
Asset Pricing with Heterogeneous Preferences∗

Alexis Akira Toda†‡

Department of Economics, University of California San Diego

This Version: April 25, 2013

Abstract

Finding a stochastic discount factor that is robust to model misspeci-
fication is not trivial. I consider a general equilibrium model with many
agents who can invest their wealth in many assets. As long as (i) agents
have (individual-, time-, and state-dependent) recursive preferences that
are homothetic in current consumption and continuation value with a com-

mon relative risk aversion coefficient γ and (ii) asset returns and individual
state variables are conditionally independent (e.g., GARCH processes), I
prove that the −γth power of market return is a valid stochastic discount
factor. Within this class of models, asset prices are determined by rela-
tive risk aversion and technology alone, and “returns-based asset pricing”
is robust to model misspecification as opposed to the consumption-based
approach. Using the historical returns on portfolios of U.S. stocks sorted
by size and book-to-market value, I find that a relative risk aversion co-
efficient of around 2 explains asset returns. The conditional and uncondi-
tional moment restrictions are not rejected. I recast the equity premium
puzzle as a macroeconomics puzzle, not as a finance puzzle.

Keywords: AK models; consumption volatility puzzle; equity pre-
mium puzzle; model misspecification; power law; recursive preferences;
risk-free rate puzzle.

JEL codes: D53, D58, D91, G11, G12.

1 Introduction

In asset pricing theory, it is well known that the “returns-based approach” (form
a statistical model of bond and stock returns, solve the optimal consumption-
portfolio decision. Use the equilibrium consumption value in p = E[mx]) is
equivalent to the “consumption-based approach” (form a statistical model of the
consumption process, calculate asset prices and returns directly from the basic
pricing equation p = E[mx]), given the model.1 Classic examples of the former
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1The definitions of the two approaches are cited from Cochrane (2005), p. 40. Here p,m, x
denote the asset price, stochastic discount factor, and asset payoff.
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approach are Markowitz (1952), Tobin (1958), Sharpe (1964), Lintner (1965a,b),
Samuelson (1969), Merton (1969, 1971, 1973), and Fama (1970), and examples
of the latter approach are Lucas (1978) and Mehra and Prescott (1985), just
to name a few. In this paper I argue that the returns-based approach is fairly
robust to model misspecification, while the consumption-based approach is not.
The key is to “bypass consumption data altogether, and instead look directly
at asset returns” (Ludvigson, 2013).

To illustrate the point in the simplest possible way, consider the following ex-
ample. There is an investor who lives for two periods with the additive constant
relative risk aversion (CRRA) utility function

1

1− γ

(

c1−γ
0 + β E[c1−γ

1 ]
)

.

We all know that β(c1/c0)
−γ is a valid stochastic discount factor (SDF).

Now suppose that the investor is endowed with initial wealth w > 0 today
and nothing tomorrow, but can invest in K assets indexed by k = 1, . . . ,K.
Asset k has gross return Rk ≥ 0, which is a random variable. Letting φk be
the fraction of the remaining wealth invested in asset k, φ = (φ1, . . . , φK) ∈ R

K

(where
∑

k φ
k = 1) the portfolio, and R(φ) =

∑

k R
kφk the gross return on

portfolio φ, the budget constraint is c1 = R(φ)(w−c0). Substituting the budget
constraint into the utility function, the optimal consumption-portfolio problem
becomes

max
c,φ

1

1− γ

(

c1−γ + β E[R(φ)1−γ ](w − c)1−γ
)

,

which can be broken into

F

1− γ
:= max

φ

1

1− γ
E[R(φ)1−γ ], (1.1a)

U := max
c

1

1− γ
(c1−γ + βF (w − c)1−γ). (1.1b)

Let φ∗ be the solution to the optimal portfolio problem (1.1a) and consider
investing ǫ more in asset k and ǫ less in the optimal portfolio φ∗. Taking the
first order condition with respect to ǫ and setting ǫ = 0, we obtain

E[R(φ∗)−γ(Rk −R(φ∗))] = 0

for any asset k, so R(φ∗)−γ (times a constant) is also a valid stochastic discount
factor.

Note that the SDF β(c1/c0)
−γ is not robust to model misspecification: if

we change the utility function, so does the SDF. However, the SDF R(φ∗)−γ is
robust, because the only property we used to derive it is the homotheticity of
the utility function, not its particular functional form. The rest of the paper is
an elaboration of this simple idea.

This paper has two contributions. First, I solve an optimal consumption-
portfolio problem similar in spirit to Samuelson (1969) but in a very general
setting, namely the agent has an arbitrary time- and state-dependent homo-
thetic recursive preference with constant relative risk aversion, the number of
assets is arbitrary, and the only distributional assumption is that asset returns
and state variables be conditionally independent. The assumptions are weak
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enough for my results to have a wide range of applicability. For example, the
standard additive CRRA utility and the CRRA-constant elasticity of intertem-
poral substitution (CEIS) recursive utility (Epstein and Zin, 1989) are all spe-
cial cases, and the period utility function may include some other state variables
such as past consumption. For distributional assumptions, the expected return
and volatility can follow any stochastic process as long as excess returns are
serially independent, for example GARCH processes. Under these assumptions,
by using the value function approach instead of the Euler equation approach,
the optimal portfolio decision and the optimal consumption/saving decision can
be disentangled as in (1.1).

Second, which is the main contribution, I consider an economy with many
such agents and show that if (i) agents have a common relative risk aversion
coefficient (but recursive preferences that are possibly individual-, time-, and
state-dependent) and (ii) the efficient market hypothesis holds, then agents make
the same portfolio choice, and therefore the individually optimal portfolio must
be the market portfolio. A corollary is that the −γth power of the gross return
on the market portfolio (market return) is a valid stochastic discount factor.

This result has three important implications. First, since its validity does not
depend on any particular utility function and hence on the consumption process,
the “returns-based asset pricing” approach is robust to model misspecification as
opposed to the consumption-based approach. Since in my model consumption is
not directly connected to asset prices, the low volatility of consumption growth
(or the low covariance between consumption growth and asset returns) needed
in order to explain asset prices (“consumption volatility puzzle”) is not an asset
pricing puzzle (that belongs to finance) but a consumption/saving puzzle (that
belongs to macroeconomics). Second, since the asset pricing formula contains
only asset returns data, which are available in high frequency and high accuracy,
the ‘−γth power of market return’ SDF can be used in practice. Third, the rel-
ative risk aversion γ can be estimated using only asset returns data: (aggregate
or individual) consumption data contain no more information than the asset
returns data for estimating the relative risk aversion coefficient.

Although these results concern relative pricing, I also consider absolute pric-
ing. By assuming further that (iii) agents have access to constant-returns-to-
scale stochastic saving technologies (AK model, e.g., Levhari and Srinivasan
(1969)) and (iv) technological shocks and individual state variables are condi-
tionally independent, I derive an asset pricing formula which depends only on
fundamentals.

A few papers are related to my work. Rubinstein (1976) derived the ‘−γth
power of market return’ SDF under the assumption of a representative agent
with additive CRRA utility and serially independent returns. I obtain the same
SDF, but under much weaker assumptions listed above. Most importantly, in
Rubinstein’s model aggregate consumption is proportional to wealth and hence
consumption growth and market return have the same volatility (which is obvi-
ously counterfactual, hence “consumption volatility puzzle”), but in my model
aggregate consumption is not connected to market return. Campbell (1993)
obtained an asset pricing formula without using consumption in a representa-
tive agent setting by log linearizing the intertemporal budget constraint. In my
model there are many heterogeneous agents with more general preferences and
the asset pricing formula is exact, not an approximation.

Cass and Stiglitz (1970) showed in a static setting that the only utility func-
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tions for which the mutual fund theorem holds are the quadratic and power
utility functions (if there is no risk-free asset) and the linear risk tolerance

(LRT) utility − u′(w)
u′′(w) = A+Bw (if there is a risk-free asset). Rubinstein (1974)

showed a similar result in a two period economy with additive utility functions.
My result extends theirs to the multi period setting with recursive preferences.
Constantinides (1982) proved that if agents have additively time- and state-
separable utility functions (without state variables) in a complete market en-
dowment economy, then we can define a representative agent who consumes
the aggregate endowment and prices the assets. Here the utility function of
the representative agent in general depends on the preferences of all agents in
a complicated way, and hence so do the asset prices. In my model, the rela-
tive risk aversion must be common across all agents, the function that defines
the recursive utility must be homogeneous of degree 1, but I allow individual-,
time-, and state-dependent recursive utility. Most importantly, the asset prices
depend only on the common relative risk aversion γ and the technologies, not
on other preference characteristics. Therefore my results neither contain nor
are contained in those of Constantinides (1982), but are complementary.

The rest of the paper is organized as follows. Section 2 presents the model
and solves the single agent optimal consumption-portfolio problem. Section
3 derives relative asset pricing formulas that do not depend on consumption
in a partial equilibrium setting. Section 4 characterizes the general equilibrium
with many heterogeneous agents and constant-returns-to-scale stochastic saving
technologies, and derives absolute asset pricing formulas. Section 5 tests the
asset pricing implications of the model. Section 6 discusses the asset pricing
puzzles.

2 Individual decision

All random variables are defined on a probability space (Ω,F , P ). Time is
discrete and finite,2 t = 0, 1, . . . , T . An agent starts with initial wealth w > 0
and has no income other than those obtained by investing in assets.3

2.1 Assets, information, and preference

Assets There are K assets indexed by k ∈ K = {1, . . . ,K}. Let P k
t , D

k
t

be the price and dividend of asset k at time t. The gross return of asset k
between the end of time t and the beginning of time t+1 is denoted by Rk

t+1 =
(P k

t+1 +Dk
t+1)/P

k
t , and the vector of gross asset returns is denoted by

Rt+1 = (R1
t+1, . . . , R

K
t+1).

Let φk
t be the fraction of wealth invested in asset k at time t and φt = (φ1

t , . . . , φ
K
t )

be the portfolio, so
∑

k φ
k
t = 1. Of course, φk

t > 0(< 0) means a long (short)
position in asset k. The agent can be constrained in the choice of portfolio: let

2The model can be easily generalized to infinite horizon if we assume that each agent lives
for only finite periods or if we make distributional assumptions (such as Markov shocks) to
guarantee the convergence of the value function. See Toda (2012) for such an example.

3Since this paper is concerned with frictionless complete asset markets, the agent can sell
off his future endowments and incorporate into the initial wealth.
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Πt ⊂ R
K be the set of feasible portfolios. The gross return on portfolio φt ∈ Πt

is denoted by

Rt+1(φt) := R′
t+1φt =

K
∑

k=1

Rk
t+1φ

k
t .

The sequential budget constraint of the agent is therefore

(∀t) wt+1 = Rt+1(φt)(wt − ct) ≥ 0.

Information and preference The agent’s information is represented by the
filtration (an increasing sequence of σ-algebras) {Ft}Tt=0 ⊂ F . Let wt be the
agent’s wealth at the beginning of time t and Xt = (X1

t , X
2
t , . . . ) be the vector

of state variables at time t other than wealth. What I have in mind for the
state variables are public information such as past returns and volatility, but it
may also include private information such as past consumption (in the case of
habit formation). To obtain the results it is unnecessary to specify Xt explicitly.
The conditional expectation with respect to time t information is denoted by
E [· | Ft] or more compactly Et[·], which are functions of Xt and wt because by
assumption these are all the state variables. Let ct, Ut ∈ R be the consumption
and the continuation utility at time t. I make the following assumptions.

Assumption 1 (Irrelevance of wealth). For any Ft+1-measurable function f ,
we have E [f(Xt+1) | Ft] = g(Xt) for some g, that is, agent’s wealth is irrelevant
for predicting a function of next period’s state variables other than wealth.

Assumption 1 simply means that the agent is so small compared to the
market that his wealth level does not affect asset returns, i.e., the agent is a
price taker.

Assumption 2 (Constant relative risk aversion and homotheticity). The con-

tinuation utilities {Ut}Tt=0 satisfy the recursion UT = aT (XT )cT and

Ut = ft

(

ct,E
[

U1−γ
t+1

∣

∣

∣
Ft

]
1

1−γ

,Xt

)

, t = 0, . . . , T − 1, (2.1)

where aT > 0 is some function of the state variables XT , γ > 0 is the relative
risk aversion coefficient, and

ft : R++ × R++ × R
dimXt → R+

is strictly increasing and homogeneous of degree 1 in the first two arguments.

ft is called the aggregator (Epstein and Zin, 1989; Boyd, 1990). Since the
risk aversion is over the continuation utility, not consumption, it is the correct
notion of risk aversion (Swanson, 2012). At this point it is helpful to provide
concrete examples.

Example 1 (Additive CRRA utility). If aT (XT ) = 1 and the aggregator is
given by

ft(c, v,Xt) = (c1−γ + βv1−γ)
1

1−γ
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(so the state variables do not directly enter the aggregator), then iterating (2.1)
and using the law of iterated expectations, we obtain

Ut = E

[

T
∑

s=t

βt−sc1−γ
s

∣

∣

∣

∣

∣

Ft

]

1
1−γ

,

which is ordinarily equivalent to the standard additive CRRA utility

Et

T
∑

s=t

βt−s c
1−γ
s

1− γ

with discount factor β and relative risk aversion γ.

Example 2 (Recursive CRRA/CEIS utility). If aT (XT ) = 1 and the aggregator
is given by

ft(c, v,Xt) = (c1−σ + βv1−σ)
1

1−σ

(so the state variables do not directly enter the aggregator), then Ut is the con-
stant relative risk aversion (CRRA), constant elasticity of intertemporal substi-
tution (CEIS) recursive utility (Epstein and Zin, 1989) with discount factor β,
relative risk aversion γ, and elasticity of intertemporal substitution 1/σ.

Example 3 (Habit formation). In Examples 1 and 2, the aggregator ft did not
explicitly depend on the state variables Xt, but (2.1) allows such dependence.
For example, if Xt consists of past consumption and the aggregator explicitly
depends on Xt, the recursive utility (2.1) depends on past consumption and
hence we can incorporate some form of habit formation (Abel, 1990). One such
example that satisfies Assumption 2 is

ft(c, v, x) =
[

(c/x)1−σ + βv1−σ
]

1
1−σ ,

where x is the habit stock.

2.2 Optimal portfolio problem

To solve the optimal consumption-portfolio problem I further need an assump-
tion on asset returns and state variables.

Assumption 3 (Conditional independence). For each t, the next period’s state
variables Xt+1 and asset returns Rt+1 are independent conditional on time t
information Ft.

Conditional independence implies, in particular, that the most recent asset
return is not a state variable: Rt /∈ Xt, which is clearly a restriction. An
obvious case in which conditional independence holds is when returns are i.i.d.
and independent of state variables. However, the assumption is still weak enough
to be useful. For example, suppose that returns are lognormal with time-varying
expected return and volatility: logRt+1 ∼ N(µt, σ

2
t ). Here the state variable

is Xt = (µt, σt). Conditional independence holds if, for instance, the expected
return-volatility pair {Xt} is a Markov process and logRt+1 = µt+σtzt+1, where
{zt} is a Gaussian white noise that is independent from the process {Xt}.4

4In this example I implicitly assumed that there is a single risky asset, but the argument
clearly holds for any number of assets.
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Another example is the GARCH process with no leverage effect. Let logRt+1 =
µ+ ǫt+1 and consider the GARCH(p, q) process

ǫt+1 = σtzt+1,

σ2
t = α0 + α1ǫ

2
t + · · ·+ αqǫ

2
t−q+1 + β1σ

2
t−1 + · · ·+ βpσ

2
t−p,

where {zt} is a white noise. Then the state variables are

Xt = (ǫt, . . . , ǫt−q+1, σt−1, . . . , σt−p),

and the conditional independence assumption does not necessarily hold because
ǫt+1 (part of next period’s state variables) and Rt+1 = exp(µ + ǫt+1) are not
independent conditional on Xt. However, if α1 = 0 (no leverage effect), then ǫt
is no longer a state variable, and conditional independence holds.

The following theorem shows that the optimal portfolio problem can be dis-
entangled from the optimal consumption/saving problem, and that the former
depends only on risk aversion and asset returns.

Theorem 2.1. Under Assumptions 1–3, the value function

Vt(w,Xt)

= sup {Ut |wt = w, (∀s ≥ t) ws+1 = Rs+1(φs)(ws − cs) ≥ 0, φs ∈ Πs} (2.2)

is linear in wealth w and the optimal portfolio problem at time t reduces to

max
φ∈Πt

1

1− γ
E
[

Rt+1(φ)
1−γ

∣

∣Ft

]

. (2.3)

If the portfolio constraint Πt is nonempty, compact, and

E

[

sup
φ∈Πt

Rt+1(φ)
1−γ

∣

∣

∣

∣

∣

Ft

]

< ∞,

then the optimal portfolio problem (2.3) has a solution.

Proof. The proof is by induction. If t = T , then UT = aT (XT )cT , so

VT (w,XT ) = sup {aT (XT )cT | cT ≤ w} = aT (XT )w

is linear in wealth and there are no portfolio decisions to make. Suppose the
claim is true for time s = t+ 1, . . . , T and let Vs(w,Xs) = as(Xs)w. Then we
obtain

Vt(w,Xt)

= sup
0≤c≤w
φ∈Πt

ft

(

c, (w − c) Et[at+1(Xt+1)
1−γRt+1(φ)

1−γ ]
1

1−γ ,Xt

)

= sup
0≤c≤w

ft

(

c, (w − c) Et[at+1(Xt+1)
1−γ ]

1
1−γ sup

φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

= sup
0≤c≤w

ft

(

c, (w − c)bt(Xt) sup
φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

= sup
0≤c̃≤1

wft

(

c̃, (1− c̃)bt(Xt) sup
φ∈Πt

Et[Rt+1(φ)
1−γ ]

1
1−γ ,Xt

)

=: at(Xt)w,
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where I used backward induction in the first equality, conditional independence
(Assumption 3) and monotonicity of ft in the second, the irrelevance of wealth
(Assumption 1) in the third, and the homogeneity of ft (Assumption 2) in the
last, where I set c̃ = c/w. Therefore the value function is linear in wealth. Since
ft is increasing in the second argument, the optimal portfolio problem at time
t is

max
φ∈Πt

E
[

Rt+1(φ)
1−γ

∣

∣Ft

]
1

1−γ ,

which is equivalent to (2.3) because x 7→ x1−γ

1−γ is monotone.

If E
[

supφ∈Πt Rt+1(φ)
1−γ

∣

∣Ft

]

< ∞,5 then by the Lebesgue convergence
theorem φ 7→ Et[Rt+1(φ)

1−γ ] is continuous. Therefore if the portfolio constraint
Πt is nonempty and compact, the optimal portfolio problem (2.3) has a solution.

Theorem 2.1 is related to Kocherlakota (1990), where he proves in a represen-
tative agent, complete markets, endowment economy setting that the CRRA/CEIS
recursive utility model (Example 2) is observationally equivalent to the stan-
dard additive CRRA utility model if consumption growth is i.i.d. His irrelevance
result can be generalized as in the following proposition.

Proposition 2.2. Consider the recursive utility model satisfying Assumption
2 with a time-homogeneous aggregator f(c, v) with no state variables. If asset
returns are i.i.d. and U0 defined by (2.1) converges as T → ∞, then the recursive
utility model is observationally equivalent to the standard additive CRRA utility
model.

Proof. It suffices to show that the optimal portfolio choice and consumption are
observationally equivalent in the two models. By Theorem 2.1, the portfolio
choice is the same. If the recursive utility converges as time periods tends to
infinity, the Bellman equation becomes time-homogeneous. Since the aggrega-
tor f(c, v) is homogeneous of degree 1, the optimal consumption is a constant
fraction of wealth, which is observationally equivalent to the additive CRRA
case.

3 Partial equilibrium

Having solved the single agent problem, in this section I consider an economy
with many agents. In a partial equilibrium setting, I derive a relative asset
pricing formula that depends only on the market portfolio and the relative risk
aversion.

3.1 Description of the economy

The financial market is the same as in Section 2, so asset k has (per share)
price P k

t , dividend Dk
t , and gross return Rk

t+1 = (P k
t+1 + Dk

t+1)/P
k
t . Let W k

t

be the market capitalization (per share price P k
t times the number of shares

outstanding) of asset k.

5This condition is not very stringent. For example, it holds if γ > 1 (< 1) and the portfolio
return is bounded away from zero (bounded above).
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The economy is populated by I agents indexed by i ∈ I = {1, . . . , I} with

recursive preferences defined by (2.1), where the aggregators {(fit)i∈I}T−1
t=0 and

the state variables {(Xit)i∈I}Tt=0 are potentially different but the relative risk
aversion γ > 0 and the portfolio constraint Πt ⊂ R

K are common across agents.
Agent i is endowed with initial wealth wi0 > 0 but nothing thereafter. Let Fit

be the private information of agent i at time t and Ft =
⋂

iFit be the public
information.

The sequential partial equilibrium is defined by agent optimization and mar-
ket clearing.

Definition 3.1 (Sequential partial equilibrium). Given asset prices, dividends,

and market capitalization
{

(P k
t , D

k
t ,W

k
t )k∈K

}T

t=0
, the profile of individual con-

sumption, wealth, and portfolio {(cit, wit, φit)i∈I}Tt=0 constitutes a sequential
partial equilibrium if

1. given asset returns Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t , the portfolio φit solves

max
φ∈Πt

1

1− γ
E
[

Rt+1(φ)
1−γ

∣

∣Fit

]

, (3.1)

2. given the portfolio choice, cit solves the optimal consumption problem
(2.2),

3. asset markets clear, i.e., for each asset k and time t we have
∑I

i=1 φ
k
it(wit−

cit) = W k
t , and

4. individual wealth evolves according to the budget constraint

wi,t+1 = Rt+1(φit)(wit − cit).

3.2 Relative asset pricing

In order to prove the main result, I need one more assumption. I assume markets
are efficient in the sense that private information is useless for predicting asset
returns.

Assumption 4 (Efficient market hypothesis). For each i and t, the distribution
of asset returns Rt+1 = (Rk

t+1)
K
k=1 conditional on private information Fit is the

same as the distribution conditional on public information Ft.

This definition of market efficiency is taken from the first definition in Bewley
(1982). The following proposition shows that if there is an equilibrium, there is
also an equivalent symmetric equilibrium (common portfolio choice).

Proposition 3.2. Let everything be as above. Suppose that

1. agents have information and recursive preferences satisfying Assumptions
1 and 2,

2. for each agent conditional independence (Assumption 3) holds, and

3. the efficient market hypothesis (Assumption 4) holds.
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If there is a partial equilibrium, then there is also an equilibrium with a common
portfolio choice φ∗

t (market portfolio) and the same consumption and wealth as

in the original equilibrium {(cit, wit)i∈I}Tt=0.

Proof. By the efficient market hypothesis (Assumption 4), we can replace the
private information Fit in (3.1) by the public information Ft. Then the optimal
portfolio problem becomes common across all agents, which is (2.3).

Suppose that {(cit, wit, φit)i∈I}Tt=0 is a sequential partial equilibrium. Define
the value weighted average portfolio by

φ̄t :=
I
∑

i=1

φit(wit − cit)/
I
∑

i=1

(wit − cit).

By the definition of φ̄t and the market clearing condition, we have

I
∑

i=1

φ̄k
t (wit − cit) =

I
∑

i=1

φk
it(wit − cit) = W k

t

for each k, so the common portfolio φ̄t (market portfolio) clears the market.
Since the function 1

1−γRt+1(φ)
1−γ is quasi-concave in φ and φit solves (2.3)

for each i, so does φ̄t. Therefore
{

(cit, wit, φ̄t)i∈I

}T

t=0
(same consumption and

wealth as in the original equilibrium with common portfolio φ̄t) is also an equi-
librium.

Let φ∗
t := φ̄t be the market portfolio, which is also an individually optimal

portfolio. The following theorem, which is the main result of this paper, shows
that the −γth power of the return on the market portfolio is a valid stochastic
discount factor.

Theorem 3.3. Let everything be as in Proposition 3.2 and {(cit, wit, φ
∗
t )i∈I}Tt=0

be a symmetric sequential partial equilibrium, where φ∗
t is the market portfolio.

If the portfolio constraint φ ∈ Πt does not bind at the market portfolio φ∗
t for

asset k, letting Rm,t+1 = Rt+1(φ
∗
t ) be the return on the market portfolio, we

have

E
[

R−γ
m,t+1(R

k
t+1 −Rm,t+1)

∣

∣Ft

]

= 0, (3.2a)

P k
t =

E
[

R−γ
m,t+1(P

k
t+1 +Dk

t+1)
∣

∣Ft

]

E
[

R1−γ
m,t+1

∣

∣

∣
Ft

] , (3.2b)

i.e., the −γth power of the return on the market portfolio is a valid stochastic
discount factor. In particular, the one period risk-free rate is

Rf,t =
E
[

R1−γ
m,t+1

∣

∣

∣
Ft

]

E
[

R−γ
m,t+1

∣

∣Ft

] . (3.3)

Furthermore, the equity premium satisfies the CAPM-like formula

E
[

Rk
t+1

∣

∣Ft

]

−Rf,t = −
Cov

[

R−γ
m,t+1, R

k
t+1

∣

∣Ft

]

E
[

R−γ
m,t+1

∣

∣Ft

] . (3.4)

10



Proof. Consider investing the fraction of wealth 1 − α in the market portfolio
φ∗
t and α in asset k. Clearly α = 0 is optimal by the definition of φ∗

t , so

0 ∈ argmax
α

1

1− γ
E
[

[(1 − α)Rm,t+1 + αRk
t+1]

1−γ
∣

∣Ft

]

. (3.5)

Since by assumption the portfolio constraint φ ∈ Πt does not bind, by taking the
first-order condition of the maximization (3.5) at the optimum α = 0, we obtain
(3.2a). Substituting Rk

t+1 = (P k
t+1 + Dk

t+1)/P
k
t into (3.2a) and rearranging

terms, we obtain (3.2b). Setting P k
t+1 = 0 and Dk

t+1 = 1 in (3.2b), we obtain

the price of the one period risk-free bond 1/Rf
t , and hence (3.3).

To derive (3.4), let Mt+1 be any stochastic discount factor (Mt+1 = R−γ
m,t+1

in our case). Suppressing the time subscript, (3.2a) becomes E
[

M(Rk −Rm)
∣

∣F
]

=
0. Setting Rk be the risk-free rate Rf , we get E [M(Rf −Rm) | F ] = 0. Tak-
ing the difference of the two equations, we get E

[

M(Rk −Rf )
∣

∣F
]

= 0. Using
E [XY | F ] = Cov [X,Y | F ] + E [X | F ] E [Y | F ] for X = M and Y = Rk − Rf

and rearranging terms, we obtain

E
[

Rk
∣

∣F
]

−Rf = −Cov
[

M,Rk
∣

∣F
]

E [M | F ]
, (3.6)

which is (3.4) for M = R−γ
m .

Theorem 3.3 may appear completely standard at first glance, but it is not.
In a consumption-based representative agent setting (with a standard additive
CRRA utility function), the growth rate of consumption is proportional to the
return on the market portfolio, and (3.2a) is trivial (it is the Euler equation).
What is surprising is that despite the presence of many agents with heteroge-
neous preferences (that may violate the sufficient condition for the existence of
the representative agent as in Constantinides (1982): agents have very general
preferences as in Assumption 2), I derived a simple stochastic discount factor
(SDF), R−γ

m , which depends only on the relative risk aversion and the market
portfolio.

This result has three important implications. First, since this result does
not depend on any particular utility function and hence on the aggregate or
individual consumption process, the “returns-based asset pricing” approach is
robust to misspecification of the model as opposed to the consumption-based
approach. Since in my model consumption is not directly connected to asset
prices, the low volatility of consumption growth (or the low covariance between
consumption growth and asset returns) needed in order to explain asset prices
(“consumption volatility puzzle”) is not an asset pricing puzzle (that belongs to
finance) but a consumption/saving puzzle (that belongs to macroeconomics).

Second, since the asset pricing formula contains only asset returns data,
which are available in high frequency and high accuracy, my model can be used
in practice. CAPM can also be interpreted as an approximation to my model.
To see this, note that the (conditional) CAPM implies the existence of numbers
at, bt such that (3.2a) holds by replacing R−γ

m,t+1 with at − btRm,t+1. But by
Taylor expanding R−γ around R = 1, we get

R−γ ≈ 1− γ(R− 1) = 1 + γ − γR,

11



so setting at = 1+γ and bt = γ, CAPM is a linear approximation of my discount
factor.

Third, the relative risk aversion γ can be estimated by GMM using only
asset returns data, which (unlike consumption) are highly accurate and available
in high frequency. The commonly used Euler equation, for example, does not
contain more information than (3.2a) for estimating γ even if the Euler equation
is true (i.e., the model is correctly specified). This means that the rejection of a
particular model using consumption data should be interpreted as the rejection
of the particular specification of the model rather than the rejection of the asset
pricing implications of the model.

To the best of my knowledge, documenting the robustness of the ‘−γth power
of market return’ SDF seems to be new. The closest expression I found in the
literature is Rubinstein (1976), in which he obtains the same discount factor,
but assuming (i) a representative agent with an additive CRRA utility function,
(ii) single asset, and (iii) independent returns. In testing the CRRA/CEIS re-
cursive utility model of Example 2, Epstein and Zin (1991) derived the following
equation:

E

[

(ct+1/ct)
− σ(1−γ)

1−σ R
σ−γ
1−σ

m,t+1(R
k
t+1 −Rm,t+1)

∣

∣

∣

∣

Ft

]

= 0, (3.7)

where 1/σ is the elasticity of intertemporal substitution and I have changed their
notation to be compatible with mine. Since (3.2a) obtains by setting σ = 0 in
(3.7), (3.2a) is a stronger implication. However, (3.2a) holds with much more
general preferences than CRRA/CEIS recursive utility (in particular, (3.2a) is
true with any σ). Therefore my result is sharper despite the assumption being
weaker.

Dittmar (2002) stresses the importance of a nonlinear pricing kernel, but his
specification is based on a representative agent model and the coefficients are
hard to interpret.

4 General equilibrium

This section deals with absolute pricing in a general equilibrium setting. I
introduce firms and financial assets (assets that are in zero net supply) and
derive asset pricing formulas.

4.1 Description of the economy

Firms and assets There is a single perishable good which can be consumed
or invested as capital. There are J firms indexed by j ∈ J = {1, . . . , J}.
Production takes time and exhibits constant returns to scale. If firm j employs
capital K at the end of period t, it produces Aj

t+1K at the beginning of period

t + 1, where Aj
t+1 is the (random) productivity as well as the total return of

capital after depreciation. In particular, if an agent invests one unit of capital in
firm j at time t, he will receive Aj

t+1 at the beginning of the next period. We can
think of firms as stochastic saving technologies. Let At+1 = (A1

t+1, . . . , A
J
t+1)

be the vector of productivities.
There are K assets in zero net supply indexed by k ∈ K = {1, . . . ,K},

with dividend Dk
t at period t (which is, of course, a random variable). Letting

12



P k
t be the price of asset k in period t (determined in equilibrium), the gross

return between periods t and t+1 is defined by Rk
t+1 = (P k

t+1 +Dk
t+1)/P

k
t . Let

Dt = (D1
t , . . . , D

k
t ) be the vector of dividends.

Let (θ, φ) ∈ R
J
+ × R

K be the portfolio of investment and asset holdings, so
θj and φk are the fraction of wealth invested in firm j and asset k. As before,
there might be a portfolio constraint denoted by Πt ⊂ R

J
+ ×R

K at time t. The
portfolio (θ, φ) ∈ Πt defines the return on portfolio

Rt+1(θ, φ) =

J
∑

j=1

Aj
t+1θ

j +

K
∑

k=1

Rk
t+1φ

k. (4.1)

Equilibrium As usual the sequential general equilibrium is defined by agent
optimization and market clearing.

Definition 4.1.
{

(cit, wit, θit, φit)i∈I , (P
k
t )k∈K

}T

t=0
constitute a sequential gen-

eral equilibrium if

1. given asset returns Rk
t+1 = (P k

t+1+Dk
t+1)/P

k
t , the portfolio (θit, φit) solves

max
(θ,φ)∈Πt

1

1− γ
E
[

Rt+1(θ, φ)
1−γ

∣

∣Fit

]

, (4.2)

2. given the portfolio choice, cit solves the optimal consumption problem
(2.2),

3. markets for assets in zero net supply clear, i.e., for each asset k and time
t we have

∑I
i=1 φ

k
it(wit − cit) = 0, and

4. individual wealth evolves according to the budget constraint

wi,t+1 = Rt+1(θit, φit)(wit − cit).

4.2 Absolute asset pricing

Theorem 4.2. Let Θt =
{

θ ∈ R
J
+

∣

∣ (θ, 0) ∈ Πt

}

be the portfolio constraint on
investment with holdings in assets in zero net supply restricted to be zero. Sup-
pose that

1. agents have information and recursive preferences satisfying Assumptions
1 and 2,

2. for each agent conditional independence (Assumption 3) holds, i.e., the
distributions of the individual state variables Xi,t+1 and the productivi-
ties and dividends (At+1,Dt+1) are independent conditional on private
information Fit,

3. the efficient market hypothesis (Assumption 4) holds,

4. the aggregators (fit) are sufficiently regular so that the optimal consump-
tion always exists,6 and

6For instance, the upper semi-continuity of the aggregator f(c, v,X) with respect to the
first two arguments on R

2
+ suffices.
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5. Θt is nonempty, compact, convex, and

E

[

sup
θ∈Θt

Rt+1(θ, 0)
1−γ

∣

∣

∣

∣

Ft

]

< ∞.

Then there exists a symmetric equilibrium with a common portfolio of invest-
ment θ∗t and no trade in zero net supply assets, where

θ∗t ∈ argmax
θ∈Θt

1

1− γ
E
[

Rt+1(θ, 0)
1−γ

∣

∣Ft

]

. (4.3)

Proof. By Theorem 2.1, the optimal portfolio problem (4.3) has a solution
θ∗t . Let cit be the optimal consumption corresponding to θ∗t , which exists
by assumption. Define the price of asset k, P k

t , by iterating (3.2b), where
Rm,t+1 = Rt+1(θ

∗
t , 0). Then by construction the first-order condition for the

maximization (4.2) (with Ft instead of Fit) holds for every asset k ∈ K. By the
definition of θ∗t , the first-order condition for the maximization (4.2) holds for
every investment j ∈ J . Hence the first-order condition holds for every returns
j and k. Since the first-order condition is sufficient for maximum because the
objective function in (4.2) is quasi-concave, (θ∗t , 0) is optimal in Πt. Since the
individual asset holdings is zero by construction, the markets of assets in zero
net supply clear. Therefore we obtain a sequential equilibrium.

Remark. Since

Rt+1(θ, 0) =
J
∑

j=1

Aj
t+1θ

by the definition of returns on portfolio (4.1), the symmetric equilibrium port-
folio θ∗t in (4.3) can be computed without knowing the asset prices. The asset
prices can then be computed using (3.2b) with Rm,t+1 = Rt+1(θ

∗
t , 0).

Combining Theorems 3.3 and 4.2, we obtain an absolute asset pricing for-
mula.

Corollary 4.3. Let everything be as in Theorem 4.2. Then the conclusion of
Theorem 3.3 holds.

As in Theorem 3.3, the −γth power of the return on the market portfolio
(θ∗t , 0) is a valid stochastic discount factor. In order to build a general equilib-
rium model (i.e., not a partial equilibrium model), in Theorem 4.2 I assumed
that firms are AK type technologies and ignored inputs other than capital, for
example labor or raw materials. It is not easy to solve for the general equilibrium
if we make the model more realistic by introducing other inputs.

Corollary 4.3 is surprising in that any preference characteristics other than
risk aversion have no asset pricing implications: asset prices are determined by
the technologies and relative risk aversion alone. In particular, the interest rate
is completely pinned down, no matter how patient or impatient agents are. How
could this be true? The intuition is simple: if there is no uncertainty, because
a linear production technology between today and tomorrow determines the
relative price between today and tomorrow, it is obvious that the interest rate
is determined only by the technology. The risk-free rate formula (3.3) is the
generalization to the case with uncertainty.
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5 Testing the asset pricing implications

In this section I estimate the relative risk aversion γ and test the conditional
moment restriction (3.2a) as well as the unconditional moment restriction

(∀k = 1, . . . ,K) E[R−γ
m (Rk −Rm)] = 0, (5.1)

which are testable implications of the partial equilibrium model of Section 3.
Using monthly data from 1926 to 1981, Brown and Gibbons (1985) estimated γ
from the unconditional moment condition (5.1) with only one asset (the risk-free
asset) and obtained γ̂ = 1.79, but they did not test the moment condition (since
γ is exactly identified). The focus of this section is in testing both the conditional
and unconditional moment restrictions, not just estimating the relative risk
aversion coefficient. Testing the general equilibrium model of Section 4 (possibly
using firm data or data on national wealth, GDP, and investment) would be
certainly interesting but is beyond the scope of this paper.

5.1 Data

For nominal asset returns data, I use the monthly and quarterly returns of
NYSE value-weighted portfolio (total market as well as portfolios sorted by
size and book-to-market value) for stocks and Treasury Index, both available
from the Center for Research in Security Prices (CRSP). Nominal returns are
converted to real returns by adjusting with the Consumer Price Index (CPI). As
instrumental variables for testing the conditional moment restriction (3.2a), I
consider past annual dividend yields because they are known to predict returns
(Fama and French, 1988). The data on annual dividend yields is taken from
Shiller (1992).7 More specifically, I consider two sets of test assets:

S10 30 day T-bill rate and 10 portfolios of stocks sorted by size, and

FF25 30 day T-bill rate and Fama and French (1993) 25 portfolios of stocks
sorted by size and book-to-market value.

The sample period is January 1926–December 2011 for the 10 stock size port-
folios and July 1931–December 2011 for the Fama-French 25 portfolios because
in the latter case some returns data is unavailable for 1926–1931.

I assume that the gross return on any agent’s wealth portfolio is proportional
to the stock market return. Of course I am aware that the stock market is not
the portfolio of total wealth (Roll, 1977; Stambaugh, 1982), but this is not a
bad first approximation. We can justify this assumption as follows. Assets are
priced by asset market participants, who are typically wealthy and hold a large
number of stock shares. Therefore it is reasonable to expect that the stock
market return is a proxy of the total return on the wealth portfolio of asset
market participants.

5.2 Identification

Let Rt = (R1
t , . . . , R

K
t ) be the vector of gross asset returns, zt ∈ R

L be the
vector of instruments (a constant (zt = 1) for testing the unconditional moment

7See the file chapt26.xls at http://www.econ.yale.edu/~shiller/data.htm.
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restriction (5.1) and the vector of a constant and past dividend yields for testing
the conditional moment restriction (3.2a)),

ut(γ) = R−γ
m,t(Rt −Rm,t1K)⊗ zt ∈ R

KL

be the pricing error (“⊗” denotes the Kronecker product), and

gT (γ) =
1

T

T
∑

t=1

ut(γ)

be its sample average. Let ∇ut(γ),∇gT (γ) be the derivative of ut, gT with
respect to γ, which are also KL× 1 vectors.

It has been recognized that weak identification can be a source of poor perfor-
mance of the GMM estimator, especially in nonlinear models (Stock and Wright,
2000). I follow Wright (2003) for testing the lack of identification. In order to
identify γ0 (the true parameter value), E[∇ut(γ0)] must have full column rank,
which is equivalent to E[∇ut(γ0)] 6= 0 since ∇ut is a vector, not a matrix. For
a fixed γ, under the null that E[∇ut(γ)] = 0, the test statistic

T∇gT (γ)
′Ĉ(γ)−1∇gT (γ)

is asymptotically χ2(KL) distributed, where Ĉ(γ) is a consistent estimator of
the long run variance of ∇ut(γ).

8 For Ĉ(γ) I take the Newey and West (1987)
heteroskedasticity and autocorrelation consistent covariance matrix with trun-
cation parameter m =

⌊

T 1/3
⌋

. Table 1 shows the range of γ for which the lack
of identification is not rejected at significance level 0.05 for each combination
of test assets and number of lagged dividend yields used as instrument. Ac-
cording to Table 1, γ may be unidentified if either (i) we use quarterly data,
(ii) we use more than one year of past lagged dividend yields as instrument, or
(iii) γ /∈ [−15, 5]. Therefore in what follows I only use monthly data with either
no lagged dividend yields (unconditional model) or the previous year’s dividend
yield (conditional model), and assume that the true parameter value γ0 is in
the range [−15, 5] and estimate γ over this interval.

Table 1. Range of γ for which lack of identification is not rejected. # lags indicates the number
of lagged dividend yields used as instrument.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Period 1926–2011 1931–2011
Frequency monthly quarterly monthly quarterly
# lags
0 [−26.5, 13.9] [−33.6, 5.0] [−34.2, 12.2] ∅
1 [−37.6, 16.0] [−48.3, 1.4] [−14.8, 5.1] ∅
2 [−27.7, 9.0] ∅ ∅ ∅

8In Wright (2003) the test statistic is more complicated because he develops a general
theory for any number of parameters (one has to perform a minimization over all matrices of
rank less than the number of parameters). Since in my model there is only one parameter,
this step is unnecessary.
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5.3 Estimation

Since weak identification does not seem to be an issue at least for monthly data
with no or one year of lagged dividend yields and γ ∈ [−15, 5], I obtain the
estimate γ̂ by minimizing the continuously updated optimal GMM criterion

JT (γ) = TgT (γ)
′Ω̂(γ)−1gT (γ),

where Ω̂(γ) is the Newey-West HAC estimator of the long run variance of ut(γ).
Table 2 presents the estimate γ̂ of the relative risk aversion (RRA) coefficient,

its standard error, the number of periods and moment restrictions, and the P
value of the J-test for overidentifying restrictions with monthly data. The results
are virtually identical across the choice of test assets (10 stock size portfolios
or Fama-French 25 portfolios) and instruments (no or previous year’s dividend
yield). The RRA estimates are around 2 with standard errors around 0.6 for
all specifications. Therefore the log-utility CAPM (γ = 1) is not rejected. The
moment restriction is not rejected except the unconditional model with FF25,
which implies that there is no equity premium puzzle or risk-free rate puzzle.
This is satisfactory since any proposed solution of asset pricing puzzles that
“does not explain the premium for γ < 2.5 . . . is . . . likely to be widely viewed
as a resolution that depends on a high degree of risk aversion” (Lucas, 1994,
p. 335). My RRA estimate of around 2 is also in line with estimates using the
Consumption Expenditure Survey (CEX). For example, Brav et al. (2002) and
Vissing-Jørgensen (2002) report RRA of 3–4 and 2.5–3.3, respectively.9

Table 2. GMM estimation results of E[R−γ
m (Rk − Rm)] = 0.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Period 1926–2011 1931–2011
Conditional? no yes no yes
RRA, γ̂ 2.0 2.15 2.05 1.55
S.E. 0.65 0.64 0.58 0.52
T 1032 1032 966 966
# moments 11 22 26 52
P (J test) 0.123 0.125 0.0015 0.106

5.4 Robustness to heavy tails

The validity of the J-test rests upon the existence of the second moment (long
run variance) of {ut}. However, it is widely known that asset returns have heavy
tails (Mantegna and Stanley, 2000), or obey the power law,10 and therefore the
pricing error {ut} might not admit a finite second moment. If this is the case,
the Central Limit Theorem does not hold and hence we cannot apply the J-
test. In this subsection I investigate whether the second moment is finite, and

9Vissing-Jørgensen (2002) reports the elasticity of intertemporal substitution (EIS) to be
0.3–0.4 for stock holders. With additive CRRA preferences, EIS is the inverse of RRA, so the
range of RRA is 2.5–3.3. Given the irrelevance result of Kocherlakota (1990) or Proposition
2.2, it seems more appropriate to interpret her result as an estimate of RRA.

10A random variable X is said to obey the power law if Pr(X > x) ∼ x−α as x → ∞,
where α is the power law exponent (Mandelbrot, 1960). A power law random variable admits
a finite second moment only if α > 2.
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I propose a specification test that is robust to the nonexistence of the second
moment.

Power law in pricing error Figure 1(a) shows the histogram of the pricing
error for the risk-free rate uf,t := R−γ

m,t(Rf,t−Rm,t) corresponding to the GMM
estimate γ̂ = 2.0 with stock size deciles (S10). By eyeball inspection, one cannot
rule out the possibility that the pricing error {uf,t} has a heavy right tail. The
intuition for why the right tail matters is simple: since γ > 0, R−γ

m is large
when Rm is small (i.e., when the market crashes). Then Rm < Rf , so the
pricing error uf = R−γ

m (Rf − Rm) becomes a large positive number. In fact,
according to the time series of the pricing error in Figure 1(b), large positive
pricing errors occurred during the Great Depression of 1929–1940, the market
crash of October 1987, the Russian financial crisis and the subsequent collapse
of the Long Term Capital Management of August 1998, and the recent financial
crisis of 2008–2009.
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Figure 1. Pricing error for the 30 day T-bill rate corresponding to γ̂ = 2.0.

The top three rows of Tables 3 show the estimate of the power law exponent
of the right tail of the pricing error, its standard error, and the P value of the
Kolmogorov test for the power law. (See Appendix A for how to implement the
test.) The power law is not rejected at conventional significance level. Since
the power law exponent is slightly above 2 but the standard error is around 0.3,
the second moment of the pricing error may not exist. To test the existence of
the second moment directly, I apply the bootstrap test of Fedotenkov (2013),
explained in Appendix B. Since the P values are all around 0.2, the existence
of the second moment is not rejected. However, even if the second moment is
finite, since the power law exponent is close to 2, the convergence of the sample
second moment will be very slow. Hence it still might be dangerous to fully
trust the J-test.

Specification test without finite second moments How should we test
the moment condition without assuming a finite second moment? Kocherlakota
(1997) proposed such a specification test in the context of testing the representa-
tive agent consumption-based capital asset pricing model based on subsampling
(Politis and Romano, 1994; Politis et al., 1999). However, his method requires
that there is only one moment condition and that the right tail of the distri-
bution of the pricing error has a power law exponent between 1 and 2, which
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Table 3. Tests of power law and finite second moment.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Conditional? no yes no yes
PL exponent, α̂ 2.14 2.10 2.19 2.25
S.E. 0.30 0.29 0.31 0.35
P (Kolmogorov) 0.78 0.81 0.62 0.66
P (Fedotenkov) 0.23 0.23 0.22 0.25

is restrictive because we do not know the power law exponent a priori. As an
alternative, I propose a specification test that is robust to the nonexistence of
second moments, which is a multidimensional version of McElroy and Politis
(2002). The advantage of my method is that it is applicable with any number
of moment conditions, irrespective of the existence of the second moment.

The test statistic is the studentized quantity

AT = TgT (γ̂)
′ST (γ̂)

−1gT (γ̂),

where ST (γ̂) =
1
T

∑T
t=1 ut(γ̂)ut(γ̂)

′. Since the existence of the second moment is

not necessary for the consistency of the GMM estimator, we have γ̂
p−→ γ0. If the

second moment is finite, then ST (γ̂) converges in probability to E[ut(γ0)ut(γ0)
′]

as T → ∞, and under the null that E[ut(γ0)] = 0, by the central limit theorem√
TgT (γ̂) is asymptotically normal. Therefore the test statistic AT has a weak

limit. Under the alternative that E[ut(γ0)] 6= 0, AT tends to infinity.
Now suppose that E[ut(γ0)] = 0 but ut(γ0) has a tail exponent 1 < α ≤ 2.

By the Cramér-Wold device, the weak convergence of a sequence of random
vectors to a multivariate stable distribution reduces to the scalar case (Press,
1972). Hence by Theorem 3.1 of Davis and Hsing (1995), both T 1−1/αgT (γ̂) and
T 1−2/αST (γ̂) have a weak limit, so AT also converges weakly. The difficulty for
performing statistical inference, however, is that the weak limit depends on the
unknown parameters in a complicated way.

To circumvent this difficulty, I apply the subsampling of Politis and Romano
(1994) in order to compute the P value, which is applicable whenever a statistic
has a weak limit. Let b a number such that b → ∞ and b/T → 0 as T → ∞ (I
take b = 10

√
T ). Let

Ab,t = bgb,t(γ̂b,t)
′Sb,t(γ̂b,t)

−1gb,t(γ̂b,t), t = 1, . . . , T − b+ 1

be the test statistic computed over the subsample {ut, . . . , ut+b−1} of size b
starting from t, where γ̂b,t is the GMM estimator over this subsample. Under
the null that E[ut(γ0)] = 0, both AT and Ab,t converges to the same limit.
Under the alternative that E[ut(γ0)] 6= 0, on the other hand, both AT and Ab,t

diverges to ∞ but AT does so at a faster rate because b/T → 0. Therefore we
can compute the P value by

p =
1

T − b+ 1

T−b+1
∑

t=1

1 {Ab,t > AT } .

Table 4 shows the P value of the specification test. Neither the uncondi-
tional moment restriction (5.1) nor the conditional moment restriction (3.2a)
are rejected at significance level 0.05 for each combination of test assets.
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Table 4. Specification test by subsampling.

Test assets 10 size portfolios (S10) Fama-French 25 (FF25)
Conditional? no yes no yes
P (Subsampling) 0.072 0.20 0.21 0.12

6 Asset pricing puzzles

6.1 Literature

The consumption-based capital asset pricing model (CAPM) of Lucas (1978)
and Breeden (1979) has not performed well empirically (Hansen and Singleton,
1982, 1983), which led to the conceptualization of the equity premium puzzle
(Mehra and Prescott, 1985) and the risk-free rate puzzle (Weil, 1989). These
asset pricing puzzles continue to fascinate the profession: numerous generaliza-
tions of the model in an attempt to resolve the puzzles include incomplete
markets (Bewley, 1982; Constantinides and Duffie, 1996), probability distri-
butions that admit rare but disastrous events Rietz (1988), state-dependent
utility function such as habit formation (Abel, 1990; Constantinides, 1990;
Campbell and Cochrane, 1999), transaction costs (Aiyagari and Gertler, 1991),
limited asset market participation (Brav et al., 2002; Balduzzi and Yao, 2007),
focusing on consumption of luxury goods instead of aggregate consumption
(Aı̈t-Sahalia et al., 2004), production (Akdeniz and Dechert, 2007), and con-
strained efficient allocation with private information (Kocherlakota and Pistaferri,
2009), to name just a few. See Kocherlakota (1996), Campbell (2003), and
Chapter 21 of Cochrane (2005) for reviews. There are also explanations outside
(neoclassical) economics. Kocherlakota (1997) notes the possibility of a heavy
tail in the distribution of consumption growth, which would invalidate the use
of χ2 specification tests, and Barberis et al. (2001) employ prospect theory.

In reviewing the literature, Kocherlakota (1996) notes that at least one of the
following three assumptions must be abandoned in order to resolve the equity
premium puzzle and the risk-free rate puzzle. These are (i) complete asset
markets, (ii) frictionless asset markets, and (iii) standard additive CRRA utility
with discount factor β ∈ (0, 1) and relative risk aversion coefficient γ ∈ [0, 10].

6.2 A resolution?

By the results in Tables 2 and 4, setting the relative risk aversion γ = 2.0 in my
model explains the historical equity premium and risk free rate, and the model
is not rejected. What is the key for the (possible) resolution of the asset pricing
puzzles? Since in my model asset markets are complete and frictionless, the
resolution must come from abandoning the representative agent with standard
additive CRRA utility

E
∞
∑

t=0

βt c
1−γ
t

1− γ
.

When we test the consumption Euler equation

1 = E

[

β

(

ct+1

ct

)−γ

Rk

∣

∣

∣

∣

∣

Ft

]
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using aggregate consumption, we are testing the joint hypothesis that asset
markets are complete and frictionless and that all agents in the economy have
identical additive CRRA preferences. Even if we use household consumption as
in Brav et al. (2002) and Balduzzi and Yao (2007), we are still testing a model
with identical additive CRRA preferences. Since people differ in patience, life
cycle needs, and so on, there is no wonder that we reject this hypothesis. When
we test the moment condition (3.2a), on the other hand, we are testing the
weaker joint hypothesis that asset markets are complete and frictionless and
that market participants have homothetic CRRA recursive preferences with a
common relative risk aversion coefficient but otherwise heterogeneous.

In the model of Mehra and Prescott (1985) both β(ct+1/ct)
−γ and R−γ

m are
valid stochastic discount factors (SDFs), but they chose to use consumption
(Euler equation) to calibrate their model. Since aggregate consumption does
not vary much, they found a puzzle. However, in a more general model in
Section 3, β(ct+1/ct)

−γ (where ct is aggregate consumption) is not necessarily
a valid SDF. A special case it is valid is with identical additive CRRA utility
function and complete markets (i.e., the representative agent). Since these
assumptions are unlikely to hold, there is no wonder we bump into puzzles if we
take the model literally. My explanation of the asset pricing puzzles is due to
the derivation of an equation (the moment condition (3.2a)) that contains only
one parameter and data that are highly accurate, and most of all, is robust to
alternative specifications of the model.

This observation suggests that consumption-based asset pricing models have
limitations. By introducing production (investment) and thereby disentangling
the portfolio decision from the consumption/saving decision as in my model,
we no longer need to look at consumption data, at least for studying portfolio
decisions and asset pricing.11 This point relates to Campbell (2003), who sug-
gested that “it is not easy to construct a general equilibrium model that fits
all the stylized facts” (p. 808) but “[m]odels with production also help one to
move away from the common assumption that stock market dividends equal
consumption . . . it will ultimately be more satisfactory to derive both dividends
and consumption within a general equilibrium model” (p. 880). The importance
of production is also stressed by Akdeniz and Dechert (2007), who resolved the
equity premium puzzle and the risk-free rate puzzle by numerically solving the
Brock (1982) asset pricing model. My general equilibrium model has an ad-
vantage in that it allows growth and admits high analytical tractability and
flexibility.

How about other asset pricing puzzles? Campbell (2003) defines the “equity
volatility puzzle” by the fact that the volatility of real stock returns is high in
relation to the volatility of the short-term real interest rate. My model can
explain the equity volatility puzzle as well: by the risk-free rate formula (3.3), if
the market return Rm is i.i.d., then the risk-free rate is constant. Therefore the
low volatility of the interest rate does not contradict the high volatility of stock
returns. As long as information on past returns is not so helpful in predicting
future returns (i.i.d. is the extreme case), the risk-free rate formula (3.3) tells
us that the risk-free rate does not vary much over time.

11Of course, looking at consumption is essential in other situations, for instance estimating
a consumption/saving model.
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6.3 Consumption volatility puzzle

Finally I turn to the consumption volatility puzzle—the stylized fact that the
volatility of aggregate consumption growth is low compared to asset returns.
In Section 3.2 I noted that the consumption volatility puzzle is not an asset
pricing puzzle because consumption is irrelevant for asset pricing—maybe we
(financial economists) should not care too much about aggregate consumption.
Nevertheless, we might want to explain the puzzle. One solution is Theorem
4.2, which is also an “anything goes” result for consumption. Since the number
of agents and the (individual-, time-, and state-dependent) aggregator functions
are arbitrary, we have effectively an infinite degrees of freedom, and therefore
my model can explain any aggregate consumption data. Of course, a theory
that can explain anything is not a theory, so I do not claim that this is a valid
resolution of the consumption volatility puzzle.

Here I present a simple solution within the representative agent framework.
Suppose that the representative agent has an additive HARA utility function

E0

∞
∑

t=0

βt (ct − nt)
1−γ

1− γ
,

where ct is consumption and nt (assumed to be exogenous and deterministic)
is the necessity. Letting lt = ct − nt be the luxury, the agent must consume
at least nt at time t but gets utility only from the luxury he consumes.12 By
introspection, introducing necessity into the utility function seems reasonable:
we buy baby diapers if and only if we have babies, and we do not get any happier
by consuming more diapers.

For concreteness assume that the necessity grows at a constant rate g, so
nt = n0(1 + g)t. The agent is endowed with capital k0 at time 0 but nothing
thereafter. Capital can be turned into the necessity or the luxury for one-
to-one. The agent has access to two saving technologies, one risky and the
other riskless. The productivity of the risky technology is i.i.d. over time and
lognormally distributed: logA ∼ N(µ, σ2). The riskless technology pins down
the risk-free rate Rf = 1 + r, where I assume that r > g. Since the agent must
consume nt for sure at time t, his effective initial wealth is

w0 = k0 −
∞
∑

t=0

nt

Rt
f

= k0 −
1 + r

r − g
n0 =: k0(1− ν).

Here ν is the ratio between the necessity n0 and the maximal necessity (the
amount that makes the effective wealth equal to zero) at time 0.

Since the agent cares only about luxury, his optimal consumption-portfolio
problem reduces to

max
{lt,θt}

E0

∞
∑

t=0

βt l
1−γ
t

1− γ
suject to (∀t)wt+1 = Rt+1(θt)(wt − lt),

12In this respect my model is similar to Aı̈t-Sahalia et al. (2004), who use the period utility

function v(C, L) =
(C−a)1−φ

1−φ
+

(L+b)1−ψ

1−ψ
. Here C is basic consumption, L is luxury con-

sumption, and a, b, φ, ψ > 0 are parameters. My model corresponds to setting a = nt, φ = γ,
and dropping the term involving L.
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where lt is luxury, θt is the fraction of effective wealth invested in the risky
technology at time t, and Rt+1(θ) = At+1θ + (1 + r)(1 − θ) is the return on
effective wealth between time t and t+ 1. This problem concerns a homothetic
CRRA preference and multiplicative shock as in Section 4, so we can solve it
analytically. According to Toda (2012), the optimal luxury-portfolio rule is

θ∗ = argmax
θ∈[0,1]

1

1− γ
E[R(θ)1−γ ], (6.1a)

l(w) = (1− (β E[R(θ∗)1−γ ])
1
γ )w. (6.1b)

Then the optimal consumption of the original problem is ct = l(wt) + nt.
Of course, this model does not produce stationary consumption growth be-

cause the necessity nt = n0(1 + g)t and the luxury lt (which is proportional
to effective wealth) does not grow at the same rate. (Necessity is deterministic
whereas luxury is stochastic.) However, the nonstationarity is not severe if the
necessity parameter ν is either close to 0 or 1 and the time horizon is not too
long. For long horizons, we can make the model close to stationary by consider-
ing overlapping generations whose initial necessity grow with aggregate wealth.
This assumption seems natural because people tend to regard more goods as
necessity as the economy grows. (Think of cell phones and Internet now and 20
years ago.)

Numerically solving for the general equilibrium is straightforward.

1. Solve for the optimal portfolio rule (6.1a) using the portfolio return

R(θ) = Aθ + (1 + r)(1 − θ)

and compute the marginal propensity to consume out of effective wealth
in (6.1b).

2. Generate “stock market returns” {At}Tt=1 and iterate the budget con-

straint wt+1 = R(θ∗)(wt − lt) to obtain the luxury {lt}Tt=0.

3. Compute consumption by ct = lt + nt.

As a numerical example, I simulate quarterly stock market and consumption
data for 15 years. The parameters (at annual frequency) are discount factor
β = 0.96, relative risk aversion γ = 3, expected stock market return µ =
0.07 (7%), volatility σ = 0.17 (17%), risk-free rate r = 0.01 (1%), fraction of
necessity to maximal necessity ν = 0.9, and no growth in necessity (g = 0).
With these parameters the optimal portfolio of effective wealth is θ∗ = 0.8593
(86% stocks)13 and the quarterly marginal propensity to consume luxury out of
effective wealth is 0.0103.

Figure 2(a) shows typical sample paths of annualized stock market return
and consumption growth. Clearly consumption growth is much less volatile
than the stock market. Figure 2(b) shows the kernel density estimate of the
distribution of sample volatility of stock market return and consumption growth
for 1,000 Monte Carlo simulations. On average, the volatility of consumption
growth is about 5%, which is a reasonable number.

13Since E[R(θ)1−γ ] has no closed-form expression, solving for the optimal portfolio in (6.1a)
is not trivial. Here I approximate the normal distribution by a multinomial distribution on
81 equally spaced grid points as explained in Tanaka and Toda (2013) and then solve for the
optimal portfolio numerically.
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(b) Kernel density estimate of the distribu-
tion of sample volatility for 1,000 simulations.

Figure 2. Stock market return (blue solid) and consumption growth (green dashed).

7 Concluding remarks

This paper can be summarized as follows. (i) I found a simple, yet economically
motivated stochastic discount factor (R−γ

m ). (ii) I theoretically showed the ro-
bustness of this SDF. (iii) I tested the SDF and failed to reject it: a relative risk
aversion coefficient of around 2 is consistent with the historical asset returns
data. Although this SDF has been already known (Rubinstein, 1976), it has
not captured much attention.14 Given the robustness of this SDF, it deserves a
serious consideration.

A clear lesson from this paper is the usefulness of AK models. Combined
with homothetic preferences, AK models admit full analytical tractability, even
with many agents with heterogeneous preferences as long as agents have a com-
mon relative risk aversion. This is true even in an incomplete markets setting, as
shown by Toda (2012), where I derive a similar stochastic discount factor. AK
models have investment as a key element and hence are more realistic, unlike
pure exchange models that can only proxy hunter-gatherer economies.

Being primarily a theoretical paper, I kept the empirical analysis to the bare
minimum (testing the partial equilibrium model). An obvious next step for
further empirical research is to test the general equilibrium model in Section 4.
Here I sketch how this could be done. By the budget constraint, we have

wi,t+1 = Rt+1(θ
∗
t , 0)(wit − cit),

where wit is agent i’s wealth, cit is consumption, and θ∗t is the common portfolio
of investment. Adding the budget constraint across agents, we obtain

Wt+1 = Rt+1(θ
∗
t , 0)(Wt − Ct),

where Wt, Ct are aggregate wealth and consumption of market participants.
Thus if we have a good measure of aggregate wealth and consumption, one
can recover the total return on wealth by Rt+1(θ

∗
t , 0) = Wt+1

Wt−Ct
and redo the

exercises in Section 5.

14Cochrane (2005) mentions only the log utility case (γ = 1) briefly.
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A Testing the power law

Consider a random variable X with probability density function (PDF) f(x)
and a cumulative distribution function (CDF) F (x). X is said to obey the
power law with exponent α > 0 if

1− F (x) = P (X > x) ∼ x−α

as x → ∞.15 Since in general the power law holds only asymptotically, testing
the power law is not trivial. Clauset et al. (2009) suggest to estimate the power
law exponent α by fitting the Pareto distribution (f(x) ∝ x−α−1) by maximum
likelihood above a cutoff value, and then to apply the Kolmogorov test by boot-
strap to evaluate the goodness of fit of the entire distribution. (See their paper
for more details.) Their web appendix16 contains Matlab files that implement
the algorithm. The file plfit.m estimates the power law exponent17 and the
cutoff value, and plpva.m performs the Kolmogorov test. I obtained the middle
three rows of Table 3 in this way. The cutoff value for the pricing error was
around 0.1 in all cases, which conforms to the histogram in Figure 1(a).

B Testing moment existence

This Appendix explains how to test the existence of moments directly follow-
ing Fedotenkov (2013). Suppose that the random variable X is nonnegative
(consider |X | if X can be negative) and {Xn}∞n=1 are i.i.d. copies of X . If

E[Xη] = ∞, then the sample moment 1
N

∑N
n=1 X

η
n tends to infinity as N → ∞.

Therefore if we take a number M(N) such that M → ∞ and M/N → 0 as
N → ∞, and {Ym}∞m=1 are independent and have the same distribution as X ,
then for 0 < ξ < 1 the quantity

F = 1{ 1

M

M
∑

m=1

Y η
m ≥ ξ

1

N

N
∑

n=1

Xη
n

}

tends to zero almost surely as N → ∞, where 1 {·} denotes the indicator func-

tion. This is because both ξ 1
N

∑N
n=1 X

η
n and 1

M

∑M
m=1 Y

η
m tend to infinity, but

the former does so at a faster rate. On the other hand, if E[Xη] is finite, then
by the law of large numbers F tends to 1 almost surely because both sample
means converge to the same population mean, but since 0 < ξ < 1 as N tends
to infinity ξ 1

N

∑N
n=1 X

η
n is almost surely smaller than 1

M

∑M
m=1 Y

η
m.

Given this result Fedotenkov (2013) constructs a bootstrap test of moment
existence as follows. Let x = (x1, . . . , xN ) be the data. First, we choose the
bootstrap sample size M(N), the parameter ξ, and bootstrap repetition B (Fe-
dotenkov suggests taking M(N) = ⌊logN⌋, ξ = 0.999, and B = 10, 000). Sec-
ond, for each b = 1, . . . , B, we generate a bootstrap sample xb of size M drawn

15Since the PDF of a power law variable is asymptotically f(x) ∼ x−α−1, some authors
refer to the exponent by α′ = α+ 1, which can introduce confusions.

16http://tuvalu.santafe.edu/~aaronc/powerlaws/
17Note that Clauset et al. (2009) define the power law exponent by α′ = α+ 1, so we have

to subtract 1 from the estimation result when using plfit.m.
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randomly with replacement from the data, and compute

F b = 1{ 1

M

M
∑

m=1

(xb
m)η ≥ ξ

1

N

N
∑

n=1

xη
n

}

.

Finally, the P value is defined by p = 1
B

∑B
b=1 F

b.
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