The Continuity of Multi-valued Functions in Economics

Gerard Debreu
May 20, 1953

1. Introduction

One finds in economics several important examples of variable sets determined by a certain number of parameters. Questions of continuity for a functional relationship of this type arise as soon as one wants to use the concept of such a multi-valued function. In Section 2 a systematic mathematical treatment is presented. The results are applied in Section 3 to the theory of the consumer, in Section 4 to the theory of the producer.

2. Mathematical Study

Only subsets of finite Euclidean spaces will be considered. Two sets and are given and a multi-valued function from to which associates with every element of a certain subset of , will always denote a positive integer.

Definition 1. The function is upper semi-continuous at if given any two sequences and such that and for all and , then .
Definition 2. The function $A(\bar{a})$ is lower semi-continuous at $\bar{a}_o \in \bar{A}$ if given a sequence (\bar{a}^k) such that $\bar{a}^k \rightarrow \bar{a}_o$, and an element $a^o \in A(\bar{a}^o)$, then there exists a sequence (a^k) such that $a^k \in A(\bar{a}^k)$ for all k, $a^k \rightarrow a^o$.

Definition 3. The function $A(\bar{a})$ is continuous at $\bar{a}_o \in \bar{A}$ if it is both l.s.c. and u.s.c. at \bar{a}_o.

These concepts occur in Debreu [2] with a different, and less satisfactory, terminology. They can be defined for general topological spaces.

Let $f(\bar{a}, a)$ be a real-valued function defined on the product $\bar{A} \times \bar{A}$. We study the set $M(\bar{a})$ of maximizers of f on $A(\bar{a})$ as a multi-valued function of \bar{a}:

$$M(\bar{a}) = \left\{ a^i \in A(\bar{a}) \mid f(\bar{a}, a^i) = \max_{a \in A(\bar{a})} f(\bar{a}, a) \right\}$$

$M(\bar{a})$ may be empty.

Theorem 1. If $A(\bar{a})$ is continuous at \bar{a}_o and $f(\bar{a}, a)$ is continuous at every point of $\bar{a}_o \times A(\bar{a}_o)$, then $M(\bar{a})$ is u.s.c. at \bar{a}_o.

Consider, according to Definition 1, two sequences $(\bar{a}^k), (\bar{a}^r) \bar{a}^k \rightarrow \bar{a}_o$, $\bar{a}^r \rightarrow \bar{a}_o \in \bar{A}$. We must show that $\bar{a}_o \in M(\bar{a}_o)$. Since $A(\bar{a})$ is u.s.c. at \bar{a}_o, $\bar{a}_o \in A(\bar{a}_o)$. We have thus only to prove that if $b^o \in A(\bar{b}_o)$, then $f(\bar{a}_o, b^o) \leq f(\bar{a}_o, a^o)$.

Since $A(\bar{a})$ is l.s.c. at \bar{a}_o, there is a sequence (b^k) such that $b^k \in A(\bar{a}^k)$ for all k, $b^k \rightarrow b^o$.

For all k, $f(\bar{a}^k, b^k) \leq f(\bar{a}^k, a^k)$ since $a^k \in M(\bar{a}^k)$. By continuity of f one has, at the limit, the desired inequality.

One may naturally wonder, when $A(\bar{a})$ reduces to a single element what is the relation between u.s. continuity of $A(\bar{a})$ and the ordinary concept of continuity. The answer is given by Theorem 2. Let us first recall:
Definition 1. \(A(\bar{a}) \) is bounded at \(\bar{a}^0 \) if for some sphere \(S \) of center \(\bar{a}^0 \),

\[
\bigcup_{\bar{a} \in S \cap \bar{A}} A(\bar{a}) \text{ is bounded.}
\]

Theorem 2. If \(\bar{a} \) is closed, and if the single-valued function \(a = \varphi(\bar{a}) \)
from \(\bar{A} \) to \(\bar{A} \) is u.s.c. and bounded at \(\bar{a}^0 \), then \(\varphi \) is continuous at \(\bar{a}^0 \).

Consider a sequence \((\bar{a}^k) \), \(\bar{a}^k \rightarrow \bar{a}^0 \). The set \(\{ \varphi(\bar{a}^k) \} \) is bounded, we prove that it has a unique point of accumulation, this will imply continuity at \(\bar{a}^0 \). Let \(a' \) be a point of accumulation of that set; there is a subsequence \((\bar{a}^k') \) such that \(\varphi(\bar{a}^k') \rightarrow a' \). Since \(\bar{A} \) is closed, \(a' \in \bar{A} \). Obviously \(\bar{a}^k' \rightarrow \bar{a}^0 \). By u.s. continuity of \(\varphi(\bar{a}) \) at \(\bar{a}^0 \), \(a' = \varphi(\bar{a}^0) \).

A last result is needed. Let \(\bar{z} = \psi(\bar{a}, a) \) be a single-valued function from \(\bar{A} \times \bar{A} \) to a set \(\bar{Z} \). Define \(\bar{Z}(\bar{a}) = \psi(\bar{a}, A(\bar{a})) \), a multi-valued function from \(\bar{A} \) to \(\bar{Z} \).

Theorem 3. If \(\bar{A} \) is closed, \(A(\bar{a}) \) u.s.c. and bounded at \(\bar{a}^0 \), \(\psi(\bar{a}, a) \) continuous at every point of \(\bar{a}^0 \times A(\bar{a}^0) \), then \(\bar{Z}(\bar{a}) \) is u.s.c. at \(\bar{a}^0 \).

Consider, according to Definition 1 sequences \((\bar{a}^k') \), \((z^k) \), \(\bar{a}^k \rightarrow \bar{a}^0 \), \(z^k \in \bar{Z}(\bar{a}^k) \) for all \(k \), \(z^k \rightarrow z^0 \in \bar{Z} \). We must show that \(z^0 \in \bar{Z}(\bar{a}^0) \).

For every \(k \) take an \(a^k \in A(z^k) \) such that \(\psi(z^k, a^k) = z^k \). These \(a^k \) form a bounded set, extract a converging subsequence \(a^{k_1} \rightarrow a^0 \) (clearly \(a^{k_1} \rightarrow a^0 \), \(z^{k_1} \rightarrow z^0 \)). Since \(\bar{A} \) is closed, \(a^0 \in \bar{A} \). Since \(A(\bar{a}) \) is u.s.c. at \(\bar{a}^0 \), \(a^0 \in A(\bar{a}^0) \). Since \(\psi(\bar{a}, a) \) is continuous at \((\bar{a}^0, a^0) \), \(\psi(\bar{a}^{k_1}, a^{k_1}) \rightarrow \psi(\bar{a}^0, a^0) \) and so \(z^0 = \psi(\bar{a}^0, a^0) \).

Most of the substance of these three theorems is given by \([2] \) in a less explicit fashion.
3. Theory of the Consumer

A consumer has to choose a consumption bundle \(x \) in some subset \(X \) of a finite Euclidean space. \(X \) is determined by physical (e.g., non-negativity of some quantities) and physiological constraints. Moreover if \(p \) is the price-vector, \(r \) his income he is also restricted by \(p \cdot x \leq r \). We denote

\[
X(p, r) = \{ x \in X \mid p \cdot x \leq r \}.
\]

The choice of \(x \) in \(X(p, r) \) is made so as to maximize a real-valued utility function \(u(x) \) defined on \(X \). In this section we always assume that \(X \) is closed and convex, \(X \) is not contained in the half-space \(p^0 \cdot x \geq r^0 \), \(u(x) \) is continuous on \(X \).

Arrow-Debreu [1] have proved:

(3.1) \(X(p, r) \) is continuous at \((p^0, r^0)\).

The set of optimal consumption bundles for \((p, r)\) (set of maximizers of \(u(x) \) on \(X(p, r) \)) is denoted by \(\mathcal{W}(p, r) \). A straightforward application of theorem 1 (Section 2) then gives [with (3.1)].

(3.2) \(\mathcal{W}(p, r) \) is u.s.c. at \((p^0, r^0)\).

From (3.2) follow the answers to two other unsettled questions of consumer's theory. If assumptions (strict quasi-concavity) on \(u(x) \) are such that there is always at most one optimal consumption bundle, then \(\mathcal{W}(p, r) \) is single-valued and theorem 2 (Section 2) gives [with (3.2)].

(3.3) If \(\mathcal{W}(p, r) \) is single-valued and bounded at \((p^0, r^0)\), then \(\mathcal{W}(p, r) \) is continuous at \((p^0, r^0)\).

The paper [4] by Houthakker is based on the conjecture that (3.3) holds. In the general case where \(\mathcal{W}(p, r) \) is not necessarily single-valued, one can define \(u(p, r) \) as \(u(x) \) for some \(x \in \mathcal{W}(p, r) \) (all these \(x \) give the same value for \(u(x) \)). \(u(p, r) \) is called the "indirect" utility function (following Houthakker); this concept has been introduced by Hotelling [3] p. 99, and Roy [5]
By theorem 3 (Section 2), (3.2), and theorem 2 (Section 2),

(3.1) If \(M(p, r) \) is bounded at \((p^0, r^0) \), then \(u(p, r) \) is continuous at \((p^0, r^0) \).

\[h. \text{ Theory of the Producer} \]

A producer has to choose an input-output combination \(y \) in some set \(Y \) of technological possibilities so as to maximize the profit \(p.y \). The set of optimal \(y \) for \(p \) (set of maximizers of \(p.y \) on \(Y \)) is denoted by \(M(p) \).

In this section we always assume that \(Y \) is closed.

The constraining set \(Y \) is here a constant and therefore trivially a continuous multi-valued function. Theorem 1 (Section 2) then gives

(4.1) \(M(p) \) is an u.s.c. function of \(p \).

By theorem 2 (Section 2) and (4.1);

(4.2) If \(M(p) \) is single-valued and bounded at \(p^0 \), then \(M(p) \) is continuous at \(p^0 \).

Call \(\Pi(p) \) the maximum of profit for a given \(p \). By theorem 3 (Section 2) and (4.1);

(4.3) If \(M(p) \) is bounded at \(p^0 \), then \(\Pi(p) \) is continuous at \(p^0 \).
Footnote

1/ This paper has been prepared for the Office of Naval Research under contract Nonr-358 (01) (NR-047-006).

References

