EFFICIENT ALLOCATION OF RESOURCES

by

Tjalling C. Koopmans

The problems of welfare economics can be broadly arranged in two groups: the first group is concerned with most efficient allocation of resources in production, the second with most desirable distribution of commodities or of income. While these two problem areas can be distinguished, they cannot always be separated. They hang together particularly through the effect of the reward for human effort on the quantity and quality of that effort.

There are ways to justify the separate study of criteria for efficient allocation in production. For instance, we may treat leisure as one of the desired commodities resulting from, or rather left unabsorbed by, production. The question of the distribution of leisure over individuals is then held over to be studied, along with the distribution of other commodities, when the second group of problems is taken up. Alternative modes of separation of distribution and production problems are available in more limited situations, such as arise in the individual plant, firm, or sector of industry. For instance, under certain circumstances, it may be justified to regard the amount of labor services that can be rendered by a given labor force as a given quantity, which may be considered fixed even under moderate variation in rewards. Alternatively, labor services may be regarded as available in given amount provided the necessary rewards are held out, and the distribution problem is subordinated to the problem of efficient production, in the sense that these rewards are supposed to be implied in production decisions.

In the present paper we concentrate entirely on the problem of efficient allocation in production. Much of the literature touching on this topic is concerned
with the evaluation of alternative institutional or administrative forms of organizing production. This evaluation forms part of the grand debate on the merits of private or corporate enterprise versus a planned economy - a debate touching upon the broad theme of the present meetings - and important insights about our topic can be gained from this debate. The famous article by Enrico Barone on "The Ministry of Production in the Collectivist State"\(^1\) emphasized the idea that an economy under centralized direction, to be efficient, should in most of its operation satisfy the same formal conditions as are satisfied by the competitive society of economic theory. This idea has been substantially accepted by all participants in the ensuing debate. The controversy was about methods of satisfying these conditions. Von Hayek\(^2\) and Robbins\(^3\) argued that it was impossible to impose these conditions by explicit calculation in one central office and by centralized administrative direction based on the results of such calculation. A number of writers including Dickinson,\(^4\) Lange\(^5\) and Lerner,\(^6\) then took up the "planning" side of the debate, incorporating in their model of a socialist economy the theoretical consequences, though not the actual form, of competitive organization. These authors argued that, in order to attain the objectives of a socialist economy centralized calculation is not necessary. It is sufficient if all managers of individual plants or industries respond to a price system applicable to the whole economy, in a manner prescribed by the following rules: the manager of

any plant should produce any output or output combination at minimum cost, and the
manager of any plant or industry should arrange for production at such a level as
to equate price and marginal cost.

This all too brief survey shows that there was considerable adaption of earlier
notions of a socialist economy to the theorist's image of a competitive enterprise
society, as the discussion went on. To remind us that the real world always offers
a greater variety of problems than our attempts at theorizing have envisaged, a new
contribution to the discussion has recently come from outside academic economics.
L. F. Wood, a scientist and administrator, and G. B. Dantzig, a mathematician, both
of the Department of the Air Force, were faced with the allocation problems of a
widely ramified part of the military establishment. In this problem, the existing
administrative structure provides no alternative to central direction of a complicated
effort involving a large number of goods and services, all to be geared to one general
objective. In this situation, as they report in two recent articles in Econometrica,7
they revert to the method discarded by all participants in the debate who came after
Barone: the actual collection of relevant technical information in one center and
the calculation of an allocation program to serve as a basis of detailed directives.
They see in the development of electronic computers a new possibility for this method,
unforeseen in earlier phases of the discussion.

This interesting turn in the discussion shows, it seems to me, that the earlier
discussions had been conducted too much in broad institutional terms encompassing the
entire economy. Even in the capitalistic enterprise economy, there are many sectors
where the guideposts of a competitive market are lacking, and explicit analysis of

7. Marshall K. Wood and George B. Dantzig, "Programmin' of Interdependent Activities:
I General Discussion," Econometrica, Vol. 17, July-October, 1949, pp. 193-199; and
George B. Dantzig, "Programmin' of Interdependent Activities: II Mathematical Model"
ibid. pp. 200-211.
the allocation problem is needed. Another example may be added to that discussed by Wood and Dantzig. In determining the best pattern of routing of empty railroad cars, there are no market quotations placing differential prices on alternative geographic locations of cars. Present arrangements only permit this complicated problem to be handled by administrative direction.

In most of the present paper we shall therefore leave aside the question of the institutional arrangements under which allocative decisions are made. We wish to concentrate on the formal conditions for efficient use of resources, so as to leave the door open for later application within the plant, or to the individual firm, to public enterprises or administrative organs, to an industry, or to the economy as a whole. The main departure from previous analyses in welfare economics is in the adoption of a different model of production.3 In this model, we shall not presuppose that marginal cost is necessarily known quantitatively to the manager of the individual production process, or even definable in terms of technological data available to him. Such substitution in production arises through shifts in the extent to which alternative processes are used, rather than through variation in factor combinations in the individual plant. The purpose of the present model is to demonstrate that the possibility of such shifts is sufficient by itself to establish the concept of marginal productivity and marginal cost where applicable, and a more general concept where these are not applicable.

For simplicity, we consider a static model only. We shall employ two basic concepts,* the commodity and the activity. Each com-

3 This model was first presented before the Madison meeting of the Econometric Society in August 1943, see "A Mathematical Model of Production," Econometrica, Vol. 17, No. 1, Jan. 1949, pp. 70-5. It is closely related to the model of von Neumann, see "A Model of General Economic Equilibrium," Review of Economic Studies, Vol. 13 and 14, 1945-47, pp. 1-9, and to that of Dantzig, 1. c.

modity is assumed homogeneous and perfectly divisible. An activity, if carried out at a unit level, consists in the transformation of given quantities of some commodities into given quantities of other commodities, per unit of time. It is assumed that the level of any activity can be any positive multiple of the unit level, and that the commodity flows involved are the same multiple of those involved in the unit level of that activity. Negative flows represent inputs; positive flows, outputs.

It will be clear that this model rules out indivisibilities or increasing returns to scale, and cannot be used in the analysis of any problems in which these phenomena are important elements. Apart from this specialization, the flexibility of the model described needs to be emphasized. Cases where continuous substitution within one productive process is possible can be approximated as closely as desired, at least for purposes of theory, by introducing a larger number of activities. If wheat production depends continuously on the quantities of land and labor, one may select a sufficient number of quantitative ratios in which land and labor are combined, and let each of these define a possible wheat-producing activity. With reference to a given isoquant curve in the land-labor-plane, this means the selection of a number of points on the curve (see diagram). Other points on the isoquant curve
can then be approximated by combining two adjacent selected activities in suitable proportions. A similar device can be applied if more than two factors are continuous substitutes. Thus, while the model accommodates cases of continuous substitution, it is especially designed to include those cases where substitution consists in relative quantitative shifts between discrete alternatives, as we see so often in industry.

We shall classify the goods and services into three categories: Primary goods are those which flow into production from nature, or from outside the sector of the economy considered, at a rate which by assumption cannot exceed given availability limitations. Final goods are those produced goods which are desired for purposes of consumption or delivery outside of the sector of the economy studied. Intermediate goods are those produced goods which are not wanted in themselves, that is, for any purpose other than their use as inputs to further activities of which the ultimate purpose is the production of final goods.

To any set of nonnegative levels of the activities corresponds what we shall call a technologically feasible set of net output flows of all commodities. We shall call the set of activity levels, and also the corresponding set of net commodity flows, economically feasible or briefly feasible, if (a) the net flows of all final commodities are nonnegative (because we cannot draw directly on nature to fill a deficit), if (b) the net flows of all primary goods are nonpositive (because we have no use for the surplus) and stay within the availability limitations, and if (c) the net flows of all intermediate goods are zero, (because both considerations adduced

9. To obtain a clear separation between primary and final goods, we shall regard direct consumption of goods available in nature, such as drinking water from a brook, as an activity converting the natural resource "water" (input coefficient -1) into the consumption good "drinking water" (output coefficient +1). Similarly, leisure is the output of a recreation activity of which the input is that part of labor which is not used as input in other activities.

10. It might be thought that waste products are intermediate goods with positive net output. However, if their disposal is costless, we can maintain the zero net output condition by introducing a disposal activity with input coefficient -1, and all other coefficients, zero. If disposal ties up resources, additional input coefficients are called for, and the zero net output requirement is essential.
So now come to the concept of productive efficiency upon which all subsequent analysis builds forth. A feasible set of commodity flows, as well as any set of activity levels giving rise to it, is called efficient if there is no other feasible set of commodity flows which are at least as large as the corresponding flows in the original set, while at least one is actually larger. Instead of speaking of an efficient set of commodity flows, we can also use the synonymous expression: an efficient point in the commodity space. In general, the notion of the set of all efficient points corresponds to the notion of a general transformation function, discussed by Lange and others. However, for certain models, depending on the number of activities and the values of their technological coefficients, the efficient point set will not possess a sufficient number of dimensions to make the notion of a transformation function applicable.* The efficient point set therefore constitutes the more general concept of the two.

We shall now give a number of conclusions that can be derived by mathematical analysis† from the model that has been formulated, while referring to another publication‡ for proofs and more detailed explanations. The first conclusion is, that where the efficient point set is indeed representable by a general transformation

* This may come about because the number of activities is too small in relation to the number of final goods, or because a small number of activities jointly hold a position of technical superiority over all other activities for all conceivable compositions of demand.

† The type of mathematical analysis involved is rather different from that found in most mathematical discussions of production theory, largely because of the role played by linear inequalities such as arise from the nonnegative character of activity levels and from the availability limits on primary goods. The theory of convex sets, particularly convex polyhedral cones, is drawn upon. There are many points of contact with a model constructed by von Neumann, see "A Model of General Economic Equilibrium," Review of Economic Studies, Vol. XIII (1) 1945-46. An important difference is that in von Neumann's model the efficiency of allocation comes out at the end as a by-product of an analysis concerned mainly with an existence theorem, while in the present analysis efficiency of allocation is made the central theme of analysis.

function, there are constant or decreasing returns in the output of any one final
good, with respect to the input limit (availability limit) on any one primary factor;
the marginal productivity of the factor in terms of the final good does not increase,
as production of that good increases, all other commodity flows being held constant.

Further propositions introduce a price concept which is entirely independent of
the notion of a market. The only elements underlying this price concept are the
 technological data (input-output coefficients of all activities) and the requirement
of efficiency.

The first price proposition says that for each efficient set of commodity flows
there exists an associated set of prices for all commodities, with the properties list-
ed below. To formulate these properties we define the concept of the profitability
of an activity as the aggregate value, at the prices in question, of the outputs asso-
ciated with the unit level of that activity, minus the aggregate value of the corre-
ponding inputs. The properties of the set of prices, associated with the efficient
point, are the following:

(1) No activity has a positive profitability.
(2) Any activity carried out at a positive level to attain the efficient
set of commodity flows has a zero profitability.
(3) The prices on all final and primary goods are nonnegative.
(4) The prices on all primary goods whose net input does not reach the avail-
ability limit are zero.**

It will be noted that no statement is made on the signs of the prices of inter-
mediate goods. Indeed, negative prices will arise for waste products, the disposal of

12. T. C. Koopmans, "A Mathematical Model of Production," to be included in a forth-
coming Cowles Commission Monograph.

* These goods are therefore properly called free goods with reference to the effici-
ent point in question.
which uses up positively priced goods.

The second price proposition states that the converse is also true. A feasible point with which a set of prices with the listed properties can be associated is an efficient point.

It should be mentioned that the set of prices associated with a given efficient set of commodity flows is not necessarily unique. In the case where a general transformation function exists, the set of prices will be unique almost everywhere on the hypersurface represented by that function. If the set of prices is unique, ratios of the prices of final and/or primary goods can be interpreted as marginal rates of substitution between goods. The substitution in question arises from such variations in the activity levels as to leave all commodity flows constant except those of the two goods between which substitution is considered - while maintaining efficiency in the activity combination before and after variation. These rates of substitution are applicable to finite (as distinct from infinitesimal) variations in the commodity flows involved, but often only within finite limits of variation. This comes about because the hypersurface consists of sections of hyperplanes joined at their intersections. At those intersections marginal rates of substitution are generally different for increases and for decreases in the net output of any one of the two commodities in question. In this case more than one set of associated prices (to be precise: an infinity of sets of prices) satisfies the requirements stated. At the same time the minimum number of activities engaged in to attain such an efficient point is at least one less than it is for any efficient point permitting a unique set of prices.

It may be restated that the price concept established does not in any way presuppose the existence of a market or of exchanges of commodities between different owners. The price concept is found to be a mathematical consequence of an efficient
choice of activity levels. In the important case in which the activities engaged in are sufficient in number and variety to lead to a unique solution of the condition (2) that their profitabilities be zero, the prices have already been interpreted as technological rates of substitution under efficient allocation. An additional interpretation, not limited in its applicability, is derived from the following third price proposition.

Let us consider a given efficient set of commodity flows, and let us add to the technology a number of exchange activities, defined by means of an associated set of prices, as follows: we shall imagine that, through contacts with another economy, any commodity can be exchanged against any other commodity at a price ratio computed from the given associated set of prices. Then our proposition says that after the opportunity to engage in these exchange activities has been provided, the original set of commodity flows is still efficient. That is, there is no way to increase the net "output" of any final good, without decrease in the net "output" of some other final good, by using the new possibility of exchange, possibly in combination with variations in the levels of the other (productive) activities.* Because of this proposition a set of prices associated with an efficient point can also be called a corresponding set of efficiency prices.

With the help of these formal propositions, we shall now consider, although still in a rather abstract fashion, some institutional arrangements under which efficient allocation may be attained. The propositions stated, and in particular the profitability properties (1) and (2) of the efficiency prices, strongly suggest mechanisms for attaining efficiency by decentralization of decisions concerning activity levels, mechanisms which are similar to those referred to above. Let us assume that a set of nonnegative prices on final commodities is prescribed, either administratively by some central authority, or as market prices reflecting a balance

* The proposition further says that if the exchange activities are based on some set of prices which is not associated with the given efficient point, then that point does not remain efficient after the exchange activities become available.
of preferences of consumers weighted by the income distribution. These may be called steering prices in that through their variation it is possible to steer the allocation of resources to the production of alternative efficient sets of commodity flows. Let the level of each activity and the prices of primary and intermediate goods be determined by a bidding process governed by the following rules: Any activity yielding a negative profit is to be engaged in. No activity yielding a negative profit is to be maintained at a constant level. Any activity yielding a positive profit is to be expanded, if necessary by bidding up prices of its input commodities. Behavior according to these rules could either be induced by administrative authority binding the action of managers of individual activities, or it could result from a competitive market structure where each activity is engaged in by many independent entrepreneurs. The second price proposition now implies that efficiency, once attained in such an administrative or market structure, is maintained (provided there is no change in technology).

These rules are not yet equivalent to those stated by Lange, Lerner and others. The latter rules apply to plant managers who control more than one activity in our sense of the term, and thus combine in one decision unit several, possibly many, of our fictitious activity managers. However, the Lange-Lerner model is closely approached in the following allocation model: Define as a process a set of activities controlled by one manager. Define as a composition of a process the set of activity levels selected by its manager. Now, the attainment of efficiency in the economy as a whole has as prerequisites (A) the attainment of efficiency by each process manager within the set of activities controlled by him, and in particular, (B) the selection of such an efficient activity composition by each process manager that an associated set of efficiency prices exists which is the same for all managers. Efficiency for the economy as a whole, once attained, will be maintained if each manager behaves according to the following rules: Choose only from those acts of activity levels that
correspond to an efficient point within your process. If for all such points the
profit on the entire process is zero, discontinue all activity. If you are in a point
of nonnegative profit on the process, attempt to raise your profit by varying the
composition of the process. If you are in a point of zero profit, and there is no
increase in profit possible by variation of activity levels, continue all activities
at the same level. If your attempt to raise profit-at-given-prices leads to a rise
in prices of certain input commodities, determine your further action in the light of
the new price situation.

The reader will realize that behavior according to these rules is equivalent, in
its outcome, to profit maximization under perfect competition.

Comparing the results of the above analysis with the earlier discussions referred
to above, it appears that in one sense we have made more limited assumptions. We
have ruled out indivisibilities and increasing returns to scale. As a result of that
limitation we have obtained a stronger proposition. The rules on the allocation
mechanism stated have been found to be not only necessary, but also sufficient for an
efficient use of resources.

In another respect we have gone further than previous discussions. The production
function of the individual plant, and marginal cost, have been taken previously as data,
supposedly known to the plant manager. In our analysis all that is presumed known to
the individual manager or (whence so assumed) to a central authority are the technical
coefficients characteristic of individual activities. The marginal cost or rate of
substitution concept, when applicable, is derived from these underlying data, and
where these concepts are not applicable, a somewhat more general analysis is found to
remain applicable.

* If the profitability is initially positive, this can always be done by proportional
increases in the levels of all activities in the process.