1. In [5] Kuhn and Tucker use the Minkowski-Parkas Lemma (see Sec. 2 below) to prove the existence of a non-negative Lagrange multiplier vector for problems involving the extremization of a real-valued function of a finite-dimensional vector subject to a finite set of inequalities.

In the present note (Sec. 3 below) we prove a generalization of the Minkowski-Parkas Lemma which makes it possible to extend the Kuhn-Tucker results to a much broader class of problems where the unknown vector, as well as the constraints, are of a more general infinite-dimensional nature. This extension will be presented in a separate paper. It may only be mentioned here that in extending the Kuhn-Tucker results we apply our generalized Minkowski-Parkas Lemma to Lagrangian problems involving inequalities in a manner paralleling the procedure followed by Goldstine ([2]) who applies Theorem 4, p. 118 of Banach ([1]). (It should be noted, however, that our generalized Lemma is more closely related to Banach's Theorem

(*) The results contained in this note were obtained in connection with the author's work as consultant for the Cowles Commission. Thanks are due to Professor B. Gelbaum, University of Minnesota, for valuable comments. I am indebted to Professor Paul C. Rosenbloom, also of the University of Minnesota, for introduction to Banach space concepts and for bibliographical references.
8, p. 129, since, unlike Goldstine but like Kuhn and Tucker, we are not proving the uniqueness of the Lagrangian multiplier.)

2. The Minkowski-Farkas Lemma. (We state this Lemma in the formulation given by Kuhn and Tucker; the reader is also referred to [5] for bibliographical references to the original papers.)

An inequality \(b'x \geq 0 \) holds for all \(n \)-vectors \(x \) satisfying a system of \(m \) inequalities \(Ax \leq 0 \) only if \(b = A't \) for some \(m \)-vector \(t \geq 0 \).

(In the above statement \(A \) is an \(m \) by \(n \) matrix and a vector is said to be \(\geq 0 \) if and only if each of its components is nonnegative.)

3.1. Notation and terminology. (We largely follow the conventions of Hille [3] and Krein and Rutman [4]).

If \(W \) is a Banach space, we denote its elements by \(w \), the adjoint space (i.e., the space of linear bounded functionals \(w^* \) defined on \(W \)) by \(W^* \).

A set \(K \subseteq W \) is said to be a convex cone if \(w_1, w_2 \in K \) implies \(\lambda w_1 \in K \) for \(\lambda \geq 0 \) and \(w_1 + w_2 \in K \). The set \(\{ w^* : w^*(w) \geq 0 \text{ for all } w \in K \} \) in \(W^* \) is called the conjugate of \(K \) and is denoted by \(K^0 \). (It may be noted that \(K^0 \) is a closed convex cone, cf. [4], p. 12.)

We shall consider two Banach spaces \(X \) and \(Y \). \(P_y \) will denote a fixed arbitrarily chosen closed convex cone in \(Y \). We shall write \(y_1 \geq y_2 \) to mean \(y_1 - y_2 \in P_y \); in particular, \(y \geq 0_y \) (where \(0_y \) is the null element of \(Y \)) means \(y \in P_y \). (It is easily seen that \(\geq \) is transitive and reflexive. \(P_y \) may be thought of as the nonnegative orthant of \(Y \).) The elements of the conjugate \(P^0_y \) of \(P_y \), where \(P^0_y = \{ y^* : y^*(y) \geq 0 \text{ for } y \geq 0_y \} \), will be said to be nonnegative; we shall write \(y^* \geq 0 \) to mean \(y^* \in P^0_y \).
T will denote a bounded linear transformation with the domain in X
and the range in Y. \(T^* \) is the adjoint of T, so that, by definition, if
\(x^* = T^*(y^*) \), we have \(x^*(x) = y^* \{ T(x) \} \) for all \(x \in X \).

3.2. Lemma. (The generalized Minkowski–Farkas Lemma).

If, for fixed T and \(x^* \),

(1) \(T(x) \notin O \) implies \(x^*(x) \geq 0 \) for all \(x \in X \),

then

(2) \(x^* = T^*(y^*) \) holds for some \(y^* \geq 0 \).

3.3. Proof of the Lemma.

We define the two sets

(3) \(X_T = \{ x : T(x) \neq O \} \),

and

(4) \(Z = \{ x^* : x^* = T^*(y^*) \text{ for some } y^* \geq 0 \} \),

and note that they are both closed convex cones.

[For if \(T(x_i) \in P_y \), \(i = 1, 2 \), then so are \(\lambda x_i \) for \(\lambda \leq 0 \)
and also \(T(x_1 + x_2) = T(x_1) + T(x_2) \), since T is linear bounded and \(P_y \) a convex cone; thus \(X_T \) is a convex cone. It is closed since a bounded linear transformation is continuous and hence \(x \in X_n \) implies \(T(x_n) \rightarrow T(x) \).

Similarly, if \(x^*_i \in Z \), \(i = 1, 2 \), so are \(\lambda x^*_i \) for \(\lambda \leq 0 \) and \(x^*_1 + x^*_2 \), since \(y^*_i \geq 0 \), \(i = 1, 2 \), implies \(\lambda y^*_i = 0 \) for \(\lambda \leq 0 \) and \(y^*_1 + y^*_2 \geq 0 \), so that \(Z \) is a convex cone; it is closed because the adjoint \(T^* \) of a linear bounded transformation T is continuous and hence an argument analogous to that for \(X_T \) can again be used.]

The lemma being proved may now be restated as follows: if \(x^* \in X_T^\theta \),
then \(x^* \in Z \), i.e., \(x_T^\theta \in Z \). We shall show that, in fact,

(5) \(x_T^\theta = Z \).

We use Corollary 1.3, p. 16, in [1] which states that \(w_0 \in W \) is an
element of the closure \bar{K} of the convex cone K if and only if

$$w^*(w_o) \preceq 0 \text{ for all } w^* \in K^\circ.$$

When K is closed this becomes

$$(6)\quad w_o \in K \text{ if and only if } w^*(w_o) \preceq 0 \text{ for all } w^* \in K^\circ.$$

We shall use (6) to prove (5). We shall show that

$$(7')\quad x_o \in X_T \text{ implies } x^*(x_o) \preceq 0 \text{ for all } x^* \in Z,$$

and

$$(7'')\quad x_o \notin X_T \text{ implies the existence of an } x^* \in Z \text{ such that } x^*(x_o) \prec 0.$$

Since X_T is closed, relations (7) yield (5) (in view of (6)) and the proof will be complete when (7) has been proved.

Using the definitions of T^* and Z, we have

$$x^*(x) = y^* [T(x)] \quad y^* \preceq 0$$

for all $x \in X$.

Now let $x_o \in X_T$. Then $T(x_o) \preceq 0_y$, hence $y^* [T(x_o)] \preceq 0$, so that (7') follows. On the other hand suppose $x_o \notin X_T$. Then $y_o = T(x_o) \not\in 0_y$, and this implies the existence of a y^* effective in (7''). To see this we recall that the elements $y^* \preceq 0$ form the cone P_y° conjugate to the closed convex cone P_y; hence, again in virtue of Corollary 1.3, p. 16 in [4], $y^*(y_o) \preceq 0$ for all $y^* \in P_y^\circ$ only if $y_o \in P_y$.

3.4. The H"{o}nffki-S"{o}rkas Lemma is a special case of the Lemma in 3.2 with the spaces X and Y respectively n- and m-dimensional and P_y defined as the nonnegative orthant in the space Y. In the statement of Sec. 2 above b is an x^*, t a (nonnegative) y^*. The transpose A' of A corresponds to the adjoint T^* of T.
REFERENCES

Bulletin of the American Mathematical Society, v. 46, 1940, pp. 142-149.

Society, Coll. Publ., v. XXXI, 1948 (esp. Ch. II).

Cone in a Banach Space," Uspehi Matem. Nauk (N.S. 3, no. 1 (23), 3-95,
(Page reference given is in terms of the pagination of the translation.)

of the Second Berkeley Symposium on Mathematical Statistics and Probab-
ility, Berkeley, 1951 (esp. Theorem 1 and Proof, pp. 484-495).