Some Notes on Aggregation and Cross-Section Studies
Discussion Remarks at the Conference on Research in National Income and Wealth, April 1 and 2, 1949
J. Marschak

April 1, morning

If data are not to be collected for their own sake, they are collected in order to permit conclusions about important questions. What is important depends on our set of values, that is, on our practical aims. We may deem it important to diminish the inequality of incomes, for reasons of envy, justice, or social peace: hence, our interest in income distribution taken by itself. Or it may seem important to us that year-to-year fluctuations of consumption be diminished, to stabilize employment: hence, our interest in combining data on income distribution with data on the effect of family income on family savings. And so on.

Ideally, we should like to know the multivariate distribution of households in which the variables are, say: current and past income of the family, its present and past assets, its various expenditures; total national income; local prices; occupations and ages of family members; geographical region and size of community, etc., etc. Suppose for a moment that this ideal were attained (which it never will be). Then it would be possible to predict the aggregate value for a certain variable when certain aspects of the multivariate distribution are changed in a pre-assigned way, while other aspects (certain "conditional distributions") remain unchanged. For example, suppose there is reason to assume that the distribution of family savings for given family size, income bracket, and fixed values of all other variables remains unchanged for twenty years ahead; while the distribution of income by family size, income brackets, etc. is changed in a way that is defined as the result of a proposed and debated fiscal or wage or farm price policy. Then our ideal multivariate distribution would help us to obtain
new weights for each of the cells, such as the cell called "Midwestern large-
city tenant family of four people of whom two make $1,000 and $1,000 a year, and
which owns a used car and $5,000 in bonds"), and to derive the aggregate savings
as a multiply-weighted sum of family savings. Analogous operations yield aggre-
gate rent, food demand, etc.

This ideal will never be, and need not be attained. To be sure, an error is
incurred whenever ignorance forces us to replace the ideal ten-variate (or is it
hundred-variate?) distribution by a bi- or tri-variate one. That is, certain
weighted sums are then replaced by unweighted or by wrongly weighted ones. When
is this error serious? When it leads to a policy recommendation that fails its
purpose. Our sense of what are and what are not the important policy alternatives
must and does guide us when we allow ourselves to neglect the effect of certain
variables and assume equal weights when they should be unequal; and when, on the
other hand, we insist on deepening the analysis of those aspects of the multi-
variate distribution that we deem decisive in the determination of policies. In
this, I see the gist of Dorothy Brady's paper and (though not always as out-
spokenly) of many other papers before us.

April 1, afternoon

In this age of microfilms and punching machines, it should be possible for
any data-collecting agency to supply interested and competent people with copies
of original schedules or punch cards, complete or selected at random. Then any-
one could tabulate the data in whatever ways he wishes. This would be analogous
to the biologists' custom of providing each other with specified strains of mice
or bacteria. To circulate sets of 3,000 punch cards (the size of the Ann Arbor
sample) would perhaps cost less than the combined travelling expenses of confer-
ences where discussions have to be based, not on the full information contained
in the data, but on tables in which part of the information is killed; and where
much of the time is spent in reviving the killed information, and in accusing or
defending the murderers.

April 2, morning

The discrepancy in the estimates of the top-income share that are based,
respectively, on field surveys and on tax returns, may be due to underrepresent-
ation as well as underreporting. In both cases, there may be a bias (reluctance
to admit an interviewer or to tell him the truth, if income is high and penalty
nil); and there may be a sampling error. One would like to learn more as to how
the biases and sampling errors are minimized when a survey is designed, and how
they are estimated when the results are computed. In a sample of 3,000, the
probability is about 25% that 10 or less (instead of 30) people above the top
percentile of the population are interviewed; and that, consequently, when such
a sample is "blown up," 5% or less (instead of Kuznets' 15%) of national income
is estimated to go to the top 1%. When applied to savings, this random differ-
ence is much larger still. Furthermore, the probability is still about 6% that
this error is repeated in two subsequent field surveys. While I do not insist
that the discrepancy is solely due to a sampling error, and not to a systematic
bias and to underrepresentation rather than underreporting, I urge that the dis-
tribution of all errors be estimated and freely discussed by those who publish
results of field surveys.