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1, Statapent of ths Probles.

the preblem of the musical chairs is as follows, Sivesnars n
pla_rr‘chs sd n locatstgi:a._,_ a aet of 'regl nunbers 'a',lm represanting vhs flows
fran the Ith plant to the m' plant, and & seb of monenegetive real
numbers k-i 9 reprasanﬁﬁng the cost of,t;mnspcrtéfd.on Yxom loeatim i to
location j. TWaat is the assigmment of plants to locabtiono waich miniwizes
ihe total cost of tramsportation as avong plants? |
This modnl has sericus limitations. Fj_';-st, the total flows origine-
' ating at plant X ave mchaustad y the o.xmonly when the notiion of plaat 1o
aiso taken to sncompess retall outlets and, ultimately, hoveeholds. Sscoundly,
gubstitution among flows froxn plants of tha same Indusitry is disregarded.
However, the probleme involved in indivisibilities. are serious baough to
| make & rather simple modsl deslrable at the out.set.;
This problem is related to the opbimum assigrment problem [Ycoo;

footrnobe) which mey be formulated In terms of planits and locatlong as follows.

_Ii:/ This paper was stimulated by an unpublished paper of J. von Heumann,
"iue Problem of Optimal Agsignment and a Certain 2-Person Uame,' (Czbober
26, 1951}, of whick extemsive use is zads in the proofm Ge folluw. Errors
grz, of courss, my C®n.



(iven n plgnta md n locations and a set of nuubers ey 3 representing the
gost of production for plant i at location j, what is the assigrment of
plsnts 42 locations which minimizes total production cost? One will note
that :ln. the formar problem the cost to each plant of transportation is
a function of the locations of all other plants.

von Neumsnn has shown [Z.c.] that the optimum assignment problem is
equivalent to the following game. Lat there be n x n doutle indexed cells;
say, fields in a matrix. Player I hides in one cell. Player 1L attempts
to "find" I b guessing either of the indices of the cell in which player
I has hidden. 'i'hq payoff to player II is °13 if I1is rqund in cell 1, J
and zero otherwisa. |

The purpose of this paper is to show the equivaienea of the musical
chajrs' problem with the following game. Two n x n chess boards are given.
On each of thesé player I chooses a row, player II a column. The choices
are compared and player 1 péya to player II the ambunt. ki;) ° aim where i,
1 are the rows chaéen', J, m the éolumms chosen. ¥his game may also be
formulated abatfactly'in terms of strategies. For player I stritegy g is
defined as follows. Lat g = i.n + ¥ where i, 1 are positive integers not
axceeding n. Then strategy g is to choose row i on the first and row X on
the secand chess board. Similarly for player IT let strategy b = j.ﬁ +m
be to ehoose colums ] and m respectively. The geme squivalent to the

musical chairs' problem is the two person zero-sum game whose peyoff matrix
is given by bghikij.azm

whore g™ i.n+ ¥ hej.n+m
It will have been apparent that both the optimal assigmment problem
and the musical chairs' problem are of the nature of parmutation problems.

The gain from the equivelsnt game formulations lies essentially in the re~



=3 e
daction of this difficult type of a probiem %o a continuous one of manage-
able properties.

2. Hathematical discussion,

Let X -(Sm) gﬂ

Im

K= (kiJ) I kii = (

kﬁ>0‘ 143

be given n x n matrices,P an n x n permtation matriél

Problem 1
Pind P such that trace (£ B' xp)-mmmce(i PEF)
Let A=f+p '
where D a dlagonel matrix. Since the dimgonal of P! K P contains cnly zero slements
trace (8 PY K P ) = trace (A PY K P ). The ssbject of this discuscion psper is
Leumg 1
For every given matrix & there exiat-s amatrix 3 + D= 4 = (aim)
(with D a diagonal matrix) such that problem l is equivalent to
Problem 2
Pind numbers Zyys gy % 3Ly m =1, ccom such that

n- n

Z k,a;, X, y. = min max z k » PR
139X ,mel 4 .xm i yjm 11 Y 1,J5%,m=1 3 axm ¥

subject to the conditions

2/ Since there is no danger of confusion, the letters P; § shall be used in
in three different ways

88 a index of a permutation (¥p).

a8 the n x n matrix of a permtation (A' PLK P )

as the operator permuting an index into (4°) another index,



(2)

(3)

Proof:

Following won Neumann [Z.c. p. 4] we consider the two veotor 8paces
R = aet of all veotors & = (s,,) in n® dimensions such that

4:;3. ’i;] -]
(5)



S = gat of all vectors 2 = (“1;]) in n2 dimensions suéh that 31:] L Jidg

for mome permutation Q of the integers l,... n.

Lexma 2

S ————"—

(0. Birkhoff, 1946] R = sonvex mull of S, {For a proof ¢f., von Neumann:
L.ce po 5.4 8]. .

Therefore every vector x = ("gh) in R can be representeda a linear
canbination of vectais sy * (v,) 3 ( 5ghq) of S with coefficients g

| .
(6) o’o-uqul
x = Z. e ‘ Thus
Q 8 |
(7} xghnqu J'gh
(8) 1=fx, =Su S d.Q
s g Qg “en
«Z
| 39
Similarly .
(9 T " I Y QWi 0gv S1
(10).  Zvg=1.  Hence
¥ |

(1.1_.) RS A “13 tn "s2 gm Y 13 %% %o On
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- Eun °°zn“r a

. wifh(a)zup'l (10)§

.7 shawmbthatfor fixed x = (xﬂ)

- : n )
(12) nax P k. X, ¥, =

- subject to (1). (é)- '(3)
n
k
::: 1:1:!!1‘1 .imq .xm xﬂ <
Q
subject to (6), (8).

. For brevity write for the left side N, Let M be taken on for Vim ;r;m_ .

According to (7) 'y;'n may be _repweseuted in the form
Jm - }.‘.v | &J'mq |, with some v aatmying (6) and (8). "Henca

ll n

Ne K,y Xoy Vo Q= X, Q
193.19“'1 °1m id ﬂ 5 'y 1 n=l alfm im xﬂ %
The righ'k' side 1s _clegrly

n. ' ' . . )
< '
) =3 ":’ 1’1,,,.1 O | m“:x « for vy

subject to (6) (8). Let this maximm be taken on for v, = 3 . Aseume

that the » <" sign holda in (13). wow}:v .Y g8 defines a veotar(yj Yoy

. Q

__ (7) which would yidld a mue of Z B ku X7 yjﬂ> M, Thie isa @qh-ad;otion,
and therefore ‘bha emm.ity sign holda in (13) and 80 in (12)

Inthasmwayitia seen that

n

'lh nin z k :
() Iix g.iyjti’u'lid%xﬂyjm

" subject to (11)5(2),(3)‘_ ‘
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subject to (6), (8%
n
For the sum - ky P Q
. _ x,III'l 1 i .Im

one may also write trace (A* P* £ Q ), so that the right aide of (1l) becomss

mﬁ.n max I trace (A P"-E Q) up Yy
up vq PyQ. ) -
subject to (6), (8).
We procesd to prove that for a suitabls D this expression 1s equal to

ain trace (A' P'" X P), The first step is to show that for fixed up
2 ‘

{15) | max R 8 trace (AYPYKQ) v = trace (A' P' K P)
' by vQ' 1 Q : '
Q .

For this it 48 sufficient that trace (L' PP K Q) <0 if P ¥ Q.
Prosently wm ehol that this can be achieved by choosing
A= 2 + ol
whers I is the unit mtrix md ¢ & sufficiently small constant, say,

" AX m«(x P'K.Q)

< = P.a |
¢ 5 P
1¥3

Suppoze that P # Q, hence that kx Pf Q¥FO for some Z trace (vwm) may then
be written

Eml‘t'l’mq“;m..*‘}: k’zrxc.o

ah

~ma:(A°ngKQ)+E éaoe
PR S kax |




m?ﬂ

€0 % trace (X 'P kP)
, = trace (A PV EP )
This establishes that '
max  Z trace (AY PY K Q) 9 ﬁrace (At Pt K B)
qu-l Q :
Q
It fcllows now at once that

(16) mih mex Z trace (40 FY K Q) up ¥
up Vg PR -

subject to (6). (8) -

-m%n'trqee (At PQ'KP )= trece (MW PV KB )

(16) = conjunction with (1L) establishes the assertion of lemma 1.
In equation (1) the solution is

(1 2P ='P-

Q) ue
7, P lowrrss
8 .' - f[reorQ=F -
18) . o
Q OforQfF

R_et.umiﬁg to equations (7) snd (9) of p. 5 we note that the soluticn of protlem

2 bacomes

-

(19) | -11 - g

-

]

Y B,
(20) 2 Jé..vQ O @ ° é”jm
30 ) To £ind eqiﬁ.valént games is dnly a special case of the more goneral task

of finding analogous continucus problems for the permutation problems considered,

~ For instance in the same wy am before it can be shown that

3.1 the optimal assignnent problem (o, &. p.) is equivalent to
Problem 4 | |
‘ n
Minimige 3

e, X,
Xy 490 A



-, Loyt atati i v o S

R et SO

subject to A
Y >
| (3.2} 3:- %y = 1

>
(3.3} x40
3.2 the musical chairs pxotlem (mecopr) 18 equivalent to
Problem §

minint S k x
Hy a1 Y

subject to

(3.1) ?.xx *1
(3.2) )1: % 2
(3.3) %y | |
The usefulness of problem 4 lies in the fact that it permite the formiation
of necessary and sgrﬂqtbht canditions for the solution of the oc.a.p. in

terms of effioien;v prms;

Definition - The lout.ion aaaociated with a pla.nt by the solution of the o.a.p.
or the m.c.p. rexpeotively 18 called the socially optiml location tor that
plant (with respect to that problem)s

Definition A ot of non-negat:lve nuzbers ri associated with the locations 4
is called a set of efﬁoiency rents if for each plant the sum of transportation

'costs and rmb takes 11'.3 minimum when all’ planbs ae a.t their socially optimal

locations, Let P be tho permtation which lldm to each plant its aocially
optimsl 1qcationg m definition of the erﬁciency reuts ’:I. for the c.a.p. is.

. =
{(3.14) 'QJQJ * rJ_Q .‘)Pd +ry P ,fqall 1, Q.

And for the m.o.pe :
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& . ma -2 A, (z'.x -1)-2/“ (Ex g1
i )\1’}/3 xm{ 13 13 j_‘ 13 J j

‘9~

A(B_aS,)‘ mqu axm+rxq..2".kz? p o +rzp

- Suppose ‘that a permutation P satisfies (3.4) Then cleariy

cJQJ*'r Q]’Z[cJP +rjP]_or

Any solutdon P or (3.4) 18 therefors a solution of the o0.a.p. Similarly it
follows from | |

B %Sty e 5y Q)2 B Gy BT ag e ny)
at onge that any lolution P of (3.5) solves the m.c.p.

Hence. t.ho exigtence of efficienay prices such that (3.4) or (3.5)
haold is a suffiolent qondii;iqn for P to be a solution of the 0. a. Po ox the

 We Co p., s respectively. That it ia a necessary condition for the o.a.p. can

be-.sesn from the equivalent protlem by ss follows.

Te minimand of proviem  is linesr and hence comex in x, ,.
The constraims (3.1), (3.2), (3.3) are linear and hence concave in Xy 4o By
tha theorem of Kuhn and Tucker [Second Berkeley Symposium po L86] on the

—

axistence of Lagrmgean parametaa-s one has

(3.6) m:ln‘,‘E Gy X;2 @ . MEX {Ze
_1’3'1 13 ij ‘>i,/‘.'] id 13 iJ

_aubject to (301), (Bnh)’ (303) _

-gubject to |



(3.7) x, 30

(38) >, 20
(3:9) A >0
- - - /o:l.’ the
Becessary for a saddle point xu » Ay Ay linear funotion on the right side

of (3.5) is that thes following conditions hold

(3.10) 054 = )': 1"/% {;}0 if iﬁ{:}oo

Naking use of the fact that %, 1s of the form ¥, = 81,1 P
on obtains |
o3 =Ny -/Ad{g;}o 1£ 1{" }JP
or
L > -
oy Ay Ty - Af
_Dﬁﬂning r *4=- >\1{r01rithaufﬁcientlylargea,_onehaaasa

i .
necessary condition for a solution of the o.a.p. that

| ._ R |
(3.4} chj_* .:f"’q- °‘3P:j+ rJP

as asgserted, .

This proof does not carry through in®w case of the m.c.p. In fast,
' the existenos of efficliency prices is not a necessary condition for the solution
of ihe m.c.p. 7Tals can be seen from iha following example,

0 2.1 1.5 - o 2 1
Ael2 o 2 Ke|l2 0 1
3 1 0 11 1 o



]l =

T - (123) & (223) | (132) & (230) (321) & (312)

_ E a.lm H Qﬁl Q ) 507 Soi 3.6

n .

f“am ky Qy Q 6 | b | 8

2 | Q J

k : Co
m B %3 < - 4 7 | 4
By S By Q Q | ;5.7 16.1 15.6

The last row shows that &8 solution is given by the permutatio.s of the
third colum. Now with Q) =(123) @y =(32) and £ = 2 one hes

.. Q . L 3 LI .
JQ]_ -3 2 a2 and 6 tr, < 8+ *, in contradiction to (3o5)-é/

It is of course possible to introduce some notion of efficiency prices
in torma of which the m.c.p. can be formulated. Let K be a constant greater
ther or equal to the maximm of £ a . kip p» over all X, where P is the permu-

, , n o
tation that solves the m.c.p. Defins

K-z a k LI
n Yo fn O f

Then the total costs (transportation costs plus rent) of each firms is less
than or equal to K only if every plant is at 1ts soclally optimal location.
Theso prices do not achleve a complete decentralization of decision meking.
Rather they serve to Induce locational exchange through certain eoalitions,
which however in scme cases will have to encompass the total of n planta.




