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Abstract

We study competitive economies in which firms make risky investments
and markets allow decision makers to fully insure against aggregate outcome
uncertainty—but not necessarily against all primitive states of nature. It is
well-known that the ability to contract upon a complete description of states
of nature is unnecessary for achieving an efficient allocation of resources across
consumers. The same is not immediate for the productive sector because the
map between primitive states and aggregate output levels depends on endoge-
nous investment decisions. We show that if each firm computes its value us-
ing “competitive beliefs” about how out-of-equilibrium input decisions affect
the probability distribution of its output, then competitive markets lead profit-
maximizing firms and utility-maximizing consumers to achieve a Pareto optimal
allocation of resources.
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1 Introduction

Following the work by Leon Walras in the 19th century, the general equilib-

rium literature focused on understanding how anonymous markets coordinate the

production and consumption of goods in competitive economies. In this setting,

firms’ productive decisions and agents’ consumption choices are taken indepen-

dently, and market prices are the only instruments available to coordinate different

wishes. Hayek (1945) supported the view that competitive prices have the capacity

of aggregating the necessary social knowledge to induce efficient self-interested in-

dividual behaviors. This idea was rigorously formulated and independently proven

by Kenneth J. Arrow, Gerard Debreu and Lionel W. McKenzie during the 1950’s.

They listed conditions for existence of a competitive equilibrium and proved that, in

absence of externalities and other market frictions, competitive markets lead profit-

maximizing firms and utility-maximizing agents to achieve a Pareto optimal alloca-

tion of resources. The information embedded in market prices should be sufficient

to promote an efficient social coordination across decision makers.

Arrow (1953) and Debreu (1959) extended the general equilibrium analysis to

economies in which random states of nature affect productivity. They showed that

the standard analysis carries over to environments with uncertainty whenever de-

cision makers are able to trade a complete set of contingent claims—each of them

promising to deliver goods in the future conditional on the verification of a given

state of nature. However, verification of a state of nature is not a simple matter,

and most securities traded in modern financial markets are contingent on observed

output instead of primitive states of nature.

We follow the recent contributions by Magill and Quinzii (2009, 2010) and an-

alyze financial economies in which asset payoffs depend on firms’ endogenous pro-

duction and allow full insurance against aggregate outcome uncertainty—by that

we mean that financial markets allow consumers to sell their endowment risks and

make consumption plans that are contingent on the equilibrium aggregate output.

In a sequence of recent works, Magill and Quinzii (2009, 2010) and Magill, Quinzii

and Rochet (2011) showed that this market feature could potentially matter in pro-

duction economies. Their works illustrate how subtle is the issue of defining an

objective function for firms in order to generate Pareto optimality in equilibrium.

They claim that maximizing the present value of firms’ profit does not lead to an

efficient outcome. In that respect, when financial contracts available for trade only
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depend on firms’ outcomes, it seems that market prices have lost their fundamental

role of conveying all the requisite information to coordinate consumption choices

and firms’ investment decisions. Following a normative analysis, they propose an

alternative criterion in which firms should maximize their contribution to expected

social welfare, taking into account the impact of their investment choices on the

utility of all participants of the economy.

We propose to show that profit maximization can still be socially justified as a

decision criterion. We prove the Pareto optimality property of the competitive equi-

librium when firms maximize the present value of their profits, computed according

to what seems to us to be the natural extension of the concept to this framework.

Our main result shows that the prices of promises that are contingent on the ag-

gregate output convey the necessary information for firms and consumers making

decisions under uncertainty.

A key contribution of our analysis consists in defining the appropriate form to

compute firms’ net present values. In the standard Arrow–Debreu approach, all

relevant information for production and market transactions are embedded in the

underlying state of nature. In the output-contingent framing, however, financial

markets do not distinguish across states of nature that lead to the same aggregate

output. This distinction is still relevant for the productive sector as endogenous

investment decisions affect the relationship between aggregate output and primitive

states of nature. We show that this issue can be taken into account through beliefs

that link the investment of each firm to a conditional probability measure over

this firm’s output given the economy’s aggregate production. In equilibrium, these

beliefs will be correct. When evaluating possible equilibrium deviations, firms will

be assumed to believe that their actions affect the probability measure over their

own production but not the probability of different aggregate outputs. In our view,

this is the natural way to accommodate the competitive price-taking paradigm to

this environment.1

With this tool in hands, we carry the analysis and show that the market in-

completeness caused by the absence of state-contingent claims is not only irrelevant

from the exchange perspective but also for the production decisions. Indeed, if firms

have “competitive beliefs” about the conditional distribution of their profit given the

1This is also in line with the view presented in many papers on the objective of corporations
under incomplete markets—see for instance Drèze (1974), Grossman and Hart (1979), Makowski
(1983), and Bisin, Gottardi and Ruta (2011).
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economy’s aggregate output, then maximizing the present value of expected profit

using prices for aggregate output leads to Pareto efficiency.

The remaining of this paper is organized as follows. We describe the stan-

dard state-of-nature approach in Section 2 and argue in Section 3 that consumers

share the aggregate output risk in any Pareto efficient allocation.2 In Section 4, we

recall the reader that competitive equilibria are always Pareto efficient when utility-

maximizing agents and profit-maximizing firms are allowed to trade state-contingent

claims. Next, we introduce in Section 5 a financial economy in which agents only

trade output-contingent securities that provide insurance against aggregate output

risks (allowing for market incompleteness with respect to the underlying primitive

states of nature). This is where our main contribution is placed. In our view, com-

petitive firms should not take into account the effect of their investment decisions

over aggregate variables. We define beliefs about how changes in the investment

level of a given firm would affect the probability distribution of its own production

given the aggregate output. We show that competitive equilibria are Pareto optimal

in this output-contingent environment. To conclude the paper, we use Section 6 to

explicitly compare our work with the existing related literature. Appendix A is

reserved for a technical proof.

2 The Economic Environment

Consider an economy with two periods t ∈ {0, 1}, a single good, a finite set I of

consumers and a finite set K of firms. In the initial date (t = 0), each firm k makes

an investment ak in a set Ak ⊂ R+. Next, at t = 1, they are exposed to exogenous

shocks ω from a finite set Ω. States in Ω represent primitive causes which likelihood

is given by an exogenous probability measure P . This probability is independent of

consumers’ and firms’ actions. Moreover, without any loss of generality, we assume

that every ω ∈ Ω is drawn with strictly positive probability.3

Technology. Investments and shocks lead each firm to produce an output yk in

a finite set Y k ⊂ R+ at t = 1. The production possibilities are represented by a

2In other words, from the consumers perspective, consumption choices can be represented by
random variables that are contingent on the aggregate output, and the commodity space does not
need to be the space of vectors contingent on primitive states of nature.

3The probability of an event A ⊂ Ω is denoted by P (A). For singleton events {ω}, we write
P (ω) ≡ P ({ω}).
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family f ≡ (fk)k∈K of random production functions, where

fk(ω, ·) : Ak 7−→ Y k.

Denote by Y ≡
∏

k∈K Y k the set of output profiles. We can derive a transition

probability a 7→ Q(a) on Y by posing

Q(y, a) ≡ P ({f(a) = y}).4

Since we will frequently consider the summation over firms’ index, for every

profile y = (yk)k∈K , we define

σy ≡
∑
k∈K

yk.

The random aggregate production is represented by the function ω 7→ σf(ω, a). We

let Z ≡
∑

k∈K Y k denote the set of all possible aggregate outputs and derive the

transition probability a 7→ µ(a) on Z by posing

µ(z, a) ≡
∑

y∈Y (z)

Q(y, a), (2.1)

where Y (z) ≡ {y ∈ Y : σy = z}. Expression (2.1) can also be written in terms of

primitive states since µ(z, a) = P ({σf(a) = z}).

Preferences. Each agent i has initial resources consisting of an amount ei0 > 0

of income at date t = 0 and the ownership share δik ∈ [0, 1] of each firm k, where∑
i∈I δ

i
k = 1. Agents have no initial endowment at t = 1, so that all consumption

in that period comes from the firms’ output.

Agent i’s preferences are represented by a utility function U i which is separable

across time and has the expected utility form for future risky consumption. Formally,

if xi0 > 0 denotes agent i’s consumption at t = 0 and ϕi
1 is a probability measure on

R+ that represents random consumption at t = 1, then

U i(xi0, ϕ
i
1) ≡ ui0(xi0) +

∫
R+

ui1(x1)ϕi
1(dx1),

where uit : R+ → [−∞,∞) is increasing, differentiable, strictly concave and satisfies

4We use {H = h} for the set {ω ∈ Ω : H(ω) = h}, where H is an arbitrary random function
and h a point in its image.
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the Inada condition.5

3 Optimal risk sharing

The tradition in the general equilibrium literature is to represent agent i’s con-

sumption possibilities by a pair (xi0, x
i
1), where xi0 > 0 is consumption at t = 0

and xi1 ≡ (xi1(ω))ω∈Ω is a state-contingent vector of consumption for t = 1. The

associated inter-temporal utility is given by

U i
Ω(xi0, x

i
1) ≡ ui0(xi0) +

∑
ω∈Ω

ui1(xi1(ω))P (ω).

An Ω-allocation is a family ((x0, x1), a), where (x0, x1) ≡ (xi0, x
i
1)i∈I is the

consumption allocation and a ≡ (ak)k∈K is the investment vector. It is said to be

Ω-feasible if markets clear at t = 0 and in each date-1 state of nature, i.e.,∑
i∈I

xi0 +
∑
k∈K

ak =
∑
i∈I

ei0,

and

∀ω ∈ Ω,
∑
i∈I

xi1(ω) = σf(ω, a).

An Ω-feasible allocation ((x̄0, x̄1), ā) is Pareto optimal (or efficient) if there

is no other Ω-feasible allocation ((x0, x1), a) such that the associated consumption

allocation (x0, x1) Pareto dominates (x̄0, x̄1).6

Since Bernoulli functions uit satisfy Inada’s condition, every efficient Ω-allocation

((x̄0, x̄1), ā) displays x̄i0 > 0 and x̄i1(ω) > 0, for all ω. It follows then that there exists

a stochastic discount factor (or vector of state price deflators) m̄ = (m̄(ω))ω∈Ω such

that

∀i ∈ I, ∂ui1(x̄i1(ω))

∂ui0(x̄i0)
= m̄(ω).

The random vector m̄ is called the Ω-sdf associated with the efficient Ω-allocation

((x̄0, x̄1), ā).

Consider the problem of a social planner who simultaneously chooses consump-

tion and investment levels. At date 1, for each possible aggregate output z ∈ Z,

5That is, limx→0+(ui
t(x)− ui

t(0))/x =∞.
6In the sense that U i

Ω(xi0, x
i
1) > U i

Ω(x̄i0, x̄
i
1), for all i, with strict inequality for at least one i.
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the planner’s task is the same for every exogenous state ω in {f(a) = z}: namely,

he has to redistribute the aggregate output z among consumers. It is then natural

to expect the random vector x̄i1 to vary only with aggregate output (or equivalently

to be measurable with respect to the random variable σf(a)). Actually, since the

Bernoulli functions ui1 are assumed to be strictly concave, it follows from Jensen’s

inequality that there exists z̄i1 : Z → R+ such that

x̄i1(ω) = z̄i1(σf(ω, ā)), (3.1)

for every exogenous state ω.7

This leads us to introduce a different representation of consumption allocations.

Let a Z-allocation be a family ((x0, z1), a) ≡ ((xi0, z
i
1)i∈I , (a

k)k∈K) such that the

date-1 consumption only varies with the aggregate output, i.e., zi1 ≡ (zi1(z))z∈Z .

Such an allocation is said to be Z-feasible if markets clear at t = 0 and (zi1)i∈I

defines a sharing rule at t = 1, i.e.,

∀z ∈ Z,
∑
i∈I

zi1(z) = z.

The inter-temporal utility of (xi0, z
i
1) is given by

U i
Z(xi0, z

i
1, a) ≡ ui0(xi0) +

∑
z∈Z

ui1(zi1(z))µ(z, a). (3.2)

We can adapt in a straightforward manner the definition of Pareto optimality to

Z-allocations. In particular, given an efficient Ω-allocation ((x̄0, x̄1), ā), there exists

an efficient Z-allocation ((x̄0, z̄1), ā) such that x̄i1 = z̄i1(σf(ā)), for each i. If we

denote by χ̄ ≡ (χ̄(z))z∈Z the associated stochastic discount factor (hereafter Z-sdf)

satisfying

∀i ∈ I, ∂ui1(z̄i1(z))

∂ui0(x̄i0)
= χ̄(z), (3.3)

we obtain the following relation between the Ω-sdf and the Z-sdf:

∀ω ∈ Ω, m̄(ω) = χ̄(σf(ω, ā)).

7If ui
1 were assumed to be concave (instead of strictly concave) then, for each Pareto optimal

allocation, there would exist an allocation satisfying Eq. (3.1) that generates the same profile of
utilities and marginal utilities.
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We will use next section to recall the well-known result that the Ω-sdf m̄ is a

sufficient statistics to efficiently coordinate decisions in competitive environments

with complete state-contingent financial markets. A key contribution of this paper

is to show that the Z-sdf χ̄ can play a similar role when there is a complete set

of aggregate-output contingent contracts. In particular, we will illustrate the role

played by the relation m̄ = χ̄(σf(ā)) when we construct the “suitable” out-of-

equilibrium market value of firms.

4 Prices for primitive causes

The traditional approach introduced by Arrow (1953) and Debreu (1959) as-

sumes that markets are complete with respect to exogenous states of nature. For

each ω, there is a claim traded at t = 0 which delivers one unit of consumption in

t = 1, contingent on the realization of ω. These state-contingent claims are also

called Arrow securities.

Let p ≡ (p(ω))ω∈Ω be the price vector of Arrow securities traded at date t = 0.

Given an investment level a, we denote by Bi
Ω(p, a) the set of all Ω-consumption

plans (xi0, x
i
1) satisfying

xi0 +
∑
ω∈Ω

p(ω)xi1(ω) 6 ei0 +
∑
k∈K

δik

[
−ak +

∑
ω∈Ω

p(ω)fk(ω, ak)

]
.

The array (p̄, (x̄0, x̄1)) is an Ω-competitive equilibrium associated with the

investment vector ā if ((x̄0, x̄1), ā) is Ω-feasible and, for every i, the choice (x̄i0, x̄
i
1)

maximizes U i
Ω in the budget set Bi

Ω(p̄, ā).

In this environment, efficient investment levels are achieved when firms maximize

their net present value, evaluated at the equilibrium prices p̄. We let V k
Ω : Ak −→ R

be the value function defined by

V k
Ω (ak) ≡ −ak +

∑
ω∈Ω

p̄(ω)fk(ω, ak).

We omit the simple proof of the following standard result.

Theorem 4.1. Let (p̄, (x̄0, x̄1)) be an Ω-competitive equilibrium associated with the

investment vector ā ≡ (āk)k∈K . Assume that each firm k has chosen āk to maximize

V k
Ω . Then, the Ω-allocation ((x̄0, x̄1), ā)) is Pareto optimal.
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The objective V k
Ω of firm k only depends on the firm’s technology fk and equilib-

rium prices p̄. The prices of the state-contingent claims convey all relevant informa-

tion about the available resources in the society. Firm k does not need to anticipate

the investments made by other firms or the agents’ consumption and utility func-

tions. In addition to that, when choosing āk, firm k does not take the equilibrium

effect of āk over p̄ into account. The same is true for agents when making their con-

sumption choices. These are behavioral assumptions that are inherent to the notion

of a competitive equilibrium and are intended to capture the idea that agents and

firms have no market power.

5 Prices for aggregate production

Markets based on primitive states ω as introduced in Section 4 are not common

since they are difficult to operate. Indeed, the primitive states of nature used to

model production risks are too complex for writing and enforcing of contracts con-

tingent on them. Modern financial markets trade assets whose payoffs depend on

the observable profits of the firms.

Let us now recall the concept of a stock market equilibrium when agents only

trade contracts based on firms’ outcomes. We subsequently show that if the mar-

ket structure allows insurance against aggregate production risks, then competitive

markets efficiently redistribute resources among consumers. The last part of this

section is the core of the paper. There we show that if firms maximize profit, suit-

ably computed using aggregate output prices and “competitive beliefs”, then the

equilibrium outcome is efficient.

5.1 Stock market equilibrium

In the spirit of Magill and Quinzii (2002), we consider two types of assets: the

equity contracts of the firms, indexed by the set K, which are in positive net supply,

and a set J of securities in zero net supply representing bonds and derivatives.

Security j’s payoff is characterized by an output contingent function Rj : Y → R
describing the way the payoff at t = 1 of contract j depends on the realized output

of the firms in the economy. The price at t = 0 of security j is denoted by qj , and

we let q ≡ (qj)j∈J denote the vector of security prices. The payoff of firm k’s equity

is defined by the function y 7→ yk, and its price at t = 0 is denoted by Ek.
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At date 0, for a given investment vector a ≡ (ak)k∈K and asset prices (E, q), each

agent i chooses consumption xi0 ∈ R+, new equity holdings ηi ∈ RK and portfolios

θi ∈ RJ such that

xi0 + q · θi + E · ηi 6 ei0 + (E − a) · δi. (5.1)

At date 1, contingent to each output vector y, agent i consumes

yi1(y) ≡ R(y) · θi + y · ηi > 0. (5.2)

We denote by Bi
Y (E, q) the set of consumption plans (xi0, y

i
1) for which there

is a portfolio (ηi, θi) satisfying the budget constraints (5.1) and (5.2). The utility

U i
Y (xi0, y

i
1, a) of a consumption plan financed by (ηi, θi) is given by

U i
Y (xi0, y

i
1, a) ≡ ui0(xi0) +

∑
y∈Y

ui1(yi1(y))Q(y, a)

= ui0(xi0) +
∑
y∈Y

ui1(R(y) · θi + y · ηi)Q(y, a).

A Y -allocation is a family ((x0, y1), a) ≡ ((xi0, y
i
1)i∈I , (a

k)k∈K) where the date-1

consumption only varies with firms’ output, i.e., yi1 ≡ (yi1(y))y∈Y . It is said to be

Y -feasible if markets clear in all decision nodes, i.e.,∑
i∈I

xi0 +
∑
k∈K

ak =
∑
i∈I

ei0

and

∀y ∈ Y,
∑
i∈I

yi1(y) = σy.

Notice that, for any Y -feasible allocation, (yi1)i∈I defines a sharing rule of the ag-

gregate output.

A stock market equilibrium associated with ā is an array ((Ē, q̄), (x̄0, ȳ1))

such that ((x̄0, ȳ1), ā) is Y -feasible and, for each investor i, the consumption plan

(x̄i0, ȳ
i
1) is optimal in Bi

Y (Ē, q̄).

Remark 5.1. There is no need to require market clearing for every output pro-

file y ∈ Y . Given an equilibrium investment vector ā, we could restrict attention

to market clearing for output levels y occurring with positive probability in equi-

librium. Alternatively, we could replace the Y -feasibility condition by a market
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clearing condition on portfolios, i.e.,

∀(k, j) ∈ K × J,
∑
i∈I

(θij , η
i
k) = (0, 1).

5.2 Optimal distribution of resources

As in Magill and Quinzii (2009, 2010), we focus our attention on the objective

of firms and therefore assume that, given any investment decision by firms, markets

assure an optimal distribution of resources among consumers. We propose to show

that this can be achieved if markets are complete with respect to aggregate output

represented by the set Z.

Definition 5.1. Markets are said to be complete with respect to aggregate output,

or Z-complete, if for every z ∈ Z, there exists a portfolio (ηz, θz) such that the

associated payoff function satisfies

∀y ∈ Y, R(y) · θz + y · ηz =

{
1, if σy = z;

0, elsewhere.

Security markets have undergone a remarkable development in the last thirty

years with the introduction of more and more derivative contracts. Magill and

Quinzii (2009) used this observation to justify the assumption that the markets are

sufficiently rich to span the uncertainty in the outcomes of the firm, i.e., with respect

to Y . Completeness with respect to aggregate output is a weaker requirement. The

next result shows that Z-completeness is sufficient to get an optimal distribution of

resources among consumers (the details of the proof are postponed to Appendix A).

Proposition 5.1. Consider a stock market equilibrium ((Ē, q̄), (x̄0, ȳ1)) given an

investment vector ā ≡ (āk)k∈K . Assume that markets are complete with respect to

aggregate output. First, for each agent i, there exists z̄i1 ≡ (z̄i1(z))z∈Z such that

∀y ∈ Y, ȳi1(y) = z̄i1(σy).

Second, there exists ρ̄ = (ρ̄(z))z∈Z such that

∀i ∈ I, ρ̄(z) = µ(z, ā)
∂ui1(z̄i1(z))

∂ui0(x̄i0)
. (5.3)
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Third, the consumption allocation (x̄0, ȳ1) (or equivalently (x̄0, z̄1)) is Pareto opti-

mal,8 and the equilibrium equity Ēk of firm k satisfies

Ēk =
∑
z∈Z

ρ̄(z)
∑

yk∈Y k

ykQ
k
(yk|z),

where Q
k
(yk|z) is the marginal probability

Q
k
(yk|z) ≡

∑
y−k∈Y −k

Q(y|z)

of the equilibrium conditional probability

Q(y|z) ≡

{
Q(y, ā)/µ(z, ā), if σy = z;

0, elsewhere.
(5.4)

Notice that ρ̄(z) is the cost of the portfolio that replicates the Arrow security

contingent on z. In particular, the consumption plan (x̄i0, z̄
i
1) satisfies the following

budget restriction

x̄i0 +
∑
z∈Z

ρ̄(z)z̄i1(z) 6 ei0 +
∑
k∈K

δik

[
−āk + Ēk

]
. (5.5)

We can show that, for any given investment vector ā, the array ((Ē, ρ̄), (x̄0, ȳ1))

is a stock market equilibrium if and only if ((ρ̄, q̄), (x̄0, z̄1)) is a reduced form

equilibrium—in the sense that markets clear, i.e.,∑
i∈I

x̄i0 +
∑
k∈K

āk =
∑
i∈I

ei0 and
∑
i∈I

zi1(z) = z, ∀z ∈ Z;

and for each i, the consumption plan (x̄i0, z̄
i
1) is optimal in the budget set Bi

Z(ρ̄, Ē, ā)

of all consumption plans (xi0, z
i
1) satisfying Eq. (5.5). This result is standard in the

general equilibrium literature (see Magill and Quinzii (1996)).

Remark 5.2. In the definition of a reduced form equilibrium given an investment

vector ā, we could restrict attention to market clearing for every aggregate output

8Here, investment is arbitrarily fixed. Pareto optimality of the consumption allocation (x̄0, ȳ1)
given an investment vector ā means that we cannot find another consumption allocation (x0, y1)
satisfying market clearing with the same investment vector ā and such that U i

Y (x0, y1, ā) >
U i

Y (x̄0, ȳ1, ā), for every i, with a strict inequality for at least one i.
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z occuring with positive probability—in the sense that µ(z, ā) > 0. In particular, if

agents understand at t = 0 that an aggregate output level ẑ is not possible at equi-

librium, i.e., µ(ẑ, ā) = 0, then the portfolio replicating the Arrow security contingent

on ẑ will not be traded, and we will have ρ̄(ẑ) = 0. The results of Proposition 5.1

are still valid if we replace “Z-completeness” by “equilibrium completeness” in the

sense that for every possible aggregate output z with µ(z, ā) > 0, there exists a

portfolio (ηz, θz) that replicates the Arrow security contingent on z.

5.3 Objective of the firms

Consider an agent i that is a shareholder of firm k, i.e., δik > 0. He would like

to set āk in order to maximize his welfare. Given the equivalence between a stock

market equilibrium and a reduced form equilibrium, agents would like that firm k

chose āk in order to maximize

Ṽ k
Z (ak) = −ak + Ẽk(ak),

where Ẽk(ak) is agents’ perceptions about the way the new investment decision ak

affected the price that the “market” would pay for the equity.

A minimal requirement is that agents have correct expectations at equilibrium,

i.e.,

Ẽk(āk) = Ēk =
∑
z∈Z

ρ̄(z)
∑

yk∈Y k

ykQ
k
(yk|z).

We should now define out-of-equilibrium price perceptions. We make the tradi-

tional behavioral assumption that agents conceive that each firm k has no market

power and does not affect market prices for aggregate output. This leads to the

following price perception formula

Ẽk(ak) =
∑
z∈Z

ρ̄(z)
∑

yk∈Y k

ykQ̃k(yk, ak|z),

where Q̃k(yk, ak|z) is the conditional probability (perceived by agents) that firm k’s

output is yk when it chooses the investment ak given the aggregate output z. The

amount ∑
yk∈Y k

ykQ̃k(yk, ak|z)

represents the conditional expected production of firm k across primitive states in
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which the equilibrium aggregated output is z.

We make the additional behavioral assumption that agents have competitive be-

liefs: they are convinced that a change in the investment of firm k will not affect

the likelihood of each aggregate output z. In our opinion, this a reasonable assump-

tion to justify that agents (and firms) take prices for aggregate output as given.

Therefore, we say that agents form competitive beliefs when

Q̃k(yk, ak|z) = P ({fk(ak) = yk}|{σf(ā) = z}). (5.6)

The interpretation for this is straightforward. Agents understand that if firm k

chooses the investment ak, then the risky output of the firm is represented by the

random variable ω 7→ fk(ω, ak). When the aggregate production is z, agents consider

that firm k’s decision does not affect aggregate production and infer that every state

of nature ω in {σf(ā) = z} is consistent with aggregate output z, implying that

conditional on z, firm k’s output belongs to the set {fk(ω, ak) : σf(ω, ā) = z}.

Remark 5.3. Actors in the economy act as if firm k’s investment choices did not affect

the aggregate output. This is the analogue of the classical price-taking assumption

for this environment. Economists sometimes use the metaphor of continuum sets

of agents and firms to illustrate a scenario in which independent actions do not

impact aggregate variables. In this case, Q̃k(yk, ak|z) should be interpreted as the

conditional output distribution of a given firm which invests ak while all other infinite

firms invest (āk
′
)k′ 6=k and the average aggregate output remains z.

Theorem 5.1. Let ((Ē, q̄), (x̄0, ȳ1)) be a stock market equilibrium associated with

the investment vector ā ≡ (āk)k∈K . Assume that

• markets are complete with respect to aggregate production;

• each firm k has chosen āk to maximize the market value

V k
Z (ak) = −ak +

∑
z∈Z

ρ̄(z)
∑

yk∈Y k

ykQ̃k(yk, ak|z),

where beliefs Q̃k(·, ak|z) are competitive in the sense of Eq. (5.6) and ρ̄(z) is

the price of aggregate output z.9

Then the Y -allocation ((x̄0, ȳ1), ā) is efficient.

9This is the market price of the portfolio that replicates the Arrow security contingent on z.
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Proof of Theorem 5.1. Consider an alternative Y -feasible allocation ((x0, y1), a). For

every i, we denote by zi1 the sharing rule (zi1(z))z∈Z such that for every z with

µ(z, a) > 0, we have

zi1(z) =
1

µ(z, a)

∑
y∈Y (z)

yi1(y)Q(y, a),

where we recall that Y (z) is the set of production vectors y consistent with aggregate

outcome z, i.e., Y (z) ≡ {y ∈ Y : σy = z}. For z satisfying µ(z, a) = 0, we can select

any arbitrary sharing rule, for instance, zi1(z) = z/(#I). Notice that ((x0, z1), a) is

a Z-feasible allocation and, thanks to (strict) concavity of ui, it satisfies

∀i ∈ I, U i
Z(xi0, z

i
1, a) > U i

Y (xi0, y
i
1, a).

Following Proposition 5.1, for each i, there exists z̄i1 ≡ (z̄i1(z))z∈Z such that ȳi1(y) =

z̄i1(σy). Therefore, to prove that ((x̄0, ȳ1), ā) is Pareto optimal, it is sufficient to

show that ∑
i∈I

1

∂ui0(x̄i0)
U i
Z(xi0, z

i
1, a) 6

∑
i∈I

1

∂ui0(x̄i0)
U i
Z(x̄i0, z̄

i
1, ā),

for all Z-feasible allocation ((x0, z1), a).

Let us first write agents’ utilities in terms of competitive beliefs, as given in

Eq. (5.6). Recall from Eq. (3.2) that

U i
Z(xi0, z

i
1, a) ≡ ui0(xi0) +

∑
z′∈Z

ui1(zi1(z′))µ(z′, a).

Define

Q̃(y, a|z) = P ({f(a) = y}|{σf(ā) = z})

and notice that, for every z′ ∈ Z,∑
y′∈Y (z′)

∑
z∈Z

Q̃(y′, a|z)µ(z, ā) = µ(z′, a), (5.7)

where Y (z′) ≡ {y′ ∈ Y : σy′ = z′}. We can then write

U i
Z(xi0, z

i
1, a) = ui0(xi0) +

∑
z′∈Z

ui1(zi1(z′))
∑

y′∈Y (z′)

∑
z∈Z

Q̃(y′, a|z)µ(z, ā).
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It follows then from Eq. (2.1) that

U i
Z(xi0, z

i
1, a) = ui0(xi0) +

∑
y′∈Y

ui1(zi1(σy′))
∑
z∈Z

Q̃(y′, a|z)
∑

y∈Y (z)

Q(y, ā)

= ui0(xi0) +
∑
y′∈Y

∑
y∈Y

ui1(zi1(σy′))Q̃(y′, a|σy)Q(y, ā). (5.8)

Similarly, for (x̄i0, z̄
i
1, ā), we have

U i
Z(x̄i0, z̄

i
1, ā) = ui0(x̄i0) +

∑
z∈Z

ui1(z̄i1(z))µ(z, ā)

= ui0(x̄i0) +
∑
y∈Y

ui1(z̄i1(σy))Q(y, ā).

Moreover, since
∑

y′∈Y Q̃(y′, a|σy) = 1, we can write

U i
Z(x̄i0, z̄

i
1, ā) = ui0(x̄i0) +

∑
y∈Y

∑
y′∈Y

ui1(z̄i1(σy))Q̃(y′, a|σy)Q(y, ā). (5.9)

We can now compare the utilities in Eq. (5.8) and (5.9). Consider the following

notation:

∆U i ≡ U i
Z(xi0, z

i
1, a)− U i

Z(x̄i0, z̄
i
1, ā) and ∆xi0 = xi0 − x̄i0.

It follows from Eq. (5.8) and (5.9) together with our assumptions on Bernoulli

functions that

∆U i 6 ∂ui0(x̄i0)∆xi0 +
∑
y∈Y

∑
y′∈Y

∂ui1(z̄i1)[zi1(σy′)− z̄i1(σy)]Q̃(y′, a|σy)Q(y, ā).

Since markets clear, we have∑
i∈I

[zi1(σy′)− z̄i1(σy)] = σy′ − σy and
∑
i∈I

∆xi0 = −[σa− σā].

Therefore,

∑
i∈I

1

∂ui0(x̄i0)
∆U i 6 −[σa− σā] +

∑
z∈Z

∑
y′∈Y

ρ̄(z)[σy′ − z]Q̃(y′, a|z),
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where ρ̄(z) = µ(z, ā)∂ui1(z̄i1)/∂ui0(x̄i0), as proved in Proposition 5.1.

Define

Γ ≡ −σa+
∑
z∈Z

∑
y′∈Y

ρ̄(z)σy′Q̃(y′, a|z) and Γ̄ ≡ −σā+
∑
z∈Z

∑
y′∈Y

ρ̄(z)zQ̃(y′, a|z).

To conclude the proof, we have to show that

Γ =
∑
k∈K

V k
Z (ak) and Γ̄ =

∑
k∈K

V k
Z (āk).

Notice that Γ =
∑

k∈K Γk, where

Γk = −ak +
∑
z∈Z

ρ̄(z)
∑
y∈Y

ykQ̃(y, a|z)

= −ak +
∑
z∈Z

ρ̄(z)
∑

yk∈Y k

yk
∑

y−k∈Y −k

Q̃(y, a|z).

The desired result, Γk = V k
Z (ak), follows from the the absence of externalities—that

is, for each z, firm k’s output likelihood is not affected by other firms’ investment

decisions:

Q̃k(yk, ak|z) =
∑

y−k∈Y −k

Q̃(y, a|z).

Similarly, we shall also prove that Γ̄ =
∑

k∈K V k
Z (āk). Since

∑
y′∈Y Q̃(y′, a|z) = 1,

we have

Γ̄ = −σā+
∑
z∈Z

ρ̄(z)z

= −σā+
∑
z∈Z

ρ̄(z)
∑

y∈Y (z)

σyQ(y|z).

Notice from Equations (5.4) and (5.6) that competitive beliefs Q̃(y, ā|z) at the equi-

librium investment vector is correct in the sense that it coincides with Q(y|z). There-

fore:

Γ̄ = −σā+
∑
z∈Z

ρ̄(z)
∑
y∈Y

σyQ̃(y, ā|z).

17



In particular, we have Γ̄ =
∑

k∈K Γ̄k, where

Γ̄k = −āk +
∑
z∈Z

ρ̄(z)
∑

yk∈Y k

yk
∑

y−k∈Y −k

Q̃(y, ā|z).

The desired result, Γ̄k = V k
Z (āk), follows again from the absence of externalities.

Remark 5.4. We do not address in this paper the issue of existence of a stock

market equilibrium with investment levels that maximize the market value defined

in Theorem 5.1. There is only one technical difficulty that deserves attention: the

convexity of the firms’ decision problem. This issue only appears because, in order

to simplify the notation, we have assumed that the set Y k of possible outcomes for

each firm k is finite.10 Our results would remain valid if we had assumed, as in Magill

and Quinzii (2009), that Y k = R and that the set Ak of investment possibilities is

a convex (and closed) subset of R+. In this case, one could follow the standard

general equilibrium literature and impose each production function ak 7→ fk(ω, ak)

to be continuous and concave. This would imply that firm k’s objective function

ak 7−→ V k
Z (ak) = −ak +

∑
ω∈Ω

χ̄(σf(ω, ā))fk(ω, ak)P (ω)

is concave. Existence would follow from standard arguments.11 Alternatively, if one

prefer to work with finite production sets (Y k)k∈K , one may model the production

sector with a continuum of firms and attempt to apply Lyapunov’s theorem to

overcome the convexity issue.12 This approach would involve serious mathematical

complications and checking its validity is beyond the scope of this paper.

10The assumption that Y k is finite is only used in this paper to simplify the notation (allowing
us to use summations instead of integrals).

11In equilibrium, the set of possible aggregate production z will be finite given that the set of
primitive states of nature Ω is finite. This occurs regardless of the properties of (Y k)k∈K , since
µ(z, ā) > 0 if and only if σf(ω, ā) = z for some ω. Therefore, the assumption of equilibrium-
completeness (see Remark 5.2) would only require a finite number of assets being traded in equi-
librium.

12Considering a continuum of firms does not necessarily mean that we have identical firms. We
may replace the finite set K by a non-atomic measure space (K,K, κ), where (K,K) is a measurable
set of firms’ characteristics and κ is a distribution measure on K.
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6 Relation with the literature

We have proved that, even when markets are complete only with respect to

aggregate output, it is possible to find a profit-maximization criterion for firms’ in-

vestment decisions that implies Pareto optimality. Equilibrium prices for aggregate

output play a crucial role by conveying part of the socially relevant information, but

they are not sufficient. The incompleteness of markets with respect to exogenous

states of nature can be subsumed if agents and firms have competitive beliefs about

the impact of new investments over the conditional distribution of each firm’s output

given the equilibrium aggregate output. More precisely, Theorem 5.1 states that a

criterion firm k should maximize to obtain a Pareto optimal equilibrium is

V k
Z (ak, ρ̄) = −ak +

∑
z∈Z

ρ̄(z)EP [fk(ak)|σf(ā) = z].

Recall from Eq. (5.3) that the price of aggregate output z satisfies ρ̄(z) = µ(z, ā)χ̄(z),

where χ̄ is the Z-sdf defined in Eq. (3.3). We then get the following expression for

the firm’s objective

V k
Z (ak, ρ̄) = −ak +

∑
ω∈Ω

χ̄(σf(ω, ā))fk(ω, ak)P (ω). (6.1)

We will now compare this objective with some others proposed in the literature.

6.1 Standard valuation with prices for primitive causes

When markets are Ω-complete, the firm can use the market price p̄(ω) of each

primitive cause ω to compute the net present value of its investment

V k
Ω (ak, p̄) = −ak +

∑
ω∈Ω

p̄(ω)fk(ω, ak).

We know that, if (p̄, (x̄0, x̄1)) is an Ω-competitive equilibrium where the investment

vector (āk)k∈K is chosen by firms to maximize the objective V k
Ω (·, p̄), then the allo-

cation of goods and investment is efficient.

We show that the standard objective V k
Ω (·, p̄) coincides with our objective V k

Z (·, ρ̄)

under the Ω-completeness assumption. Recall that p̄(ω) = m̄(ω)P (ω) in any Ω-

competitive equilibrium, where m̄(ω) = ∂ui1(x̄i1(ω))/∂ui0(x̄i0) is the Ω-sdf. Since

(x̄0, x̄1) is Pareto optimal, we have seen in Section 3 that x̄1 is measurable with
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respect to σf(ā), so that we can write

p̄(ω) = m̄(ω)P (ω) = χ̄(σf(ω, ā))P (ω) = ρ̄(σf(ω, ā)), (6.2)

where χ̄ and ρ̄—respectively defined by Eq. (3.3) and (5.3)—are the Z-sdf and the

prices of aggregate output associated with the Z-representation (x̄0, z̄1) of (x̄0, x̄1).

It then follows from Eq. (6.1) that the standard objective V k
Ω (ak, p̄) coincides with

our objective V k
Z (ak, ρ̄).

When financial markets are Z-complete but not Ω-complete, they do not ex-

plicitly price every primitive cause ω. Our contribution consists in showing that

every firm can recover the stochastic discount factor m̄(ω) using the prices of traded

assets. Equation (6.2) tells us that all firms should set m̄(ω) = χ̄(z), where χ̄(z)

is the sdf inferred from market prices at the aggregate production z consistent (in

equilibrium) with the primitive cause ω, i.e., z = σf(ω, ā). We stress that, by doing

so, firm k does not take into account the fact that the new investment ak affects

aggregate output in state ω.

6.2 Firms valuation with prices for aggregate output uncertainty

Magill and Quinzii (2008) and Magill, Quinzii and Rochet (2011) argue that if

firms maximize the market-value criterion when financial contracts are written on

outcomes then the resulting allocation is (generically) not Pareto optimal. This

statement seems to contradict our main result Theorem 5.1. The difference stems

from the definition of market value. To illustrate our point, consider a stock market

equilibrium ((Ē, q̄), (x̄0, ȳ1)) with an investment vector ā. We have seen (Proposi-

tion 5.1) that firm k’s equity Ēk satisfies

Ēk =
∑
z∈Z

µ(z, ā)χ̄(z)
∑

yk∈Y k

ykQ
k
(yk|z),

where χ̄(z) is the Z-sdf. Since we have

Q
k
(yk|z) = P ({fk(āk) = yk}|σf(ā) = z),

the expression for firm k’s equity can then be written as

Ēk =
∑
z∈Z

χ̄(z)
∑

yk∈Y k

ykP
[
{fk(āk) = yk} ∩ {σf(ā) = z}

]
.
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Based on this valuation at equilibrium, there are different ways of defining agents’

perception of firm k’s equity value when its manager contemplates an alternative

investment ak. A first possibility consists in replacing the expression {fk(āk) =

yk} ∩ {σf(ā) = z} by {fk(ak) = yk} ∩ {σf(ak, ā−k) = z}. This leads to the

following objective function

V̂ k
Z (ak) ≡ −ak +

∑
z∈Z

χ̄(z)
∑

yk∈Y k

ykP
[
{fk(ak) = yk} ∩ {σf(ak, ā−k) = z}

]
.

Since

{σf(ak, ā−k) = z} =
⋃

y∈Y (z)

{f(ak, ā−k) = y},

we find

V̂ k
Z (ak) = −ak +

∑
y∈Y

χ̄(σy)ykQ(y, ak, ā−k). (6.3)

This is in the spirit of Magill and Quinzii (2008) and Magill, Quinzii and Rochet

(2011).13 Under this view, firm k manager takes the stochastic discount factor χ̄ as

given but fully considers the impact of new investments on the probability of y and

therefore on the aggregate output z = σy.

The objective V̂ k
Z differs from the one we propose since, following the competitive

tradition, we assumed that firms do not anticipate the effect of new investments over

aggregate variables. Formally, we replaced the expression {fk(āk) = yk}∩{σf(ā) =

z} by {fk(ak) = yk} ∩ {σf(ā) = z}.
In an environment with non-marginal firms, one may think that firms should

maximize the objective function V̂ k
Z . Magill and Quinzii (2009) showed that maxi-

mizing this market value function does not always lead to Pareto optimality. This

is due to the fact that, when partially taking into account the effect of their actions

over aggregate variables, firms end up acting strategically and not competitively.

6.3 The expected social utility

After arguing that market value maximization—computed as in Eq. (6.3)—does

not necessarily lead to efficiency, Magill and Quinzii (2009) investigated an alter-

13These models are not directly comparable to ours. Magill and Quinzii (2008), for instance,
analyze a moral hazard economy in which managers choose unobservable effort levels instead of
investments. The framework used in Magill, Quinzii and Rochet (2011) is much closer to ours, but
it presents a few differences on the number of goods and structure of preferences.
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native objective function for firms. They have shown that if firms maximize an

“expected social” objetive function then the resulting allocation is Pareto optimal.

We propose to analyse the mechanics behind this result and illustrate the differences

with respect to the arguments used in our proof of Theorem 5.1.

Consider a reduced form equilibrium ((Ē, ρ̄), (x̄0, z̄1)) associated with invest-

ment ā. In order to identify a sufficient condition for efficiency, we can make a

change in investment by modifying date 0 consumption. More formally, for every i,

fix εi > 0 such that ε ≡
∑

i∈I ε
i > 0. We compute the following weighted sum of

variations ∑
i∈I

1

∂ui0(x̄i0)
∆i(εi)

where

∆i(εi) ≡ U i
Z(x̄i0 − εi, z̄i1, a)− U i

Z(x̄i0, z̄
i
1, ā) and a = (āk + ε, ā−k).

Recall that for every xi0 > 0 we have

U i
Z(xi0, z̄

i
1, a) = ui0(xi0) +

∑
z′∈Z

ui1(z̄i1(z′))µ(z′, a). (6.4)

When computing the difference ∆i(εi)—see Eq. (5.7) in the proof of Theorem 5.1—,

we have made the following “disintegration”:

µ(z′, a) =
∑

y′∈Y (z′)

∑
z∈Z

Q̃(y′, a|z)µ(z, ā).

The term µ(z′, a) is the probability of the event {σf(a) = z′}, and it can be expressed

as a function of the probability µ(z, ā) of the event {σf(ā) = z} using Bayes’ rule.

This allows us to compute the difference ∆i(εi) factorizing the probabilities and

explains why the objective we proposed is comparable with the standard profit

maximization criterion.

Magill and Quinzii (2009) followed another route to compute ∆i(εi). In accor-

dance with their assumption that each firm k does take into account the effect of

its actions over aggregate variables, they made the following simple computation:

∆i(εi) = ∆i
0(εi) +

∑
z∈Z

ui1(z̄i1(z))[µ(z, a)− µ(z, ā)],
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where ∆i
0(εi) = ui0(x̄i0 − εi)− ui0(x̄i0). It follows from concavity of ui0 that

∑
i∈I

1

∂ui0(x̄i0)
∆i(εi) 6 −ε+

∑
z∈Z

Φ(z)[µ(z, āk + ε, ā−k)− µ(z, āk, ā−k)],

where

Φ(z) ≡
∑
i∈I

ui1(z̄i1(z))

∂ui0(x̄i0)
.

Given this simple computation, one can exhibit an objective function that leads

to Pareto efficiency. Indeed, if firm k maximizes the following “expected social”

objective function:

MQk
Z(ak) = −ak +

∑
z∈Z

Φ(z)µ(z, ak, ā−k)

then the new allocation ((x̄i0− ε, z̄i1)i∈I , a) does not Pareto dominate ((x̄i0, z̄
i
1)i∈I , ā).

The point of the above argument is to show how Magill and Quinzii (2009)

came up with the “expected social” objective and illustrate the differences with

respect to our approach. It turns out that their analysis is particularly important

to study decisions of large corporations that are “non-marginal”—in the sense of

being aware that their investment decisions affect the probability distribution over

the economy’s output vector y = (yk)k∈K . The objective function MQk
Z plays a

crucial role in Magill, Quinzii and Rochet (2011) to provide a theoretical foundation

for the theory of stakeholder firms as studied in Allen, Carletti and Marquez (2011).

In that perspective, our result shows that the stakeholder theory is not founded

by the mere presence of output-contingent contracts. An additional feature (e.g.,

a non-competitive production sector) is needed to reject profit-maximization as a

socially justified objective for firms.

A Appendix: Proof of Proposition 5.1

Consider a stock market equilibrium ((Ē, q̄), (x̄0, ȳ1)) given an investment vec-

tor ā. For every consumer i, the plan (x̄i0, ȳ
i
1) is optimal in the budget set Bi

Y (Ē, q̄).

We let z̄i1 = (z̄i1(z))z∈Z be the conditional expectation of ȳi1 defined by

∀z ∈ Z, z̄i1(z)µ(z, ā) =
∑

y∈Y (z)

ȳi1(y)Q(y, ā),

23



where we recall that Y (z) ≡ {y ∈ Y : σy = z}. Since markets are Z-complete, for

each aggregate outcome z, there exists a portfolio (ηz, θz) that replicates the Arrow

security paying when aggregate output is z. We let (ηi, θi) be the portfolio defined

by

(ηi, θi) =
∑
z∈Z

z̄i1(z)(ηz, θz).

The portfolio (ηi, θi) finances the future consumption represented by z̄i1 in the sense

that

∀y ∈ Y, z̄i1(σy) = R(y) · θi + y · ηi.

It follows from the market clearing condition for ȳ1 that

∀y ∈ Y,
∑
i∈I

z̄i1(σy) =
∑
i∈I

ȳi1(y).

This implies that

∀y ∈ Y, R(y) ·
∑
i∈I

θi + y ·
∑
i∈I

ηi = R(y) ·
∑
i∈I

θ̄i + y ·
∑
i∈I

η̄i,

where (η̄i, θ̄i) is a portfolio financing the equilibrium consumption plan (x̄i, ȳi1).

Since equilibrium prices preclude arbitrage opportunities, we obtain∑
i∈I

(q̄ · θi + Ē · ηi) =
∑
i∈I

(q̄ · θ̄i + Ē · η̄i).

We can now prove that

∀i ∈ I, q̄ · θi + Ē · ηi = q̄ · θ̄i + Ē · η̄i.

If this relation did not hold, we should have q̄ · θi + Ē · ηi > q̄ · θ̄i + Ē · η̄i for some i.

This agent i could then finance the future consumption z̄i1 together with the present

consumption x̄i0 + ε, for ε > 0 small enough. This leads to a contradiction since ui0
is increasing and concavity of ui1 implies∑

z∈Z
ui1(z̄i1(z))µ(z, ā) >

∑
y∈Y

ui1(ȳi1(y))Q(y, ā).

This result implies that the consumption plan (x̄i0, z̄
i
1) is budget feasible for
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every agent. Since the Bernoulli functions ui1 are strictly concave, we must have

ȳi1(y) = z̄i1(σy), for every i and y.

Next, denote by ρ̄(z) the cost of the portfolio (θz, ηz), i.e., ρ̄(z) = q̄ · θz + Ē · ηz.
Since (x̄i0, ȳ

i
1) is optimal in Bi

Y (Ē, q̄), it follows from the first-order conditions that

q̄ =
∑
y∈Y

Q(y, ā)
∂ui1(ȳi1(y))

∂ui0(x̄i0)
R(y) and Ē =

∑
y∈Y

Q(y, ā)
∂ui1(ȳi1(y))

∂ui0(x̄i0)
y. (A.1)

Given the definition of (θz, ηz), we find

ρ̄(z) =
∑

y∈Y (z)

Q(y, ā)
∂ui1(ȳi1(y))

∂ui0(x̄i0)
= µ(z, ā)

∂ui1(z̄i1(z))

∂ui0(x̄i0)
. (A.2)

This implies that agents have homogenous marginal rates of substitution.14 Since

the Bernoulli functions ui1 are strictly concave, the consumption allocation (x̄0, ȳ1)

is Pareto optimal if and only if (x̄0, z̄1) is Pareto optimal. The latter property is

satisfied since markets are Z-complete.

Finally, we have

x̄i0 +
∑
z∈Z

ρ̄z̄i1(z) 6 ei0 +
∑
k∈K

δik

[
−āk + Ēk

]
.

Combining Eq. (A.1) and (A.2) we have

Ē =
∑
z∈Z

∑
y∈Y (z)

Q(y, ā)

µ(z, ā)
ρ̄(z)y =

∑
z∈Z

ρ̄(z)
∑
y∈Y

Q(y|z)y,

where Q(y, z) is the condition probability defined by

Q(y|z) ≡

{
Q(y, ā)/µ(z, ā), if σy = z;

0, elsewhere.
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