PROBLEMS IN THE ESTIMATION OF AGRICULTURAL PRODUCTION FUNCTIONS

by

Clifford Hildreth

The present discussion will be largely confined to a report of a study recently conducted at Iowa State College. In this study it was desired to estimate the production effects of various resources used by farmers in a fairly homogeneous area in Southern Iowa. Data were available on the operations of a sample group of 161 individual farms in the area during the calendar year 1947. Since the observed variables related to behavior of actual economic units, it was to be expected that they were subject to a number of technical and economic relationships. An approach to the statistical treatment of variables generated by a system of simultaneous relations has been developed by Haavelmo and others. This approach involves three steps. The first is the formulation of a model specifying the a priori assumptions the investigator is willing to make about the variables that enter the equations used to represent the simultaneous relations, the algebraic form of the equations, and the characteristics of error terms in the equations. The second step is the consideration of the extent to which unknown characteristics of the equations can be inferred from knowledge of the distribution of the observed variables. This is called the problem of identification and a parameter of the model is called identifiable if complete knowledge of the distribution of the observed variables would determine the parameter uniquely. These steps are followed by estimation of such of the identifiable parameters as the investigator wishes to estimate. This approach was used to estimate agricultural production functions for Southern Iowa using the data mentioned above. The process is sketched below along with a comparison of the production functions estimated by this approach with regression equations estimated by least squares.
I. The Model

This was developed in collaboration with Wallace E. Ogg of Iowa State College. It consists of a crop production function, a livestock production function and five input-decision relations. The two production functions are -

(1) \(y_1 = f_1(w_1, e_1, l_1) \)
(2) \(y_2 = f_2(w_2, e_2, f_2, l_2) \) where

\(y_1 \): Crop output

\(y_2 \): livestock output

\(w_1 \): crop labor

\(w_2 \): livestock labor

\(e_1 \): cost of services of crop equipment used

\(e_2 \): cost of services of livestock equipment and costs (other than feed) of maintaining the livestock herd

\(f_2 \): feed fed to livestock

\(l_1 \): cost of using cropland during period

\(l_2 \): cost of using livestock land during period

These variables and those introduced below were measured in dollars at average 1947 prices. However, since a dollar's worth of anything is a definite physical quantity so long as a constant set of prices are used, the relationships may be viewed as physical relationships.

It is assumed that \(l_1 \) and \(l_2 \) are predetermined variables and that the others are jointly determined by the relations of the model. The decision relations have not been written out explicitly but the variables that enter them were derived from the following decision making model -

(i) \(U = U(y, \mathbf{x}) \)

(ii) \(y_1 = f_1(w_1, e_1, l_1) \)

(iii) \(y_2 = f_2(w_2, e_2, f_2, l_2) \)

(iv) \(\overline{y}_1 = \overline{y}_1 + \overline{y}_2 \cdot (v_1 + v_2 - v_f) \cdot (e_1 - \rho_1 \mathbf{u}_1) \cdot (e_2 - \rho_2 \mathbf{u}_2) \cdot f_2 \)

\(\overline{y}_1 \) \(\left(\frac{v_1}{\alpha_1} \right) - \overline{y}_1 \cdot (l_2 - \rho_f \mathbf{u}_2) \cdot \rho_f \mathbf{u}_1 + \rho_f \mathbf{u}_1 \)
(v) \(R' = \gamma_1 E_1 + \gamma_2 E_2 + \gamma_3 F_2 + \gamma_4 L_1 + \gamma_5 L_2 + \gamma_6 J + c - D \)

(vi) \(\tilde{R}' = R' - \gamma_1 (w_1 + w_2 - w_f) - \gamma_2 (c_l - 3/4 E_1) - \gamma_3 F_2 + (1 - \gamma_3) F_2 - \gamma_4 \tilde{y} \tilde{y}_2 + (1 - \gamma_4) \gamma_4 \tilde{y} \tilde{y}_2 + \gamma_5 (\rho_2' - \rho_1') \)

where

\(U \): utility function of entrepreneur during period when input decisions are made

\(\tilde{i} \): anticipated income of entrepreneur when input decisions are made

\(\tilde{R}' \): anticipated minimum liquidity position during production period

\(\tilde{E}_1 \): anticipated crop production

\(\tilde{E}_2 \): anticipated livestock production

\(w_f \): family labor available to entrepreneur during year (includes own labor)

\(E_1 \): value of stock of crop equipment owned at beginning of year

\(E_2 \): value of livestock equipment and permanent herd at beginning of year

\(L_1 \): value of cropland owned

\(L_2 \): value of livestock land owned

\(D \): debts of entrepreneur

\(J \): investments of entrepreneur outside the farm enterprise

\(R' \): liquidity value of assets at beginning of year

\(\rho_i, i=1, \ldots, 5 \): rates of interest on investments in various assets.

Interest may be received explicitly or imputed.

\(\tau \): tax rate on land

\(\alpha : \frac{1}{\text{interest on land} (\rho_2') + \tau} \); \(\alpha L_1 \) is value of cropland used

\(\gamma_i, i=1, \ldots, 6 \): liquidity or loan ratios for various assets, e.g.

\(\gamma_1 E_1 \) is the amount of cash that can readily be borrowed on the entrepreneur's crop equipment.
\(Y_i, i=1, \ldots, 5 \): proportions of the year's expenses or production to accrue before small grain harvest when the minimum liquidity position for the year is normally reached.

\[\xi = \rho_1 + (1 - \gamma_1)\delta \]

where \(\delta \) is the rate of depreciation on crop equipment.

The decision making process consists of choosing \(w_1, w_2, e_1, e_2, f_2 \) so as to maximize utility subject to restrictions (ii) to (vi). If the derivatives of \(U \) with respect to each of the decision variables are set equal to zero, five decision relations result. If (i) is not assumed to be linear the decision relations will, in general, contain the following variables. -

\[
\begin{align*}
&v_1, w_2, e_1, e_2, f_2 \quad \text{endogenous} \\
&l_1, l_2, w_1, f_1, f_2 \quad \text{predetermined} \\
&L_1, L_2, J, C, D
\end{align*}
\]

The five predetermined variables in the last row were not observed in this study. \(J, C, \) and \(D \) were omitted from consideration. Observations were available for the total acres owned and total acres used by each entrepreneur. A variable \(T = 1 - \frac{\text{acres owned}}{\text{acres used}} \) was introduced in the belief that it would contain some of the information lost thru not observing \(L_1 \) and \(L_2 \). Thus the model actually employed contained seven predetermined variables and seven jointly determined variables. Neglect of some of the predetermined variables does not prevent the investigator from obtaining consistent estimates of parameters providing the neglected variables are not needed to establish identifiability of the parameters. (see Koopmans, T. C., "Statistical Methods of Measuring Economic Relationships", Cowles Commission Discussion Papers: Statistics, No. 310, p. 115)

To consider identification and estimation for this model it is convenient to revise the notation as follows -
\[
\begin{align*}
&y_1 - y_1 & & l_1 - z_1 \\
&y_2 - y_2 & & l_2 - z_2 \\
&w_1 - y_3 & & w_2 - z_3 \\
&e_1 - y_4 & & e_2 - z_4 \\
&w_2 - y_5 & & w_2 - z_5 \\
&e_2 - y_6 & & e_2 - z_6 \\
&f_2 - y_7 & & T - z_7
\end{align*}
\]

Making a linearity assumption and including parameters and error terms in the production equations puts them in the form -

\[
(1') y_1 + \beta_{13} y_3 + \beta_{14} y_4 + \gamma_{11} z_1 + \beta_{10} = u_1
\]

\[
(2') y_2 + \beta_{25} y_5 + \beta_{26} y_6 + \beta_{27} y_7 + \gamma_{22} z_2 + \beta_{20} = u_2
\]

where the \(u_1\) and \(u_2\) are error terms assumed to have zero means and finite variances and the \(\beta\)'s and \(\gamma\)'s are parameters to be estimated.

II. Identification

For equation \((1')\) to be identifiable a necessary and sufficient condition (see Koopmans pp. 30-31) is that the matrix containing the coefficients of \(y_2, y_5, y_6, y_7\) and \(z_2\) to \(z_7\) in the six equations other than \((1')\) have rank 6. This matrix has six rows and ten columns. While it is possible that the rows are not linearly independent it seems a reasonable assumption that they are in view of the meaning of the elements and the fact that each row contains ten elements. Identifiability of the equation was, therefore, assumed.

Similar considerations apply to equation \((2')\).

III. Estimation

The statistical theory of simultaneous economic relationships as developed in existing literature treats linear models (linear in the coefficients and the dependent variables, the \(y\)'s). However the arguments can still be applied if it is assumed that the equations are linear in some functions of the observed variables. It has often been assumed that production functions are linear in
logs of the observed variables. It seems quite probable that to assume either that the production equations are linear in the observed values or linear in the logs is a fairly severe oversimplification of the true relationship and the most we can hope is that the simplifying assumption will leave us with a reasonable approximation within the range of our data and the range we will contemplate in applying the results.

The assumption of linearity in the logs (constant elasticity) did not seem necessarily better to the investigator than assuming linearity in observed values (constant marginal productivity). Consequently estimates were first obtained under the latter assumption and then under the former. The method used for computing estimates has been called the limited information method by Koopmans (op. cit. pp. 82-125). It had previously been referred to as the reduced form method (see Girshick, M.A. and Haavelmo, Trygve, "Statistical Analysis of the Demand for Food", Econometrica 15-2, p. 79). With this method we are able to obtain consistent estimates of our production equations without writing out our decision relations in detail. The production equations with the estimated parameters included are:

Production Functions Linear

\[(1^*) \hat{y}_1 = 405 - 0.0347y_3 + 38.4y_4 + 2.920z_1 \]

\[(2^*) \hat{y}_2 = 366 + 1.078y_5 + 5.118y_6 + 0.432y_7 + 0.563z_2 \]

Production Functions Linear in Logs

\[(1^{***}) \hat{y}_1 = 6.658y_3 - 0.11y_4 - 0.358 \]

\[(2^{***}) \hat{y}_2 = 2.646y_5 - 0.165y_6 - 0.394y_7 + 0.13z_2 - 0.025 \]

IV. Comparison With Single Equation Estimates

Since the above estimates required noticeably longer computations than would have been needed to fit ordinary regressions of the outputs upon their respective inputs, it may be of interest to see if the results differ much
from the estimated regression equations. The regression equations obtained from the same data on inputs and outputs are -

Linear Regression Equations

(1°) \[\hat{y}_1 = 91 + 0.517 y_3 + 0.324 y_4 + 2.671 z_1 \]

(2°) \[\hat{y}_2 = 5434 - 0.711 y_3 + 0.042 y_6 + 0.184 y_7 + 2.177 z_2 \]

Regression Equations Linear in Logs

(1°°) \[y_1 = 2.475 y_3^{0.427} y_4^{0.727} z_1^{0.338} \]

(2°°) \[y_2 = 1.921 y_5^{0.262} y_6^{0.382} y_7^{0.380} z_2^{0.159} \]

There is a strong general presumption that the true marginal productivities and elasticities are positive and that elasticities are less than unity. Farm management workers familiar with the area sampled also have rather strongly held conclusions about the returns to various resources in the area. Probably the most universally held conclusion is that there is an over supply of labor in the area and that marginal productivity of labor is small. Other fairly strong presumptions about this area are that returns to crop land \(z_1 \), crop equipment \(y_1 \), and livestock herd and equipment \(y_6 \) are relatively high and that returns to livestock land \(z_2 \) are low. Crop yields in 1947 were generally poor, however, and returns to crop inputs were probably substantially lower than in other years. On the whole, the results for equations linear in logs are more consistent with previous presumptions than those linear in observed variables and the structural production functions are more consistent than the regression equations. Because most of our presumptions are in terms of marginal productivities it is a little hard to consider equations (1°°°), (2°°°), (1°°), and (2°°) in their above form. They have been used to calculate estimates of marginal productivities of each resource on an "average" farm - i.e. a farm employing an average quantity of each resource. These results
are tabulated below; the MP_g column contains marginal productivities estimated from the structural equations and the MP_r column contains those estimated from the regression equations.

<table>
<thead>
<tr>
<th>Input</th>
<th>MP_g</th>
<th>MP_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_3</td>
<td>0.019</td>
<td>1.212</td>
</tr>
<tr>
<td>v_4</td>
<td>0.515</td>
<td>0.527</td>
</tr>
<tr>
<td>z_1</td>
<td>0.949</td>
<td>1.435</td>
</tr>
<tr>
<td>v_5</td>
<td>1.320</td>
<td>2.557</td>
</tr>
<tr>
<td>v_6</td>
<td>5.620</td>
<td>5.315</td>
</tr>
<tr>
<td>v_7</td>
<td>0.734</td>
<td>0.825</td>
</tr>
<tr>
<td>z_2</td>
<td>0.326</td>
<td>2.579</td>
</tr>
</tbody>
</table>