Sentiments

George-Marios Angeletos Jennifer La’O

April 22, 2012
Motivation

- fluctuations hinge on expectations
- but are these driven by preference and technology shocks?

This paper

1. stay within the core of the neoclassical paradigm
 - competitive, convex, RE, unique equilibrium

2. dispense with aggr shocks in technologies, preferences, etc
This paper

1. stay within the core of the neoclassical paradigm
 - competitive, convex, RE, unique equilibrium

2. dispense with aggr shocks in technologies, preferences, etc

3. yet, obtain rich fluctuations in beliefs, allocations, prices
Key insights

1. decentralization \rightarrow imperfect communication
 \rightarrow extrinsic shocks in expectations of “aggregate demand”

2. trade \rightarrow communication \rightarrow propagation
 \rightarrow waves, boom-and-bust cycles
Roadmap

- baseline model: clean theorems, simple examples
- broader insights
- extension 1: waves, boom-and-bust cycles
- extension 2: quantitative potential
- conclusion
The Model

- continuum of islands
 - repres. household and firm on each island
 - produce and trade differentiated goods
- fundamentals fixed and common knowledge
- trading via random matching
The Model: preferences and technologies

\[y_{it} = A_i F(K, n_{it}) \]

\[U_i = \sum_{t=0}^{\infty} \beta^t [U(c_{it}, c^*_{it}) - V(n_{it})] \]

\[F(k, n) = k^{1-\theta} n^\theta \quad U(c, c^*) = c^{1-\eta} c^{*\eta} \quad V(n) = \frac{1}{\epsilon} n^{\epsilon} \]
at each t, each island i is randomly matched to some j

- receive exogenous signals
- choose employment/production
- meet current trading partner
- share information
- trade and consume
The Model: matching, trade, and communication

at each t, each island i is randomly matched to some j

- receive exogenous signals
- choose employment/production
- meet current trading partner
- share information
- trade and consume

info dynamics: $\omega_i^t = (\omega_i^{t-1}, \omega_j^{t-1}, x_{it})$
Equilibrium

- Employment and production:

\[V'(n_{it}) = w_{it} = E_{it}[p_{it}] \frac{\partial y_{it}}{\partial n_{it}} \]
Equilibrium

- employment and production:

\[V'(n_{it}) = w_{it} = E_{it}[p_{it}] \frac{\partial y_{it}}{\partial n_{it}} \]

- trading:

\[p_{it} = P \left(y_{jt}, y_{it} \right) \equiv \left(\frac{y_{jt}}{y_{it}} \right)^{\eta} \]
Equilibrium

- employment and production:
 \[V'(n_{it}) = w_{it} = E_{it}[p_{it}] \frac{\partial y_{it}}{\partial n_{it}} \]

- trading:
 \[p_{it} = P \left(\frac{y_{jt}}{y_{it}} \right) \equiv \left(\frac{y_{jt}}{y_{it}} \right)^\eta \]

“aggregate demand externality” = \(p_i \) increases with \(y_j \)
Equilibrium

- equil = fixed point in allocations and beliefs of prices (Lucas)
Equilibrium

- equil = fixed point in allocations and beliefs of prices (Lucas)
- equil = PBE of fictitious game (Morris-Shin)

\[
\log y_{it} = (1 - \alpha) f_i + \alpha E_{it}[\log y_{jt}]
\]
Equilibrium

- equil = fixed point in allocations and beliefs of prices (Lucas)
- equil = PBE of fictitious game (Morris-Shin)

\[
\log y_{it} = (1 - \alpha) f_i + \alpha E_{it}[\log y_{jt}]
\]

- contraction mapping

Theorem

The equilibrium exists and is unique, no matter info structure.
Communication, beliefs, and fluctuations

- communication \rightarrow coordination of beliefs of econ activity

- “perfect communication” \equiv prior to trading, i and j share same beliefs about prices (p_{it}) and/or allocations (y_{it}, y_{jt})
Communication, beliefs, and fluctuations

- Communication \rightarrow Coordination of beliefs of econ activity

- "Perfect communication" \equiv Prior to trading, i and j share the same beliefs about prices (p_{it}) and/or allocations (y_{it}, y_{jt})

Theorem

Extrinsic fluctuations along unique equilibrium if and only if communication is imperfect.
What drives beliefs?

- in general:

\[y_i = f(A_i, B_i) \quad y_j = f(A_j, B_j) \]

\(A_i \) is TFP, \(B_i \) is expected terms of trade
What drives beliefs?

- In general:

\[y_i = f(A_i, B_i) \quad y_j = f(A_j, B_j) \]

\(A_i \) is TFP, \(B_i \) is expected terms of trade

- Perfect communication: \(B_i = B_j \)

\[(y_i, y_j, B_i, B_j) = f(A_i, A_j) \]

\[\Rightarrow \text{beliefs pinned down by fundamentals} \]
What drives beliefs?

- in general:
 \[y_i = f(A_i, B_i) \quad y_j = f(A_j, B_j) \]

 \(A_i \) is TFP, \(B_i \) is expected terms of trade

- perfect communication: \(B_i = B_j \)

 \[(y_i, y_j, B_i, B_j) = f(A_i, A_j) \]

 \(\Rightarrow \) beliefs pinned down by fundamentals

- imperfect communication: \(B_i \neq B_j \)

 \(\Rightarrow \) beliefs free to move with extrinsic shocks ("sentiments")
Sentiment shocks: simple example

\[x_i = (x_i^1, x_i^2) \]

\[x_i^1 = \log A_j + \varepsilon_i \]
\[x_i^2 = x_j^1 + \zeta \]
Sentiment shocks: simple example

\[x_i = (x_i^1, x_i^2) \]

\[x_i^1 = \log A_j + \varepsilon_i \quad x_i^2 = x_j^1 + \zeta \]

Proposition

In equilibrium,

\[Y_t = \Phi \zeta_t \quad \overline{E_{it}} Y_t = \Psi \zeta_t \]
Sentiment shocks: richer example

\[\log A_{it} = \bar{a}_t + a_i \]

\[x_i = (x_i^1, x_i^2, \ldots, x_i^H) \]

\[x_{it}^1 = \log A_{jt} + \varepsilon_{it}^1 \quad x_{it}^h = x_{jt}^{h-1} + \varepsilon_{it}^h \quad \varepsilon_{it}^h = \zeta_t^h + u_{it}^h \]
Sentiment shocks: richer example

\[
\log A_{it} = \bar{a}_t + a_i
\]

\[
x_i = (x_i^1, x_i^2, \ldots, x_i^H)
\]

\[
x_{it}^1 = \log A_{jt} + \varepsilon_{it}^1
\]

\[
x_{it}^h = x_{jt}^{h-1} + \varepsilon_{it}^h
\]

\[
\varepsilon_{it}^h = \zeta_t^h + u_{it}^h
\]

Proposition

\[
\exists \xi_t = \Xi(\zeta_t^1, \ldots, \zeta_t^h) \text{ and } \nu_t \perp (\bar{a}_t, \xi_t) \text{ such that}
\]

\[
Y_t = \Phi \bar{a}_t + \xi_t
\]

\[
\mathbb{E}_{it} y_{jt} = \Phi \bar{a}_t + \Psi \xi_t
\]

\[
\mathbb{E}_{it} Y_t = \Phi \bar{a}_t + \Lambda \xi_t + \nu_t
\]
Broader insights (1)

- **Arrow-Debreu / standard macro**
 - expectations perfectly aligned across agents
 - expectations and outcomes pinned down by fundamentals

- **imperfect communication**
 - extrinsic variation in expectations
 - “coordination failure” and “animal spirits” along unique equil
Broader insights (2)

- which kind of expectations are we talking about?

- first-order beliefs of endog outcomes (GDP, inflation, etc) *not* higher-order beliefs of exog fundamentals

- only the former matter / can be estimated
What’s next

1. communication → waves / boom-and-bust cycles

2. RBC-like extension → quantitative potential
Contagion and boom-and-bust cycles

- two regions: “North” and “South”

- TFP differs across regions, info differs both across and within
 - uninformed: know only local TFP
 - partially informed: signals about the other region
 - fully informed: know entire state of nature
Contagion and boom-and-bust cycles

- two regions: “North” and “South”

- TFP differs across regions, info differs both across and within
 - uninformed: know only local TFP
 - partially informed: signals about the other region
 - fully informed: know entire state of nature

- sentiment shock hits only few islands and only at $t = 0$

- communication → propagation → waves / cycles
Contagion and boom-and-bust cycles

Beliefs and Macroeconomic Activity

Population Dynamics

- Aggregate Output Y_t
- Average Forecast F_{tb}^a
- Average Forecast F_{tb}^b

- Uninformed
- Exuberant
- Informed
Quantitative potential

- extension with investment and utilization
- baseline RBC, but sentiment shocks instead of TFP shocks

<table>
<thead>
<tr>
<th>Output</th>
<th>U.S. Data (std. dev.)</th>
<th>Correlation (corr(X,Y))</th>
<th>U.S. Data (std. dev.)</th>
<th>Correlation (corr(X,Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1.73</td>
<td>1.00</td>
<td>1.74</td>
<td>1.00</td>
</tr>
<tr>
<td>N</td>
<td>1.47</td>
<td>1.00</td>
<td>1.34</td>
<td>0.87</td>
</tr>
<tr>
<td>C</td>
<td>1.26</td>
<td>0.98</td>
<td>1.19</td>
<td>0.79</td>
</tr>
<tr>
<td>I</td>
<td>4.30</td>
<td>0.96</td>
<td>4.98</td>
<td>0.76</td>
</tr>
<tr>
<td>Y/N</td>
<td>0.27</td>
<td>0.99</td>
<td>0.87</td>
<td>0.66</td>
</tr>
<tr>
<td>LW</td>
<td>5.14</td>
<td>-1.00</td>
<td>4.47</td>
<td>-0.82</td>
</tr>
</tbody>
</table>
Quantitative potential

- extension with investment and utilization
- baseline RBC, but sentiment shocks instead of TFP shocks

<table>
<thead>
<tr>
<th></th>
<th>The Model</th>
<th>U.S. Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>std. dev.</td>
<td>corr(X,Y)</td>
</tr>
<tr>
<td>output Y</td>
<td>1.73</td>
<td>1.00</td>
</tr>
<tr>
<td>employment N</td>
<td>1.47</td>
<td>1.00</td>
</tr>
<tr>
<td>consumption C</td>
<td>1.26</td>
<td>0.98</td>
</tr>
<tr>
<td>investment I</td>
<td>4.30</td>
<td>0.96</td>
</tr>
<tr>
<td>labor productivity Y/N</td>
<td>0.27</td>
<td>0.99</td>
</tr>
<tr>
<td>labor wedge LW</td>
<td>5.14</td>
<td>-1.00</td>
</tr>
</tbody>
</table>
Conclusion

- **contribution:**
 - imperfect communication \rightarrow extrinsic fluctuations
 - within otherwise conventional unique-equl DSGE models
Conclusion

- **contribution:**
 - imperfect communication \rightarrow extrinsic fluctuations
 - within otherwise conventional unique-equil DSGE models

- **interpretation:**
 - shocks to expectations
 - animal spirits, news shocks, uncertainty shocks
 - demand shocks