COWLES COMMISSION DISCUSSION PAPER: Economics No. 2041

NOTE: Cowles Commission Discussion Papers are preliminary materials circulated privately to stimulate private discussion and are not ready for critical comment or appraisal in publications. References in publications to Discussion Papers (other than mere acknowledgement by a writer that he has had access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

Note on Marschak's Cowles Commission Discussion Paper Economics 2034

Organized Decision-Making

Martin Beckmann

April 7, 1952
This note to be inserted into C.C.D.P. 2034 after Section 15.

15a. Suppose now that the rule \(f \) does not prescribe behavior with certainty but is in terms of randomized strategies. Denote by

\[
q_i(x_i) \quad \text{the probability that partner } i \text{ commits the firm } (i=1, 2)
\]

\[
p_i(x_i) \quad \text{that he phones and}
\]

\[
o_i(x_i) \quad \text{that he does not do anything.}
\]

The integral (15.2) reads now explicitly as follows. Expected profits from commitments by partner \(i \) are

\[
(15a.1) \quad \int_0^1 \int_0^1 \left[(1 + x_2 - 1) q_i(x_i) [1 - p_j(x_j)] \right] \, dx_1 \, dx_2 \quad (i \neq j)
\]

and expected profits after communication are

\[
(15a.2) \quad \int_0^1 \int_0^1 \left[2 \max(x_1 + x_2 - 1, 0) - c \right] \left[p_i(x_i) + p_j(x_j) \right] \\
\quad - \quad p_i(x_i) p_j(x_j) \, dx_1 \, dx_2
\]

If \(i \) does not do anything, no profits arise. Hence \(\mathcal{U} \) is the sum of two expressions (15a.1) and (15a.2). The main observation to be made is that integration with respect to one variable, say \(x_j \), will cause the integrand to become a linear function of \(p_i(x_i) \) and \(q_i(x_i) \), where \(i \neq j \). We have to maximize with respect to the functions \(q_i(\cdot), p_i(\cdot) \), the expression

\[
U = \int_0^1 \left[\lambda_i(x_i) \cdot p_i(x) + \ldots + \mu_i(x_i) \cdot q_i(x) + \ldots \right] \, dx,
\]

1. Research undertaken by the Cowles Commission for Research in Economics under contract No. 358(01), NR 067-006 with the Office of Naval Research.
where ... denotes terms not containing $q_i(x_i)$ or $p_i(x_i)$ and therefore of no interest here. Since $q_i(x_i)$, $p_i(x_i)$ satisfy inequalities

$$0 \leq p_i(x_i) \quad \quad 0 \leq q_i(x_i)$$

$$p_i(x_i) + q_i(x_i) \leq 1,$$

it is clear that U will be maximized by the following choices

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
I & $\lambda_i(x_i)$ & $\lambda_i(x_i)$ & $q_i(x_i)$ & $p_i(x_i)$ & $x_i \in$ \\
\hline
≤ 0 & ≤ 0 & 0 & 0 & do nothing; $x_i \in x_i^0$
\hline
> 0 & > 0 & 1 & 0 & commit; $x_i \in x_i^q$
\hline
$\lambda_i \leq x_i$ & 0 & 0 & 1 & phone; $x_i \in x_i^p$
\hline
\end{tabular}
\end{table}

This proves that the optimal strategies can be chosen among the pure strategies.

We proceed to calculate $\lambda_i(x_i)$ and $\lambda_i(x_i)$. Write

$$q_i(x_i) = \int_{1-x_i}^1 q_j(t) \, dt$$

$$q_i^*(x_i) = \int_{1-x_i}^1 t \cdot q_j(t) \, dt$$

$$p_i(x_i) = \int_{1-x_i}^1 p_j(t) \, dt$$

$$p_i^*(x_i) = \int_{1-x_i}^1 t \cdot p_j(t) \, dt$$

Hence $q_i(0) = q_i^*(0) = p_i(0) = p_i^*(0) = 0$
(15a.3) \[\lambda_1^*(1) \leq \frac{1}{2} \quad \mu_1^*(1) \leq \frac{1}{2} \]

\[\lambda_1(1) - \lambda_1^*(1) \leq \frac{1}{2} \quad \mu_1(1) - \mu_1^*(1) \leq \frac{1}{2} \]

Then from the integral (15a.1)

\[\lambda_1(x_1) = x_1 [1 - \mu_1(1) + \mu_1^*(1) - \frac{1}{2}] \]

and from both (15a.1) and (15a.2)

\[\lambda_1(x_1) = x_1^2 - x_1 [Q_1(1) + 2P_1(x_1)] - 2P_1(x_1) \]

\[- 2P_1^*(x_1) + Q_1(1) - Q_1^*(1) = 0 \]

We first note that \(\lambda_1(x_1) \) is linear with non-negative slope coefficient.

From the table it is seen now that an interval \(X_1^q \) can never be to the left of an interval \(X_1^o \).

Secondly \(\lambda_1(x_1) \) is convex since

\[\frac{d}{dx_1} \lambda_1(x_1) = 2x_1 - 2P_1(x_1) - Q_1(1) \]

\[\frac{d^2}{dx_1^2} \lambda_1(x_1) = 2[1 - P_1(1 - x_1)] \geq 0. \]

Thus the curve \(y = \lambda_1(x_1) \) intersects the two lines \(y = \lambda_1(x_1) \) and \(y = 0 \) in at most two points each. These intersections on the other hand contain all the separation points between the sets \(X_1^k \). Hence the sets \(X_1^k \) are intervals not exceeding 5 in number. Because of the restriction on the relative location of \(X_1^o \) and \(X_1^g \) the most general arrangement is \(b \circ p \circ q \circ p \), and all other cases obtained from it by omitting one or several symbols in the sequence. The 5 interval case is actualized by the following configuration, and any other one can be obtained by contraction of some of these.
Let the strategy intervals now be labelled as in the following scheme:

\[\lambda_1(x_1) \]

\[\alpha_1(x_1) \]

Table 2 lists the relations by which the interval endpoints \(x_1^1, x_1^2, x_1^3, x_1^4 \)
are defined (\(i = 1, 2 \)).

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(\lambda_i(\cdot))</th>
<th>(\frac{d\lambda_i}{dx_i}(\cdot))</th>
<th>(\lambda_i(\cdot) - \alpha_i(\cdot))</th>
<th>(\frac{d}{dx_i}[\lambda_i(\cdot) - \alpha_i(\cdot)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1^1)</td>
<td>0</td>
<td>(\pm 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_1^2)</td>
<td>0</td>
<td>(\pm 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_1^3)</td>
<td>0</td>
<td>(\pm 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_1^4)</td>
<td>0</td>
<td>(\pm 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for \(i = 1, 2 \).
Any set of numbers \(x_1^1 \ldots x_i^1, x_1^j \ldots x_j^j \) that solves the relations of Table 2 maximizes \(U \) and is thus a solution of our problem. For, the conditions given in Table 1 are sufficient and the intervals as defined in Table 2 are so derived as to satisfy the conditions of Table 1.

We conclude by giving a particular solution of the problem. Let \(S, t \) be parameters satisfying

\[
0 \leq S; \quad S + hc \leq t - hc; \quad t \leq 1.
\]

A family of solutions (and presumably the only solution) is then given by

\[
\begin{align*}
 x_1^1 &= S & x_i^1 &= 1 - t \\
 x_1^2 &= S + hc & x_i^2 &= 1 - t + hc \\
 x_1^3 &= t - hc & x_i^3 &= 1 - S - hc \\
 x_1^4 &= t & x_i^4 &= 1 - S
\end{align*}
\]

(Note the anti-symmetric relationship: \(x_1^6 = 1 - x_j^6 \)). One has

<table>
<thead>
<tr>
<th>(f(x_1))</th>
<th>(x_1)</th>
<th>(S)</th>
<th>(S + hc)</th>
<th>(t - hc)</th>
<th>(t)</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1(x))</td>
<td>S</td>
<td>S</td>
<td>(t - 8c)</td>
<td>(t - 8c)</td>
<td>(1 - 8c)</td>
<td></td>
</tr>
<tr>
<td>(P_1(x) - P_1^*(x))</td>
<td>(\frac{1}{2} S^2)</td>
<td>(\frac{1}{2} S^2)</td>
<td>(\frac{1}{2} - 4hc - 8ct)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td></td>
</tr>
<tr>
<td>(Q_1(x))</td>
<td>(t)</td>
<td>(4c)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_1(x) - Q_1^*(x))</td>
<td>(4c)</td>
<td>(4c)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td>(\frac{1}{2} - 8hc - 8ct)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\lambda_1 (x_1) = x_1^2 - x_1 \left[g_1 (1) + 2r_1 (x_1) \right] + 2 \left[p_1 (x_1) - p_1^* (x_1) \right] + p_1 (1) - q_1^* (1) - c \left[1 - r_1 (1) \right] \]

\[\lambda_1 (s) = s^2 - s \left[4c + 2s \right] + s^2 \]

\[\lambda_1 (s+hc) = (s+hc)^2 - (s+hc) \left[2s + 4c \right] + s^2 + 4cs + 8c^2 - 6c^2 = 0 \]

\[\lambda_1 (x_1) - \mu_1 (x_1) = x_1^2 - x_1 \left[q_1 (1) + 1 - p_1 (1) \right] + 2 \left[p_1 (x_1) + p_1^* (x_1) \right] + \left[q_1 (1) - q_1^* (1) \right] - \left[p_1 (1) - p_1^* (1) \right] + \frac{1}{2} - c \left[1 - r_1 (1) \right] \]

\[\lambda_1 (t-hc) - \mu_1 (t-hc) = (t-hc)^2 - (t-hc) \left[4c+1+8c+2t+16c \right] + t^2 - 8cs-8ct \]

\[+ 4cs + 8c^2 - \left(\frac{1}{2} - 4cs - 4ct \right) + \frac{1}{2} - 8c^2 = 0 \]

\[\lambda_1 (t) = t - t \left[4c+1+8c+2t+16c \right] + t^2 - 8cs-8ct + 4cs + 8c^2 - \left(\frac{1}{2} - 4cs - 4ct \right) + \frac{1}{2} - 8c^2 = 0. \]

With

\[S' = 1 - t \]

\[t' = 1 - S \]

the conditions for the \(x_j \) follow. We may skip the verification of the inequalities for the derivatives of \(\lambda_1 (x_1) \) and \(\lambda_1 (x_1) - \mu_1 (x_1) \) since our
assumptions on S and t, which are preserved for S', t', ensure that the
x_1^1, \ldots, x_1^h are put in the right order. This completes the proof.

While we have not shown that this is the only solution, we have found
a reasonable answer to the problem. For it is sufficient that the firm is
in possession of one set of strategies ensuring the maximal profit.

The results of this paper are in accordance with those of K. Faxén
in Cowles Commission Discussion Paper Economics 2037. In addition we have
established that his relative optimum (for the case labelled II) is the
absolute optimum.