A Theoretical Foundation for the Stakeholder Corporation

Michael Magill Martine Quinzii Jean Charles Rochet

U.S.C

U.C. Davis

U. Zurich and Toulouse School of Economics

Cowles GE Conference
Corporate objective: Shareholders or Stakeholders

Under which of the following assumptions is a large company in your country managed?

1. **Shareholder** interest should be given the first priority.
2. A firm exists for the interests of all stakeholders.

Question to a sample of firms’ managers (Yoshimuri (1995))

![Figure 1: Whose Company Is It?](image)

- **Japan**: 3%
- **Germany**: 17%
- **France**: 22%
- **United States**: 24%
- **United Kingdom**: 29%

- All stakeholders.
- The Shareholders.
The anglo-saxon view (UK, US) of the corporation is shared by most professional economists: “there is one and only one social responsibility of business—to use its resources and engage in activities designed to increase its profits” (Friedman 1970).
The anglo-saxon view (UK, US) of the corporation is shared by most professional economists: “there is one and only one social responsibility of business—to use its resources and engage in activities designed to increase its profits” (Friedman 1970).

Shareholder market value maximization does have a theoretical foundation—the Arrow-Debreu theory applied to production economies (under uncertainty) and the two theorems of welfare economics.
The anglo-saxon view (UK, US) of the corporation is shared by most professional economists: “there is one and only one social responsibility of business—to use its resources and engage in activities designed to increase its profits” (Friedman 1970).

Shareholder market value maximization does have a theoretical foundation—the Arrow-Debreu theory applied to production economies (under uncertainty) and the two theorems of welfare economics.

This perhaps explains its predominance as the paradigm in economics and corporate finance.
We propose an alternative probability model of a stochastic economy with production which provides a foundation for stakeholder view of the corporation.
Models to Support Different Views

- We propose an alternative probability model of a stochastic economy with production which provides a foundation for stakeholder view of the corporation.

- Seminar focuses the simplest model which supports “stakeholder view”.
We propose an alternative probability model of a stochastic economy with production which provides a foundation for stakeholder view of the corporation.

Seminar focuses the simplest model which supports “stakeholder view”.

Hopefully the next presentation will give opportunity to discuss the difference between this model and the standard “state of nature model” and when each model is most appropriate.
Probability Model of Production

- One firm, two periods $t = 0, 1$
Probability Model of Production

- One firm, two periods $t = 0, 1$
- Three goods: labor, produced good, money (composite of all other goods).
One firm, two periods \(t = 0, 1 \)

Three goods: labor, produced good, money (composite of all other goods).

At date 0 firm invests \(a \) (units of money). Investment is risky.
Probability Model of Production

- One firm, two periods $t = 0, 1$
- Three goods: labor, produced good, money (composite of all other goods).
- At date 0 firm invests a (units of money). Investment is risky.
- Uncertainty is modeled through “probability of success”.
One firm, two periods $t = 0, 1$

Three goods: labor, produced good, money (composite of all other goods).

At date 0 firm invests a (units of money). Investment is risky.

Uncertainty is modeled through “probability of success”.

At date 1, with probability $\pi(a)$ firm produces with technology $f_g(l)$, with probability $(1 - \pi(a))$ produces with technology $f_b(l)$.
One firm, two periods $t = 0, 1$

Three goods: labor, produced good, money (composite of all other goods).

At date 0 firm invests a (units of money). Investment is risky.

Uncertainty is modeled through “probability of success”.

At date 1, with probability $\pi(a)$ firm produces with technology $f_g(l)$, with probability $(1 - \pi(a))$ produces with technology $f_b(l)$.

‘g’ is the ‘good’ state: $f'_g(l) > f'_b(l) \implies f_g(l) > f_b(l)$.
One firm, two periods $t = 0, 1$

Three goods: labor, produced good, money (composite of all other goods).

At date 0 firm invests a (units of money). Investment is risky.

Uncertainty is modeled through “probability of success”.

At date 1, with probability $\pi(a)$ firm produces with technology $f_g(l)$, with probability $(1 - \pi(a))$ produces with technology $f_b(l)$.

‘g’ is the ‘good’ state: $f'_g(l) > f'_b(l) \implies f_g(l) > f_b(l)$.

For the seminar, most of the time no labor: $f_g(l) = y_g$, $f_b(l) = y_b$, $\forall l \geq 0$.

\[\pi_g = \pi(a) \quad y_g \quad f_g(l)\]
\[\pi_b = 1 - \pi(a) \quad y_b \quad f_b(l)\]
One firm, two periods \(t = 0, 1 \)

Three goods: labor, produced good, money (composite of all other goods).

At date 0 firm invests \(a \) (units of money). Investment is risky.

Uncertainty is modeled through “probability of success”.

At date 1, with probability \(\pi(a) \) firm produces with technology \(f_g(l) \), with probability \((1 - \pi(a)) \) produces with technology \(f_b(l) \).

‘g’ is the ‘good’ state: \(f'_g(l) > f'_b(l) \implies f_g(l) > f_b(l) \).

For the seminar, most of the time no labor: \(f_g(l) = y_g, \ f_b(l) = y_b, \ \forall l \geq 0 \).

\[\pi_g = \pi(a) \]
\[\pi_b = 1 - \pi(a) \]

\(y_b < y_g, \ \pi(a) \) increasing concave in \(a \).
Agents

- Two classes of agents
 - continuum (mass 1) of risk neutral investors:
 - endowment: \((e_0^i, e_1^i)\) and equal share of ownership of the firm.
 - Preferences

 \[U_i^i(m) = m_0^i + \delta \sum_s \pi_s m_s^i \]
Agents

- Two classes of agents
 - continuum (mass 1) of risk neutral investors:
 - endowment: \((e^i_0, e^i_1)\) and equal share of ownership of the firm.
 - Preferences
 \[
 U^i(m) = m^i_0 + \delta \sum_s \pi_s m^i_s
 \]
 - continuum (mass 1) of consumers:
 - endowment: \((e^c_0, e^c_1)\)
 - preferences
 \[
 U^c(m, c) = m^c_0 + \delta \sum_s \pi_s (u(c_s) + m^c_s)
 \]
Agents

- Two classes of agents
 - continuum (mass 1) of risk neutral investors:
 - endowment: \((e^i_0, e^i_1)\) and equal share of ownership of the firm.
 - Preferences
 \[U^i(m) = m^i_0 + \delta \sum_s \pi_s m^i_s \]
 - continuum (mass 1) of consumers:
 - endowment: \((e^c_0, e^c_1)\)
 - preferences
 \[U^c(m, c) = m^c_0 + \delta \sum_s \pi_s (u(c_s) + m^c_s) \]
 - quasi-linear preferences: no income effect + risk neutrality. Endowments are sufficiently large for non-negativity constraint on money to be never binding.
Two classes of agents

- continuum (mass 1) of risk neutral investors:
 - endowment: \((e^i_0, e^i_1)\) and equal share of ownership of the firm.
 - Preferences
 \[
 U^i(m) = m^i_0 + \delta \sum_s \pi_s m^i_s
 \]

- continuum (mass 1) of consumers:
 - endowment: \((e^c_0, e^c_1)\)
 - preferences
 \[
 U^c(m, c) = m^c_0 + \delta \sum_s \pi_s (u(c_s) + m^c_s)
 \]
 - quasi-linear preferences: no income effect + risk neutrality. Endowments are sufficiently large for non-negativity constraint on money to be never binding.

- aggregate endowment: \(e_0 = e^i_0 + e^c_0, \quad e_1 = e^i_1 + e^c_1\)
Market Value Maximizing Equilibrium

- Markets:
 - at date 1: spot market for produced good; price p_g if normal supply, price p_b if accident. Competitive pricing.
Market Value Maximizing Equilibrium

- Markets:
 - at date 1: spot market for produced good; price p_g if normal supply, price p_b if accident. Competitive pricing.
 - At date 0: borrowing/lending (can be non-contingent given risk neutrality), equity market. r interest rate, q_e price of equity.
Market Value Maximizing Equilibrium

- Markets:
 - at date 1: spot market for produced good; price p_g if normal supply, price p_b if accident. Competitive pricing.
 - At date 0: borrowing/lending (can be non-contingent given risk neutrality), equity market. r interest rate, q_e price of equity.
 - Pricing is risk neutral:

$$\frac{1}{1 + r} = \delta, \quad q_e = \sum_s \pi_s(a) \frac{p_s y_s}{1 + r} - a$$

where a is chosen by the firm.
Market Value Maximizing Equilibrium

- Markets:
 - at date 1: spot market for produced good; price p_g if normal supply, price p_b if accident. Competitive pricing.
 - At date 0: borrowing/lending (can be non-contingent given risk neutrality), equity market. r interest rate, q_e price of equity.
 - Pricing is risk neutral:
 \[\frac{1}{1 + r} = \delta, \quad q_e = \sum_s \pi_s(a) \frac{p_s y_s}{1 + r} - a \]
 where a is chosen by the firm.

- Budget constraint of investors
 \[m_i^0 + \frac{1}{1 + r} \sum_s \pi_s(a) m_s^i = e_i^0 + \frac{1}{1 + r} e_i^1 + q_e \]
Market Value Maximizing Equilibrium

- Markets:
 - at date 1: spot market for produced good; price p_g if normal supply, price p_b if accident. Competitive pricing.
 - At date 0: borrowing/lending (can be non-contingent given risk neutrality), equity market. r interest rate, q_e price of equity.
 - Pricing is risk neutral:
 \[
 \frac{1}{1+r} = \delta, \quad q_e = \sum_s \pi_s(a) \frac{p_s y_s}{1+r} - a
 \]
 where a is chosen by the firm.

- Budget constraint of investors
 \[
 m_0^i + \frac{1}{1+r} \sum_s \pi_s(a) m_s^i = e_0^i + \frac{1}{1+r} e_1^i + q_e
 \]

- Investors want the firm to maximize q_e (p.v. of profit) and are indifferent among all m satisfying the budget constraint.
Consumers: Budget constraint

\[m^c_0 + \frac{1}{1 + r} \sum_s \pi_s(a)(m^c_s + p_s c_s) = e^c_0 + \frac{1}{1 + r} e^c_1 \]
Market Value Maximizing Equilibrium (ctd)

- Consumers: Budget constraint

\[m_0^c + \frac{1}{1 + r} \sum s \pi_s(a)(m_s^c + p_s c_s) = e_0^c + \frac{1}{1 + r} e_1^c \]

- Consumers maximize utility under b.c. FOC: \(u'(c_s) = p_s \)
Market Value Maximizing Equilibrium (ctd)

- Consumers: Budget constraint

\[m_0^c + \frac{1}{1 + r} \sum_s \pi_s(a)(m_s^c + p_sc_s) = e_0^c + \frac{1}{1 + r}e_1^c \]

- Consumers maximize utility under b.c. FOC: \(u'(c_s) = p_s \)

- Firm maximizes market value

\[
\begin{align*}
a_E &= \arg\max \sum_s \pi_s(a) \frac{p_s y_s}{1 + r} - a \\
&\implies \sum_s \pi'(a) \frac{p_s y_s}{1 + r} - 1 = 0
\end{align*}
\]
Market Value Maximizing Equilibrium (ctd)

- Consumers: Budget constraint

\[m_0^c + \frac{1}{1 + r} \sum_s \pi_s(a)(m_s^c + p_sc_s) = e_0^c + \frac{1}{1 + r}e_1^c \]

- Consumers maximize utility under b.c. FOC: \(u'(c_s) = p_s \)

- Firm maximizes market value

\[a_E = \text{argmax} \sum_s \pi_s(a) \frac{p_sy_s}{1 + r} - a \quad \implies \sum_s \pi'_s(a) \frac{p_sy_s}{1 + r} - 1 = 0 \]

- Markets clear: \(c_s = y_s, \ s = g, b \) (Walras Law +indifference on timing of money consumption \(\implies \) money market clear)
Consumers: Budget constraint

\[\frac{m_c^0}{1 + r} + \sum_s \pi_s(a)(m_s^c + p_s c_s) = e_c^0 + \frac{1}{1 + r} e_1^c \]

Consumers maximize utility under b.c. FOC: \(u'(c_s) = p_s \)

Firm maximizes market value

\[a_E = \text{argmax} \sum_s \pi_s(a) \frac{p_s y_s}{1 + r} - a \implies \sum_s \pi'_s(a) \frac{p_s y_s}{1 + r} - 1 = 0 \]

Markets clear: \(c_s = y_s, \ s = g, b \) (Walras Law +indifference on timing of money consumption \(\implies \) money market clear)

Summary: \(a_E \) determined by the equation

\[\pi'(a_E)\left(u'(y_g)y_g - u'(y_b)y_b\right) = 1 + r \]
Optimal Investment

- a^* maximizes Social Welfare $W(a) = e_0 - a + \delta(\sum_s \pi_s(a)u(y_s)) + \delta e_1$
Optimal Investment

- a^* maximizes Social Welfare $W(a) = e_0 - a + \delta(\sum_s \pi_s(a)u(y_s)) + \delta e_1$
- a^* defined by FOC

$$\pi'(a^*) \left(u(y_g) - u(y_b) \right) = 1 + r$$
Optimal Investment

- \(a^* \) maximizes Social Welfare \(W(a) = e_0 - a + \delta \left(\sum_s \pi_s(a)u(y_s) \right) + \delta e_1 \)
- \(a^* \) defined by FOC

\[
\pi'(a^*)(u(y_g) - u(y_b)) = 1 + r
\]

- Concavity \(\Rightarrow u(x) - u'(x)x \) increasing (derivative \(-u''(x)\)) \(\Rightarrow \)

\[
u(y_g) - u(y_b) > u'(y_g)y_g - u'(y_b)y_b
\]
Optimal Investment

- a^* maximizes Social Welfare $W(a) = e_0 - a + \delta(\sum_s \pi_s(a)u(y_s)) + \delta e_1$
- a^* defined by FOC

\[
\pi'(a^*)(u(y_g) - u(y_b)) = 1 + r
\]

- Concavity $\implies u(x) - u'(x)x$ increasing (derivative $-u''(x)$) \implies

\[
u(y_g) - u(y_b) > u'(y_g)y_g - u'(y_b)y_b
\]

Theorem

There is under-investment at MV equilibrium: $a_E < a^$*
Inefficiency in NPV maximization

- **Market value** maximization by “capitalist” firm gives FOC

\[
\pi'(a_E)\left(u'(y_g)y_g - u'(y_b)y_b\right) = 1 + r
\]

- **Social welfare** maximization requires FOC

\[
\pi'(a^*)\left(u(y_g) - u(y_b)\right) = 1 + r
\]
Inefficiency in NPV maximization

- **Market value** maximization by “capitalist” firm gives FOC

 \[
 \pi'(a_E) \left(u'(y_g)y_g - u'(y_b)y_b \right) = 1 + r
 \]

- **Social welfare** maximization requires FOC

 \[
 \pi'(a^*) \left(u(y_g) - u(y_b) \right) = 1 + r
 \]

- which can be written as

 \[
 \pi'(a^*) \left(\left[u(y_g) - u'(y_g)y_g \right] - \left[u(y_b) - u'(y_b)y_b \right] + \left(u'(y_g)y_g - u'(y_b)y_b \right) \right) = 1 + r
 \]
Market value maximization by “capitalist” firm gives FOC

$$\pi'(a_E) \left(u'(y_g)y_g - u'(y_b)y_b \right) = 1 + r$$

Social welfare maximization requires FOC

$$\pi'(a^*) \left(u(y_g) - u(y_b) \right) = 1 + r$$

which can be written as

$$\pi'(a^*) \left([u(y_g) - u'(y_g)y_g] - [u(y_b) - u'(y_b)y_b] + \left(u'(y_g)y_g - u'(y_b)y_b \right) \right) = 1 + r$$

The social objective takes into account

- **consumer surplus** \(u(c_s) - u'(c_s)c_s \)
- **profit of shareholders** \(p_s y_s \)

Market-value maximization omits consumer surplus.
Solving Externality Problem

- Inefficiency of profit max comes from external effect of firm’s action a on consumers

$$U^c(c, m) = m_0 + \sum_s \pi_s(a)(m_s + u(c_s))$$
Solving Externality Problem

- Inefficiency of profit max comes from external effect of firm’s action a on consumers

$$U^c(c, m) = m_0 + \sum_s \pi_s(a)(m_s + u(c_s))$$

- Standard solutions for externality
 - government intervention (quantity regulation or tax/subsidy)
Solving Externality Problem

- Inefficiency of profit max comes from external effect of firm’s action \(a \) on consumers

\[
U^c(c, m) = m_0 + \sum_s \pi_s(a)(m_s + u(c_s))
\]

- Standard solutions for externality
 1. government intervention (quantity regulation or tax/subsidy)
 2. internalization through larger entity: integrate parties involved in externality
Solving Externality Problem

- Inefficiency of profit max comes from external effect of firm’s action \(a \) on consumers

\[
U^c(c, m) = m_0 + \sum_s \pi_s(a)(m_s + u(c_s))
\]

- Standard solutions for externality
 1. government intervention (quantity regulation or tax/subsidy)
 2. internalization through larger entity: integrate parties involved in externality
 3. create tradeable property rights (Coase)
Since externality only concerns agents associated with the firm, it seems natural to try second approach: enlarge the boundary of the firm to include consumers (and workers).
Since externality only concerns agents associated with the firm, it seems natural to try second approach: enlarge the boundary of the firm to include consumers (and workers).

Definition: \((c^*, a^*, p^*)\) is a (reduced form) **stakeholder equilibrium** if

- \(c^* = \arg \max_{c \geq 0} \{u(c) - p_s^* c\}, \quad s = g, b\)
- \(a^* = \arg \max_{a \geq 0} \left\{ \frac{1}{1+r} \sum_s \pi_s(a) \left(CS(p_s^*) + R(p_s^*) \right) - a \right\}\)
- \(c_s^* = y_s\)
Since externality only concerns agents associated with the firm, it seems natural to try second approach: enlarge the boundary of the firm to include consumers (and workers).

Definition: \((c^*, a^*, p^*)\) is a (reduced form) **stakeholder equilibrium** if

\[
\begin{align*}
 c^* &= \arg \max_{c \geq 0} \{u(c) - p^*c\}, \quad s = g, b \\
 a^* &= \arg \max_{a \geq 0} \left\{ \frac{1}{1+r} \sum_s \pi_s(a) \left(CS(p_s) + R(p_s) \right) - a \right\} \\
 c_s^* &= y_s
\end{align*}
\]

Changes the objective of firm from max of NPV of profit to max of net p.v. of stakeholder surplus.
Stakeholder Equilibrium

Since externality only concerns agents associated with the firm, it seems natural to try second approach: enlarge the boundary of the firm to include consumers (and workers).

Definition: \((c^*, a^*, p^*)\) is a (reduced form) stakeholder equilibrium if

\[
\begin{align*}
 c^* &= \arg \max_{c \geq 0} \{u(c) - p_s^* c\}, \quad s = g, b \\
 a^* &= \arg \max_{a \geq 0} \left\{ \frac{1}{1+r} \sum_s \pi_s(a) \left(CS(p_s^*) + R(p_s^*) \right) - a \right\} \\
 c_s^* &= y_s
\end{align*}
\]

Changes the objective of firm from max of NPV of profit to max of net p.v. of stakeholder surplus.

Theorem

A stakeholder equilibrium is Pareto optimal
Since externality only concerns agents associated with the firm, it seems natural to try second approach: enlarge the boundary of the firm to include consumers (and workers).

Definition: \((c^*, a^*, p^*)\) is a (reduced form) stakeholder equilibrium if

- \(c^* = \arg\max_{c \geq 0} \{u(c) - p^* c\}, \quad s = g, b\)
- \(a^* = \arg\max_{a \geq 0} \left\{ \frac{1}{1+r} \sum_s \pi_s(a) \left(CS(p^*_s) + R(p^*_s) \right) - a \right\} \)
- \(c^*_s = y_s\)

Changes the objective of firm from max of NPV of profit to max of net p.v. of stakeholder surplus.

Theorem

A stakeholder equilibrium is Pareto optimal

Gives precise content to the “stakeholder corporation”, already advocated in the final chapter of Berle and Means (1932) “The new concept of the corporation.”
Implementing Stakeholder Equilibrium

Three problems for implementing stakeholder equilibrium
Implementing Stakeholder Equilibrium

- Three problems for implementing stakeholder equilibrium
 - information: how to find out consumer surplus $CS(p^*)$
Implementing Stakeholder Equilibrium

Three problems for implementing stakeholder equilibrium

- information: how to find out consumer surplus $CS(p^*)$
- incentives: why would manager maximize stakeholder surplus
Implementing Stakeholder Equilibrium

Three problems for implementing stakeholder equilibrium

- information: how to find out consumer surplus $CS(p^*)$
- incentives: why would manager maximize stakeholder surplus
- financing: if NPV of profit is negative, shareholders will not finance investment (limited liability)
Three problems for implementing stakeholder equilibrium

- information: how to find out consumer surplus $CS(p^*_s)$
- incentives: why would manager maximize stakeholder surplus
- financing: if NPV of profit is negative, shareholders will not finance investment (limited liability)

Our proposal: introduce a market for consumer rights (c-rights) on which agents trade “right to buy” from the firm
Implementing Stakeholder Equilibrium

Three problems for implementing stakeholder equilibrium

- information: how to find out consumer surplus $CS(p^*)$
- incentives: why would manager maximize stakeholder surplus
- financing: if NPV of profit is negative, shareholders will not finance investment (limited liability)

Our proposal: introduce a market for consumer rights (c-rights) on which agents trade “right to buy” from the firm

Holders of c-rights are given voting rights in the decisions of the firm.
Implementing Stakeholder Equilibrium

Three problems for implementing stakeholder equilibrium

- information: how to find out consumer surplus $CS(p^*)$
- incentives: why would manager maximize stakeholder surplus
- financing: if NPV of profit is negative, shareholders will not finance investment (limited liability)

Our proposal: introduce a market for consumer rights (c-rights) on which agents trade “right to buy” from the firm

Holders of c-rights are given voting rights in the decisions of the firm.

Definition

In a “Coasian equilibrium” management is instructed to maximize the total value of equity + consumer rights (+ worker rights)
equity shares
give right to profit
investors: initial holding of equity
c-rights

equity shares
give right to profit
investors: initial holding of equity

c-rights
give right to buy from firm
consumers: initial holding of c-rights
c-rights

equity shares
give right to profit
investors: initial holding of equity

Equity and c-rights traded on markets.

c-rights
give right to buy from firm
consumers: initial holding of c-rights
c-rights

- equity shares give right to profit
 - investors: initial holding of equity
- c-rights give right to buy from firm
 - consumers: initial holding of c-rights

- Equity and c-rights traded on markets.
- What is the value of a c-right on the market?
c-rights

- equity shares
give right to profit
investors: initial holding of equity

- c-rights
give right to buy from firm
consumers: initial holding of c-rights

- Equity and c-rights traded on markets.

- What is the value of a c-right on the market?

- Suppose a quantity $\eta \leq 1$ of rights exist. If $\eta < 1$ not all consumers have rights and demand changes: spot prices $(p_g(\eta), p_b(\eta))$.

Magill & Quinzii & Rochet
c-rights

- Equity shares give right to profit for investors: initial holding of equity.
- C-rights give right to buy from firm: initial holding of c-rights.

- Equity and c-rights traded on markets.
- What is the value of a c-right on the market?
- Suppose a quantity $\eta \leq 1$ of rights exist. If $\eta < 1$ not all consumers have rights and demand changes: spot prices $(p_g(\eta), p_b(\eta))$.
- Equilibrium value of c-rights: $q_c(a, \eta) = \delta(\sum_s \pi(a)C'S(p_s(\eta)))$.

Magill & Quinzii & Rochet
Stakeholder Corporation
April 29
14 / 25
c-rights

- **equity shares** give right to **profit** investors: initial holding of equity
- **c-rights** give right to **buy** from firm consumers: initial holding of c-rights

- Equity and c-rights traded on markets.

- **What is the value of a c-right on the market?**

- Suppose a quantity $\eta \leq 1$ of rights exist. If $\eta < 1$ not all consumers have rights and demand changes: spot prices $(p_g(\eta), p_b(\eta))$.

- Equilibrium value of c-rights $q_c(a, \eta) = \delta(\sum_s \pi(a)C'S(p_s(\eta)))$

- If there is “scarcity” of consumer rights, then the value of a consumer right is the **consumer surplus**.
c-rights

- equity shares
 - give right to *profit*
 - investors: initial holding of equity
- c-rights
 - give right to *buy* from firm
 - consumers: initial holding of c-rights

- Equity and c-rights traded on markets.
- What is the value of a c-right on the market?
- Suppose a quantity \(\eta \leq 1 \) of rights exist. If \(\eta < 1 \) not all consumers have rights and demand changes: spot prices \((p_g(\eta), p_b(\eta))\).
- Equilibrium value of c-rights
 \[
 q_c(a, \eta) = \delta(\sum_s \pi(a)CS(p_s(\eta)))
 \]
- If there is “scarcity” of consumer rights, then the value of a consumer right is the *consumer surplus*.
- if \(\eta \rightarrow 1 \), \(q_c(a) \rightarrow \delta \sum_s \pi_s(a)CS(p_s^*) \) (since \((p_g(\eta), p_b(\eta)) \rightarrow (p_g^*, p_b^*)\))
c-rights

equity shares
give right to profit
investors: initial holding of equity

c-rights
give right to buy from firm
consumers: initial holding of c-rights

- Equity and c-rights traded on markets.
- What is the value of a c-right on the market?
- Suppose a quantity $\eta \leq 1$ of rights exist. If $\eta < 1$ not all consumers have rights and demand changes: spot prices $(p_g(\eta), p_b(\eta))$.
- Equilibrium value of c-rights $q_c(a, \eta) = \delta(\sum_s \pi(a) CS(p_s(\eta)))$
- If there is “scarcity” of consumer rights, then the value of a consumer right is the consumer surplus.
- if $\eta \rightarrow 1$, $q_c(a) \rightarrow \delta \sum_s \pi_s(a) CS(p_s^*)$ (since $(p_g(\eta), p_b(\eta)) \rightarrow (p_g^*, p_b^*)$)

Theorem

When $\eta \rightarrow 1$ the limit Coasian equilibrium is Pareto optimal.
This result does not hold with heterogeneous consumers.
Heterogeneous consumers

- This result does not hold with heterogeneous consumers.
- Utility of consumer of type α, $\alpha \in [0, 1]$
 $$U(m, c; \alpha) = m_0 + \delta \sum \pi_s(a)(u(c, \alpha) + m_s), \quad u_\alpha > 0, \quad u_{c\alpha} > 0,$$
- Distribution function G over types.
This result does not hold with heterogeneous consumers.

Utility of consumer of type α, $\alpha \in [0, 1]$

$$U(m, c; \alpha) = m_0 + \delta \sum \pi_s(a)(u(c, \alpha) + m_s), \quad u_\alpha > 0, \quad u_{c\alpha} > 0,$$

Distribution function G over types.

If (a measure of) η rights are issued then the price reflects the surplus of the marginal buyer $\hat{\alpha}(\eta)$ defined by

$$\eta = \int_{\hat{\alpha}(\eta)}^{1} dG(\alpha)$$
Heterogeneous consumers

- This result does not hold with heterogeneous consumers.
- Utility of consumer of type α, $\alpha \in [0, 1]$
 \[U(m, c; \alpha) = m_0 + \delta \sum \pi_s(a)(u(c, \alpha) + m_s), \quad u_\alpha > 0, \quad u_{c\alpha} > 0, \]
- Distribution function G over types.
- If (a measure of) η rights are issued then the price reflects the surplus of the marginal buyer $\hat{\alpha}(\eta)$ defined by
 \[\eta = \int_{\hat{\alpha}(\eta)}^{1} dG(\alpha) \]
- If $\eta \to 1$ then price goes to valuation of the lowest type
Heterogeneous consumers

- This result does not hold with heterogeneous consumers.
- Utility of consumer of type α, $\alpha \in [0, 1]$
 \[U(m, c; \alpha) = m_0 + \delta \sum \pi_s(a)(u(c, \alpha) + m_s), \quad u_\alpha > 0, \quad u_{c\alpha} > 0, \]
- Distribution function G over types.
- If (a measure of) η rights are issued then the price reflects the surplus of the marginal buyer $\hat{\alpha}(\eta)$ defined by
 \[\eta = \int_{\hat{\alpha}(\eta)}^{1} dG(\alpha) \]
- If $\eta \to 1$ then price goes to valuation of the lowest type
- Either some agents are excluded and this creates an inefficiency, or the price is low (valuation of the lowest type).
- In all cases the value of consumer rights does not reflect the full value of consumer surplus to all types.
Objective to be maximized (w.r.t. a, taking η as given)

$$\eta q_c(p(\eta), a) + q_e(p(\eta), a)$$

or

$$\sum_s \frac{\pi_s(a)}{1 + r} \left(\eta c_s(p_s(\eta), \hat{\alpha}(\eta)) + p_s(\eta)y_s \right) - a$$
Coasian Equilibrium

- Objective to be maximized (w.r.t. a, taking η as given)
 \[\eta q_c(p(\eta), a) + q_e(p(\eta), a) \]
 or
 \[\sum_s \frac{\pi_s(a)}{1 + r} \left(\eta c_s(p_s(\eta), \hat{\alpha}(\eta)) + p_s(\eta) y_s \right) - a \]

- Welfare at Coasian equilibrium $\mathcal{W}(\eta)$
- Welfare at capitalist equilibrium $\overline{\mathcal{W}}$ (profit max)
Objective to be maximized (w.r.t. \(a\), taking \(\eta\) as given)

\[\eta q_c(p(\eta), a) + q_e(p(\eta), a) \]

or

\[\sum_s \frac{\pi_s(a)}{1 + r} \left(\eta c_s(p_s(\eta), \hat{\alpha}(\eta)) + p_s(\eta)y_s \right) - a \]

- Welfare at Coasian equilibrium \(\mathcal{W}(\eta)\)
- Welfare at capitalist equilibrium \(\overline{\mathcal{W}}\) (profit max)

Theorem: Coasian Equilibrium improves on Capitalism

Either (i) \(\lim_{\eta \to 1} \mathcal{W}(\eta) > \overline{\mathcal{W}}\)
Objective to be maximized (w.r.t. \(a \), taking \(\eta \) as given)

\[
\eta q_c(p(\eta), a) + q_e(p(\eta), a)
\]

or

\[
\sum_s \pi_s(a) \left(\eta c_s(p_s(\eta), \hat{\alpha}(\eta)) + p_s(\eta)y_s \right) - a
\]

Welfare at Coasian equilibrium \(\mathcal{W}(\eta) \)

Welfare at capitalist equilibrium \(\overline{\mathcal{W}} \) (profit max)

Theorem: Coasian Equilibrium improves on Capitalism

Either (i) \(\lim_{\eta \to 1} \mathcal{W}(\eta) > \overline{\mathcal{W}} \)

or (ii) \(\lim_{\eta \to 1} \mathcal{W}(\eta) = \overline{\mathcal{W}} \) and \(\frac{\partial \mathcal{W}}{\partial \eta}(1) < 0 \), so that for \(\eta \) sufficiently close to 1, \(\mathcal{W}(\eta) > \overline{\mathcal{W}} \).
Why Result Different from Standard AD Efficiency Result?

- Every probability model has a state space representation (Kolmogorov Theorem)
- Does it suffice to write the model with the same characteristics on a state space and maximize profit expressed on this space to get Pareto optimality?
Reformulating Model with States of Nature

- Uncertainty represented by states of nature $\omega \in \Omega$ with exogenous probability \mathcal{P}

- ω represents the circumstances which “cause” the good outcome y_g.

Production function:

$$y(\omega, a) = \begin{cases} y_g & \text{if } \omega \in \Omega_g(a) \\ y_b & \text{if } \omega \in \Omega_b(a) \end{cases}$$
Reformulating Model with States of Nature

- Uncertainty represented by states of nature $\omega \in \Omega$ with exogenous probability P
- ω represents the circumstances which "cause" the good outcome y_g.

Production function:

$$y(\omega, a) = \begin{cases} y_g & \text{if } \omega \in \Omega_g(a) \\ y_b & \text{if } \omega \in \Omega_b(a) \end{cases}$$

More standard form:

$$y(\omega, a) = \begin{cases} y_g & \text{if } a > \tilde{a}(\omega) \\ y_b & \text{if } a \leq \tilde{a}(\omega) \end{cases}$$
Reformulating Model with States of Nature

- Uncertainty represented by states of nature \(\omega \in \Omega \) with exogenous probability \(\mathcal{P} \)
- \(\omega \) represents the circumstances which “cause” the good outcome \(y_g \).

Production function:

\[
y(\omega, a) = \begin{cases}
y_g & \text{if } \omega \in \Omega_g(a)
y_b & \text{if } \omega \in \Omega_b(a)
\end{cases}
\]

More standard form:

\[
y(\omega, a) = \begin{cases}
y_g & \text{if } a > \tilde{a}(\omega)
y_b & \text{if } a \leq \tilde{a}(\omega)
\end{cases}
\]

Preferences:

\[
U^i(m^i) = m_0^i + \delta \int_{\omega \in \Omega} m^i_\omega d\mathcal{P}(\omega); \quad U^c(m^c, c) = m_0^c + \delta \int_{\omega \in \Omega} (m^c_\omega + u(c_\omega)) d\mathcal{P}(\omega)
\]
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firm sell good in advance, buy investment a.
- Price of money at date 0 normalized to 1
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firms sell good in advance, buy investment a.

- Price of money at date 0 normalized to 1

- Price of money in state ω: $\delta P(\omega)$
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firm sell good in advance, buy investment a.

- Price of money at date 0 normalized to 1

- Price of money in state ω: $\delta P(\omega)$

- $\delta = \frac{1}{1+r}$
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states \(\omega \), consumers buy good for date 1 in state \(\omega \), firms sell good in advance, buy investment \(a \).

- Price of money at date 0 normalized to 1

- Price of money in state \(\omega \): \(\delta P(\omega) \)

- \(\delta = \frac{1}{1+r} \)

- Price of good available in state \(\omega \): \(\delta P(\omega)p_\omega \), (defines \(p_\omega \))
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firm sell good in advance, buy investment a.

- Price of money at date 0 normalized to 1

- Price of money in state ω: $\delta P(\omega)$

- $\delta = \frac{1}{1+r}$

- Price of good available in state ω: $\delta P(\omega)p_\omega$, (defines p_ω)

- Agents maximize utility, firm maximizes profit taking prices as given, and markets clear
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firm sell good in advance, buy investment a.

- Price of money at date 0 normalized to 1

- Price of money in state ω: $\delta P(\omega)$

- $\delta = \frac{1}{1+r}$

- Price of good available in state ω: $\delta P(\omega)p_\omega$, (defines p_ω)

- Agents maximize utility, firm maximizes profit taking prices as given, and markets clear

- Profit of the firm

$$
\int_{\omega \in \Omega} \frac{p_\omega y(\omega, a)}{1 + r} dP(\omega) - a
$$
Arrow-Debreu Equilibrium

- Markets: Standard AD: all markets at date 0: agents buy and sell money for consumption at date 0 and at date 1 in all states ω, consumers buy good for date 1 in state ω, firm sell good in advance, buy investment a.
- Price of money at date 0 normalized to 1
- Price of money in state ω: $\delta P(\omega)$
 \[\delta = \frac{1}{1+r} \]
- Price of good available in state ω: $\delta P(\omega)p_\omega$, (defines p_ω)
- Agents maximize utility, firm maximizes profit taking prices as given, and markets clear
- Profit of the firm
 \[\int_{\omega \in \Omega} \frac{p_\omega y(\omega, a)}{1 + r} dP(\omega) - a \]
- First Welfare Theorem: if AD equilibrium exists it is Pareto optimal.
Theorem

An Arrow-Debreu equilibrium does not exist.
Non-Existence of AD equilibrium

Theorem

An Arrow-Debreu equilibrium does not exist.

- Suppose \((a^*, (p_\omega)_{\omega \in \Omega})\) equilibrium
- \(\delta P(\omega)u'(c_\omega) = \delta P(\omega)p_\omega\) and \(c_\omega = y(\omega, a^*)\) imply

 \[
 p_\omega = p_g \text{ if } \omega \in \Omega_g(a^*), \quad p_\omega = p_b \text{ if } \omega \in \Omega_b(a^*)
 \]
Non-Existence of AD equilibrium

Theorem

An Arrow-Debreu equilibrium does not exist.

- Suppose \((a^*, (p_\omega)_{\omega \in \Omega})\) equilibrium
- \(\delta P(\omega)u'(c_\omega) = \delta P(\omega)p_\omega\) and \(c_\omega = y(\omega, a^*)\) imply
 \[
 p_\omega = p_g \text{ if } \omega \in \Omega_g(a^*), \quad p_\omega = p_b \text{ if } \omega \in \Omega_b(a^*)
 \]
- Firm has to check that \(\text{given prices } (p_\omega)_{\omega \in \Omega}\) there is no profitable deviation.
Profitable Deviation

- $a < a^*$
\[a < a^* \]

\[
R(a) - R(a^*) = \frac{1}{1 + r} \left[(\pi(a^*) - \pi(a))p_g(y_b - y_g) \right] - (a - a^*)
\]

\[
= \frac{1}{1 + r} \left[(\pi(a) - \pi(a^*))p_g(y_g - y_b) \right] - (a - a^*)
\]
Profitable Deviation

- $a < a^*$

\[
R(a) - R(a^*) = \frac{1}{1 + r}[(\pi(a^*) - \pi(a))p_g(y_b - y_g)] - (a - a^*)
\]

\[
= \frac{1}{1 + r}[(\pi(a) - \pi(a^*))p_g(y_g - y_b)] - (a - a^*)
\]

Profit maximum at a^* requires $R(a) - R(a^*) \leq 0$ for all $a < a^*$

(A) \hspace{1cm} \lim_{a \to a^*} R'(a) \geq 0 \iff \frac{1}{1 + r} \pi'(a^*)p_g(y_g - y_b) - 1 \geq 0
Profitable Deviation

Same reasoning when $a > a^*$:
Same reasoning when \(a > a^* \):

\[
R(a) - R(a^*) = \frac{1}{1 + r} \left[(\pi(a) - \pi(a^*)) p_b (y_g - y_b) \right] - (a - a^*)
\]
Profitable Deviation

- Same reasoning when $a > a^*$:

$$R(a) - R(a^*) = \frac{1}{1 + r} \left[(\pi(a) - \pi(a^*)) p_b (y_g - y_b) \right] - (a - a^*)$$

- Profit max requires

$$(B) \quad \lim_{a \to a^*} R'(a) \leq 0 \iff \frac{1}{1 + r} \pi'(a^*) p_b (y_g - y_b) - 1 \leq 0$$
Profitable Deviation

- Same reasoning when $a > a^*$:

$$R(a) - R(a^*) = \frac{1}{1 + r}[(\pi(a) - \pi(a^*))p_b(y_g - y_b)] - (a - a^*)$$

- Profit max requires

$$\lim_{a \to a^*} R'(a) \leq 0 \iff \frac{1}{1 + r} \pi'(a^*)p_b(y_g - y_b) - 1 \leq 0$$

- A and B require

$$p_b(y_g - y_b) \leq p_g(y_g - y_b)$$
Profits Deviation

- Same reasoning when \(a > a^* \):

\[
R(a) - R(a^*) = \frac{1}{1 + r} \left[(\pi(a) - \pi(a^*)) \pi_b(y_g - y_b) \right] - (a - a^*)
\]

- Profit max requires

\[
(B) \quad \lim_{a \to a^+} R'(a) \leq 0 \iff \frac{1}{1 + r} \pi'(a^*) \pi_b(y_g - y_b) - 1 \leq 0
\]

- A and B require

\[
p_b(y_g - y_b) \leq p_g(y_g - y_b)
\]

- But \(p_g < p_b \): impossible. Because discontinuity of production function at \(a^* \) for \(\omega \) the profit has different right and left derivatives with a convex kink.
Two preconditions for valid theoretical foundation of stakeholder theory of the firm

1. decisions taken by the firms must have an external effect on stakeholders
2. these externalities must not be readily resolved by government intervention (regulation or taxation).
Conclusion

Two preconditions for valid theoretical foundation of stakeholder theory of the firm

1. decisions taken by the firms must have an external effect on stakeholders
2. these externalities must not be readily resolved by government intervention (regulation or taxation).

Such conditions are fulfilled if firms are large and influence the probability distribution of their outcomes.
Two preconditions for valid theoretical foundation of stakeholder theory of the firm

1. decisions taken by the firms must have an external effect on stakeholders
2. these externalities must not be readily resolved by government intervention (regulation or taxation).

Such conditions are fulfilled if firms are large and influence the probability distribution of their outcomes

Another model with this characteristic: Allen-Carletti-Marquez (2009)
To obtain an operational stakeholder theory, three additional conditions must be satisfied:

1. assign well-defined benefits for each group of stakeholders
To obtain an operational stakeholder theory, three additional conditions must be satisfied:

1. assign well-defined benefits for each group of stakeholders
2. exhibit a way of assigning relative weights to the benefits to obtain a well-defined objective for a firm
To obtain an operational stakeholder theory, three additional conditions must be satisfied:

1. assign well-defined benefits for each group of stakeholders
2. exhibit a way of assigning relative weights to the benefits to obtain a well-defined objective for a firm
3. provide incentives to the firm’s manager to maximize this objective.
To obtain an operational stakeholder theory, three additional conditions must be satisfied:

1. Assign well-defined benefits for each group of stakeholders.
2. Exhibit a way of assigning relative weights to the benefits to obtain a well-defined objective for a firm.
3. Provide incentives to the firm’s manager to maximize this objective.

Otherwise, stakeholder concerns leave firms open to manipulation by management.

*Management can almost always rationalize any action by invoking its impact on the welfare of some stakeholder (Tirole, *Econometrica*, 2001).*
To obtain an operational stakeholder theory, three additional conditions must be satisfied:

1. assign well-defined benefits for each group of stakeholders
2. exhibit a way of assigning relative weights to the benefits to obtain a well-defined objective for a firm
3. provide incentives to the firm’s manager to maximize this objective.

Otherwise stakeholder concerns leave firms open to manipulation by management:

Management can almost always rationalize any action by invoking its impact on the welfare of some stakeholder (Tirole, *Econometrica*, 2001)

“There is a danger that the endless list of stakeholders will make it easier for managers to rationalize their actions. ‘Stakeholder theory plays into the hands of managers by allowing them to pursue their own interests at the expense of the firm’s financial claimants and society at large....’ (Jensen, *Journal of Applied Corporate Finance*, 2001)
Theoretical answer to (1)

- profit = interests of shareholders
- consumer surplus = interests of consumers
- worker surplus = interest of workers
- objective: sum of profit, consumer and worker surpluses

However surpluses are difficult to evaluate

Hence the proposal for creating marketed consumer and worker rights which reveal surpluses