A Theory of Asset Prices based on Heterogeneous Information and Limits to Arbitrage

Elias Albagli – USC Marhsall

Christian Hellwig – Toulouse School of Economics

Aleh Tsyvinski – Yale University

September 20, 2011
Motivation

- This paper: asset pricing theory based on heterogeneous info and limited arbitrage

 - **Parsimonious**: all results derive from these 2 elements
 - **General**: tractability allows analysis of wide class of securities

- Central message: **systematic departure** of prices from fundamentals

 - Beliefs are heterogeneous: private signal + price
 - Price = expectation of **marginal** trader
 - Noisy info aggregation ⇔ prices ≠ expected dividends (cond. on public info)
 - Price over/undervaluation (depending on payoff structure)
 - Price volatility can exceed realized dividend volatility

- **Variety of applications**:
 - M&M capital structure irrelevance
 - Excess volatility of stock returns
 - Price reaction to public announcements
Relation with Literature

1. **Information aggregation**
 - Grossman and Stiglitz (AER 80); Hellwig (JET 80); Diamond and Verrecchia (JFE 81); Wang (REStud 93).

2. **Heterogeneous Beliefs and Bubbles**
 - Harrison and Kreps (QJE 78); Scheinkman and Xiong (JPE 03); Abreu and Brunnermeier (ECT 03).

3. **Finance puzzles**
 - M&M Capital structure irrelevance: Myers (JF 84); Myers and Majluf (JFE 84).
 - Excess return volatility: Shiller (AER 81), Campbell and Shiller (RFS 88), Cochrane (RFS 92).
 - Stock price under/overreaction: Barberis et al. (JFE 98); Daniel et al. (JF 98); Hong and Stein (JF 99).
Outline of Talk

1. Setup
2. Information Aggregation Wedge
3. Applications
4. Robustness
Setup
Environment

- Single risky asset in unit supply
- Pays $\pi(\theta)$;
 - Fundamental: $\theta \sim N(0, \sigma^2_\theta)$
 - Dividend function: $\pi'(\cdot) > 0$, otherwise unrestricted
- Two dates:
 - Trading in financial market ($t = 0$)
 - Payoffs realized ($t = 1$)
Financial Market: \(t = 0 \)

- Informed traders: \(i \in [0, 1] \)
 - Risk-neutral
 - Limits to arbitrage: Can buy at most 1 share, and cannot short-sell
 - Observe private signal \(x_i \sim N(\theta, \beta^{-1}) \), share price \(P \)
 - Buy \((d_i = 1)/\) don’t buy \((d_i = 0)\):
 \[
 d(x, P) = \begin{cases}
 1 & \text{if } \mathbb{E}[\pi(\theta) \mid x_i, P] \geq P \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Aggregate informed demand: \(D(\theta, P) = \int d(x, P) d\Phi(\sqrt{\beta}(x - \theta)) \)

- Noisy demand: \(\Phi(u); \ u \sim N(0, \sigma_u^2) \)
Equilibrium Definition

A Perfect Bayesian Equilibrium (PBE) consists of

1. Price function $P(\theta, u)$

2. Informed traders’ demands $d(x, P)$

3. Posterior beliefs $H(\theta|x, P)$ for informed traders s.t.,

 (i) Informed traders demands are optimal (given beliefs)
 (ii) The asset market clears
 (iii) Posterior beliefs satisfy Bayes’ rule
Trader Optimality: Threshold Strategy

- Expected dividend, and demand $d(x, P)$: monotone in x

 - Trading strategy: signal threshold $\hat{x}(P)$

 $$d(x, P) = \begin{cases}
 1 & \text{if } x_i > \hat{x}(P) \\
 0 & \text{if } x_i < \hat{x}(P) \\
 \in (0, 1) & \text{if } x_i = \hat{x}(P)
 \end{cases}$$

- Price = dividend expectation of marginal trader ($x_i = \hat{x}(P)$)

 $$P = \mathbb{E}[\pi(\theta) | x_i = \hat{x}(P), P] = \int \pi(\theta) dH(\theta | \hat{x}(P), P)$$
Market Clearing

\[D(\theta, P) + \Phi(u) = 1; \]

\[\Phi(\sqrt{\beta}(\hat{x}(P) - \theta)) = \Phi(u) \]

\[\hat{x}(P) = \theta + 1/\sqrt{\beta} \cdot u \equiv z \]

- \(P \): aggregates private info
 - \(P \) informationally equivalent to \(\hat{x}(P) = z \)

- \(z \): endogenous public signal
 - Increasing in fundamental \(\theta \), noisy demand \(u \)
 - \(\theta|z \sim N(z, \sigma_u^2/\beta) \); \(\beta/\sigma_u^2 \) precision of \(z \)
 - \(\beta \): private info precision; \(\sigma_u^2 \): noisy demand variance
Proposition: Asset Market Equilibrium

- Unique equilibrium: price $P_\pi(z)$ and traders' threshold $\hat{x}(p) = z = P_\pi^{-1}(p)$,

\[
P_\pi(z) = \int \pi(\theta) d\Phi \left(\sqrt{\sigma_\theta^{-2} + \beta + \beta \sigma_u^{-2}} \left(\theta - \frac{\beta + \beta \sigma_u^{-2}}{\sigma_\theta^{-2} + \beta + \beta \sigma_u^{-2}} z \right) \right) \\
= \int \pi(\gamma_P z + \sigma_\theta \sqrt{1 - \gamma_P u}) \phi(u) du
\]

- Marginal trader pricing share conditions on private signal $x_i = z$; public signal z

- Bayesian weight γ_P on signal z; residual uncertainty $= 1 - \gamma_P$

- Expected dividend, conditional on public signal z only

\[
V_\pi(z) = \int \pi(\theta) d\Phi \left(\sqrt{\sigma_\theta^{-2} + \beta \sigma_u^{-2}} \left(\theta - \frac{\beta \sigma_u^{-2}}{\sigma_\theta^{-2} + \beta \sigma_u^{-2}} z \right) \right) \\
= \int \pi(\gamma_V z + \sigma_\theta \sqrt{1 - \gamma_V u}) \phi(u) du
\]

- Bayesian weight $\gamma_V (< \gamma_P)$ on signal z; residual uncertainty $= 1 - \gamma_V$
Information Aggregation Wedge
Information Aggregation Wedge

- Information aggregation wedge: \(W_\pi(z) \equiv P_\pi(z) - V_\pi(z) \)

 - Marginal trader puts higher weight on market signal \(z \) than “outsider” who only observes the price \((\gamma_P > \gamma_V)\)

\[
P_\pi(z) = \int \pi(\theta) d\Phi \left(\sqrt{\sigma_\theta^{-2} + \beta + \beta\sigma_u^{-2}} \left(\theta - \frac{\beta + \beta\sigma_u^{-2}}{\sigma_\theta^{-2} + \beta + \beta\sigma_u^{-2}} z \right) \right)
\]

\[
V_\pi(z) = \int \pi(\theta) d\Phi \left(\sqrt{\sigma_\theta^{-2} + \beta\sigma_u^{-2}} \left(\theta - \frac{\beta\sigma_u^{-2}}{\sigma_\theta^{-2} + \beta\sigma_u^{-2}} z \right) \right)
\]

- But \(V_\pi(z) \) is the **correct metric** for valuing the unconditional dividend:

\[
\implies \mathbb{E}[\pi(\theta)] = \mathbb{E}[V_\pi(z)]
\]
Information Wedge in Linear Case

Price more responsive to z than expected dividend
Intuition: Shift in Marginal Trader’s Identity

- Key intuition: for each realization of \(z \), marginal trader is a different agent
- Higher \(z \) (due to \(\theta \), and/or \(u \)) has two effects on beliefs
 - Higher \(\theta \) shifts up distribution of signals \(x' \)’s: higher demand → higher \(\hat{x}(P) \)
 - Higher \(u \) lowers net supply → higher \(\hat{x}(P) \) to deter buying by informed
- Expectations of new marginal trader pricing shares raised through both effects
 - Higher expectations due to market signal (just like anyone else)
 - Higher expectations due to shift in identity (this is the extra kick)

⇒ “Double weighting” of market info \(z \) is rational (Bayesian updating)
Unconditional Wedge

Lemma (unconditional wedge): The unconditional wedge is given by

\[W_\pi (\sigma_P) \equiv \mathbb{E}[W(z)] = \int_0^\infty (\pi' (\theta) - \pi' (-\theta)) \left(\Phi \left(\frac{\theta}{\sigma_\theta} \right) - \Phi \left(\frac{\theta}{\sigma_P} \right) \right) d\theta, \]

- **Sign**: related to curvature of \(\pi(\cdot) \)
- **Magnitude** given by informational frictions \(\sigma_P^2 \)
 - Marginal trader’s posterior \(\theta|z \): \(\sim N(\gamma_P z, (1 - \gamma_P)\sigma_\theta^2) \)
 - Prior: \(z \sim N(0, \sigma_\theta^2/\gamma_V) \)
 - Compounded distribution: \(\theta \sim N(0, (1 - \gamma_P)\sigma_\theta^2 + \gamma_P^2\sigma_\theta^2/\gamma_V) \)
 - \(\sigma_P^2 > \sigma_\theta^2 \)

- Marginal trader overweights tails of \(\theta \) distribution (overreacts to \(z \))
 - Pricing of shares as if \(\theta \sim N(0, \sigma_P^2) \), rather than \(\sim N(0, \sigma_\theta^2) \) (fatter tails)
Results: Over/Under-Valuation

- **Definition (risk type):** a dividend function $\pi(\theta)$, $\forall \theta > 0$,

 (i) Has symmetric risks if $\pi'(\theta) = \pi'(-\theta)$,

 (ii) Has upside risks if $\pi'(\theta) \geq \pi'(-\theta)$,

 (iii) Has downside risks if $\pi'(\theta) \leq \pi'(-\theta)$,

 (iv) If $\pi'_1(\theta) - \pi'_1(-\theta) \leq \pi'_2(\theta) - \pi'_2(-\theta)$,

 $\Rightarrow \pi_1(\cdot)$ has more downside (less upside) risk than $\pi_2(\cdot)$

- **Theorem (value bias):**

 (i) If $\pi(\cdot)$ has symmetric risk, $W_\pi(\sigma_P) = 0$

 (ii) If $\pi(\cdot)$ has upside risk, $W_\pi(\sigma_P) > 0$

 (iii) If $\pi(\cdot)$ has downside risk, $W_\pi(\sigma_P) < 0$

 (iv) $||W_\pi(\sigma_P)||$ increasing in info frictions σ_P

 (v) If $\pi_1(\cdot)$ has more downside (less upside) risk than $\pi_2(\cdot)$,

 $\Rightarrow W_{\pi_2}(\sigma_P) - W_{\pi_1}(\sigma_P)$ increasing in σ_P
Risk Types and Information Wedges

Symmetric Risk

\[E[P(z)] = E[V(z)] \]

Expected wedge = 0 (as in CARA-normal)
Risk Types and Information Wedges

Expected wedge > 0: Overpriced security (on expectation)
Risk Types and Information Wedges

Expected wedge < 0: Underpriced security (on expectation)
Formal Results: Volatility

Theorem (excess variability):

For any payoff function $\pi(\cdot)$ with symmetric, upside or downside risks,

(i) $\mathbb{E}((\pi(\theta) - \pi(0))^2) > \mathbb{E}((V_\pi(z) - V_\pi(0))^2)$

(ii) $\mathbb{E}((P_\pi(z) - P_\pi(0))^2) > \mathbb{E}((V_\pi(z) - V_\pi(0))^2)$

- Prices more volatile than expected dividends

(ii) $\mathbb{E}((P_\pi(z) - P_\pi(0))^2) > \mathbb{E}((\pi(\theta) - \pi(0))^2)$, if σ_u^2 and/or β high enough

- Prices more volatile than realized dividends, in the absence of a SDF

- Compare with West (Ect, 1988):

 \Rightarrow variability of posterior expectation $<$ variability of realized dividends

 \Rightarrow our model: change in identity delivers the extra volatility
Recap: Key Results thus far

- **Parsimonious model of info aggregation**
 - Applies to arbitrary (monotone) payoff functions
 - Tractability arises from risk-neutral setup with limited arbitrage

- **Main result: Information aggregation wedge**
 - Prices overreact to market info due to *identity* effect
 - Leads to average over/undervaluation (depending on curvature of $\pi(\cdot)$)
 - Leads to excess volatility of prices
Applications
Application 1: M&M Dividend Split Irrelevance

- Suppose dividend is split in 2 and sold in separate markets
 - $\pi(\cdot) = \pi_1(\cdot) + \pi_2(\cdot)$
 - $\pi_1(\cdot)$ has downside risk, $\pi_2(\cdot)$ has upside risk

- Market characteristics
 - Informed traders active in one market only, observe $x_{i,j} \sim \mathcal{N}(\theta, \beta_j^{-1})$
 - Noisy demands:
 $$
 \begin{pmatrix}
 u_1 \\
 u_2
 \end{pmatrix}
 \sim
 \mathcal{N}
 \left(
 \begin{pmatrix}
 0 \\
 0
 \end{pmatrix},
 \begin{pmatrix}
 \sigma_{u,1}^2 & \rho \sigma_{u,1} \sigma_{u,2} \\
 \rho \sigma_{u,1} \sigma_{u,2} & \sigma_{u,2}^2
 \end{pmatrix}
 \right)
 $$

- Consider informationally segmented markets
 - Traders in mkt j don’t observe price P_{-j}
 - Results also hold in info connected markets (see paper)
 - Market characterized fully by info frictions $\sigma_{P,j}$
Application 1: M&M Dividend Split Irrelevance

Proposition:

(i) Seller’s revenue is independent of split iff $\sigma_{P,1} = \sigma_{P,2}$

\Rightarrow Markets have identical information frictions

(ii) Total expected revenue from $\pi(\cdot)$ maximized by following split:

- $\pi^*_1(\theta) = \min \{ \pi(\theta), \pi(0) \}$, and $\pi^*_2(\theta) = \max \{ \pi(\theta) - \pi(0), 0 \}$
- Assign π^*_1 to investor pool with lower informational friction ($\sigma_{P,1}$)

Intuition

- π^*_1 has more downs. risk than any other π_1,
- π^*_2 has more ups. risk than any other π_2,

\Rightarrow Any alternative split $\{\pi_1, \pi_2\}$ transfers ups. risk from $\sigma_{P,2}$ to $\sigma_{P,1}$ investors

\Rightarrow ...resulting in a net loss of revenue (lower overall wedge)
Splitting Cash Flows for Arbitrary $\pi(\theta)$

$\Rightarrow \pi_1^*$ has max. downside risk; π_2^* max. upside risk
Application 2: Dynamic Trading

- Dynamic extension:
 - Dividend each period: \(\pi(\theta_t) \), \(\theta_t \) i.i.d.
 - Traders infinitely lived, discount future at fixed rate \(\delta \in (0, 1) \)

- Price and expected dividend satisfy recursive expression:

\[
P_\pi(z_t) = \mathbb{E}(\pi(\theta_t) + \delta P_\pi(z_{t+1})|x = z_t, z_t)
\]
\[
V_\pi(z_t) = \mathbb{E}(\pi(\theta_t) + \delta V_\pi(z_{t+1})|z_t)
\]

- And so does the wedge:

\[
W_\pi(z_t) = w_\pi(z_t) + \delta \mathbb{E}(W_\pi(z)) = w_\pi(z_t) + \frac{\delta}{1 - \delta} \mathbb{E}(w_\pi(z)),
\]

where \(w_\pi(z_t) = \mathbb{E}(\pi(\theta_t)|x = z_t, z_t) - \mathbb{E}(\pi(\theta_t)|z_t) \)
Application 2: Dynamic Trading

Proposition (Dynamic Wedge):
Suppose that $\pi(\cdot)$ is bounded below, increasing, and convex:

- For any $\sigma_P > \sigma_\theta$, $\exists \hat{\delta} < 1$ s.t. $\forall \delta > \hat{\delta}$, $W(z_t) > 0$, for all z_t.

- Dynamic model implies:
 - Future expected wedges raise current share price (if $\pi(\cdot)$ has upside risk)
 - For high enough δ, share might always be overpriced
Application 3: Public Disclosures

▶ How does exogenous public info about θ affect wedge?

▶ Let $y \sim N(\theta, \alpha^{-1})$ be a public disclosure on θ

▶ Same eq. characterization as before, but with extra info

$$P_\pi(y, z) = \int \pi(\theta) d\Phi \left(\sqrt{\frac{1}{\sigma_\theta^2} + \alpha + \beta + \frac{1}{\sigma_u^2}} \left(\theta - \frac{\alpha y + (\beta + \frac{1}{\sigma_u^2} z)}{\frac{1}{\sigma_\theta^2} + \alpha + \beta + \frac{1}{\sigma_u^2}} \right) \right)$$

$$V_\pi(y, z) = \int \pi(\theta) d\Phi \left(\sqrt{\frac{1}{\sigma_\theta^2} + \alpha + \frac{1}{\sigma_u^2}} \left(\theta - \frac{\alpha y + \beta \frac{1}{\sigma_u^2} z}{\frac{1}{\sigma_\theta^2} + \alpha + \beta \frac{1}{\sigma_u^2}} \right) \right)$$

▶ Public info crowds out impact of z on price and expected dividend

▶ In the limit $\alpha \to \infty$, wedge dissapears

▶ But for finite levels of precision α, impacts are more subtle...
Application 3: Public Disclosures

Proposition (Public Disclosures): Consider linear dividend \(\pi(\cdot) \) (holds more generally)

(i) \(\text{Var} \left(V_\pi (y, z) \right) \) increasing in \(\alpha \)
 - Standard Blackwell

(ii) For \(\sigma_u^{-2} \geq 2 \), \(\text{Var} \left(P_\pi (y, z) \right) \) increasing in \(\alpha \);
 Otherwise, \(\text{Var} \left(P_\pi (y, z) \right) \) increasing in \(\alpha \) iff \(\alpha \geq \alpha' \)
 - If noisy demand too volatile, \(\alpha \) reduces price overreaction to \(z \)
 - But for large enough \(\alpha \), price vol increasing (more responsive to \(\theta \))

(iii) \(\text{Var} \left(W (y, z) \right) \) is decreasing in \(\alpha \) iff \(\alpha \geq \alpha'' \) (and increasing otherwise),
 - For low \(\alpha \), an increase reduces impact of \(z \) on \(V_\pi (y, z) \) more than on \(P_\pi (y, z) \)
 \(\Rightarrow \) Larger wedge
 - But for large enough \(\alpha \), both \(V_\pi (y, z) \) and \(P_\pi (y, z) \) hardly respond to \(z \)
 \(\Rightarrow \) Wedge vanishes
Robustness
Robustness

- Alternative distributional assumptions: let
 - $\theta \sim$ on arbitrary smooth prior on \mathbb{R}, $x_i \sim$ iid cdf $F(\cdot|\theta)$ satisfying MLRP,
 - Noisy demand $D \sim$ according to cdf $G(\cdot)$ on $[0, 1]$
 - Can always characterize wedge in this environment

- Price impact of information
 - Let noisy demand be elastic: $D(u, P) = \Phi(u + \eta(\mathbb{E}(\pi(\theta)|P) - P))$
 - Wedge is inversely related to elasticity η
 - Noise traders arbitrage away the wedge

- Wedge in CARA-normal setup (noisy REE)
 - Can only solve in the linear case: $\pi'(\cdot) = k > 0$
 - Wedge has two components
 - A constant reflecting discount (premium) for average shares held
 - A symmetric information aggregation wedge
 - Unconditional returns driven by the average compensation for risk
Conclusions

- Tractable noisy REE framework
 - Heterogeneous beliefs, risk neutrality and limited arbitrage
 - Useful to analyze more general payoff structures

- Key result: **information aggregation wedge**
 - Prices overreact to market information
 - Generates excess price/return volatility
 - Generates over/undervaluation on average (depending on shape of payoffs)

- Applications in finance
 - M&M capital structure irrelevance
 - Excess volatility puzzle
 - Impact of public disclosures