Matching with Transfers
2015 Koopmans Lecture, Yale University
Part 2: Empirical applications

Pierre-André Chiappori

Columbia University

Yale, November 2015
1. Empirical implementation
2. The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
Roadmap

1. Empirical implementation
2. The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
Empirical implementation: which data?

- Basic question: what do we observe?
 → various possibilities:

 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

For instance, with supermodular surplus, matching should be exactly assortative ...

which we never observe

Two solutions:

- Frictions (search,...)

Shimer and Smith, Robin and Jacquemet, Goussé, ...

Unobservable heterogeneity: some matching traits are unobservable (by the econometrician)

Here: second path
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

For instance, with supermodular surplus, matching should be exactly assortative ... which we never observe

Two solutions:

- Frictions (search, ...)
 - Shimer and Smith, Robin and Jacquemet, Goussé, ...

- Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) unobserved (random) heterogeneity
 - Here: second path
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus

Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

For instance, with supermodular surplus, matching should be exactly assortative... which we never observe

Two solutions:
- Frictions (search,...)
- Unobservable heterogeneity: some matching traits are unobservable (by the econometrician)

Here: second path
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

For instance, with supermodular surplus, matching should be exactly assortative, which we never observe

Two solutions:
- Frictions (search,...)
 - Shimer and Smith, Robin and Jacquemet, Goussé,...
- Unobservable heterogeneity: some matching traits are unobservable (by the econometrician)
 - unobserved (random) heterogeneity
Here: second path
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...

Two solutions:

- Frictions (search, ...)
- Shimer and Smith, Robin and Jacquemet, Goussé, ...

Unobservable heterogeneity: some matching traits are unobservable (by the econometrician)

Unobserved (random) heterogeneity Here: second path
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe

- Two solutions:
Empirical implementation: which data?

- Basic question: what do we observe?
 - various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be exactly assortative ...
 - ... which we never observe

- Two solutions:
 - Frictions (search,...) → Shimer and Smith, Robin and Jacquemet, Goussé,...
Empirical implementation: which data?

- Basic question: what do we observe?
 → various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be exactly assortative ...
 - ... which we never observe

- Two solutions:
 - Frictions (search,...) → Shimer and Smith, Robin and Jacquemet, Goussé,...
 - Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) → unobserved (random) heterogeneity
Empirical implementation: which data?

- Basic question: what do we observe?
 → various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe

- Two solutions:
 - Frictions (search,...) → Shimer and Smith, Robin and Jacquemet, Goussé,...
 - Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) → *unobserved (random) heterogeneity*
 - Here: second path
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - → **No:** any supermodular surplus would give the same matching
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - → No: any supermodular surplus would give the same matching

- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - \(\textbf{No}: \) any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - → **No**: any supermodular surplus would give the same matching

- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - → **No:** any supermodular surplus would give the same matching

- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...

- ... but still no hope of recovering the surplus

- Therefore: specific stochastic structures are
 - indispensible
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc., ...)
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
 - indispensible
 - non testable
Empirical implementation 1: matching patterns only

Initial remark:

Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - → **No**: any supermodular surplus would give the same matching

- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
 - indispensable
 - non testable
- ... unless we can observe more than only matching patterns!
Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$

Basic insight: unobserved characteristics (heterogeneity)

Gain g_{IJ}^{ij} generated by the match $i \in I, j \in J$:

$$g_{IJ}^{ij} = Z_{IJ} + \varepsilon_{IJ}^{ij}$$

where $I = 0, J = 0$ for singles, and ε_{IJ}^{ij} random shock with mean zero.

Therefore: dual variables (u_i, v_j) also random (endogenous)

What do we know about the distribution of the dual variables? Not much!

Alternative approach: use the stability inequalities $u_i + v_j \geq g_{IJ}^{ij}$ for any (i, j)

Large number (one inequality per potential couple)
Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$
- Basic insight: *unobserved characteristics (heterogeneity)*
 \[\text{Gain } g_{ij}^{IJ} \text{ generated by the match } i \in I, j \in J: } \]

\[g_{ij}^{IJ} = Z^{IJ} + \varepsilon_{ij}^{IJ} \]

where $I = 0, J = 0$ for singles, and ε_{ij}^{IJ} random shock with mean zero.
Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: \(i \in I, j \in J \)
- Basic insight: *unobserved characteristics (heterogeneity)*
 \[g_{ij}^{IJ} \] generated by the match \(i \in I, j \in J \):
 \[g_{ij}^{IJ} = Z_{ij}^{IJ} + \varepsilon_{ij}^{IJ} \]

 where \(I = 0, J = 0 \) for singles, and \(\varepsilon_{ij}^{IJ} \) random shock with mean zero.
- Therefore: dual variables \((u_i, v_j)\) also random (*endogenous* distribution)
Agent belong to a (small) number of categories: $i \in I, j \in J$

Basic insight: *unobserved characteristics (heterogeneity)*

\rightarrow Gain g_{ij}^{IJ} generated by the match $i \in I, j \in J$:

$$g_{ij}^{IJ} = Z_{ij}^{IJ} + \epsilon_{ij}^{IJ}$$

where $I = 0, J = 0$ for singles, and ϵ_{ij}^{IJ} random shock with mean zero.

Therefore: dual variables (u_i, v_j) also random (*endogenous* distribution)

What do we know about the distribution of the dual variables? \rightarrow not much!
Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: \(i \in I, j \in J \)
- Basic insight: *unobserved characteristics (heterogeneity)*
 \[g_{ij}^{IJ} \quad \text{generated by the match } i \in I, j \in J: \]
 \[g_{ij}^{IJ} = Z_{ij}^{IJ} + \epsilon_{ij}^{IJ} \]
 where \(I = 0, J = 0 \) for singles, and \(\epsilon_{ij}^{IJ} \) random shock with mean zero.
- Therefore: dual variables \((u_i, v_j)\) also random (*endogenous* distribution)
- What do we know about the distribution of the dual variables? \(\rightarrow \) not much!
- Alternative approach: use the stability inequalities
 \[u_i + v_j \geq g_{ij}^{IJ} \quad \text{for any } (i, j) \]
 \(\rightarrow \) large number (one inequality *per potential couple*)
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)

Assumption S (separability): the idiosyncratic component \(\varepsilon_{ij} \) is additively separable:

\[
\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ} \tag{S}
\]

Interpretations:
- Idiosyncratic preferences for an educated partner
- Idiosyncratic attractiveness for an educated partner

Then:
- Theorem
- Under S, there exists \(U^{IJ} \) and \(V^{IJ} \) such that \(U^{IJ} + V^{IJ} = Z^{IJ} \) and for any match \((i_2^I, j_2^J)\)

\[
u_i^{ij} = U^{IJ} + \alpha_i^{IJ} \quad v_j^{ij} = V^{IJ} + \beta_j^{IJ}
\]
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)

 Assumption S (separability): *the idiosyncratic component* ε_{ij} *is additively separable:*

 $$
 \varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}
 $$

- Interpretations:

 - Idiosyncratic preferences for an educated partner
 - Or: idiosyncratic attractiveness for an educated partner
 - Only the spouse’ s category matters
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)

 Assumption S (separability): the idiosyncratic component ε_{ij} is additively separable:

 $$
 \varepsilon_{ij} = \alpha_i^J + \beta_j^I
 $$

- Interpretations:
 - Idiosyncratic preferences for an educated partner
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)
 Assumption S (separability): the idiosyncratic component ε_{ij} is additively separable:

$$\varepsilon_{ij}^{IJ} = \alpha_{i}^{IJ} + \beta_{j}^{IJ} \quad (S)$$

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siw 2006)

Assumption S (separability): The idiosyncratic component ε_{ij} is additively separable:

$$\varepsilon_{ij} = \alpha_i + \beta_j \quad (S)$$

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
 - Only the spouse’s category matters
Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)
 Assumption S (separability): the idiosyncratic component ϵ_{ij} is additively separable:

 $$\epsilon_{ij}^{IJ} = \alpha_{i}^{IJ} + \beta_{j}^{IJ}$$ \hspace{1cm} (S)

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
 - Only the spouse’s category matters

- Then:
Empirical implementation

Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)

Assumption S (separability): the idiosyncratic component \(\varepsilon_{ij} \) is additively separable:

\[
\varepsilon_{ij}^{IJ} = \alpha_{i}^{IJ} + \beta_{j}^{IJ} \quad (S)
\]

Interpretations:
- Idiosyncratic preferences for an educated partner
- or: idiosyncratic attractiveness for an educated partner
- Only the spouse's category matters

Then:

Theorem

Under S, there exists \(U^{IJ} \) and \(V^{IJ} \) such that \(U^{IJ} + V^{IJ} = Z^{IJ} \) and for any match \((i \in I, j \in J) \)

\[
\begin{align*}
 u_i &= U^{IJ} + \alpha_{i}^{IJ} \\
 v_j &= V^{IJ} + \beta_{j}^{IJ}
\end{align*}
\]
Empirical implementation

- What's wrong without separability (i.e. ε_{ij})? → Many issues
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the εs?
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
Empirical implementation

- What's wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)

More generally:
- the frictionless assumption hard to justify with many agents
 - but not with a small number of categories!

Lastly, parcimony!
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:

... but not with a small number of categories!
Lastly, parcimony!
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all (‘large deviations’)

Lastly, parsimony!
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all (‘large deviations’)
 - no singles, and very large expected utility conditional on singlehood

... but not with a small number of categories!
Lastly, parcimony!
Empirical implementation

- What’s wrong without separability (i.e. ε_{ij})? → Many issues
- What correlation structure on the εs?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all (‘large deviations’)
 - no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
 ... but not with a small number of categories!
Empirical implementation

- What’s wrong without separability (i.e. \(\varepsilon_{ij}\))? → Many issues
- What correlation structure on the \(\varepsilon\)s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the \(\varepsilon\) distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all (‘large deviations’)
 - no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
 ... but not with a small number of categories!
- Lastly, parcimony!
Empirical implementation

Theorem

A NSC for \(i \in I \) being matched with a spouse in \(J \) is:

\[
U^{IJ} + \alpha_{iJ}^{IJ} \geq U^{I0} + \alpha_{i0}^{I0}
\]
\[
U^{IJ} + \alpha_{iJ}^{IJ} \geq U^{IK} + \alpha_{iK}^{IK} \text{ for all } K
\]
Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$U^{IJ} + \alpha^I_J \geq U^{I0} + \alpha^I_0$$
$$U^{IJ} + \alpha^I_J \geq U^{IK} + \alpha^I_K \text{ for all } K$$

- In practice (Choo-Siow approach):

 - take singlehood as a benchmark (interpretation!)
 - assume the α^{IJ}_i are extreme value distributed
 - then 2 logits (one for each gender and education)
Empirical implementation

Theorem

A NSC for \(i \in I \) being matched with a spouse in \(J \) is:

\[
U^{IJ} + \alpha_i^{IJ} \geq U^{I0} + \alpha_i^{I0}
\]

\[
U^{IJ} + \alpha_i^{IJ} \geq U^{IK} + \alpha_i^{IK} \text{ for all } K
\]

- In practice (Choo-Siow approach):
 - take singlehood as a benchmark (interpretation!)
Empirical implementation

Theorem

A NSC for \(i \in I \) being matched with a spouse in \(J \) is:

\[
U^{IJ} + \alpha_i^{IJ} \geq U^{I0} + \alpha_i^{I0}
\]

\[
U^{IJ} + \alpha_i^{IJ} \geq U^{IK} + \alpha_i^{IK} \quad \text{for all} \ K
\]

- In practice (Choo-Siow approach):
 - take singlehood as a benchmark (interpretation!)
 - assume the \(\alpha_i^{IJ} \) are extreme value distributed
Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

\[
U^{IJ} + \alpha_i^{IJ} \geq U^{I0} + \alpha_i^{I0} \\
U^{IJ} + \alpha_i^{IJ} \geq U^{IK} + \alpha_i^{IK} \text{ for all } K
\]

- In practice (Choo-Siow approach):
 - take singlehood as a benchmark (interpretation!)
 - assume the α_i^{IJ} are extreme value distributed
 - then $2 \times K$ logits (one for each gender and education) $\rightarrow U^{IJ}, V^{IJ}$
Empirical implementation

Theorem

A NSC for \(i \in I \) being matched with a spouse in \(J \) is:

\[
U_{IJ} + \alpha_{ij} \geq U_{I0} + \alpha_{i0}
\]

\[
U_{IJ} + \alpha_{ij} \geq U_{IK} + \alpha_{iK} \quad \text{for all } K
\]

- In practice (Choo-Siow approach):
 - take singlehood as a benchmark (interpretation!)
 - assume the \(\alpha_{ij} \) are extreme value distributed
 - then \(2 \times K \) logits (one for each gender and education) → \(U_{IJ}, V_{IJ} \)
 - and expected utility:

\[
\bar{u}^I = E \left[\max_j (U_{IJ} + \alpha_{ij}) \right] = \ln \left(\sum_j \exp U_{IJ} + 1 \right) = -\ln \left(a_{i0}^{I0} \right)
\]
Empirical implementation (cont.)
Generalization: ‘Cupid’ framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 → the αs and βs follow any distribution
Empirical implementation (cont.)

Generalization: ‘Cupid’ framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 → the αs and βs follow any distribution

- Define the function G_I by:

 $$G_I \left(U^{I\emptyset}, \ldots, U^{IK} \right) = E \left[\max_{J=\emptyset,1,\ldots,K} \left(U^{IJ} + \alpha_i^J \right) \right]$$

 which can be computed if the distribution of the αs is known. Then G_I is increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J
Relax the extreme value assumption
→ the αs and βs follow any distribution
Define the function G_I by:

$$G_I \left(U^{I\emptyset}, \ldots, U^{IK} \right) = E \left[\max_{J=\emptyset, 1, \ldots, K} \left(U^{IJ} + \alpha_i^J \right) \right]$$

which can be computed if the distribution of the αs is known. Then G_I is increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J

Legendre-Fenchel transform (conjugate) of $G_I:$

$$G_I^* \left(\gamma^0, \ldots, \gamma^L \right) = \max_{U^0, \ldots, U^K} \left(\sum \gamma^L U^L - G_I \left(U^0, \ldots, U^K \right) \right)$$

Then G_I^* is convex, and envelope theorem: $\partial G_I^* / \partial \gamma^J = U^{IJ}$
Empirical implementation (cont.)

Generalization: ‘Cupid’ framework (Galichon-Salanie 2014)

- Relax the extreme value assumption → the αs and βs follow any distribution
- Define the function G_I by:

$$G_I \left(U^{I\emptyset}, \ldots, U^{IK} \right) = E \left[\max_{J=\emptyset,1,\ldots,K} \left(U^{IJ} + \alpha^J_i \right) \right]$$

which can be computed if the distribution of the αs is known. Then G_I increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J

- *Legendre-Fenchel transform* (conjugate) of G_I:

$$G_I^* \left(\gamma^0, \ldots, \gamma^L \right) = \max_{U^0,\ldots,U^K} \left(\sum \gamma^L U^L - G_I \left(U^0, \ldots, U^K \right) \right)$$

Then G_I^* is convex, and envelope theorem: $\partial G_I^* / \partial \gamma^J = U^{IJ}$

- $G^* \left(\gamma^I \right)$ is called the *generalized entropy* of the corresponding discrete choice problem.
Empirical implementation

- What can we identify?

Basic CS model:
- Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction

Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW requires invariance of (part of) the surplus...
- ...for instance the 'supermodular core' (preferences for assortativeness)

Alternatively, more information is needed

$Z_{IJ(t)} = \zeta_{I(t)} + \xi_{J(t)} + Z_{IJ(0)}$
- ...or at least some restrictions on its variations (e.g. linear trend):
Empirical implementation

- What can we identify?
- Basic CS model:
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity, ...)

Alternatively, more information is needed...
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
 - Even then, the model is *exactly identified*
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
 - Even then, the model is *exactly identified*
 - In particular, *no testable restriction*
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?

One solution: 'multi-markets' (cf. the IO literature). Ex: CSW requires invariance of (part of) the surplus ... for instance the 'supermodular core' ('preferences for assortativeness')

\[Z_{IJ} t = \zeta_I t + \xi_J t + Z_{IJ} 0 + z_{IJ} t \]

Alternatively, more information is needed.
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity, ...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: ‘multi-markets’ (cf. the IO literature). Ex: CSW
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity, ...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction

- Can we improve testability?
 - One solution: ‘multi-markets’ (cf. the IO literature). Ex: CSW
 - $Z_{IJt} = Z_{JI0} + Z_{IJ0} + \zeta_I + \xi_J + Z_{IJ0}$
 - requires invariance of (part of) the surplus ...
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
 - Even then, the model is *exactly identified*
 - In particular, *no testable restriction*
- Can we improve testability?
 - One solution: ‘multi-markets’ (cf. the IO literature). Ex: CSW
 - → requires invariance of (part of) the surplus ...
 - ... for instance the ‘supermodular core’ (‘preferences for assortativeness’)

 $$Z_t^{ll} + Z_t^{JJ} - Z_t^{lj} - Z_t^{Jl} = K \Rightarrow Z_t^{lj} = \zeta_t^l + \zeta_t^J + Z_0^{lj}$$
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity,...)
 - Even then, the model is *exactly identified*
 - In particular, *no testable restriction*

- Can we improve testability?
 - One solution: ‘multi-markets’ (cf. the IO literature). Ex: CSW
 - → requires invariance of (part of) the surplus ...
 - ... for instance the ‘supermodular core’ (‘preferences for assortativeness’)
 \[Z_{II}^t + Z_{JJ}^t - Z_{IJ}^t = K \Rightarrow Z_{IJ}^t = \zeta_t^I + \zeta_t^J + Z_{IJ}^0 \]
 - ... or at least some restrictions on its variations (e.g. linear trend):
 \[Z_{IJ}^0 + z_{IJ}^t \times t \]
Empirical implementation

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of αs and βs known, no heteroskedasticity, ...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: ‘multi-markets’ (cf. the IO literature). Ex: CSW
 - requires invariance of (part of) the surplus ...
 - ... for instance the ‘supermodular core’ (‘preferences for assortativeness’)
 \[
 Z_{IJ}^t + Z_{tJ}^i - Z_{tI}^j = K \Rightarrow Z_{IJ}^t = \zeta_I^t + \zeta_J^i + Z_{0IJ}^t
 \]
 - ... or at least some restrictions on its variations (e.g. linear trend):
 \[
 Z_{0IJ}^t + z_{IJ}^t \times t
 \]
 - Alternatively, more information is needed
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed

Here, pairwise surplus (as a function of traits)

Where can such information come from?

Answer: from observed behavior

Structure:

Start with given preferences, satisfying TU

Once a couple is formed, they maximize total utility

... observed behavior (e.g. labor supply) allows to identify preferences... therefore the surplus

In practice:

either double set of logit regressions, plus constraints across equations

or simulated moments...

... especially since simulating the model is easy (linear optimization)
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
Empirical implementation 2: matching patterns and (information on) the surplus

- **Basic insight**
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*

- Structure:
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*

- Structure:
 - Start with given preferences, satisfying TU
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
Empirical implementation 2: matching patterns and
(information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - → observed behavior (e.g. labor supply) allows to identify preferences
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - → observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - → observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus

- In practice:
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - \(\rightarrow\) observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus

- In practice:
 - either double set of logit regressions, plus constraints across equations
Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior

- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - → observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus

- In practice:
 - either double set of logit regressions, plus constraints across equations
 - or simulated moments ...
Empirical implementation 2: matching patterns and (information on) the surplus

- **Basic insight**
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: *from observed behavior*

- **Structure:**
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - → observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus

- **In practice:**
 - either double set of logit regressions, plus constraints across equations
 - or simulated moments ...
 - ... especially since simulating the model is easy (linear optimization)
Empirical implementation 3: matching patterns and transfers

- Basic reference: *hedonic models*
- Strong, non parametric identification results
- See f.i. Ekeland, Heckman and Nesheim (2004), Heckman, Matzkin and Nesheim (2010), Chernozhukov, Galichon and Henry (2014) and Nesheim (2013)
Roadmap

1. Empirical implementation

2. The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015

The demand for education puzzle

- **Motivation:** remarkable increase in female education, labor supply, incomes during the last decades.
The demand for education puzzle

- **Motivation:** remarkable increase in female education, labor supply, incomes during the last decades.

Two questions:

- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?

Answers provided by matching models:

- First question: just compute the dual variables!
- Second question: ‘marital college premium’
The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
 - Impact on intrahousehold allocation?
The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?
The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?

Answers provided by matching models:
The demand for education puzzle

- **Motivation:** remarkable increase in female education, labor supply, incomes during the last decades.

![Graph showing education trends over time]

- **Two questions:**
 - Impact on intrahousehold allocation?
 - How can the asymmetry between genders be explained?

- **Answers provided by matching models:**
 - First question: just compute the dual variables!
The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?

Answers provided by matching models:
- First question: just compute the dual variables!
- Second question: ‘marital college premium’
The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
Basic intuition: investment in HC generates two types of benefits:
- on the labor market (‘college premium’)
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)

Marriage-market benefits (the ‘marital college premium’):
- have been largely neglected
- their evolution markedly differs across genders
- may influence investment behavior
- may explain the puzzle

But a structural model is needed!
Basic intuition: investment in HC generates two types of benefits:

- on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - \(\rightarrow \text{cannot explain asymmetry between gender} \)

Marriage-market benefits (the 'marital college premium') have been largely neglected and their evolution markedly differs across genders. This may influence investment behavior and help explain the puzzle. However, a structural model is needed!
Basic intuition: investment in HC generates two types of benefits:

- on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - \(\rightarrow cannot \) explain asymmetry between gender

- on the marriage market: more education changes:

Marriage-market benefits (the 'marital college premium') have been largely neglected their evolution markedly differs across genders may influence investment behavior! may explain the puzzle! But a structural model is needed!
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus

- Marriage-market benefits (the ‘marital college premium’):
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus

Marriage-market benefits (the ‘marital college premium’):

- have been largely neglected
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:

 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus

Marriage-market benefits (the ‘marital college premium’):

- have been largely neglected
- their evolution markedly differs across genders
Basic intuition: investment in HC generates two types of benefits:

- on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender

- on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus

Marriage-market benefits (the ‘marital college premium’):

- have been largely neglected
- their evolution markedly differs across genders
- may influence investment behavior → may explain the puzzle
The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market (‘college premium’)
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - → cannot explain asymmetry between gender
 - on the marriage market: more education changes:
 - marriage probability
 - spouse’s (expected) education
 - total marital surplus generated
 - the distribution of that surplus
- Marriage-market benefits (the ‘marital college premium’):
 - have been largely neglected
 - their evolution markedly differs across genders
 - may influence investment behavior → may explain the puzzle
- But a structural model is needed!
Idea: structural model holds for different cohorts $t = 1, \ldots, T$ with varying class compositions.
Idea: structural model holds for different cohorts $t = 1, \ldots, T$ with varying class compositions.

Then:

$$g_{ij,t} = Z_{ij} + \alpha_{i,t} + \beta_{j,t}$$

where α, β extreme value distributed
Idea: structural model holds for different cohorts \(t = 1, \ldots, T \) with varying class compositions.

Then:

\[
g_{ij,t} = Z_{t}^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}
\]

where \(\alpha, \beta \) extreme value distributed

Identifying assumption:

either

\[
Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + Z_{0}^{IJ}
\] (1)

or

\[
Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + \left(Z_{0}^{IJ} + \delta^{IJ} \times t \right)
\] (2)
Idea: structural model holds for different cohorts \(t = 1, \ldots, T \) with varying class compositions.

Then:

\[
g_{ij,t} = Z_{IJ}^t + \alpha_{i,t} + \beta_{j,t}^t
\]

where \(\alpha, \beta \) extreme value distributed

Identifying assumption:

either

\[
Z_{IJ}^t = \zeta_t^I + \xi_t^J + Z_0^{IJ}
\]

or

\[
Z_{IJ}^t = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)
\]

Interpretation:

Non parametric trends \(\zeta^I, \xi^J \) affecting the surplus but not the supermodularity

(1): 'preferences for assortativeness' do not change!

(2): 'preferences for assortativeness' follow linear trends
Idea: structural model holds for different cohorts $t = 1, \ldots, T$ with varying class compositions.

Then:

$$g_{ij,t} = Z_{t}^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α, β extreme value distributed

Identifying assumption:

either

$$Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + Z_{0}^{IJ}$$

(1)

or

$$Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + \left(Z_{0}^{IJ} + \delta^{IJ} \times t \right)$$

(2)

Interpretation:

- Non parametric trends ζ^{I}, ζ^{J} affecting the surplus but not the supermodularity
Idea: structural model holds for different cohorts $t = 1, \ldots, T$ with varying class compositions.

Then:

$$g_{ij,t} = Z_{t}^{IJ} + \alpha_{i,t} + \beta_{j,t}$$

where α, β extreme value distributed.

Identifying assumption:

either

$$Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + Z_{0}^{IJ} \tag{1}$$

or

$$Z_{t}^{IJ} = \zeta_{t}^{I} + \zeta_{t}^{J} + \left(Z_{0}^{IJ} + \delta^{IJ} \times t\right) \tag{2}$$

Interpretation:

- Non parametric trends ζ^{I}, ζ^{J} affecting the surplus but not the supermodularity
- (1): ‘preferences for assortativeness’ do not change → **testable**
Idea: structural model holds for different cohorts $t = 1, \ldots, T$ with varying class compositions.

Then:

$$g_{ij,t} = Z_{t}^{IJ} + \alpha_{i,t} + \beta_{j,t}$$

where α, β extreme value distributed

Identifying assumption:

- either
 $$Z_{t}^{IJ} = \zeta_{t}^{I} + \xi_{t}^{J} + Z_{0}^{IJ}$$ \hspace{1cm} (1)

 Interpretation:
 - Non parametric trends ζ^{I}, ξ^{J} affecting the surplus but not the supermodularity
 - (1): ‘preferences for assortativeness’ do not change → testable

- or
 $$Z_{t}^{IJ} = \zeta_{t}^{I} + \xi_{t}^{J} + \left(Z_{0}^{IJ} + \delta^{IJ} \times t\right)$$ \hspace{1cm} (2)

 Interpretation:
 - (2): ‘preferences for assortativeness’ follow linear trends δ^{IJ}
What do raw data say?
Comparing educations within white couples

- Husband more educated
- Same education
- Husband less educated
Comparing educations within black couples

<table>
<thead>
<tr>
<th>Year of birth of husband</th>
<th>Husband more educated</th>
<th>Same education</th>
<th>Husband less educated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Marriage patterns of white men

Born 1940−1942

- men: CG+
- men: CG
- men: SC
- men: HSG
- men: HSD

Born 1960−1962

- men: CG+
- men: CG
- men: SC
- men: HSG
- men: HSD

Proportion
Marriage patterns of white women

<table>
<thead>
<tr>
<th></th>
<th>Born 1941−1943</th>
<th>Born 1961−1963</th>
</tr>
</thead>
<tbody>
<tr>
<td>women: CG+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>women: CG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>women: SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>women: HSG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>women: HSD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportion
Marriage patterns of black men

- **HSD**
- **HSG**
- **SC**
- **CG**
- **CG+**

Born 1940–1942

Born 1960–1962

- men: CG+ (proportions)
- men: CG (proportions)
- men: SC (proportions)
- men: HSG (proportions)
- men: HSD (proportions)

Proportion
Marriage patterns of black women

Born 1941–1943

women: CG+

women: CG

women: SC

women: HSG

women: HSD

Barn 1961–1963

Marriage patterns of black women
Results: preferences for assortativeness

<table>
<thead>
<tr>
<th></th>
<th>HSD</th>
<th>HSG</th>
<th>SC</th>
<th>CG</th>
<th>CG+</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>0.0118***</td>
<td>0.0067***</td>
<td>0.0146***</td>
<td>-0.0023</td>
<td>-0.0366***</td>
</tr>
<tr>
<td></td>
<td>(0.0015)</td>
<td>(0.0012)</td>
<td>(0.0018)</td>
<td>(0.0017)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>HSG</td>
<td>-0.0237***</td>
<td>0.0024</td>
<td>0.011***</td>
<td>-0.0009</td>
<td>-0.01***</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0008)</td>
<td>(0.0008)</td>
<td>(0.0009)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>SC</td>
<td>-0.0198***</td>
<td>-0.001</td>
<td>0.0056***</td>
<td>0.004***</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(0.0013)</td>
<td>(0.0006)</td>
<td>(0.0013)</td>
<td>(0.0015)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>CG</td>
<td>0.0187***</td>
<td>-0.0011</td>
<td>-0.0093***</td>
<td>0.0079***</td>
<td>0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0009)</td>
<td>(0.0013)</td>
<td>(0.0015)</td>
<td>(0.0018)</td>
</tr>
<tr>
<td>CG+</td>
<td>0.0436***</td>
<td>0.0055***</td>
<td>-0.0087***</td>
<td>-0.0059***</td>
<td>0.0149*</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0006)</td>
<td>(0.0008)</td>
<td>(0.001)</td>
<td>(0.0017)</td>
</tr>
</tbody>
</table>

Table: Slopes - linear extension
Results: college premium

Figure 12: The marital college premium
Roadmap

1. Empirical implementation
2. *The US education puzzle*
 - One-dimensional version: CSW (2014)
 - *Two-dimensional version: Low (2014)*
 - Matching patterns and behavior: CCM 2015
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age

Consider the choice between entering the MM after college or delaying, in order to acquire a 'college +'degree

Pros and cons of delaying:
- Pro: higher education, higher wage, etc.
- Con: delayed entry, loss of 'reproductive capital'

Impact on marital prospects?

P.A. Chiappori (Columbia University)
Matching with Transfers
Yale, November 2015
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - Pros and cons of delaying:
 - Pro: higher education, higher wage, etc.
 - Con: delayed entry, loss of ‘reproductive capital’

Impact on marital prospects?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 22 / 38
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a ‘college +’ degree
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a ‘college +’ degree
- Pros and cons of delaying:
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a ‘college +’ degree
- Pros and cons of delaying:
 - Pro: higher education \rightarrow higher wage, etc.
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a ‘college +’ degree

- Pros and cons of delaying:
 - Pro: higher education → higher wage, etc.
 - Con: delayed entry → loss of ‘reproductive capital’
Reproductive capital and women’s demand for higher education

Source: Corinne Low’s dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a ‘college +’ degree
- Pros and cons of delaying:
 - Pro: higher education → higher wage, etc.
 - Con: delayed entry → loss of ‘reproductive capital’
- Impact on marital prospects?
Model

- Two commodities, private consumption and child expenditures; utility:
 \[u_i = c_i (Q + 1), \ i = h, w \]

and budget constraint (\(y_i \) denotes \(i \)'s income)

\[c_h + c_w + Q = y_h + y_w \]
Two commodities, private consumption and child expenditures; utility:

\[u_i = c_i (Q + 1), \quad i = h, w \]

and budget constraint (\(y_i \) denotes \(i \)’s income)

\[c_h + c_w + Q = y_h + y_w \]

Transferable utility: any efficient allocation maximizes \(u_h + u_w \); therefore surplus with a child

\[s(y_h, y_w) = \frac{(y_h + y_w + 1)^2}{4} \]

and without a child \((Q = 0) \)

\[s(y_h, y_w) = y_h + y_w \]

therefore, if \(\pi \) probability of a child:

\[s(y_h, y_w) = \pi \frac{(y_h + y_w + 1)^2}{4} + (1 - \pi)(y_h + y_w) \]
Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
Men: differ in income \(\rightarrow y_h \) uniform on \([1, Y]\)

Women: more complex

\[
y_w = \lambda s \text{ if invest (with } \lambda > 1) \\
y_w = s \text{ if not}
\]

Therefore: once investment decisions have been made,
bidimensional matching model, and three questions:

- who marries whom?
- how is the surplus distributed?
- what is the impact on (ex ante) investment?
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
 - may choose to invest \rightarrow income:
 \[
 y_w = \lambda s \text{ if invest (with } \lambda > 1) \\
 y_w = s \text{ if not}
 \]
 but investment implies fertility loss $\pi = p$ if invest $\pi > p$ if not

Therefore: once investment decisions have been made, bidimensional matching model, and three questions: who marries whom? how is the surplus distributed? what is the impact on (ex ante) investment?
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
Populations

- Men: differ in income → y_h uniform on $[1, Y]$
- Women: more complex
 - differ in skills → s uniform on $[0, S]$
 - may choose to invest → income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss

Therefore:
- once investment decisions have been made, bidimensional matching model, and three questions:
 - who marries whom?
 - how is the surplus distributed?
 - what is the impact on (ex ante) investment?
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
Populations

- Men: differ in income → \(y_h \) uniform on \([1, Y]\)
- Women: more complex
 - differ in skills → \(s \) uniform on \([0, S]\)
 - may choose to invest → income:
 - \(y_w = \lambda s \) if invest (with \(\lambda > 1 \))
 - \(y_w = s \) if not
 - but investment implies fertility loss
 - \(\pi = p \) if invest
 - \(\pi = P > p \) if not

Therefore:
- once investment decisions have been made, bidimensional matching model, and three questions:
 - who marries whom?
 - how is the surplus distributed?
 - what is the impact on (ex ante) investment?
Populations

- Men: differ in income \(\rightarrow y_h \) uniform on \([1, Y]\)
- Women: more complex
 - differ in skills \(\rightarrow s \) uniform on \([0, S]\)
 - may choose to invest \(\rightarrow \) income:
 - \(y_w = \lambda s \) if invest (with \(\lambda > 1 \))
 - \(y_w = s \) if not
 - but investment implies fertility loss
 - \(\pi = p \) if invest
 - \(\pi = P > p \) if not

- Therefore: *once investment decisions have been made*, bidimensional matching model, and three questions:
Populations

- Men: differ in income $\rightarrow y_h$ uniform on $[1, Y]$
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on $[0, S]$
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not

Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
Populations

- Men: differ in income → y_h uniform on $[1, Y]$
- Women: more complex
 - differ in skills → s uniform on $[0, S]$
 - may choose to invest → income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not

Therefore: *once investment decisions have been made*, bidimensional matching model, and three questions:

- who marries whom?
- how is the surplus distributed?
Populations

- Men: differ in income → y_h uniform on $[1, Y]$
- Women: more complex
 - differ in skills → s uniform on $[0, S]$
 - may choose to invest → income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not

Therefore: *once investment decisions have been made*, bidimensional matching model, and three questions:

- who marries whom?
- how is the surplus distributed?
- what is the impact on (ex ante) investment?
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

 \[\text{invest iff } s \geq \bar{s} \]

Then:
Resolution

- **Assumption:** investment decision such that there exists some \(\bar{s} \) such that

 \[
 \text{invest iff } s \geq \bar{s}
 \]

 Then:

- There exists a stable match (conditional on education); generically unique
Resolution

- Assumption: investment decision such that there exists some \(\bar{s} \) such that
 \[
 \text{invest iff } s \geq \bar{s}
 \]

Then:
- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

 $$\text{invest iff } s \geq \bar{s}$$

 Then:
 - There exists a stable match (conditional on education); generically unique
 - For given fertility, assortative matching on income
 - Matching and fertility: three possible regimes (plus intermediate randomization)
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

 $\text{invest \ iff} \ s \geq \bar{s}$

Then:
- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that
 \[
 \text{invest iff } s \geq \bar{s}
 \]

 Then:
 - There exists a stable match (conditional on education); generically unique
 - For given fertility, assortative matching on income
 - Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
shown in Figure 1.4.

Figure 1.4: Non-monotonic equilibrium match

Let x and z represent the lower and upper ends of the second segment of men, and r and t represent the lower and upper cutoffs for women. Poor men, from 1 to x, marry low-skill, fertile women (matching assortatively). On the other side of the threshold, the richest group of women matches assortatively with the middle group of men, from x to z. But, the richest men, from z to Y, marry the “best of the rest”—the more high-skilled women among those who have not invested and are thus still fertile.\(^5\)

This general form allows for the match to be non-monotonic, as depicted, or collapse to positive assortative matching, when $r^* = t$ (and thus segment 2 in Figure 1.4 has zero mass),

\(^5\)The matching functions in this uniform case are linear, but in the general case, their form will be determined by the distribution so that the number of women above any point on each “segment” exactly matches the number of men above that point.
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

 $$\text{invest \ iff \ } s \geq \bar{s}$$

 Then:
 - There exists a stable match (conditional on education); generically unique
 - For given fertility, assortative matching on income
 - Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching
or her spouse to maximize his or her own payoff, under the constraint that the spouse will accept that match.

Let $v_i(s), i \in \{1, 2, 3\}$ represent the value function of a woman of skill s matching in segment i, and $u_i(y), i \in \{1, 2, 3\}$ the value function of a man of income y matching in segment i.

Note that for any individuals of skill s and income y, $u_i(y) + v_i(s) \geq T_i(y, s)$. For married individuals, this holds with equality, and we can solve for the slope of the value function:

$$u_i(y) = \max_s\{T_i(y, s) - v_i(s)\} \Rightarrow v'_i(s) = \frac{\partial T_i(y, s)}{\partial s}$$

and

$$v_i(s) = \max_y\{T_i(y, s) - u_i(y)\} \Rightarrow u'_i(y) = \frac{\partial T_i(y, s)}{\partial y}$$
Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

 $$\text{invest iff } s \geq \bar{s}$$

 Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:
Resolution

- **Assumption:** investment decision such that there exists some \bar{s} such that

 $$\text{invest iff } s \geq \bar{s}$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching

Which regime? Depends on the parameters. In particular:

- If λ small and P/p large, regime 2
Assumption: investment decision such that there exists some \bar{s} such that

$$\text{invest iff } s \geq \bar{s}$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching

Which regime? Depends on the parameters. In particular:

- If λ small and P/p large, regime 2
- If λ large and P/p not too large, regime 3
Empirical predictions

Basic intuition: we have moved from ‘\(\lambda \) small, \(P/p \) large’ to ‘\(\lambda \) large, \(P/p \) not too large’
Why?

- Increase in \(\lambda \): dramatic increase in ‘college + premium’
Empirical predictions

Basic intuition: we have moved from ‘\(\lambda \) small, \(P/p \) large’ to ‘\(\lambda \) large, \(P/p \) not too large’

Why?

- Increase in \(\lambda \): dramatic increase in ‘college + premium’
- Decrease in \(P/p \): two factors

- Progress in assisted reproduction (much more important): dramatic change in desired family size

Consequence: according to the model:

- Before the 80s: college + women marry ‘below’ college graduate
- After the 80s: college + women marry ‘above’ college graduate

What about data?
Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’ to ‘λ large, P/p not too large’

Why?

- Increase in λ: dramatic increase in ‘college + premium’
- Decrease in P/p: two factors
 - progress in assisted reproduction
Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’ to ‘λ large, P/p not too large’

Why?

- Increase in λ: dramatic increase in ‘college + premium’
- Decrease in P/p: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Consequence: according to the model:
- Before the 80s: college + women marry ‘below’ college graduate
- After the 80s: college + women marry ‘above’ college graduate
Notes: “Don’t know/refused” responses not shown. Respondents were asked: “What is the ideal number of children for a family to have?”

Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’ to ‘λ large, P/p not too large’

Why?

- Increase in λ: dramatic increase in ‘college + premium’
- Decrease in P/p: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Consequence: according to the model:
Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’ to ‘λ large, P/p not too large’

Why?

- Increase in λ: dramatic increase in ‘college + premium’
- Decrease in P/p: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Consequence: according to the model:

- Before the 80s: college + women marry ‘below’ college graduate
Empirical predictions

Basic intuition: we have moved from ‘\(\lambda \) small, \(P/p \) large’ to ‘\(\lambda \) large, \(P/p \) not too large’

Why?

- Increase in \(\lambda \): dramatic increase in ‘college + premium’
- Decrease in \(P/p \): two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Consequence: according to the model:

- Before the 80s: college + women marry ‘below’ college graduate
- After the 80s: college + women marry ‘above’ college graduate
Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’ to ‘λ large, P/p not too large’

Why?

- Increase in λ: dramatic increase in ‘college + premium’
- Decrease in P/p: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Consequence: according to the model:

- Before the 80s: college + women marry ‘below’ college graduate
- After the 80s: college + women marry ‘above’ college graduate

What about data?
Higher education only recently offers a “marriage premium”

Spousal income by wife’s education level, white women 41-50
Roadmap

1. Empirical implementation
2. *The US education puzzle*
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - *Matching patterns and behavior: CCM 2015*
The basic motivation for this project is to understand how policy affects individual life-cycle decisions.

Long term effects will change education choices and the marriage market.

In turn this will have effects on labor supply and will have intergenerational impacts.

Two fundamental, Beckerian insights: Notion of Human Capital and Matching as an equilibrium phenomenon.
Basic features:

- Agents invest in education *before entering the matching game*
Basic features:

- Agents invest in education *before entering the matching game*
- Human Capital: education + random dynamics
Basic features:

- Agents invest in education \textit{before entering the matching game}
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
Basic features:

- Agents invest in education *before entering the matching game*
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
Basic features:

- Agents invest in education *before entering the matching game*
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
Basic features:

- Agents invest in education before entering the matching game.
- Human Capital: education $+$ random dynamics.
- At any moment, Human Capital stock determines the wage.
- Risk: shocks affecting HC and wages, multiplicative.
- Efficient risk sharing within the household, efficient labor supply.
- Preferences: leisure, one private and one public good.
Basic features:

- Agents invest in education *before entering the matching game*
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- TU context
1. Agents invest in education; heterogeneous costs
1. Agents invest in education; heterogeneous costs
2. Agents enter the MM with their education level H; matching takes place; full commitment
Agents invest in education; heterogeneous costs

Agents enter the MM with their education level H; matching takes place; full commitment

Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

1. Agents invest in education; heterogeneous costs
2. Agents enter the MM with their education level H; matching takes place; full commitment
3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
Agents invest in education; heterogeneous costs

Agents enter the MM with their education level H; matching takes place; full commitment

Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:

$$\ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2$$
1. Agents invest in education; heterogeneous costs
2. Agents enter the MM with their education level H; matching takes place; full commitment
3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:
 \[
 \ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2
 \]
 - \rightarrow agents supply labor and consume
1. Agents invest in education; heterogeneous costs
2. Agents enter the MM with their education level H; matching takes place; full commitment
3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:
 \[
 \ln w_{i,t} = \ln W_t + \ln H_i + \ln (e_{i,t}), \quad i = 1, 2
 \]
 - \rightarrow agents supply labor and consume
 - Note that shocks can be permanent ...
Agents invest in education; heterogeneous costs

Agents enter the MM with their education level H; matching takes place; full commitment

Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:
 \[
 \ln w_{i,t} = \ln W_t + \ln H_i + \ln (e_{i,t}), \quad i = 1, 2
 \]

 - agents supply labor and consume
 - Note that shocks can be permanent ...
 - ... including initial productivity (or HC) shock
Backwards:

- Start with periods 3
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

\[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(\text{age}, g, s)L_{i,t}Q_t) \]

Under TU household utility standard, unitary model defines total expected surplus at the household level. Intra-household allocation not determined. Then period 2: determines matching patterns (who marries whom by education) (future, contingent) intra-household allocation! Ultimately, the returns to education. Finally period 1: education decisions.
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 \[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(\text{age, g, s})L_{i,t}Q_t) \]

- Under TU → household utility → standard, unitary model
Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 \[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(\text{age, g, s})L_{i,t}Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 \[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(age, g, s)L_{i,t}Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 \[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln (C_{i,t}Q_t + \alpha_i(\text{age}, g, s)L_{i,t}Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined

- Then period 2: determines
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $$u_i (Q_t, C_{i,t}, L_{i,t}) = \ln (C_{i,t} Q_t + \alpha_i (age, g, s) L_{i,t} Q_t)$$

 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined

- Then period 2: determines
 - Matching patterns (who marries whom by education)
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 \[u_i (Q_t, C_{i,t}, L_{i,t}) = \ln (C_{i,t}Q_t + \alpha_i(\text{age}, g, s)L_{i,t}Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined

- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 \[u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_{i}(age, g, s)L_{i,t}Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined

- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation
 - → ultimately, the returns to education
Solution

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 \[u_i (Q_t, C_{i,t}, L_{i,t}) = \ln (C_{i,t} Q_t + \alpha_i(\text{age}, g, s)L_{i,t} Q_t) \]
 - Under TU → household utility → standard, unitary model
 - Defines total expected surplus at the household level
 - Intra-household allocation not determined

- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation
 \[\rightarrow \text{ultimately, the returns to education} \]

- Finally period 1: education decisions
Basic idea: simulated moments
Basic idea: simulated moments
- Choose some parameters
Basic idea: simulated moments

- Choose some parameters
- Simulate the model
Basic idea: simulated moments

- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
Estimation

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments

- Problem: very hard
Basic idea: simulated moments

- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments

Problem: very hard

- Stage 3: dynamic, stochastic LS model
Estimation

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments

- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)
Estimation

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments

- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)
 - Stage 1: *Rational expectations* → *fixed point in a functional space*
Estimation

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments

- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)
 - Stage 1: *Rational expectations* → *fixed point in a functional space*

- Simplification: use the ‘fictitious game’
Pre-matching investment

- Two-stage model:
Pre-matching investment

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost → *non cooperative*
Two-stage model:

- Stage one: agents choose a level of human capital at some cost → non cooperative
- Stage two: matching game on HC + other characteristics
Pre-matching investment

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost → *non cooperative*
 - Stage two: matching game on HC + other characteristics

- Resolution: backwards
Pre-matching investment

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost → non-cooperative
 - Stage two: matching game on HC + other characteristics

- Resolution: backwards
 - Stage 2: stability give U, V as functions of HC
Pre-matching investment

Two-stage model:
- Stage one: agents choose a level of human capital at some cost → non cooperative
- Stage two: matching game on HC + other characteristics

Resolution: backwards
- Stage 2: stability give U, V as functions of HC
- Stage 1: agents choose HC to maximize utility - cost
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:

Stage one: agents match (on their cost and any other predetermined parameters)

Stage two: jointly choose HC investment to maximize joint surplus

Main result: The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game. However, other equilibria may exist ('coordination failures').

Important empirical application: The two stage game is complex, because of its rational expectation structure (fixed point in a functional space). The fictitious game is much easier to simulate (matching linear programming).
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)

Stage two: jointly choose HC investment to maximize joint surplus

Main result: The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game. However, other equilibria may exist ('coordination failures').

Important empirical application: The two stage game is complex, because of its rational expectation structure (fixed point in a functional space). The fictitious game is much easier to simulate (matching linear programming).
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: *jointly* choose HC investment to maximize joint surplus
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: *jointly* choose HC investment to maximize joint surplus
- Main result:

 The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: *jointly* choose HC investment to maximize joint surplus

Main result:
The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist (‘coordination failures’)

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: *jointly* choose HC investment to maximize joint surplus
- Main result:
 The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game
- However, other equilibria may exist (‘coordination failures’)
- Important empirical application:
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: \textit{jointly} choose HC investment to maximize joint surplus
- Main result:
 \textit{The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game}
- However, other equilibria may exist (‘coordination failures’)
- Important empirical application:
 - The two stage game is complex, because of its rational expectation structure (\rightarrow fixed point in a functional space)
Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework

- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus

- Main result:
 The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist (‘coordination failures’)

- Important empirical application:
 - The two stage game is complex, because of its rational expectation structure (→ fixed point in a functional space)
 - The fictitious game is much easier to simulate (matching → linear programming)
Roadmap

1. Empirical implementation
2. The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
Basic insights

- Two types of skills: manual and cognitive \(\rightarrow\) workers and jobs (2 \times 2 matching)
Basic insights

- Two types of skills: manual and cognitive → workers and jobs (2×2 matching)
Basic insights

- Two types of skills: manual and cognitive → workers and jobs (2×2 matching)
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
Basic insights

- Two types of skills: manual and cognitive → workers and jobs (2×2 matching)
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- → Sorting improves along the cognitive dimension but deteriorates along the manual dimension
Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs (2×2 matching)
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- \rightarrow Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- \rightarrow Wages more convex in cognitive but less convex in manual skills
Basic insights

- Two types of skills: manual and cognitive → workers and jobs (2×2 matching)
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- → Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- → Wages more convex in cognitive but less convex in manual skills
- → Increased wage inequality along the cognitive dimension, compressed inequality in the manual dimension.
Model:

$$\pi_{ij} = F_C (x^j_C, y^i_C) + F_M (x^j_M, y^i_M)$$
Job matching by skills (Lindenlaub 2014)

- Model:
 \[\pi_{ij} = F_C (x_C^i, y_C^i) + F_M (x_M^i, y_M^i) \]

- Matching: if pure,
 \[y_C = \Phi_C (x_C, x_M) \]
 \[y_M = \Phi_M (x_C, x_M) \]
Job matching by skills (Lindenlaub 2014)

- **Model:**
 \[\pi_{ij} = F_C (x_C^i, y_C^i) + F_M (x_M^i, y_M^i) \]

- **Matching:** if pure,
 \[y_C = \Phi_C (x_C, x_M) \]
 \[y_M = \Phi_M (x_C, x_M) \]

- **PAM:** \(\frac{\partial \Phi_C}{\partial x_C} > 0, \frac{\partial \Phi_M}{\partial x_M} > 0, \det > 0 \)
Job matching by skills (Lindenlaub 2014)

- **Model:**
 \[
 \pi_{ij} = F_C(x^i_C, y^i_C) + F_M(x^i_M, y^i_M)
 \]

- **Matching:** if pure,
 \[
 y_C = \Phi_C(x_C, x_M) \\
 y_M = \Phi_M(x_C, x_M)
 \]

- **PAM:** \(\partial \Phi_C / \partial x_C > 0, \partial \Phi_M / \partial x_M > 0, \text{Det} > 0\)

- **Theorem:** if
 \[
 \partial^2 F_C / \partial x^i_C \partial y^i_C > 0 \text{ and } \partial^2 F_M / \partial x^i_M \partial y^i_M > 0
 \]

 then PAM
Job matching by skills (Lindenlaub 2014)

- **Model:**
 \[\pi_{ij} = F_C (x_C^i, y_C^i) + F_M (x_M^i, y_M^i) \]

- **Matching:** if pure,
 \[y_C = \Phi_C (x_C, x_M) \]
 \[y_M = \Phi_M (x_C, x_M) \]

- **PAM:** \(\partial \Phi_C / \partial x_C > 0, \partial \Phi_M / \partial x_M > 0, \text{Det} > 0 \)

- **Theorem:** if
 \[\partial^2 F_C / \partial x_C^i \partial y_C^i > 0 \text{ and } \partial^2 F_M / \partial x_M^i \partial y_M^i > 0 \]
 then PAM

- Then Quadratic-Gaussian model
Conclusion

1. Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions

2. Crucial property: intramatch allocation of surplus derived from equilibrium conditions

3. Applied theory: many applications (abortion, female education, divorce laws, children, ...)

4. Can be taken to data; structural econometric model, over identified

5. Multidimensional versions: index (COQD 2010), general (CMcCP 2015)

6. Extensions
 - ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions

Crucial property: intramatch allocation of surplus derived from equilibrium conditions

Applied theory: many applications (abortion, female education, divorce laws, children, ...)

Can be taken to data; structural econometric model, over identified

Multidimensional versions: index (COQD 2010), general (CMcCP 2015)

Extensions

- ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
- Joint estimation of surplus and matching (→ ‘consistency’!); for instance domestic production
Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions.

Crucial property: intramatch allocation of surplus derived from equilibrium conditions.

Applied theory: many applications (abortion, female education, divorce laws, children, ...)

Can be taken to data; structural econometric model, over identified.

Multidimensional versions: index (COQD 2010), general (CMcCP 2015).

Extensions:
- ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
- Joint estimation of surplus and matching (→ ‘consistency’!); for instance domestic production
- Dynamics: divorce, etc.