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1 Introduction

Developed economies have many reasons to worry about their dependence on

cheap oil, a resource increasingly controlled by a cartel (OPEC). The market

power of the suppliers means oil importers may feel they are getting a bad deal.

Dependence on a commodity found primarily in a politically volatile region has

geopolitical and security ramifications. There are worries that the resource will

run out suddenly, leading to a severe economic shock. And, finally, as oil is

a fossil fuel, there are concerns over its environmental impacts, particularly

climate change.

Importing countries may try to reduce their dependence on cheap oil—for

example, by subsidising research into the development of an electrified trans-

port infrastructure, or into third-generation biofuels. This is something the

oil-producing countries would like to avoid, in order to maximise the value of

their oil resources. Such conflicting interests mean there is a strategic dimension

to thinking about oil dependence. Importing countries want to develop alterna-

tives to oil, especially is oil is felt to be very expensive, polluting, or about to

run out. Oil producers will want to preclude this by convincing their customers

oil prices will remain sufficiently low. Indeed, OPEC and Saudi-Arabian deci-

sionmakers often publicly say they are intent on maintaining a ’fair’ oil price,

one which does not lead to ’demand destruction’. 2

In this paper, I consider strategic competition between an oil exporter and

an importing country (or a group a cooperating countries) which are able to

gradually reduce the costs of substitute technologies. The presence of these

substitutes curtails the oil cartel’s market power: first, because the cartel must

provide importing countries with sufficient cheap oil, so as to discourage ag-

gressive R&D programs; and, eventually, due to the fact that substitutes will

impose a price ceiling on oil. Substitute development starts immediately, as the

importer seeks to spread the cost of research over time. The supply of oil may

initially fall, but will eventually be forced up as substitutes get cheaper. The

substitute will only be used once oil is exhausted.

Once the exporter is forced to price just below the substitutes, the importer’s

R&D expenditures effectively determine the supply of oil: oil prices fall in lock-

step with the price of the substitutes. When oil is polluting but the substitute

is clean, cheaper substitutes will just lead to more oil supplied, and more pollu-

tion. Climate concerns induce the importer to slow down R&D efforts (assuming

carbon pricing is not feasible, say, for political reasons). If exhaustion of oil oc-

2For example, ”Saudi Arabia targets $ 100 crude price”, Financial Times, Jan 16th 2012;
”OPEC says pumping hard to bring oil price down”, Bloomberg.com, May 3rd 2012.
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curs due to increasing marginal costs of extraction, rather than by the entire

physical stock being depleted, this result changes. In this more realistic case,

the importer will eventually speed up substitute development, in order to shut

a greater fraction of the oil reserves permanently out of the market (so pre-

venting the embodied carbon from entering the atmosphere). If oil stocks will

last for a long time, and near-term climate damages are substantial, there may

still initially be a period in which the climate problem is tackled optimally by

conducting less research.

The paper extends the Hoel (1978) model of a limit-pricing monopolist into

a dynamic game, with the R&D process involving convex (per period) costs.

This means that research will be undertaken gradually: it will be optimal to

spread the costs of R&D over time, even if the substitute will not initially be

competitive against oil. In other words, research into substitutes takes place

at all times, certainly before the substitutes are used, and even before they

are competitive against the resource. Accumulated knowledge also acts as a

commitment device: a more advanced substitute technology means it is less

costly to conduct the research required to make the technology competitive

against oil.

The existing literature on substitute development has tended to focus on

cases in which the R&D process consists of the optimal timing of when to adopt

an alternative, fixed technology at a given exogenous cost. Gerlagh and Liski

(2011) model a deterministic game in which the importer can trigger a process

which ends with the introduction of the substitute. The delay between the

decision to develop the substitute, and the arrival of the technology, acts as

a commitment device: supposing the decision has not been made by a given

period, the resource importer is committed to consuming the resource for at

least an interval of length equal to the delay. The less resource remains, the

more costly will this interval be, and the resource owner is forced to ’bribe’

the importer into not switching by increasing supply of the resource as stocks

fall. Earlier papers look at a similar situation without the adoption delay,

with various assumptions on the ability to commit and the timing of moves

(e.g. Dasgupta et al. (1983), Gallini et al. (1983), Olsen (1993)). These papers

assume that the backstop technology is of some fixed quality once established,

and thus focus on the timing of entry of some given technological innovation.

Harris and Vickers (1995) model a probabilistic R&D process in which a

new innovation, once it arrives, makes the resource obsolete overnight. Thus,

R&D produces discrete results, even though it takes place continuously. A

particularly simple modification of the Hotelling rule characterises the resource
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owner’s extraction rate, incorporating the strategic effect resource extraction

has on the R&D efforts of the importer.

In all of the above studies, the substitute technology is essentially introduced

overnight; in all but the last paper, the R&D decision is to determine the op-

timal date of the transition. The present paper seeks to model a more gradual

R&D process, in which the accumulated stock of knowledge determines how

competitive the substitute is.

An incremental process of backstop development has been considered by

Tsur and Zemel (2003). However, they do not consider strategic issues, focusing

only on the socially optimal case. They also do not consider increasing (per-

period) marginal costs of R&D, as in the present paper, but rather impose an

exogenous cap on the R&D rate. Thus the social planner will steer the economy

to the steady-state process as quickly as possible, with maximal R&D efforts

until this process is reached. In the present paper, R&D efforts are limited by

increasing marginal costs.

Van der Ploeg and Withagen (forthcoming) note that, with monopolistic

supply of a polluting resource, lowering the cost of a substitute may lead to more

of the resource being left unused. This result is obtained for some exogenous

change in the backstop price. In a sense, the present paper gives the same result

but with an endogenous, optimal R&D process.3

The paper is structured as follows. I will first develop the basic model with

physical exhaustion. This will serve to illustrate the basic structure of the

problem, as well as reminding the reader of the model of Hoel (1978). Section 2

sets up the model and the social optimum is solved as a benchmark. Section 3

develops the non-cooperative equilibrium of this model. Section 4 extends the

model to include a stock pollutant and extraction costs. Section 5 concludes.

3The ’Green Paradox’ of Sinn (2008) refers to supply-side effects of ’green’ policies in
exhaustible resource markets. Specifically, any policy which tends to depress future demand
relative to current demand will lead to resource suppliers reoptimising to extract their re-
sources faster, hence expediting emissions and exacerbating the environmental problem. Thus
the correct policy should aim the depress current demand more, for example by a decreasing
ad valorem tax.

In the present paper, a supply-side effect is shown to imply that the environmental problem
should lead to less intensive development of substitutes. However, the cause of this effect is
not exhausibility of fossil fuels. A monopolist will cut back on output of any good. When
consumption of this good is associated with an externality, the inefficiency related to market
power is, at least partially, offset. Curtailing market power thus has an additional cost: higher
consumption causes more severe external effects.
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2 The social optimum

An economy uses a natural resource—think of fossil fuels—the flow of which is

denoted by qF (t). This resource is exhaustible, with remaining stock denoted

by S(t), and the (given) initial stock by S0. Resource extraction is costless.

There is a perfect substitute for the resource—for example, solar energy, bio-

fuels, or coal-fired power with carbon capture and storage—called the backstop

resource4. This substitute is produced perfectly competitively at a unit cost

x, and the production rate is denoted qB(t). In fact, the backstop production

cost depends on the accumulated knowledge of technologies used in backstop

production.

Assumption 1. Backstop technology. The backstop production cost is a

function of accumulated knowledge K(t): x = x(K(t)), x′ < 0, x′′ ≥ 0. The

knowledge stock is normalised so that K(0) = 0, and the initial price is denoted

x ≡ x(0). There exists a strictly positive lower bound to the backstop price:

limK→∞ x(K) = x > 0. If this bound is attained at K, then x′(K) = 0 for

K > K.

Assumption 2. R&D process. R&D investment reduces the price of the

resource incrementally. The rate of this research is denoted d(t) and it builds

up the knowledge stock according to K̇ = d. There are strictly convex monetary

costs to conducting research5 c(d): c ≥ 0, c′ ≥ 0, c′′ > 0, c(0) = 0, c′(0) = 0.

Knowledge does not depreciate.6

The representative consumer has a quasilinear felicity function v(qF , qB ,M) =

u(qF +qB)+M , with u′ > 0, u′′ < 0. I assume that using the backstop resource

is always preferable to zero resource use: limq→0 u
′(q) > x. M denotes money,

normalised so that the exogenously given money income is zero. This yields the

inverse demand curve for the exhaustible resource or the substitute:

p(qF ,K) = min{u′(qF ), x(K)} (1)

Inverse demand is depicted in Figure 1. The backstop is supplied to satisfy the

balance of the demand:

qB(K) = u′
−1

(p)− qF (2)

4This is stretching the sense in which the word ’resource’ is usually applied in economics,
but makes it easier to refer to consumption of either the exhaustible resource or the substitute.

5Relaxing the assumption of zero marginal cost at d = 0 is straightforward but yields no
further intuition.

6This incremental research effort could perhaps be thought of as more like development
and deployment investment. I will refer to it, for brevity, as ’research’ or ’R&D’.
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Figure 1: Inverse demand curve (gray); inverse demand for the exhaustible
resource, given a backstop price x(K̃) (solid); and the corresponding marginal
revenue curve (dashed).

I assume the utility function is such that u′′′(q)q + 2u′′(q) < 0 for all q. This

assures concave revenues, and so the existence of a unique optimum to the

monopolist’s problem later on.

All agents in the economy live forever and discount the future at the common

rate ρ. I omit notation to indicate the dependence of all variables on time.

Consider the social planner’s problem:

max
qF ,qB ,d

∫ ∞
0

e−ρt (u(qF + qB)− x(K)qB − c(d)) dt

s.t. Ṡ = −qF , S(0) = S0, S ≥ 0

K̇ = d, K(0) = 0

(3)

Assuming an optimum exists, the problem is solved using Pontryagin’s max-

imum principle. Denoting the costate variables on the resource stock and the
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knowledge stock, respectively, by λS and λK , the necessary conditions are

u′(qF + qB) ≤ λS , qF ≥ 0, C.S. (4a)

u′(qF + qB) ≤ x(K), qB ≥ 0, C.S. (4b)

c′(d) ≤ λK , d ≥ 0, C.S. (4c)

λ̇S = ρλS (4d)

λ̇K = ρλK + qBx
′(K) (4e)

lim
t→∞

e−ρtλS(t)S(t) = 0 (4f)

lim
t→∞

e−ρtλK(t)K(t) = 0 (4g)

These conditions are easily interpreted. The marginal utility of consuming

an energy resource must be equal to its marginal cost, in the case of the fossil

resource the scarcity rent ((4a) and (4b)). The marginal cost of research into

the backstop technology has to equal the marginal benefit: the value of the

marginal unit of knowledge ((4c)). As there are no extraction costs, the scarcity

rent of the resource is constant in present value terms ((4d). The marginal value

of the knowledge stock rises at the rate of interest plus capital gains ((4e)). The

transversality conditions (4f) and (4g) indicate that the stocks of the resource

and knowledge have to be used or built up so that the stock value as t→∞, in

present value terms, is zero.

Definition 1. The terminal path refers to the optimal R&D process when the

exhaustible resource is not used. It is the trajectory of R&D intensity d(t),

the R&D stock K(t) and the associated costate variable λK(t) which solve the

social planner’s problem for S(0) = 0. This solution is unique (see Proposition

1). As K(t) is weakly monotonic and the optimisation problem is autonomous

(not dependent on the starting date), I can denote the terminal path as the

triplet {K, d∞(K), λ∞K (K)}7.

Proposition 1. The terminal path is unique and satisfies limK→∞ λ∞K (K) =

limK→∞ d∞(K) = 0.

Proof. All proofs are in the Appendix.

The terminal path (Figure 2) describes the optimal R&D process once re-

source use stops, as a function of K. Even though defined here as the socially

optimal path, it will appear also in the non-cooperative models. Note that the

R&D intensity may behave non-monotonically. The marginal benefit of knowl-

edge λS is just the present value of the stream of future cost reductions it yields.

7For finite K, K ≥ K, d∞(K) = λ∞K (K) = 0.
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Figure 2: The terminal path in (K,λ∞K )-space. d∞ increases monotonically with
λ∞K . The economy moves to the right along the path at a rate increasing with
λK .

At any moment, the total reduction in the cost flow is the marginal reduction

in backstop cost, multiplied by the quantity of the substitute consumed. Thus,

capital gains may be low if the backstop is consumed in small amounts, or if a

marginal unit of knowledge only reduces the costs a little. When capital gains

are low, the shadow value mostly represents future benefits and will fall more

slowly, or even rise. The precise behaviour depends on the interaction of the

demand for the resource and the effectiveness with which cumulative R&D effort

reduces the backstop cost.

Proposition 2. The social optimum is characterised by two stages:

Stage I. t ∈ [0, t∗), t∗ > 0. Initially, only the exhaustible resource is used,

with rate of extraction decreasing monotonically. The resource is fully used

up by the switching date t∗. R&D intensity is strictly positive and increases

monotonically.

Stage II. t ∈ [t∗,∞). In the second stage, the economy uses only the substi-

tute and moves along the terminal path. Substitute use increases monotonically

as the unit costs falls, until the date t∗∗ (if finite) when the lower bound on the

backstop cost is attained. Research effort is strictly positive until this date.

Ultimately R&D effort falls to zero: limt→∞ d(t) = 0.

Thus, in the social optimum, initial resource use is sufficiently high so that,

by the time the marginal utility of resource use (denoted pF ) rises to the back-

stop price, exhaustible resource use stops as the stock is fully depleted. This

will not hold in the non-cooperative equilibrium. Figure 3 illustrates the social
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optimum for a case in which the lower bound on the backstop cost is attained

in finite time.

Proposition 3. For the social optimum, an increase in impatience (a rise in

the discount rate ρ) implies the backstop price at the moment of the switch will

be higher: dx(t∗)
dρ > 0. Either the initial extraction rate will rise, or the initial

R&D intensity fall, or both. Effect on the timing of the switch is ambiguous:

an earlier (later) switch implies that the initial resource extraction rate rises

(R&D intensity falls), but the effect on initial R&D intensity (extraction rate)

is ambiguous:

dt∗

dρ
< 0⇒ dqF (0)

dρ
> 0

dt∗

dρ
> 0⇒ dd(0)

dρ
< 0.

Proposition 3 says that an increase in impatience will lead to at least one type

of asset falling in valuation. Two assets exist in the economy: the exhaustible

resource and knowledge. An increase in impatience will either increase the de-

pletion of the former, or slow the accumulation of the latter, or both. Which of

these effects dominates determines what happens to the timing of the switch:

the switch will occur earlier if the incentives to conserve the resource are more

responsive to time preference than the incentives to accumulate knowledge, so

that faster consumption of the resource necessitates more intensive R&D to

prepare for the switch. Conversely, a later switch may occur if the higher dis-

count rate leads to much slower knowledge accumulation, thus requiring some

conservation of the resource.

Proposition 4. An increase in the initial resource stock S0 implies a higher

initial extraction rate, a lower initial R&D rate, and a delay in introducing

renewables: dqF (0)
dS0

> 0, dd(0)
dS0

< 0, dt∗

dS0
> 0. An increase in the initial knowledge

stock implies a higher initial extraction rate ( dqF (0)
dK0

> 0); the effect on the initial

R&D rate and on the date of switch into renewables t∗ is ambiguous.

Thus, a higher resource stock makes the problem of substitute development

less pressing and will allow the social planner to share the benefits between

higher resource consumption and being able to develop the substitute at a more

leisurely pace. A more advanced technological state (initial knowledge stock)

will also allow higher resource consumption. The effect on the R&D programme

is indeterminate as it depends on the R&D profile along the terminal path.
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Figure 3: (top) Time paths of the backstop and resource prices under the social
optimum (left) and the non-cooperative equilibrium (right); (middle) Quantities
consumed of the exhaustible resource (crosses) and the backstop resource (dots);
(bottom) Trajectories in (K,λK)-space (solid line) and the terminal path (dotted
line).
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3 The non-cooperative equilibrium

3.1 Equilibrium with commitment

Consider now setting up the above problem as a non-cooperative differential

game, in which one agent (the exporter, indexed by E) owns the resource stock;

and a second agent (the importer, indexed by I) buys the resource for consump-

tion, and strategically develops and deploys the backstop technology. R&D is

not conducted here by firms, but by the importing government. This might

be because the government wants to coordinate R&D spending, or because the

benefits due to R&D are not appropriable and hence R&D has funded by the

government.

For purposes of intuition, I will first consider an equilibrium in the case

in which commitment is possible; i.e. an equilibrium in open-loop strategies.

Open-loop strategies are entire time paths of the choice variables. Hence the

exporter is optimising extraction given a path for d(t), and thus for the substi-

tute cost x(t). The importer, on the other hand, is trying to optimise d(t), and

so x(t), given a time path of the extraction rate.

The open-loop equilibrium is intended to illustrate the qualitative features of

the closed-loop equilibrium. For some initial states, the two equilibria coincide,

and the open-loop equilibrium also serves as a check on the closed-loop solution.

In the next section, I will show numerically that the two equilibria are very

similar both qualitatively and quantitatively.

The limit-pricing argument discovered by Hoel (1978) is at the heart of the

strategic equilibrium. Consider a monopolist supplying a resource, for which

there exists a competitively supplied perfect substitute with a fixed, constant

price. The monopolist will eventually start selling the resource at a price only

just undercutting the marginal cost of the substitute, satisfying the entire de-

mand at this price. Initially, the resource may be optimally priced below the

backstop price. If resource demand is elastic, the resource owner has to choose

between selling the marginal unit of the stock immediately, possibly depressing

revenue earned for the inframarginal units, or at the time of exhaustion at the

backstop price. If the initial resource stock is large, exhaustion may occur a

long time in the future and immediate sale is preferred. It is straightforward to

show that the same result holds for a given decreasing backstop price path.

The exporter maximises the discounted revenue stream

max
qF

∫ ∞
0

e−ρt (R(qF ;K)) dt (5)
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where R(q;K) ≡ p(q;K)q denotes revenue, with inverse demand given by (1). I

will from now on omit the dependence on K. The problem is solved subject to

the path of R&D spending d(t), taken as given; to the resource constraint; and

to the law of motion for the resource stock. Note that I rule out carbon taxes.8

The importer maximises the discounted stream of utility of the representative

consumer, i.e. utility from resource consumption less spending on purchasing

the exhaustible resource and R&D activities:

max
d

∫ ∞
0

e−ρt (u(qF + qB)− p(qF )qF − x(K)qB − c(d)) dt (6)

subject to the exhaustible resource supply path qF (t), taken as given; to the

law of motion of the knowledge stock; and assuming that the representative

consumer maximises utility, taking prices as given. I omit any tax or tariff

instruments, to focus solely on the effect of technological development.

The perfect substitutability of the two resources affects the importer’s prob-

lem too. For any given qF , the demand for the backstop resource, and the

resource price, are not differentiable with respect to the backstop price (equa-

tions (1) and (2)). This complication means that, in the limit-pricing stage, the

equilibrium path is not uniquely defined:

Proposition 5. A continuum of open-loop equilibria exist. Any open-loop

equilibrium features three stages:

Stage IA. t ∈ [0, t∗), t∗ ≥ 0. Initially, only the exhaustible resource is used,

with rate of extraction decreasing monotonically. A strictly positive quantity of

the resource is left at the date t∗. Resource price is strictly below the unit cost of

the backstop and follows the monopolist’s Hotelling Rule, with marginal revenue

rising at the discount rate. R&D intensity is strictly positive and increases

monotonically, with the marginal cost increasing at the discount rate.

Stage IB. t ∈ [t∗, T ]. Only the exhaustible resource is used, with the monop-

olist limit pricing at the backstop price. Resource use increases monotonically,

and T is determined by the date at which the stock is fully exhausted. R&D

intensity is initially strictly positive. It may behave non-monotonically. The

marginal cost of R&D satisfies

dc′(d)
dt

c′(d)
∈ [ρ+

qFx
′(K)

c′(d)
, ρ]

If the date t∗∗ at which the lower bound on the backstop cost is attained is

8This assumption is for analytical convenience. It could be justified by the observed
difficulty of agreeing to a globally binding agreement on carbon pricing.

11



less than T , then R&D intensity is zero following this date and resource use is

constant.

Stage II. t ∈ [T,∞). In the final stage, the economy uses only the substitute

and follows the terminal path.

The indeterminacy of the equilibrium outcome in Proposition 5 results, in a

sense, from dual limit-pricing. Given a path of the backstop price, the resource

exporter will eventually seek to price just below the backstop. However, for

a continuum of paths of resource extraction, the resource importer is similarly

happy to develop the backstop technology so that it remains ’only just’ uncom-

petitive vis-a-vis oil: tracking the resource price, but without an incentive to

conduct R&D faster or slower. The capital gains to knowledge must lie some-

where between zero (the capital gains when the backstop is not used at all) and

qFx
′(K) (the capital gains when the backstop supplies the entire demand).9

In the next section I will show that the time-consistent equilibrium will

feature terminal path R&D following the start of limit pricing. As my intention

is to use the open-loop equilibrium only to illustrate the qualitative features of

the closed-loop case, I will from now focus on this equilibrium only.

Intuition suggests that the non-cooperative equilibrium would feature ex-

cessively low extraction, as the exporter seeks to push up revenues, and too

intensive R&D effort, as the importer wants to force the exporter to sell the

resource faster. Again, at this level of generality, it is difficult to confirm this.

However, if the elasticity of resource demand ε(q) ≡
∣∣∣ p(q)qp′(q)

∣∣∣ is weakly monotonic

with respect to quantity, it is straightforward to verify the following:

Proposition 6. If ε′(q) ≥ 0, the open-loop equilibrium will feature inefficiently

high initial R&D effort d(0). If ε′(q) ≤ 0, then initial resource extraction rate

qF (0) will be inefficiently low. With isoelastic utility (ε′(q) = 0), both hold; the

substitute becomes competitive inefficiently early.

Thus, under the assumption of isoelastic utility, the open-loop equilibrium

will indeed imply excessively low initial resource extraction rates, as the monop-

olist cuts extraction from the socially optimal level, and excessively high R&D

rates, as the importer starts benefiting from low backstop costs earlier, at the

time limit pricing begins.

9Were the importer to conduct faster R&D, accounting for lower current capital gains, it
would take control of the resource price immediately and the capital gains would jump to the
upper bound. Were the importer to slacken R&D, raising accounted capital gains, it would
price strictly above the backstop price, so that capital gains would fall to zero and R&D would
immediately pick up again.
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Proposition 7. With isoelastic demand, an increase in the initial resource stock

S0 increases initial equilibrium oil supply qF (0), lowers initial R&D efforts d(0)

and leads to a delay in the substitute becoming competitive (t∗ rises).

Hence, having more of the exhaustible resource has similar effects as in

the socially optimal case: the benefits are shared between higher oil supply, a

reduced need to conduct costly R&D, and a delay in the substitute becoming

competitive. It is more difficult to sign the effects of a higher initial knowledge

stock.

3.2 Non-cooperative case without commitment

I will now turn to the equilibrium in the absence of commitment, limiting myself

to Markovian strategies—strategies which are functions of the current state of

the system only—and thus to the Markov-perfect Nash equilibrium concept

(MPNE).

The Bellman equations for the exporter’s and importer’s problems, respec-

tively, are

ρV E(K,S) = max
qF

{
R(qF ) + d̃(K,S)V EK (K,S)− qFV ES (K,S)

}
(7)

ρV I(K,S) = max
d

{
u(q̃F (K,S) + qB)−R(q̃F (K,S))− x(K)qB − c(d)

+ dV IK(K,S)− q̃F (K,S)V IS (K,S)

} (8)

where pF and qB are given by (1) and (2).

To obtain further intuition, I will first obtain a result pertaining to open-

loop equilibria in which the initial knowledge stock, denoted by K0 ≥ 0, is now

allowed to vary. I will index the equilibria by their initial state (K0, S0).

Lemma 1. Consider the set of open-loop equilibria such that limit-pricing

begins immediately, i.e. that satisfy

Φ = {(S0,K0) : MR(p−1(x(K0))) ≤ e−ρ(T−t
∗)x(K(T ))}

where MR(·) denotes marginal revenue, and p−1(x(K)) is inverse demand at

the backstop price. The upper boundary of this set is given by S0 = φ(K0),

along which the above holds as an equality, and satisfying φ′ > 0.

In words, under commitment, limit-pricing begins immediately for suffi-

ciently low S0, given any K0. As the initial knowledge stock goes up, limit-
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pricing begin at higher resource stocks.

Proposition 8. In the set Φ, the open-loop equilibrium coincides with a Markov-

perfect Nash equilibrium.

In other words, following the open-loop strategies (synthesised as functions

of the state variables) is time-consistent once limit-pricing has started. The

importer’s strategy is not a function of the resource stock, and so the exporter

cannot influence the importer’s future actions. The exporter, on the other

hand, will always limit-price, in which case the importer optimally develops the

substitute technology as if the substitute did not exist.

I will now focus on a particular MPNE, one which indeed coincides with the

open-loop equilibrium in the set Φ. There is potentially a large set of equilibria

which satisfy this condition. I will proceed to find one which is continuously

differentiable in terms of the value functions outside the set Φ. In other words,

I am ruling out equilibria which feature coordinated jumps in strategies in the

non-limit pricing stage.

Note that the payoffs along the locus S = φ(K) are easy to calculate as they

coincide with the open-loop case. It is then possible to reformulate the problem

as a dynamic game in which the terminal time is the moment at which the

economy enters the set Φ, with the corresponding terminal payoffs. For either

player’s problem, if one now obtains a continuously differentiable function which

satisfies the Bellman equation (with an interior solution) at all points outside

the set Φ, and which approaches the terminal value at all points along the

locus S = φ(K), then the Bellman equation also yields the optimal strategies

(Theorem 5.3 in Başar and Olsder (1999)). Note that, in particular, smooth

pasting conditions are not required.

I investigate the closed-loop case outside the set Φ numerically. In fact,

the value functions turn out to be nondifferentiable at the regime boundary

S = φ(K). Hence, the general method of discretisation with respect to time,

followed by value function iteration using Chebyshev polynomials, will not work.

Using B-splines to approximate the function produces a solution of poor quality

near the regime boundary. Furthermore, it is more satisfactory to work in

continuous time as the date of exhaustion is endogenous, and as the open-loop

problem has been solved for the continuous-time case.

The first-order conditions to the above problems, with limit pricing not

binding, are

d∗ ≡ d∗(V IK) = c′−1(V IK)

q∗F ≡ q∗F (V ES ) = MR−1(V ES )
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Using these, the solution will satisfy

ρV I = u(q∗F )− q∗F p(q∗F )− c(d∗) + V IKd
∗ − V IS q∗F

ρV E = q∗F p(q
∗
F ) + V EK d

∗ − V ES q∗F
(9)

where I have omitted the dependence of q∗F and d∗ on V ES and V IK , respectively.

I will thus have to solve a system of two nonlinear partial differential equations.

The boundary conditions will be given by the continuity of the value functions

at the upper boundary of the set φ(K).

I solve the system as a functional problem using the collocation method: that

is, I find n-dimensional approximations Ṽ I , Ṽ E which satisfy the above system

at n points (Judd (1998)). I am imposing smoothness in the set Φ−1 ≡ [0,K]×
[0, S]\Φ (for some S > φ(K)). Thus, Chebyshev collocation with Chebyshev

nodes should yield good results. In order to be able to use this, I transform the

set Φ−1 into a rectangle in (K, s) by using

s ≡ S − φ(K)

S − φ(K)
(10)

implying s ∈ [0, 1].

I will thus approximate transformed value functions vI(K, s), vE(K, s), the

partial derivatives of which satisfy, for i ∈ I, E,

viK = V iK(K,S) + V iS(K,S)(1− s)φ′(K)

vis = V iS(K,S)(S − φ(K))
(11)

The function approximations will be of the form

ṽi(K, s) = V φ,i(K) + sAiG(s,K)

where V φ(K) is the relevant value function at the limit-pricing boundary S =

φ(K), A is a coefficient matrix with dimensions (nm, nm), and g(·) is a (nm)

vector of Chebyshev polynomials. Note that the boundary condition will be

satisfied.

I now choose functional forms. Let utility be of the standard isoelactic form,

u(q) = q
1− 1

η

1− 1
η

. Let the backstop cost be given by x(K) = x + γ
2 (K −K)2. Let

R&D costs be quadratic also: c(d) = ξ
2d

2. To illustrate the qualitative results,

I parameterise arbitrarily with η = 2, ξ = .01, γ = 1.6(−4).

For the approximation, I choose a 400-degree Chebyshev approximation,

with 20 basis functions in each dimension. This yields a system with 800 equa-
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tions and unknowns. I obtain the coefficients for the open-loop solution to use

as my initial guess.

The system is solved rapidly by a standard non-linear rootfinding algorithm,

probably largely due to the good initial guess. For initial guesses ’near’ the open-

loop equilibrium values, the system converges to effectively identical results; for

very different initial guesses, convergence does not occur. Euler equation errors

are small, of the order of 10−6 relative to the Euler equation values (Figure 4)10.

The results are displayed in Figures 5 to 8. As the system evolves, the econ-

omy travels towards the bottom right in the state space. Importer value (Figure

5) of course does not depend on the resource stock under limit pricing. Where

limit pricing does not occur, higher initial resource stock implies higher value,

as the exporter seeks to sell more of the plentiful resource early on. Importer

value increases with the knowledge stock, reaching a maximum (corresponding

to a permanent stream of constant resource use) when the backstop cost reaches

its minimum (here at K = 250).

Exporter value (Figure 6) increases with resource stocks, being zero when

no resource exists. Higher knowledge stocks reduce value, up until the lower

bound on backstop cost (although, with the parameterisation used, this effect

is hard to distinguish in the figure).

Optimal actions, as functions of the state, are shown in Figures 7 and 8.

When limit pricing is active, R&D intensity of course coincides with the terminal

path. It is also constant with respect to the resource stock. When limit pricing

is not active, R&D intensity is lower (as in the open-loop case). There is a

discontinuous jump in the actions at the locus where the regime switches into

limit pricing. Immediately prior to the switch, a marginal unit of knowledge

induces the exporter to sell more oil. This yields a marginal unit of surplus to

the importer, but also depresses future value as the resource stock falls. The net

impact is to lower the marginal value of R&D, and so the importer slows down

R&D immediately prior to the switch, relative to the case under commitment.

As soon as limit pricing begins, this effect disappears and R&D investment leaps

up.

When limit pricing, the quantity of the resource sold is a function only of

the knowledge stock. Before the start of limit pricing, resource sales are higher.

Again, a discontinuity exists. Prior to the regime switch, oil extraction induces

higher R&D efforts from the importer, which is costly to the exporter. Thus, the

marginal value of the resource is lower, and the resource owner would extract

more of it. Note that the model implicitly assumes that oil cannot be stored;

10One initial guess converged to a solution which was ruled out based on very large Euler
equation errors.
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Figure 4: Euler equation errors for the two players, outside the collocation nodes,
relative the the Euler equation LHS. The errors are less than one thousanth of
a percent.
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Figure 5: Resource importer value increases with knowledge, up to K = 250 at
which substitute cost achieves its minimum value. Under limit pricing, stocks
of the exhaustible resource make the importer no better off. With oil stocks
high relative to knowledge stocks, the resource is initially priced strictly below
substitute and the importer value increases as more oil is supplied.
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Figure 6: Resource exporter value increases with oil stocks. More competi-
tive substitute (more knowledge) decreases value, up to the level after which
substitute cost no longer falls (here K = 250).

with storage, markets would arbitrage away jump in the oil price. With plentiful

resource stocks, the exporter would rather conserve the resource. The resource

has higher marginal value, in that conserving the stock will lower the R&D rate

until limit pricing begins. This can be seen by using the envelope theorem on

the Bellman equation to obtain

ρV ES = V EKSd+ V EK
∂d

∂S
− V ESSqF =

dVS
dt

+ V EK
∂d

∂S

and then integrating between t and the date at which limit-pricing begins, t∗,

to get

V ES
∣∣
t

= e−ρ(t
∗−t) V ES

∣∣
t∗

+

∫ t∗

t

e−ρ(z−t) V EK
∣∣
z

∂d

∂S
dz

where the derivative of the value function at t∗ is understood to refer to the

left-hand side limit of the derivative. Note that the integral will, for the results

obtained, be positive: this is the cumulative value of the marginal unit of the

resource in terms of deterring R&D investment.

I will now consider the differences between the equilibria with and without

commitment. The excess values when commitment is not possible, compared
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Figure 7: R&D intensity. Note that the axes have been reversed. Under limit
pricing, the importer conducts R&D as per the terminal path (the concave
part). For high oil stocks relative to knowledge stocks, oil is initially priced
strictly below the substitute and the importer relaxes R&D efforts.

Figure 8: Exhaustible resource sales. Under limit pricing, extraction is deter-
mined by the substitute cost. For high oil stocks, relative to knowledge, exporter
initially sells strictly more than the limit-pricing quantity.
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Figure 9: The importer gains when commitment is not possible (top), but the
change in the value is at best just over 1%. The exporter loses by up to 3%.
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Figure 10: Euler equation errors for the two players, outside the collocation
nodes, relative the the Euler equation LHS. The errors are less than one thou-
santh of a percent.
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Figure 11: Price paths of the backstop resource (always decreasing) and the ex-
haustible resource (initially increases), for the commitment (open-loop) outcome
(dotted red) and the discretionary (closed-loop) outcome (solid blue). Times of
exhaustion are very close together and indicated by the dashed vertical line. Un-
der discretion, initial resource prices are higher as the exporter tries to conserve
the resource, in order to motivate lower R&D activity.
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Figure 12: Resource stocks for the commitment (open-loop) outcome (dotted
red) and the discretionary (closed-loop) outcome (solid blue). Times of exhaus-
tion are very close together and indicated by the dashed vertical line; the dotted
vertical lines indicate start of limit pricing.

to when it is, are shown in Figure 9. The importer gains is commitment is not

possible, while the exporter loses, as the exporter is induced to sell more of

the resource while the importer can relax R&D efforts (as explained above, and

shown in Figure 10). Note that for high resource stocks, relative to knowledge,

the exporter in fact reduces their extraction, compared to the commitment case.

Time paths of resource and backstop prices, and of the resource stock, are

compared in Figures 11 and 12.

4 Stock pollution and economic exhaustion

I will now extend the model to take into account economic, rather than physical,

exhaustion of the resource (Heal (1976)). Economic exhaustion occurs when

resource extraction stops due to increasing extraction costs, rather than physical

(total) depletion of reserves. This substantially increases the realism of the

present model. I will also introduce a stock externality related to the cumulative

use of the resource; the obvious motivation is climate change, resulting from

the use of fossil fuels. Jointly, the two assumptions introduce interesting new

dynamics to the model.
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I will illustrate the basic dynamics by solving the special case in which limit

pricing begins immediately at the start of the game.

Consider first the inclusion of stock-dependent extraction costs for the ex-

porter. The objective function now becomes

max
pF

∫ ∞
0

e−ρtqF (pF ;K)pF − qF (pF ;K)C(S) dt (12)

where C ′ < 0; in other words, the unit extraction cost increases as the remaining

resource stock falls. The exporter’s control variable is now the oil price; this

allows the importer to affect resource supply by pricing the exporter out of the

market.

The importer’s problem becomes

max
d(t)

∫ ∞
0

e−ρt (u(qF + qB)− p(qF )qF − x(K)qB − c(d)− Z(G)) dt (13)

Ġ = qF , G(0) = G0 (14)

K̇ = d,K(0) = K0 (15)

where G(t) denotes the stock of greenhouse gases in the atmosphere. I assume

away natural decay of the atmospheric stock; this simplifies the problem and

is a fair approximation of reality, with drawdown of carbon dioxide into the

deep oceans and eventual mineralisation occurring at timescales much longer

than those typically considered in economic problems. Z(·) yields damages due

to climate change impacts, which enter welfare additively as a function of the

greenhouse gas stock (implicitly proxying changes in the climate system).11

Note that the models below are not open-loop equilibria, but rather control

problems where the importer recognises the exporter will limit price. Solving

the actual open-loop equilibrium is more involved, as the Hamiltonian is dis-

continuous in the limit-pricing stage and standard theorems in control theory

do not apply. However, the control problem as formulated here illustrates the

mechanisms underlying the feedback equilibrium.

4.1 Equilibrium with immediate limit pricing

To retain tractability, I will focus on cases in which limit pricing begins imme-

diately, i.e. t∗ = 0. As before, limit pricing eliminates any strategic dimensions

to the game.

11This is a common assumption in the integrated assessment literature. However, damages
could be argued to depend more on the rate of change of climate, rather than of the degree
of change over preindustrial.
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Definition 2. Given some instance of the model, the reference equilibrium is

the equilibrium of the same instance absent the externality. Note that the R&D

process in the reference equilibrium will follow the terminal path at all dates.

Proposition 9. With no extraction costs, and in the case t∗ = 0, taking the

externality into account reduces the optimal R&D rate (for any level of knowl-

edge).

If the resource is supplied by a limit-pricing monopolist, it is optimal to slow

down the development of substitutes to the polluting resource. The pollutant

introduces an extra cost to investing in substitutes: a fall in the substitute price

forces the monopolist to supply larger amounts of the polluting resource while

stocks remain positive, thus raising the damage costs due to near-term pollution

impacts.

With extraction costs present, the choice of R&D intensity has a third effect:

it also influences the ultimate fraction of the resource extracted. A marginal unit

of knowledge will imply exhaustion at a lower level of cumulative extraction, as

it lowers the unit cost of producing the backstop, relative to the unit extraction

cost of the exhaustible resource. This effect will encourage faster development

of the backstop. However, the prospect of higher near-term pollution will still

tend to deter it. The overall effect on the R&D process will depend on the

balance of these effects.

Prior to exhaustion, the exporter will simply satisfy the entire inverse de-

mand at the backstop price: qF = p−1(x), qB = 0. Exhaustion occurs when

extraction becomes unprofitable, i.e. the unit extraction cost equals the price:

C(S(T )) = x(K(T )) (16)

Following exhaustion, the stock externality presents a constant burden on

welfare but does not affect incentives to conduct R&D. The economy will thus

follow the terminal path. Hence, the importer’s problem is to solve

max
d(t),T

∫ T

0

e−ρt
(
u(p−1(x))− xp−1(x)− c(d)− Z(G)

)
dt

+ e−ρT
(
π∞(K(T ))− Z(G(T ))

ρ

)
where π∞(K) denotes the welfare obtained from resource use following the ter-

minal path after exhaustion. The choice of T is constrained by equation (16).

I will focus on cases in which exhaustion is, indeed, economic: S(t) is always

strictly positive. Denoting the optimal values by an asterisk:
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Figure 13: Alternative trajectories in (K,λK)-space. Note that R&D intensity is
monotonic with respect to λK . If the concern for long-term damages outweighs
the near-term pollution impacts (dashed line), initial R&D intensity is higher
than in the case without the externality (terminal path; dotted line). High
near-term damages can lead to initial R&D intensity being lower than without
the externality (solid line), although eventually it will become optimal to start
intensive R&D to halt resource use. Both trajectories feature a discontinuous
fall in R&D intensity as soon as economic exhaustion occurs.

Proposition 10. Initial R&D intensity may be higher or lower in the equi-

librium with the externality and extraction costs, compared to the reference

equilibrium: d∗(0) Q dref(0). Immediately preceding exhaustion, R&D intensity

is higher for the given level of accumulated knowledge than in the reference

equilibrium, as the importer drives down the backstop price in order to shut

the polluting resource out of the market: limt→T∗+ d
∗(K∗(t)) > d∞(K∗(T ∗)).

If initial intensity is lower than in the reference equilibrium, it will equal the

reference equilibrium rate just once, being lower always before and higher al-

ways after. As soon as exhaustion occurs, the R&D rate jumps discretely down

to the terminal path.

In words, in the run-up to exhaustion, the importer will always race to drive

the polluting resource out of the market (Figure 13). This way, the importer

avoids the marginal damages due to long-term pollution (suffered in perpetu-

ity). Of course, R&D also makes energy cheaper as in the case without the

externality. Once oil is rendered uncompetitive, R&D intensity falls discretely

to the terminal path: the additional marginal value to R&D, associated with

the prospect of shutting out the polluting resource, has already beem realised.

If marginal damages at low levels of pollution are fairly significant, relative to
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the long-term damages, and the resource is plentiful, then early R&D efforts may

be below the reference rate: the importer wants to delay short-term damages by

delaying R&D (thus keeping short-term extraction rates low). In this case, there

will come a unique point in time at which the importer starts to focus more on

long-term concerns, beginning the crash programme; after this moment, R&D

rates exceed the corresponding rates without the pollution problem, until the

resource is exhausted.

5 Conclusions

I have analysed strategic competition between a resource exporter, selling an

exhaustible resource, and a resource-consuming country, able to gradually im-

prove, with convex per-period costs, a perfect substitute to this. Per-period

convex costs imply that the cost of developing the resource are optimally spread

out across time. With incremental technological progress, the non-cooperative

outcome features three stages. Initially, the resource is priced strictly below the

substitute cost, with decreasing resource use (thus increasing resource price)

over time. After the substitute becomes competitive, the resource exporter will

price oil just below the substitute, in order to keep the substitute off the mar-

ket. As technological progress keeps making substitutes cheaper, the resource

exporter is forced to supply increasing quantities. The path of resource extrac-

tion is thus non-monotonic. Finally, once the resource is depleted, the importer

switches to the backstop technology. Unlike most other models of resource ex-

traction and substitute development, the present model explains why R&D is

undertaken even when the substitutes are far from being competitive against

the resource.

When use of the exhaustible resource results in a stock pollution externality—

as climate change follows from consumption of a fossil fuel such as oil—limit-

pricing behaviour implies that, in the absence of carbon prices, it will be optimal

to slow down research. The importer effectively controls oil supply; aggressive

R&D programs will just result in the oil stock being depleted faster, leading

to greater emissions. With oil extraction costs increasing as supplies dwindle,

there is a third effect: R&D can make oil obsolete, actively bringing the oil age

to a close with a part of the resource remaining unused. I have shown that this

effect will always eventually dominate. As exhaustion looms close, the importer

will race to drive the polluting resource out of the market.

These findings are important, as they inform the public debate over whether

technological programs would prove to be a workable climate policy instrument,
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if carbon pricing remains politically difficult. Aggressive R&D subsidies can be

used to wean economies off oil, provided that the moment of (economic) exhaus-

tion is relatively close. However, if oil can be expected to remain competitive

with the substitutes for a long time, more aggressive R&D may only result in

greater near-term emissions, possibly aggravating climate change. Hence, the

optimal response may still be to initially slow down R&D efforts. These results

are necessarily indicative only, due to the simplicity of the model (Hart and

Spiro (2011)). Nevertheless, they give partial intuition to a particular outcome

of climate policy which has not been considered previously.

In the present paper, research into substitutes to oil has been a function of

the government. An obvious extension of the model would be to consider what

kinds of market incentives could yield a decentralised backstop development

process. This remains work in progress.

Appendices

A The cooperative outcome

Proof of Proposition 1. EXISTENCE: TO BE WRITTEN.

If the upper bound K is reached in finite time t∗∗, λK(t) = 0 for t ≥ t∗∗.

Then it is immediate from the theory of ordinary differential equations that a

unique solution exists to the initial value problem given by equations (4c) and

(4e), with K(t∗∗) = K, λK(t∗∗) = 0.

If the upper bound is never reached, i.e. K = ∞, the system does not

reach a steady state; instead, R&D continues forever: d(t) > 0, for all t. It has

to be shown that only one path is consistent with the transversality condition

(4g). Suppose such a path exists. A necessary condition is limt→∞ e−ρtλK = 0.

Rearranging (4e), integrating across the interval s ∈ [t, t0) and taking the limit

as t0 →∞, I obtain

λK(t) = −
∫ ∞
t

e−ρ(s−t)qB(s)x′(K(s)) ds (17)

The assumptions on x(·) and (4c) imply that K → ∞, and limt→∞ x′(K(t))

= 0. Denoting the quantity of backstop resource consumed at the minimum

price by qB , λ(t) <
∫∞
t
e−ρ(s−t)qx′(K(t)) ds→ 0. The assumptions on c(·) then

dictate that also d→ 0.

A stage-two phase diagram in (K,λK)-space is presented in Figure 14a. K̇ >
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0 for all λK > 0, with loci K̇ = 0 located at λK = 0. The loci of points λ̇K = 0

is illustrated; it is decreasing and approaches the K-axis asymptotically. The

optimal path has to be sandwiched between the two loci. This path is unique.

Suppose it weren’t; then there would exist two paths λ1K(K) and λ2K(K), both

asymptotically converging to the K-axis. Suppose λ1K(K̃) > λ2K(K̃), for some

K̃. As K increases, the vertical distance between the two paths would have to

decrease. However, at K̃

d(λ1K − λ2K)

dK
=
λ̇1K
K̇1
− λ̇2K
K̇2

=
λ̇1K
r1
− λ̇2K

r2
> 0

as both terms are negative, and decreasing in absolute value with λK . Hence

the paths would diverge, while converging towards zero—a contradiction.

Proof of Proposition 2. The backstop will always be used eventually as u′(0) >

x(0). Note that this implies that λK(0) > 0; otherwise the costate variable will

become negative and the transversality condition (4g) is not met (note that

x′(·) < 0). For the same reason, λK(t) = 0 is only possible for t ≥ t∗∗ (in fact,

integrating (4e), one confirms that, if t∗∗ is finite, then λ(t) = 0 for t ≥ t∗∗).

But then, due to the assumptions on c(·), research takes place at all times until

the attainment of the lower bound (if ever): d > 0 for all t < t∗∗.

Suppose there is an interval of time of non-zero length such that both re-

sources are used simultaneously. Then, from the first-order conditions, dur-

ing this period λS = x. Taking time derivatives and using (4d), 0 ≤ ρλS =

x′(K)d < 0 which is a contradiction. Hence, there cannot exist an interval

during which both resources are used.

That the exhaustible resource will be used up entirely is immediately implied

(4a) and (4f). Marginal utility of resource consumption increases in stage one;

in stage two, as the backstop cost decreases, marginal utility decreases. This

yields the monotonicity properties of resource use over time. Prior to the time

of switch t∗, λ̇K > 0 (as qB = 0). This yields the monotonicity of R&D intensity

prior to the switch.

In (K,λK)-space, following exhaustion, we have

dλK
dK

∣∣∣∣
qB>0

=
λ̇K

K̇
=
ρλK + p−1(x(K))x′(K)

(c′)−1(λK)
≤ ρλK

(c′)−1(λK)
=

dλK
dK

∣∣∣∣
qB=0

and so the path will lie below the terminal path in (K,λK)-space (Figure 14a).
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Figure 14: Behaviour of the economy in (K,λK)-space; illustrated the case in
which the lower bound x is attained in finite time. Along the terminal path, the
economy approaches (K, 0). Before this, the economy has reached the terminal
path at some finite date, prior to which it lies on a path below the terminal
path. A higher knowledge stock at the switching date K(t∗) implies a lower
R&D intensity path before the switch. The knowledge stock at the switching
date is determined by the resource constraint.

Proof of Proposition 3. Note first that, for any given K, λK > 0, an in-

crease in ρ increases the slope of the phase arrows in (K,λK)-space: K̇ remains

unchanged, but λ̇K strictly increases (Figure 15a). This further implies that the

new terminal path will lie strictly below the old terminal path. Both have to

end at (K, 0). Suppose the new terminal path would, somewhere, lie (weakly)

above the old one. Then it would be impossible for the terminal path to arrive

at the required point.

Take optimal paths A and B such that ρA < ρB . Suppose KB(t∗B) ≥ KA(t∗A).

Then it is immediate from the phase diagram that dB(0) < dA(0), and that

t∗A < t∗B . Now note that the marginal utility of consuming fossil fuels also

has to rise at a higher rate, and terminate at xB(t∗B) ≤ xA(t∗A). This implies

that the marginal utility will always be lower along B than along A, that is

extraction rates have to be always higher; and for a longer time. This will break

the resource constraint. Hence, KB(t∗B) < KA(t∗A).

Suppose dt∗

dρ < 0. Then λS(0) has to fall with ρ; if not, then there will

be less resource extraction at all times, for a shorter period of time, and the

resource constraint is not satisfied.

Suppose dt∗

dρ > 0. Now, from the phase diagram, it is obvious that if λK(0)
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Figure 15: An increase in ρ leads to the terminal path contracting down and
the phase arrows all skewing up (15a). A (weakly) lower knowledge stock at
switching time would imply higher t∗ and higher extraction (lower marginal
utility) at all moments, breaking resource constraint (15a).

were to rise with ρ, the terminal path would be hit more quickly—a contradic-

tion.

Thus at least one of the capital stocks must fall in terms of the initial shadow

values; in fact, both may do so. This means that either the initial R&D rate or

the initial extraction rate (or both) have to fall.

Proof of Proposition 4. By arguments employed in the proof of Proposition

3, for two equilibria A and B which do not vary in the terminal path (i.e. which

have identical discount rates, R&D cost functions and backstop technologies)

KA(t∗A) ≥ KB(t∗B)⇔ t∗A ≥ t∗B , qA(t∗) ≥ qB(t∗B), dA(0) < dB(0)

Suppose A and B vary only in terms of initial resource stock: SA(0) > SB(0),

dA(0) ≥ dB(0). Then the path qA(t) < qB(t) for all t ∈ [0, t∗A] and the resource

constraint is broken. Hence it must be that dA(0) < dB(0) and qA(0) > qB(0).

Suppose instead that A and B vary only in terms of the initial knowledge

stock: KA(0) ≥ KB(0). Then if qA(0) ≤ qB(0), the price of the exhaustible

resource will hit the backstop price earlier: t∗A < t∗B , and again not all of the

resource is used up in A. Hence qA(0) ≥ qB(0). Similar claims are not applicable

for the R&D process.
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B Open-loop equilibrium

Proof of Proposition 5. All costate variables are denoted by the same sym-

bols as for the social planner’s problem, but now represent the marginal value

of the stocks to their respective ’owners’.

Necessary conditions for a solution to the exporter’s problem are

R′(qF ) = p′(qF )qF + p(qF ) ≤ λS , qF ≥ max{0, q−1(x)}, C.S. (18a)

λ̇S = ρλS (18b)

lim
t→∞

e−ρtλS(t)S(t) = 0 (18c)

λS(T ) = x(K(T )) (18d)

where T denotes the time at which the resource is exhausted. Equation (18a)

is just the Hotelling Rule for the monopolist: marginal revenue R′(qF ) has to

equal the scarcity rent (which increases at the discount rate). The entire stock

has to be exhausted eventually; the optimal date of exhaustion is given by (18d)

(following from the condition that the Hamiltonian equal zero at the date at

which the resource is used up). The marginal revenue is the discounted price at

which the very last unit can be sold, at the end of the limit-pricing stage.

The resulting solution has three stages. For t ∈ [0, t∗), the price of the

resource is strictly below the backstop cost and only the exhaustible resource is

consumed. If resource stocks are low, or if resource demand is inelastic for the

relevant range, this stage is degenerate (Hoel (1978)). In the second stage, for

t ∈ [t∗, T ), the resource price equals the backstop cost but only the exhaustible

resource is consumed. The costate trajectory is continuous and so p(qF (t∗)) =

x(K(t∗)). Finally, from t = T , the exhaustible resource has been used up and

only the backstop resource is consumed. The exporter has nothing further to

do as the extraction rate is constrained to zero.

Turn now to the importer’s problem. The discontinuity in backstop demand,

with respect to the knowledge stock ((1) and (2)), poses a problem: namely,

that the objective function in (6) is not differentiable with respect to K at

x(K) = p−1(qF ). Hence the Maximum Principle must be modified, as by Hartl
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and Sethi (1984), to obtain necessary conditions:

c′(d) ≤ λK , d ≥ 0, C.S. (19a)

lim
t→∞

e−ρtλK(t)K(t) = 0 (19b)

λ̇K ∈

{
{ρλK + qBx

′(K)} p(qF ) 6= x(K)

[ρλK + qFx
′(K), ρλK ] p(qF ) = x(K)

(19c)

In words, when the monopolist is limit pricing, then the time derivative of

the costate variable can take any of a number of values. Notice that when

there is no backstop use, λK rises at the discount rate. When there is only

backstop consumption, this rate of increase is reduced by |qBx′(K)|. A path

of λK implies a path for x(K); a higher λ̇K corresponds to a faster decrease

in ẋ = x′(K)K̇ = x′(K)(c′)−1(λK), i.e. the backstop price slope falling faster.

Integrated over some period, this implies the backstop price rising less or falling

more steeply.

Once the backstop cost hits the resource price path, i.e. limit pricing begins,

any equilibrium path will have to have ẋ = ṗF ≡ p′(qF )q̇F for some λK satisfying

(19) above. This will ensure that limit pricing continues. Suppose qF is, indeed,

such that it is possible to find a λK which allows limit pricing to continue, and

consider a candidate optimum in which λK would be such as to diverge from the

limit pricing outcome. A lower λK would mean that the backstop price would

immediately rise above the resource price; this would accelerate R&D effort

again to bring λK back to the limit pricing path. The same argument holds

for a λK inducing faster R&D; as soon as the backstop cost fell infinitesimally

below the exhaustible resource price, R&D would slow down and the backstop

price would immediately begin tracking the resource price—i.e. limit pricing.

Following the exhaustion of the resource at time T , the exporter ceases to

play a role in the game and the importer behaves as the social planner. The final

stage can be analysed as for the social optimum. The stages are tied together

by continuity of K and λK at times t∗ and T .

Proof of Proposition 6. It is well-known that if ε′(q) ≥ 0, the rate of increase

of the resource price is greater than ρ. Suppose that the open-loop equilibrium

path hits the terminal curve at a higher K than the socially optimal path:

KS(t∗S) < KOL(t∗OL). Then, by arguments used in the previous proposition,

t∗S < t∗OL; further, qSF (t∗S) < qOLF (t∗OL) < qOLF (t∗S) and the extraction path

qOLF (t) lies above qSF (t). But the social optimum exhausts the entire stock by

t∗S , in which case the along open-loop trajectory exhaustion occurs before t∗OL.

Thus KOL(t∗OL) < KS(t∗S), implying dOL(0) > dS(0).
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Suppose ε′(q) ≤ 0, so that q̇OLF < ρqOLF . If qOLF ≤ qSF (0), and qOLF (t) > qSF (t)

for t > 0, and again the resource stock is exhausted before t∗OL. Hence qOLF (0) >

qSF (0).

Proof of Proposition 7. With isoelastic demand q = p−
1
σ , and extending the

argument used by Hoel (1978), as

qF = max

{(
λS(t)

1− σ

)− 1
σ

, (x(K(t)))
− 1
σ

}

(where the max operator captures the limit pricing behaviour), and as

λS(t) = e−ρ(T−t)x(K(T )) (20)

it follows that e−ρ(T−t
∗) = (1−σ)x(K(t∗))

x(K(T )) . Suppose S0 increases but qF (0) falls

(weakly). Then t∗ falls weakly; further, limit pricing begins at a lower K(t∗),

with S(t∗) higher and T higher. This implies that the RHS of (20) (less than

one) will be greater, and so T − t∗ is lower—a contradiction. Hence qF (0),

K(t∗), and d(0) all increase.

Proof of Proposition 1. The boundary will satisfy, with equality, conditions

MR(p−1(x(K)) = e−ρ(T−t
∗)∫ T

t∗
p( − 1)(x(K(t))) dt = S

for any t∗. The sign of the slope of the boundary is easily obtained by the

implicit function theorem.

Proof of Proposition 8 (sketch). One only has to confirm that, given that

the other player is following the open-loop strategy (R&D according to the

terminal path for the importer, limit-pricing for all K for the exporter), the

optimal response is indeed that player’s own open-loop strategy.

C Equilibrium with externality and extraction

costs

Proof of Proposition 9. TO BE WRITTEN—STRAIGHTFORWARD.

Proof of Proposition 10. The Hamiltonian for this problem is

H = u(p−1(x))− x(K)p−1(x)− c(d) + λKd− (λS − λG)p−1(x)
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assuming limit-pricing begins immediately. The necessary conditions are, from

Note 2, Chapter 2.2 in Seierstad and Sydsæter (1987):

c′(d) = λK (21a)

λ̇K = ρλK + x′(K)
(
p−1(x) + (λS − λK)(p−1)′(x)

)
(21b)

λ̇S = ρλS (21c)

λ̇G = ρλG + Z ′(G) (21d)

λK(T ) = λ∞K (K(T ))− µx′(K) (21e)

λS(T ) = µC ′(S(T )) (21f)

λG(T ) = −Z
′(G)

ρ
(21g)

H(T ) = ρ

(
π∞(K(T ))− Z(G)

ρ

)
(21h)

where µ is a shadow value related to the constraint C(S(T )) = x(K(T )). Equa-

tion (21h) yields the optimal stopping time T . Note that for the terminal path,

this holds for all K with λS = λG = 0, and λK = λ∞K (K), d = d∞(K). Hence

λK(T )d(T )− c(d(T ))− (λ∞K (K(T ))d∞(K(T ))− c(d∞(K(T ))))

= (λS(T )− λG(T )) p−1(x(K(T )))
(22)

Using the first-order condition on d, the function Φ(d) ≡ c′(d)d − c(d) =

λKd − c(d) = is increasing in d. The above statement thus relates the dif-

ference between Φ(d(T )) and Φ(d∞(K(T )) to the reduction in welfare caused

by pollution at the moment of exhaustion. Note that λG(T ) < 0.

I will now argue that d(T ) > d∞(K(T )). This follows if λS(T ) < 0, so

that µ > 0: then λK(T ) − λ∞K (K(T )) = −µx′(K) > 0, which yields the result.

Then, from (22), λS(T )− λG(T ) > 0, i.e. λG(T ) is more negative than λS(T ).

This makes intuitive sense: the welfare impact of having more of the exhaustible

resource lies in the fact that a part of it will eventually become a pollutant—but

only part, and only eventually.

To complete the argument, suppose that λS(T ) ≥ 0, so that µ ≤ 0. Then,

for sure, the LHS of (22) is positive, so that d(T ) > d∞(K(T )); but from the

transversality condition on λK(T ), the opposite must hold—a contradiction.

I will finally establish the property that the optimal trajectory crosses the

terminal path once at most; and, so, that there are two distinct phases of R&D,

the first (if it exists) with R&D lower, and the latter with R&D higher, than in

the reference equilibrium. Note that λS −λG has a positive sign. Now, suppose

there exists a point in time when the optimal trajectory coincides with the
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terminal path. Then, along the optimal path, λ̇K must be higher (comparing

the equations of motion for λK) while clearly the R&D rate, and hence K̇, is

equal in both cases. Thus the optimal trajectory will cross to above the terminal

path and stay there until exhaustion.
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