in the original
syaten which sonteins anly ome postiedetermined varieble. I‘-I:' is also possibls

5 Mrd bounds for a row wa'bbrac l-bf the mabrix . rhioh is &mraoterised

by«bﬁ gseros whioh may partly or fhony belong to O!;:(J.c We shall rnot hors
go inte the cetermination of these townds., Vo shell remark, howsver, thet a
necescary cwdition for the'surromdetiiity® of o pbiptfxg 7Yy » bounded
ragion 1s Shat at least m—,-l -ooefflicients ere knom: to be gero.

1f thare are more than m?-f coeffiolents in egoh equation which are
inown to be rero, or if there are otlsr additional linear relations, we may
£ind the edmtseidle region by first finding the admissible region when mmly
the imwltedga of 4\’-! gorog are aasumad and after the find tl» intersectiom
botwssn this region and the hypersurfaces correspnding to the other linsar
restricticas. Additicasl linear restricticas in the same equation will of

eourse give hyperpleones, but additional linear restrictims in enother
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7. Ihe caso when each sguation contsine mly o pestedstermined varisble

8 th trd d diagonal.
and eeo‘variuncamarmofu&an rvr- B9 lagonsl

In Zhis case the original system is ilentical with the redused form. [ow-
O, o+ I and squasion (12) taies ¢tn fons | |

(48 /‘W'a = 4.5' -+~ wc_ |
The matrix ‘\I- Poad is the sum of two diegmal matrices end must thorefore also
be diagonal. This means that we heve now come back to the aasumpticns of
am-correletion of Friseh (Ref. [2] , Sectian 7) for the whole set Ko

In this seckion uio"nhull not wrosvppose my of the )\’-’3 to be zerec,
This model alsc hes much in ecmuom with the model underlying Thurstone’s
factor anelysis. Our equation syetem mey be written |

{2 3;: = If""' O;G.K 2;’(

: i i<

1
Pougest

30 that we may regard r_xc Ku part of a factor matrix., One difference

-

between Thurateone's nodels and this model is that in our case certsin
prescribad coefficienta of the factor Batrix are supposed to be zero

(more procisely, we nuppose that the factor matriz is identioal with ite

reduced form with respect to the set of variables K), while Thurstone

supposse the faotor metrix to coutalr a ccrtain minimum of geros without
presoribing what Individual ooefficiomss cre sero, My disevesion of the
14entifiability of the uniquenesses (corresponding to Ar in this paper)

for given valuve of the number of samicn frotors (correspomding to m’le.

in %his papor) which I heve given in a previously nhoogri_-phod Cwlu Conmmission
paper, epplies to this case. Agaln there is s difference betwesn our use of
confluenecs cnalysis and factor mly#ia, in the respect thet in factor analysis
wo are only interosted in cases ‘whera the factor matrix is identifisble, prefor- |
aﬁ].y overidentified, while in conflucnce enalysis we are also intsrssted in

cases where it is caly pessible to give bounds for the parameter points,
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A considuretion of this latter problem has been given in Ref. [6, Sections
9 - 11,
Again, in beth cases we may tost an thh sbout the rank of_‘ the system.
(i.s, the numbar of om fastors in factor analysis and the nunber of pre-
determined veriables in confluence analysic). Again there is the difference
that ineenfience mal;}uis we have n definits idea in sdvance not only about
the number of importent pre-determined varigbles but alse -iut variables they
&re, whils in faotor analysis we have no dofinite idsa about the number of
comuon fadtors. -

t. Testing of the i.t_mbor of lincer rolutimms in a set of variebles, aend

Judging what variables should be inoluded in a system of qgtim.a.

Jn this section we shall assume for convenience tht‘ all variables o wI0
normalized, 1.0, that thej are measurod in units of their standard deviations.

In Monograph No, 10 of the Cowles Commigsion, Hasvelmo hes discussed
s particular point in Frisch's conflusnce analysis. Frisch omsiders bunches
of besms reprasenting regression coefficients betwsen mermalized varisbles.
Aogording to Frisch, tight bunohes show that tlere exists mlyone linear
relation betwoen tho structural perts of the variables. This is true in
the pure error model cmsidered by Frisch end may be put in more exact form.
If any of the bunches of & sot of variables is ccnfined to one gquadrant then
there cennot be more than one lincar relstion between ths structural parts of
this set. (This follows from Theoren 14 ir Ref, [6]). Hasvelmo shaws by
an examplo that thia is no longer true in & shook model. We may have two
different linear relations and still heve tight bunahu. The testing of the
nutber of linear equations has, however, never been a point of primery
impertence in confluence snalysis.

It has been considered importsnt mostly beesuse the existence of two
different linecar equations between the structural parts in a pwe error model
destroys the possibvility of detemining bounds for any of them separately
ded thet we. do. Dot make any sssuuption aboub sere cvefficimts. In




=ld=

Section 6 of this papor we have under certain conditions fmd bounds for the
ocefficient vectors of equations in the shooke~error model. In order to find
these bounds we have 'F:o find ocut in advance whieh _vuiablu are post-detsrmined
ond which are pre-determined, Bu: wo meed not know in advance if there are
linear equations cutside the investigetional aystem. If' there are cutside
linear equations which destroy the prssibility of determining fairly narrow
bounds for the structural vectors of the investigational system, this will
ghow up in the anslysis of the data, either in the way that the conditicu
about compatibility of eigns is not fulfilled or in the'way that the admissible
regione become too wide, Mhether this will be the oase or not will depend
en the size of the verismoe of the sum OLJ, Jc,[';f,%“'/m Mpger this verience
is compared with the varisnces of the disturbanses of ﬂi Mstigational
system the icas influmos will tke j-th equation (which is supposed to de
linear) have m the courscy with which oquatiuns of the investigational
system can b determined. |

The whole quostion may, hcwever, be put the other way round. Insteed
of esking how many lineair equaticns there nre in a given set of varisbles, we
may esk how many variables, or rather what veriables, we may include in the
statistieel determination of a given equaticr without destroying the roliability
of the statistically detsrmined ccefficients. This is the importent viewpoint
in Frisch's theoretical publiocstion on conflvence analyeis m& still more In
the practical applications of it. ind this view-point applies very well also
to the shock-srror model with several post-determined varlables. Thers will
almost alweys be more variables which we suppoze cocur in & certain system than
we oan posaibly include in the statistical analysis. If we ineclude too few
variables we have the risk of excluding variables whose influsnoe s not negli-
gible and which mey be correlated with the pro-determined vuriables sc that
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the ssswptions of our model do mot hold good. If an the othsr hand wo
include too many mﬁbhs the bounding rsgions become too lerge. If the
bownding region of the parameter point becomes smller when we include a new
variable it is evident that it ought to bes inoluded. If it becomes a bit
larger we may bo in douvbt whother to inelude the naw verisble or mot, This
procedurs iz of course no toating of an hypothesis, and we nced not ask for
the ressa: why the bounding region becanss larger when we inelude o new
veriable., This phenomenon will usually be a joint affect of the extent to

whioch the now variable is sorrelated with the other pre~determined variables and

the varisnce of the disturbance ismtroduced by the new wariable. (Compere Ref. [z] ’

Sectim 14.)
To what extsnt it is dus e one or the ptha-r of thega cruzesz nesd not

bother us in the desision of whether %o inciude the new variable cr not,
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