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Abstract

We study economies with adverse selection, plus the frictions in competitive search
theory. With competitive search, principals post terms of trade (contracts), then agents
choose where to apply, and they match bilaterally. Search allows us to analyze the
effects of private information on both the intensive and extensive margins (the terms
and probability of trade). There always exists a separating equilibrium where each
type applies to a different contract. The equilibrium is unique in terms of payoffs. It
is not generally efficient. We provide an algorithm for constructing equilibrium. Three
applications illustrate the usefulness of the approach, and contrast our results with
those in standard contract and search theory.
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1 Introduction

We are interested in equilibrium and efficiency in economies with adverse selection, plus

the frictions in competitive search theory. In competitive search, principals on one side of

the market post terms of trade—here they post contracts—and agents on the other side

choose where to direct their search. Then they match bilaterally, although some principals

and agents may fail to find a partner. Agents here have private information concerning

their type. Although there is not much work explicitly incorporating competitive search

and information frictions simultaneously, with a few exceptions discussed below, we think

that such an integration is natural. It is is natural because it allows uninformed principals

to try, through the posted terms of trade, to attract certain types and screen out others.

The framework yields strong results: we prove that equilibrium always exists, which is

not always the case with adverse selection; we prove that equilibrium payoffs are unique; we

show that equilibrium is not generally efficient; and we provide an algorithm for constructing

equilibrium.

The model is useful for studying a variety of substantive economic issues. For example,

in labor markets, an idea discussed in many papers using contract theory is that incentive

problems related to private information can distort allocations in terms of hours per worker

(the intensive margin). Another idea is that incentive problems may affect the probability

that a worker gets a job in the first place (the extensive margin), and for this, search theory

is useful. It seems interesting to study models where both margins are operative, to see how

incentive problems manifest themselves in terms of distortions in either hours per worker, or

unemployment, or both. Similarly, in asset markets it is commonly thought that information

frictions may be reflected by discounts in prices (again, the intensive margin). It is sometimes

also suggested that these frictions may be reflected in liquidity, or the time it takes to trade

(the extensive margin). Again, it is interesting to allow both margins to operate in the same

model. To this end, we think it is a good idea to pursue models that integrate information

and search theory.1

In our framework, although agents observe everything that is posted and search wherever

they like, matching is bilateral—each principal meets at most one agent and vice versa. We

assume that the number of agents and the distribution of types is fixed, while the number of

active principals is determined by free entry. As is standard, principals and agents potentially

1There are too many contributions to provide a survey here, but by way of example, a well-known paper
where information and incentive issues distort hours per worker is Green and Kahn (1983), and a one where
they distort unemployment is Shapiro and Stiglitz (1984). Papers where informational frictions distort the
terms of trade in the asset market include Glosten and Milgrom (1985) and Kyle (1985), and one where they
distort the time it takes to trade is Williamson and Wright (1994). We discuss other papers in more detail
below.
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face a trade-off between the terms of trade and market tightness. For example, a worker

might like to apply for a high-wage job, but not if too many others also apply. In our setup,

principals also need to form expectations about market composition, i.e. which types of

agents search for a given contract. Under mild assumptions, including a generalized single-

crossing property, there always exists a separating equilibrium where each principal posts a

contract that attracts a single type of agent. Because we get separating equilibria, we can

assume without loss of generality that principals post contracts, as opposed to an ostensibly

more general situation where they post revelation mechanisms. This simplifies the model.

We also show how to characterize equilibrium by solving an algorithm, involving a sequence

of optimization problems. This simplifies the analysis a lot.

We provide a series of applications and examples to illustrate the usefulness of the frame-

work and to show how some well-known results in contract theory and in search theory

change when we combine elements of both in the same model. The first application is a

classic sorting problem (Akerlof, 1976). Suppose that workers are heterogeneous with re-

spect both to their expected productivity and to their cost of working longer hours: more

productive workers find long hours less costly. Contracts specify a combination of wages and

hours of work but cannot be directly conditioned on a worker’s type (it is private informa-

tion). In equilibrium, firms may require that more productive workers work longer hours

than under full information—a version of the rat race. We discuss cases where, although

hours are distorted, the probability that a worker gets a job is not, and other cases where

there is also over-employment of high types. We find that the equilibrium can be Pareto

inefficient if there are few low-productivity agents or the difference in the cost of working is

small.

Our second application is a version of the well-known Rothschild and Stiglitz (1976)

insurance problem. Consider a labor market interpretation, rather than pure insurance, as

in the original model (only because in the labor market our assumption of bilateral meetings

may seem more natural). Risk-averse workers and risk-neutral firms can combine to produce

output, but only some pairs are productive. Workers differ in the probability that they will

be productive once they are matched. Firms can observe whether a worker is productive

but cannot observe a worker’s type. If a match proves unproductive, the worker is let go. In

equilibrium, firms separate workers by only partially insuring them against the probability

the match will be unproductive. Indeed, workers are worse off if they find a job and are then

let go, than they would be had they never found a job in the first place. We interpret this

as an explanation for the fact that firms do not fully insure workers against layoff risk: if

they did, they would attract low-productivity applicants.

This example also illustrates how our approach resolves the nonexistence problem in stan-
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dard adverse selection models like Rothschild and Stiglitz (1976). When there are relatively

few low productivity workers, equilibrium may not exist in that model for the following

reason: given any separating contract, profit for an individual firm can be increased by a de-

viation to a pooling contract that subsidizes low-productivity workers. Here, such a pooling

contract will not increase profit. The key difference is that in our model firms can match with

at most one worker, so a deviation cannot serve the entire population. Suppose a firm posts

a contract designed to attract a representative cross section of agents. The more workers

that search for this contract, the less likely it is that any one will match. This discourages

some from searching. Critically, it is the most productive workers who are the first to go,

because their outside option—trying to obtain a separating contract—is more attractive.

Hence, only undesirable types are attracted by the deviation, making it unprofitable.

Our third application, to asset markets, illustrates among other things how adverse selec-

tion can sometimes make it harder to trade without affecting the terms of trade. Principals

want to buy and agents want to sell apples, meant to represent assets that could be high or

low quality.2 As in Akerlof (1970), some apples are bad: they are lemons. To make the case

stark, we can even assume there are no fundamental search frictions, so that everyone on

the short side of the market matches. But it is important to understand that here the short

side of a market is endogenous. In equilibrium, we show that sellers with good apples trade

only probabilistically, which is precisely how buyers screen low quality. This is different from

related results in the literature (e.g. Nosal and Wallace (2007)), where lotteries are used to

screen. Interestingly, screening through search saves resources, compared to lotteries. Still,

equilibrium can be Pareto dominated by a pooling allocation if there are few bad apples. We

also show that in some cases the market completely shuts down, an extreme lemons problem

perhaps relevant for understanding the recent collapse in some credit markets.

In terms of the literature, many papers propose alternative solutions to the Rothschild

and Stiglitz (1976) nonexistence problem. As mentioned, a key difference in our paper is that

matching is bilateral, and that each principal can serve at most one agent. This can create

distortions along the extensive margin and implies that principals must form expectations

about which agents are most attracted to a contract. Ours is not the first paper to highlight

the key role of capacity constraints in breaking the nonexistence result. Gale (1996) uses a

notion of competitive equilibrium with price-taking principals and agents in an environment

with one-sided asymmetric information. He allows for the possibility of rationing in equilib-

rium and recognizes how this affects the composition of agents seeking particular contracts.

We discuss in more detail the relationship between his notion of equilibrium and ours when

2Apples here stand in for claims to long-lived assets (trees) with uncertain dividends (fruit), as in standard
asset-pricing theory.
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we present the formal definition in Section 2; for now we simply note that Gale (1996) does

not prove existence or uniqueness, nor does he provide our simple characterization.

More recently, research by Inderst and Wambach prove the existence of equilibrium in

an adverse selection model with capacity constraints and a finite number of principals and

agents. Inderst and Wambach (2001) develop a model that is close to our second example,

although they find that the equilibrium is not unique due to the possibility of coordination

failures from the independent outcomes of mixed search strategies. This is not an issue in

our large economy. Inderst and Wambach (2002) develop a model that is a special case of our

first example, and they prove existence and uniqueness of equilibrium.3 Due to the nature

of the example, there is no rationing along the equilibrium path, although as they stress,

rationing off the equilibrium path is key to sustaining equilibrium. In our third example,

there is always rationing in equilibrium, a possibility that appears to be new to this literature.

Ours is the first paper to develop a general framework for analyzing competitive search with

adverse selection, and to present a variety of applications that stress distortions along both

the intensive and extensive margins.

Other papers follow Prescott and Townsend (1984) and study adverse selection in com-

petitive economies, without rationing. In Gale (1992) and Dubey and Geanakoplos (2002),

agents are price-takers, and trade contracts at prices that clear the market. Most contracts

are not traded and so beliefs about the composition of traders are arbitrary, which makes it

easy to sustain equilibrium. They then consider different refinements to ensure that equi-

librium is unique. Bisin and Gottardi (2006) also assume that agents are price-takers, but

only permit principals to post incentive-compatible contracts. Again, this ensures the ex-

istence of a unique outcome, the least cost separating equilibrium. The mechanism that

selects equilibrium is quite different in our paper, relying on the willingness of agents to be

rationed.

An older literature resolves the Rothschild-Stiglitz non-existence problem by modifying

the game. Miyazaki (1977) and Wilson (1977) allow principals to withdraw contracts after

other principals deviate. This makes deviations less profitable and typically leads to the

existence of a pooling equilibrium where some agents cross-subsidize others. Riley (1979)

lets principals add new contracts to the menu after other principals deviate, allowing the least

cost separating equilibrium to survive. We remain closer to Rothschild and Stiglitz (1976),

allowing principals to commit to contracts, and find that there is no cross-subsidization in

equilibrium.

Our paper is also related to a large literature on competitive search (Montgomery, 1991;

3In Inderst and Wambach (2002), there are capacity constraints but no search frictions. A related working
paper, Inderst and Müller (1999), also has search frictions.

4



Peters, 1991; Moen, 1997; Shimer, 1996; Acemoglu and Shimer, 1999; Burdett, Shi and

Wright, 2001; Mortensen and Wright, 2002). A few earlier papers proposed extensions of

the competitive search framework to an environment with private information (Faig and

Jerez, 2005; Guerrieri, 2008; Moen and Rosén, 2006). However, in all these papers agents

are ex-ante homogeneous and their private information is about the quality of the match.

The rest of the paper is organized as follows. In Section 2, we develop the general environ-

ment, define equilibrium, and discuss some critical assumptions. In Section 3, we show how

to find equilibrium by solving a constrained optimization problem, prove that a separating

equilibrium always exists, and show that equilibrium payoffs are unique. In Section 4, we

define a class of incentive-feasible allocations in order to discuss whether equilibrium out-

comes are efficient within this class. In Sections 5–7, we present the applications discussed

above, in each case characterizing equilibria and discussing efficiency. Section 8 concludes.

Proofs are relegated to the Appendix.

2 The Model

2.1 Preferences and Technology

There is a measure 1 of agents, a fraction πi > 0 of whom are of type i ∈ I ≡ {1, 2, . . . , I}.
Type is an agent’s private information. It could index, for instance, productivity or prefer-

ences, if agents are workers; if they are sellers of assets or commodities, type could represent

the quality of their holdings. There is a large set of ex ante homogeneous principals, each of

whom may or may not participate in the market: they can enter, which provides a principal

an opportunity to match with an agent, if and only if they pay cost k > 0.4 To keep the

analysis focused, in this project, we consider an environment where principals and agents

have a single opportunity to match, and matching is bilateral. If a principal and an agent

match, the pair enter into a relationship described by a contract.

A contract is given by a vector y ∈ Y that may specify actions for the principal, actions

for the agent, transfers between them, and other possibilities. As we make explicit in the

applications, it can include lotteries. A contract can also index actions, transfers, etc. by

dates and states of nature. That is, relationships can involve dynamic state-contingent

contracts, although the search part of the model is, as we said above, static in the sense that

principals and agents have a single opportunity to match. All we need to say for now about

the set of feasible contracts Y is that it is compact, nonempty, and contained in a metric

4In our model the ex ante investment k is given. See Mailath, Postlewaite and Samuelson (2009) for a
model where asymmetric information may lead to inefficient pre-match investments.
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space with metric d(y, y′) for y, y′ ∈ Y . A principal who matches with a type i agent gets a

payoff vi(y) − k from contract y. A principal who does not enter the market gets a payoff

normalized to 0, while one who enters but fails to match gets −k. A type i agent matched

with a principal gets a payoff ui(y), while an unmatched agent gets a payoff also normalized

to 0. For all i, ui : Y 7→ R and vi : Y 7→ R are assumed to be continuous.

When we say that a principal enters the market, we mean he posts a mechanism, which is a

menu of contracts. In the simplest labor market context, a firm enters the market by posting a

vacancy—a willingness to hire at a given wage—where by assumption it cannot post multiple

vacancies, and even if many workers apply (direct their search to this vacancy), at most one

worker ever contacts the firm.5 Generally, by posting we mean that the principal announces

and commits to a mechanism, and all agents can see what every principal posts. By the

revelation principle, without loss of generality, we can assume they post direct revelation

mechanisms. A posted mechanism is a vector of contracts, y = {y1, . . . , yI} ∈ Y I , specifying

that if a principal and an agent match, the latter (truthfully) announces his type i and they

implement yi. The mechanism y is incentive compatible if ui(yi) ≥ ui(yj) for all i, j.6 Let

C ⊂ Y I denote the set of incentive compatible mechanisms. Principals only post mechanisms

in C.

We now turn to the matching process. As we said, each agent observes what all the

principals post, and then directs his search to any one he likes (although he can only ap-

ply to one, he can use a mixed strategy to decide which one). Let Θm(y) denote the

principal-agent ratio, or market tightness, associated with a mechanism y, defined as the

measure of principals posting y divided by the measure of agents applying to y, Θm :

C 7→ [0,∞]. Let γmi (y) denote the share of agents applying to y that are type i, with

Γm(y) ≡ {γm1 (y), . . . , γmi (y), . . . , γmI (y)} ∈ ∆I , the I-dimensional unit simplex. That is,

Γm(y) satisfies γmi (y) ≥ 0 for all i and
∑

i γ
m
i (y) = 1, and Γm : C 7→ ∆I . The functions

Θm and Γm are determined endogenously in equilibrium, and as we discuss below, they

are defined for all incentive-compatible mechanisms, not only the ones that are posted in

equilibrium.

An agent who applies to y matches with a principal with probability µ(Θm(y)), in-

dependent of type, where the matching function µ : [0,∞] 7→ [0, 1] is nondecreasing. A

principal offering y matches with a type i agent with probability η(Θm(y))γmi (y), where

η : [0,∞] 7→ [0, 1] is nonincreasing. We impose µ(θ) = θη(θ) for all θ, since the left hand side

is the matching probability of an agent and the right hand side is the matching probability

5This assumption renders moot the usual notion of capacity constraints, which is the notion that a firm
can only hire a limited number of workers. Here they never contact more than one worker.

6Since we are not concerned with moral hazard, we assume that any y ∈ Y can be implemented by any
principal-agent pair.
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of a principal times the principal-agent ratio. Together with the monotonicity of µ and η,

this implies both functions are continuous. It is convenient to let η̄ ≡ η(0) > 0 denote the

highest probability with which a principal can meet an agent, obtained when the principal-

agent ratio is 0. Similarly let µ̄ ≡ µ(∞) > 0 denote the highest probability with which an

agent can meet a principal. Conversely, µ(θ) = θη(θ) ensures that η(∞) = µ(0) = 0.

2.2 Assumptions

Throughout our analysis, we make three assumptions on preferences. First, let

Ȳi ≡
{
y ∈ Y | η̄vi(y) ≥ k and ui(y) ≥ 0

}
be the set of contracts that deliver nonnegative utility to a type i agent while permitting the

principal to make nonnegative profits if the principal-agent ratio is 0, and

Ȳ ≡
⋃
i

Ȳi.

In equilibrium, contracts that are not in Ȳ are not traded, because there is no way to

simultaneously cover the fixed cost k and attract agents.

Our first formal assumption is quite mild, and simply says that for any given contract

principals weakly prefer higher types.

Assumption A1 Monotonicity: for all y ∈ Ȳ ,

v1(y) ≤ v2(y) ≤ . . . ≤ vI(y).

For the next assumptions, let Bε(y) ≡ {y′ ∈ Y |d(y, y′) < ε} be a ball of radius ε around

y.

Assumption A2 Local non-satiation: for all i ∈ I, y ∈ Ȳi, and ε > 0, there exists a

y′ ∈ Bε(y) such that vi(y
′) > vi(y) and uj(y

′) ≤ uj(y) for all j < i.

Another mild assumption, A2 is satisfied in any application where contracts allow transfers.7

Our final assumption guarantees that it is possible to design contracts that attract some

agents without attracting less desirable agents.

7Moreover, we use A2 only in the proof of Proposition 2 below, and nowhere else. We use it to establish
that it is possible to make a principal better off while not improving the well-being of agents. If η is strictly
decreasing, we could do this by adjusting market tightness, but since for some examples it is interesting to
have η only weakly decreasing, we introduce A2.
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Assumption A3 Sorting: for all i ∈ I, y ∈ Ȳi, and ε > 0, there exists a y′ ∈ Bε(y) such

that

uj(y
′) > uj(y) for all j ≥ i and uj(y

′) < uj(y) for all j < i.

A3 is a generalized version of a standard single-crossing condition. Assume for illustration

that: y ≡ (y1, y2) ∈ R2; Ȳ is open; and the functions ui(y1, y2) are differentiable. Then A3

holds if the marginal rate of substitution between y1 and y2 is higher for higher types—i.e.,

if
∂ui(y1, y2)/∂y1

∂ui(y1, y2)/∂y2

is monotone in i.8 If this assumption fails, principals may be unable to screen agents and

the equilibrium can involve pooling.

2.3 Mechanisms versus Contracts

Under A1-A3, we may without loss of generality assume that each principal posts a single

contract y, rather than a mechanism y offering a (potentially different) contract to each type

i that may show up. In this case, the principal-agent ratio and share of type i agents are

defined for every contract, Θ : Y 7→ [0,∞] and Γ : Y 7→ ∆I . This reduces the notation

considerably.

When we say that we can assume without loss of generality that each principal posts a

contract, rather than a mechanism, we mean the following: Proposition 5 establishes that

any equilibrium under the restriction that each principal posts a contract generates an equi-

librium for the model where principals post mechanisms. In this equilibrium, each principal

posts a degenerate mechanism, offering the same contract to all agents, y = {y, . . . , y}.
Conversely, any equilibrium for the general model is payoff-equivalent to one for the model

where each principal posts a single contract.9 This is not too surprising once one sees that

equilibria in both environments have the feature that principals separate agents, in the sense

that different types trade different contracts.

8Actually, A3 is more general. For example, suppose

ui(y1, y2) =
(

1
2y
ρi

1 + 1
2y
ρi

2

)1/ρi − y2
1 + y2

2

2
− 1

8
.

for ρi < 1, and ρi is higher for higher types. Then the elasticity of substitution between y1 and y2, 1/(1−ρi),
is increasing in i. Let Y = [0, 1]2, a superset of the points where ui(y1, y2) > 0. Any point (y1, y2) on the
boundary of Y is not in Ȳ since ui(y1, y2) < 0. This example fails the single-crossing condition when y1 = y2,
but satisfies A3, since it is possible to increase the spread between y1 and y2 and attract higher types while
repelling lower ones.

9In fact, under some conditions, principals might be willing to post menus that attract multiple types
and offer them different contracts. But even in such a case, there is always a payoff-equivalent equilibrium
in which all principals offer degenerate mechanisms.
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Given this, we proceed by assuming for now that each principal posts a single contract.

To summarize where we are, the expected utility of a principal who posts contract y is

η(Θ(y))
∑
i

γi(y)vi(y)− k.

The expected utility of a type i agent who applies to contract y is

µ(Θ(y))ui(y).

The functions Θ and Γ are defined over the set of feasible contracts Y and are determined

in equilibrium.

2.4 Equilibrium

In equilibrium, principals post profit maximizing contracts and earn zero profit; and condi-

tional on the contracts posted and the search behavior of other agents, each agent directs

his search to a preferred contract. In practice, many contracts are not posted in equilibrium,

but it is still necessary to define beliefs about the principal-agent ratio and the types of

agents that would apply for those contracts if they were offered. We propose the following

definition of equilibrium, and argue below that the implied beliefs are reasonable.

Definition 1 A competitive search equilibrium is a vector Ū = {Ūi}i∈I ∈ RI
+, a measure λ

on Y with support Y P , a function Θ : Y 7→ [0,∞], and a function Γ : Y 7→ ∆I satisfying:

(i) principals’ profit maximization and free-entry: for any y ∈ Y ,

η(Θ(y))
∑
i

γi(y)vi(y) ≤ k,

with equality if y ∈ Y P ;

(ii) agents’ optimal search: let

Ūi = max

{
0 , max

y′∈Y P
µ(Θ(y′))ui(y

′)

}
and Ūi = 0 if Y P = ∅; then for any y ∈ Y and i,

Ūi ≥ µ(Θ(y))ui(y),
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with equality if Θ(y) < ∞ and γi(y) > 0; moreover, if ui(y) < 0, either Θ(y) = ∞ or

γi(y) = 0;

(iii) market clearing: ∫
Y P

γi(y)

Θ(y)
dλ({y}) ≤ πi for any i,

with equality if Ūi > 0.

To understand the equilibrium concept, first consider contracts that are actually posted

in equilibrium, y ∈ Y P . Part (i) of the definition implies that principals earn zero profits

from any such contract. Since η(∞) = 0 < k, it must be that Θ(y) < ∞. Part (ii) then

implies that if type i agents apply for any such contract, that is, γi(y) > 0, they cannot earn

a higher level of utility from any other posted contract. And part (iii) guarantees that all

type i agents apply to some contract, unless they are indifferent about participating in the

market, which gives them the outside option Ūi = 0.

Now consider how our definition imposes restrictions on contracts that are not posted

in equilibrium. First, we assume that each principal anticipates that he cannot affect the

utility of any type of agent, taking Ū = {Ūi}i∈I as given. Second, we use a version of subgame

perfection. If a principal posts a deviating contract y, he anticipates that the principal-agent

ratio Θ(y) will be such that one type of agent is indifferent about applying for the contract

and all other types weakly prefer some other posted contracts. Moreover, his belief about

the distribution Γ(y) places all its weight on types that are indifferent about applying for the

contract. Of course, some contracts may be unattractive to all agents for any principal-agent

ratio, in which case we impose Θ(y) =∞. This is all captured in part (ii) of the definition.10

Equilibrium condition (i) then imposes that, for principals not to post y, they must not earn

positive profit from it, given Θ(y) and Γ(y).

One can think heuristically about Θ(y) and Γ(y) through a hypothetical adjustment

process. When a principal considers posting a deviating contract y, he initially imagines

an infinite principal-agent ratio. Some contracts will not be able to attract agents even at

that ratio, Ūi ≥ µ̄ui(y) for all i, in which case Θ(y) =∞ and the choice of Γ(y) is arbitrary

and immaterial. Otherwise, some agents would be attracted to the contract, pulling down

the principal-agent ratio. This adjustment process stops at the value of Θ(y) such that

Ūi = µ(Θ(y))ui(y) for some i and Ūj ≥ µ(Θ(y))uj(y) for all j. Moreover, only agents with

Ūi = µ(Θ(y))ui(y) would be attracted to the contract, restricting Γ(y).

10The requirement that if ui(y) < 0 then either Θ(y) = ∞ or γi(y) = 0 rules out the possibility that
type i agents earn zero utility, but apply for contract y with the expectation they will not be able to get
it, Θ(y) = 0. Other agents with Ūj > 0 would then not apply for the contract. Such a belief might make
a deviation unprofitable, if η̄vi(y) < k, but we find it implausible. In particular, it is inconsistent with the
adjustment process described in the next paragraph.
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Our definition of equilibrium is related to the “refined equilibrium” concept in Gale

(1996). That model initially allows principals to have arbitrary beliefs about the composition

of agents attracted to contracts y /∈ Y P . In particular, principals may anticipate attracting

only undesirable agents, which raises the required principal-agent ratio. At a high principal-

agent ratio, the contract may be unattractive to all types of agents, and so the pessimistic

beliefs are never confirmed. Gale (1996) notes that this can create multiple equilibria and

then argues for a refinement, where the principal believes that the type of agent attracted to

y is the type who is willing to endure the lowest principal-agent ratio (p. 220), and suggests

that this is equivalent to the “universal divinity” concept (Banks and Sobel, 1987). This

refinement is similar to our restriction on Γ for contracts that are not posted in equilibrium.

3 Characterization

We now show how to construct an equilibrium as the solution to a set of optimization

problems. For any type i, consider the following problem:

max
θ∈[0,∞],y∈Y

µ(θ)ui(y) (P-i)

s.t. η(θ)vi(y) ≥ k,

and µ(θ)uj(y) ≤ Ūj for all j < i.

In terms of economics, (P-i) chooses market tightness θ and a contract y to maximize the

expected utility of type i subject to a principal making nonnegative profits when only type

i agents apply, and subject to types lower than i not wanting to apply.

Now consider the larger problem (P) of solving (P-i) for all i. More precisely, we say that

a set I∗ ⊂ I and three vectors {Ūi}i∈I, {θi}i∈I∗ , and {yi}i∈I∗ solve (P) if:

1. I∗ denotes the set of i such that the constraint set of (P-i) is non empty and the

maximized value is strictly positive, given (Ū1, . . . , Ūi−1);

2. for any i ∈ I∗, the pair (θi, yi) solves problem (P-i) given (Ū1, . . . , Ūi−1), and Ūi =

µ(θi)ui(yi)

3. for any i /∈ I∗, Ūi = 0.

Lemma 1 below claims that there exists a solution to (P). Then, Proposition 1 says that

we can find any equilibrium by solving (P); conversely, Proposition 2 says that any solution

to (P) generates an equilibrium. Existence and uniqueness of equilibrium (Proposition 3)

follows directly. We then find conditions which ensure that Ūi > 0 for all i, and so I∗ = I,
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in Proposition 4. Finally, Proposition 5 shows that our results are not sensitive to the

restriction that principals post contracts rather than revelation mechanisms.

In terms of related approaches in the literature, Moen (1997) first defined competitive

search equilibrium and showed that it is equivalent to the solution to a constrained op-

timization problem, like our problem (P-1). We extend this to an environment with ad-

verse selection, and show that for all types i > 1, this introduces the additional constraints

µ(θ)uj(y) ≤ Ūj for all j < i. Essentially these constraints ensure that lower types are not

attracted to the contract designed for type i. We establish in Lemma 1 below that the

appropriate constraint for higher types j > i are also satisfied, so only downward incentive

constraints bind in equilibrium.

The solution to problem (P) is essentially the least-cost separating equilibrium: it maxi-

mizes the utility of each type of agent subject to principals earning non-negative profits and

subject to worse types of agents not attempting to get the contract. The explanation for why

an equilibrium must be separating is standard, although the application to an environment

where the trading probabilities µ and η are endogenous is more novel. If there were pooling

in equilibrium, the sorting condition A3 ensures that principals could perturb the contract to

attract only the more desirable type of agent, breaking the proposed equilibrium. Similarly,

any other separating contract, e.g. one that strictly excludes lower types, is dominated by a

less distortionary contract, e.g. one that leaves lower types indifferent about the contract.

The question remains why a least-cost separating equilibrium always exists. For example,

in Rothschild and Stiglitz (1976) such a proposed equilibrium may be broken by a non-

distorting pooling contract if there are sufficiently few low types. Such a deviation is never

optimal here because of the endogenous composition of the searchers attracted to an off-the-

equilibrium-path contract. Part (ii) of the definition of equilibrium ensures that if an agent

is attracted to a deviating contract, he earns the same expected payoff from the contract

as from his most-preferred equilibrium contract. All other types do better sticking with

their equilibrium contract. Since pooling deviations cross-subsidize low types at the expense

of high types, low types typically have more to gain from the deviation and are therefore

the ones who actually search for the deviating contract. We stress that beliefs about the

composition of searchers for contracts that are not posted in equilibrium, Γ, are not arbitrary;

if they were, there may be many equilibria supported by the belief that only bad types search

for deviating contracts, as in Gale (1996) before he introduces his refinement. When beliefs

about Γ are rationally determined by which type of agent has the strongest incentive to

apply for a deviating contract, the equilibrium is unique.

We now proceed to show all of this formally. As a preliminary step, we prove that (P) has

a solution and provide a partial characterization, by showing that the zero profit condition

12



binds and that higher types are not attracted by (θ, y).

Lemma 1 There exists I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ that solve (P). At any solution,

η(θi)vi(yi) = k for all i ∈ I∗,

µ(θi)uj(yi) ≤ Ūj for all j ∈ I and i ∈ I∗.

All formal proofs are in the Appendix, but the existence proof comes directly from noticing

that (P) has a recursive structure. As a first step, (P-1) depends only on exogenous variables

and thus determines Ū1. In general, at step i, (P-i) depends on the previously determined

values of Ūj for j < i and determines Ūi. Thus, we can solve (P) in I iterative steps.

We now show that a solution to (P) can be used to construct an equilibrium in which

some principals offer a contract to attract type i ∈ I∗, while keeping out other types. The

relevant contract is suggested by the solution to (P), but we must also show that no other

contract gives positive profit.

Proposition 1 Suppose I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ solve (P). Then there exists a

competitive search equilibrium {Ū , λ, Y P ,Θ,Γ} with Ū = {Ūi}i∈I, Y
P = {yi}i∈I∗, Θ(yi) = θi,

and γi(yi) = 1.

The next result establishes that any equilibrium can be characterized using (P). The

proof is based on a variational argument, showing that if (θi, yi) does not solve (P), it cannot

be part of an equilibrium.

Proposition 2 Let {Ū , λ, Y P ,Θ,Γ} be a competitive search equilibrium. Let {Ūi}i∈I = Ū

and I∗ = {i ∈ I|Ūi > 0}. For each i ∈ I∗, there exists a contract y ∈ Y P with Θ(y) < ∞
and γi(y) > 0. Moreover, take any {yi}i∈I∗ and {θi}i∈I∗ with γi(yi) > 0 and θi = Θ(yi) <∞.

Then I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ solve (P).

The above results imply that in equilibrium any contract y that attracts type i solves

(P-i), in the sense that the solution to the problem has θi = Θ(y) and yi = y. The existence

of equilibrium and uniqueness of equilibrium payoffs now follow immediately.

Proposition 3 Competitive search equilibrium exists, and the equilibrium Ū is unique.

The next result shows that, when there are strict gains from trade for all types, all agents

get strictly positive utility.

Proposition 4 Assume that for all i there exists y ∈ Y with η̄vi(y) > k and ui(y) > 0.

Then in any competitive search equilibrium, Ūi > 0 for all i, and in particular there exists a

contract y ∈ Y with Θ(y) <∞ and γi(y) > 0 for all i.
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The proof follows by showing that the maximized value of any (P-i) is positive as long as

Ūj > 0 for j < i. One might imagine a stronger claim, that if there are strict gains from

trade for any type i then Ūi > 0, but an example in Section 7 shows that this may not be the

case. In particular, if there are no gains from trade for some type j < i, so Ūj = 0, it may

be that Ūi = 0 even though there would be gains from trade for type i with full information.

Finally, as stated before, we show that our restriction to contract posting is without loss

of generality in the following sense:

Proposition 5 Any competitive search equilibrium with contract posting is a competitive

search equilibrium with revelation mechanisms. Conversely, any competitive search equilib-

rium with revelation mechanisms is payoff-equivalent to a competitive search equilibrium with

contract posting.

The proof in the appendix includes the definition of competitive search equilibrium with

revelation mechanisms.

4 Feasible Allocations

To set the stage for studying efficiency, we define a feasible allocation. We begin by defining

an allocation, by which we basically mean a description of the posted contracts together

with the implied search behavior and payoffs of agents.

Definition 2 An allocation is a vector Ū of expected utilities for the agents, a measure λ

over the set of feasible contracts Y with support Y P , a function Θ̃ : Y P 7→ [0,∞], and a

function Γ̃ : Y P 7→ ∆I .

Note that Θ̃ and Γ̃ are different from the Θ and Γ in the definition of equilibrium, because

the former are defined only over the set of posted contracts, while the latter are defined for

all feasible contracts.

An allocation is feasible whenever: (1) each posted contract offers the maximal expected

utility to agents who direct their search for that contract and no more to those who do

not; (2) each posted contract generates zero profits; and (3) markets clear. Any feasible

allocation could be implemented through legal or other restrictions on the contracts that

can be offered; however, some feasible allocations may not correspond to equilibria because

principals may want to offer contracts that are not posted. More formally, we have:

Definition 3 An allocation {Ū , λ, Y P , Θ̃, Γ̃} is feasible if
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1. for any y ∈ Y P and i such that γ̃i(y) > 0 and Θ̃(y) <∞,

Ūi = µ(Θ̃(y))ui(y),

where

Ūi ≡ max

{
0, max

y′∈Y P
µ(Θ̃(y′))ui(y

′)

}
and Ūi = 0 if Y P = ∅.

2. for any y ∈ Y P , η(Θ̃(y))
∑

i γ̃i(y)vi(y) = k;

3. for all i ∈ I,
∫ γ̃i(y)

Θ̃(y)
dλ({y}) ≤ πi, with equality if Ūi > 0.

5 Application I: The Rat Race

We now proceed with the first of our three main applications, a version of the rat race

(Akerlof, 1976). For concreteness, think of agents here as workers who are heterogeneous in

terms of both their productivity and their preference over consumption and working hours,

and principals as firms that are willing to pay more for high-productivity (good) workers

and can observe hours but not productivity. We prove that if the disutility of hours is lower

for good workers, a separating equilibrium may require them to work more hours than in the

first best. In addition, if longer hours produce more output, then the constrained optimum

features over-employment of good workers.11 Finally, under a regularity condition on the

matching function, good workers get more consumption when employed than they would get

under full information.

5.1 Setup

A contract here is y = (c, h), where c is the worker’s consumption and h ≥ 0 is the amount

of work hours. We assume there are I = 2 types. The payoff of a type i worker who applies

to (c, h) and is matched is

ui(c, h) = c− φi(h),

where φi is a differentiable, increasing, strictly convex function with φi(0) = φ′i(0) = 0. We

assume that φ1(h) = κφ2(h) for all h and impose assumption A3, which here amounts to

11A static version of Inderst and Müller (1999) is a special case of this example, with output independent
of hours worked. In this case, asymmetric information does not distort employment.
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κ > 1. The payoff of a firm posting (c, h) matched with a type i worker is

vi(c, h) = fi(h)− c,

where fi is a differentiable, nonnegative, nondecreasing, weakly concave production function.

Assumption A1 requires f2(h) ≥ f1(h) for all h. We assume η̄(f1(h) − φ1(h)) > k for

some h, which ensures that there are gains from trade for both types; Proposition 4 implies

Ū1 > 0 and Ū2 > 0. We also assume there is a h̄ > 0 such that f2(h̄) = φ2(h̄). Equilibrium

contracts never set h > h̄. We then restrict the set of contracts to Y = [−ε, f2(h̄)] × [0, h̄]

for some ε > 0. The maximum effort level ensures Y is compact, but is otherwise irrelevant.

The possibility of a small negative transfer ensures assumption A2 holds, while no firm would

ever pay more than f2(h̄). Finally, we assume the matching function µ is strictly concave

and continuously differentiable. Then we find equilibrium by solving problem (P), where

problem (P-i) is

Ūi = max
θ∈[0,∞],(c,h)∈Y

µ(θ)(c− φi(h))

s.t. µ(θ)(fi(h)− c) ≥ θk,

and µ(θ)(c− φj(h)) ≤ Ūj for j ≤ i.

5.2 Equilibrium

Before characterizing equilibrium, we describe the allocation that would arise under full

information. For type i, this is given by the solution to problem (P-i), but ignoring the

constraint µ(θ)(c − φj(h)) ≤ Ūj for all j < i. One can prove that the zero profit condition

always binds, η(θ)(fi(h) − c) = k, and use that to eliminate c from the objective function.

Then the unconstrained values of hours and recruiting solve

(h∗i , θ
∗
i ) = arg max

h,θ
µ(θ)(fi(h)− φi(h))− θk.

The level of consumption can be derived from the zero profit condition, c∗i = fi(h
∗
i ) −

kθ∗i /µ(θ∗i ).

Under asymmetric information, there are no additional constraints in problem (P-1), and

so equilibrium consumption, hours, and market tightness are unchanged for bad workers,

c1 = c∗1, h1 = h∗1, and θ1 = θ∗1. Problem (P-1) also defines Ū1. Now turn to the good worker’s

problem. Under some conditions, this problem may also be unconstrained. For example,

if the difference in the disutility of work is large relative to the difference in productivity,
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bad workers may prefer their unconstrained contract to the unconstrained contract for good

workers. This is the case if and only if

µ(θ∗2)(f2(h∗2)− φ1(h∗2))− θ∗2k ≤ µ(θ∗1)(f1(h∗1)− φ1(h∗1))− θ∗1k. (1)

We are interested in cases where this constraint is violated. We prove that the contract for

good workers specifies that they work too many hours (h2 > h∗2) and, as long as f2(h) is

strictly increasing, over-employs good workers (θ2 > θ∗2). Under an additional mild restriction

on the matching function µ,12 employed good workers are also over-paid (c2 > c∗2). In short,

the equilibrium is distorted along both the intensive and extensive margins.

Result 1 Assume condition (1) is not satisfied. There exists a competitive search equilib-

rium with h2 > h∗2. If f2 is constant, θ2 = θ∗2 and c2 = c∗2. If f2 is strictly increasing, θ2 > θ∗2.

If in addition the elasticity of the matching function µ is non-increasing in θ, c2 > c∗2.

As usual, the proof is in the appendix.

One may also be interested in comparing outcomes across individuals in equilibrium. It

is straightforward to prove that good workers are employed more often than bad workers,

θ2 > θ1. To see this, recall that first best hours h∗i maximize fi(h)−φi(h). Revealed preference

then implies f2(h∗2)− φ2(h∗2) ≥ f2(h∗1)− φ2(h∗1). Since also f2(h) ≥ f1(h) and φ2(h) < φ1(h)

for all h > 0, f2(h∗1)−φ2(h∗1) > f1(h∗1)−φ1(h∗1). This proves f2(h∗2)−φ2(h∗2) > f1(h∗1)−φ1(h∗1).

In addition, the first best market tightness θ∗i maximizes µ(θ)(fi(h
∗
i )− φi(h∗i ))− θk, proving

θ∗2 > θ∗1. Since θ2 ≥ θ∗2 and θ1 = θ∗1, the result follows. On the other hand, without

an additional regularity condition, f ′1(h) ≤ f ′2(h) for all h, we cannot generally establish

whether good workers work more and are paid more than bad workers.

The notion that separating good workers from bad ones may require over-working the

good workers dates back to Akerlof (1976). In a model without frictions, zero profit then

implies that good workers are compensated with higher wages. Our novel results are that

a separating equilibrium always exists and that, under mild conditions, it involves over

employment of good workers, both relative to bad workers and relative to the first best.

Competitive search is central to these conclusions.

5.3 Efficiency

Consider an allocation that treats the two types identically. All firms post the contract

(c, h) = (cp, hp) and the market tightness is Θ̃(cp, hp) = θp, where hp = h∗2 is the first-best

12We require that the elasticity of µ is non-increasing. The elasticity is nonnegative since µ is nondecreas-
ing. Since µ is bounded above, the elasticity converges to zero in the limit as θ converges to infinity.
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level of hours for type 2 workers, θp = θ∗2 is the first-best principal-agent ratio for type 2,

and cp ensures firms earn zero expected profits:

f ′2(hp) = φ′2(hp),

µ′(θp)
(
f2(hp)− φ2(hp)

)
= k,

cp = π1f1(hp) + π2f2(hp)− θpk

µ(θp)
.

The share of type i agents searching for this contract satisfies γ̃i(c
p, hp) = πi and there are

enough of these contracts to be consistent with market clearing.

It is straightforward to verify that this allocation is feasible. We claim that if there are

sufficiently few bad productivity workers, it is also a Pareto improvement over the equilib-

rium:

Result 2 Assume condition (1) is not satisfied. For fixed values of the other parameters,

there exists a π̄ > 0 such that if π1 < π̄, the equilibrium is Pareto dominated by the pooling

allocation where all firms post (cp, hp) with associated market tightness θp.

In equilibrium, firms that want to attract type 2 workers need to screen out type 1

workers. The cost of screening is independent of the share of type 1 workers, while the

collective benefit of screening depends on the share of type 1 workers. Type 2 workers may

collectively prefer to cross-subsidize type 1 workers to avoid costly screening. However, this

is inconsistent with equilibrium since any individual worker would prefer a contract that

screens out the bad types.

6 Application II: Insurance

Our next application is based on Rothschild and Stiglitz (1976), where risk neutral principals

offer insurance to risk averse agents who are heterogeneous in their probability of a loss. This

illustrates several features. First, we show here that even if a pooling allocation does not

Pareto dominate the equilibrium, a partial-pooling allocation may. Second, to illustrate

that traditional search frictions are not necessary for existence, in this example we assume

that the short side of the market, which is determined endogenously, matches for sure:

µ(θ) = min{θ, 1}.
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6.1 Setup

We again specify the model in terms of worker-firm matching.13 Now the productivity of

a match is initially unknown by both the worker and firm. Some workers are more likely

than others to generate productive matches, but firms cannot observe this: type i produce 1

unit of output with probability pi and 0 otherwise, and pi is the agent’s private information.

A contract specifies a transfer to the worker conditional on realized productivity. Workers

are risk averse and firms are risk neutral. In the absence of adverse selection, full insurance

equates the marginal utility of agents across states. We show that firms here do not provide

full insurance, because incomplete insurance helps keep undesirable workers from applying.

A contract consists of a pair of consumption levels, conditional on employment and

unemployment after match productivity has been realized, y = (ce, cu). The payoff of a type

i worker who applies to (ce, cu) and is matched is

ui(ce, cu) = piφ(ce) + (1− pi)φ(cu),

where p1 < p2 < · · · < pI < 1 and the utility function φ : [c,∞) → R is increasing and

strictly concave with limc→c φ(c) = −∞ for some c < 0 and φ(0) = 0. The payoff of a firm

posting (ce, cu) matched with type i is

vi(ce, cu) = pi(1− ce)− (1− pi)cu.

To ensure A1 is satisfied, we restrict the set of feasible contracts to Y = {(ce, cu)|cu+1 ≥
ce ≥ c and cu ≥ c}. The assumption limc→c φ(c) = −∞ ensures that actions of the form

(ce, c) yield negative utility for all types and so are not in Ȳ . Then, since a reduction in

cu raises vi(ce, cu) and lowers uj(ce, cu) for any j < i, and is feasible for all y ∈ Ȳ , A2 is

satisfied. To verify A3, consider an incremental increase in ce to ce + dce and an incremental

reduction in cu to cu − dcu for some dce > 0 and dcu > 0. For a type i worker, this raises

utility by approximately piφ
′(ce)dce − (1− pi)φ′(cu)dcu, which is positive if and only if

dce
dcu

>
1− pi
pi

φ′(cu)

φ′(ce)
.

Since (1−pi)/pi is decreasing in i, an appropriate choice of dce/dcu yields an increase in utility

if and only if j ≥ i, which verifies A3. Finally, assume p1 ≤ k < pI , which ensures that there

are no gains from employing the lowest type, even in the absence of asymmetric information,

13We frame the discussion in terms of labor markets, rather than general insurance, because it seems more
reasonable to assume an employer only wants to hire a fraction of the available workforce than to assume
an insurance company only wants to serve a fraction of its potential customers.
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but there are gains from trade for higher types, say by setting ce = cu = pI − k > 0. Let i∗

denote the lowest type without gains from trade, so pi∗ ≤ k < pi∗+1.14

6.2 Equilibrium

We can again characterize equilibrium using (P), leading to:

Result 3 There exists a competitive search equilibrium where for all i ≤ i∗, Ūi = 0; and for

all i > i∗, θi = 1, Ūi > 0, and ce,i > ce,i−1 and cu,i < cu,i−1 are the unique solution to

pi(1− ce,i)− (1− pi)cu,i = k

and pi−1φ(ce,i) + (1− pi−1)φ(cu,i) = pi−1φ(ce,i−1) + (1− pi−1)φ(cu,i−1),

where ce,i∗ = cu,i∗ = 0.

In this case, adverse selection distorts the intensive margin—firms do not offer full

insurance—but does not affect the extensive margin, since all workers and firms match if

there are gains from trade. One interesting feature of equilibrium here is that cu,i < 0 for all

i > i∗, and therefore a worker is worse off when he matches and turns out to be unproductive

than he would be if did not match in the first place. If one interprets a bad match as a layoff,

contracts give laid-off workers lower payoffs than those who never match, because this keeps

inferior workers from applying for the job.15

6.3 Efficiency

Again we show equilibrium may not be efficient. First note that a worker with pi close to

1 suffers little from the distortions introduced by the information problem. At the extreme,

if pI = 1, cu,I = c excludes other workers without distorting the type I contract at all.

Generally, adverse selection has the biggest impact on the utility of workers with an inter-

mediate value of pi. We show that a Pareto improvement may result from partial pooling.

Consider p1 = 1/4, p2 = 1/2, and p3 = 3/4 and suppose there are equal numbers of type 1

and 3, so that half of all matches are productive. Set φ(c) = log(1 + c) and k = 3/8. Then

in equilibrium, Ū1 = 0; ce,2 = 0.344, cu,2 = −0.094, and Ū2 = φ(0.104); and ce,3 = 0.576,

cu,3 = −0.227, and Ū3 = φ(0.319).

14The results extend to the case k < p1 by defining i∗ = 1. The lowest type obtains full insurance at an
actuarially fair price, ce,1 = cu,1 = p1 − k, and the inductive characterization for i > i∗ is unchanged.

15To interpret a bad match as a layoff, it might help to imagine that an agent actually must work for some
time before productivity is realized, as in Jovanovic (1979).
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Pooling all three types, the best incentive-feasible allocation involves ce = cu = 1/8 and

Ūi = φ(1/8). Compared to the equilibrium, this raises the utility of type 1 and type 2 workers,

but reduces the utility of type 3 workers. Now consider an allocation that pools types 1 and

2. If there are sufficiently few type 1 workers, it is feasible to set ce = cu > 0.104, delivering

greater utility to types 1 and 2. For example, suppose π1 = π3 = 0.01 and π2 = 0.98. Then

the utility of types 1 and 2 rises to φ(0.122). By raising the utility of type 2, it is easier to

exclude them from type 3 contracts, reducing the requisite inefficiency of those contracts.

This raises the utility of type 3, in this case, to φ(0.325).

6.4 Relationship to Rothschild-Stiglitz

Rothschild and Stiglitz (1976, p. 630) “consider an individual who will have income of size

W if he is lucky enough to avoid accident. In the event an accident occurs, his income will

be only W − d. The individual can insure against this accident by paying to an insurance

company a premium α1 in return for which he will be paid α̂2 if an accident occurs. Without

insurance his income in the two states, ‘accident,’ ‘no accident,’ was (W,W − d); with

insurance it is now (W − α1,W − d+ α2) where α2 = α̂2 − α1.”

We can normalize the utility of an uninsured individual to zero and express the utility of

one who anticipates an accident with probability pi as

ui(α1, α2) = piφ(W − α1) + (1− pi)φ(W − d+ α2)− κi,

where κi ≡ piφ(W ) + (1 − pi)φ(W − d). Setting W = d = 1 and defining ce = 1 − α1

and cu = α2, this is equivalent to our example. Our results apply to their setup, with one

wrinkle: our fixed cost of posting contracts.

Rothschild and Stiglitz (1976) show that in any equilibrium, principals who attract type

i agents, i > 1, offer incomplete insurance to deter type i − 1 agents, which is of course

very similar to our finding. Under some conditions, however, their equilibrium does not

exist. Starting from a configuration of separating contracts, suppose one principal deviates

by offering a pooling contract to attract multiple types. In their setup, this is profitable if the

least-cost separating contract is Pareto inefficient. But such a deviation is never profitable

in our environment.

The key difference is that in the original model a deviating principal can capture all

the agents in the economy, or at least a representative cross-section, while in our model a

principal cannot serve all the agents who are potentially attracted to a contract, given that

matching is bilateral. Instead, agents are rationed thorough the endogenous movement in

market tightness θ. Whether such a deviation is profitable depends on which agents are
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most willing to accept a decline in θ. What we find is that high types are the first to give

up on the pooling contract when applications get crowded by low types. A lower type, with

an inferior outside option Ūi−1 < Ūi, is more inclined to stick it out. Hence, a principal who

tries to offer a pooling contract will end up with a long queue of type 1 agents—the worst

possible outcome. For this reason, a deviation to a pooling contract is not profitable, and

equilibrium with separating contracts always exists.

7 Application III: Asset Markets

A feature of the previous two examples is that the posted contracts are designed to screen

agents. We now present a model where instead the market tightness can be used to screen

bad types. In other words, distortions occur only along the extensive margin. Although the

results hold more generally, to stress the point, we again abstract from traditional search

frictions and assume µ(θ) = min{θ, 1}, so that matching is determined by the short side of

the market.

7.1 Setup

Consider an asset market with lemons, in the sense of Akerlof (1970). Buyers (principals)

always value an asset more than sellers (agents) value it, but some assets are better than

others and their values are private information to the seller. Market tightness, or probabilistic

trading, seems in principle a good way to screen out low quality asset holders, since sellers

with more valuable assets are more willing to accept a low probability of trade at any given

price. This model shows how an illiquid asset market may have a useful role as a screening

device.

Each type i seller is endowed with one indivisible asset, which we call an apple, of type

i, with value aSi > 0 to the seller and aBi > 0 to the buyer, both expressed in units of a

numeraire good. A contract is a pair (α, t), where α is the probability that the seller gives

the buyer the apple and t is the transfer in terms of numeraire to the seller.16 The payoff of

a seller of type i matched with a buyer posting (α, t) is

ui(α, t) = t− αaSi ,
16Given that apples are indivisible, it may be efficient to use lotteries, with α the probability apples change

hands, as e.g. in Prescott and Townsend (1984) and Rogerson (1988). Nosal and Wallace (2007) provide a
related model of an asset (money) market where probabilistic trade is useful due to private information, but
they use random and not directed search, leading to quite different results. It would actually be equivalent
here to assume apples are perfectly divisible and preferences are linear, with α reinterpreted as the fraction
traded, but we like the indivisibility since it allows us to contrast our results with models that use lotteries.
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while the payoff of a buyer posting (α, t) matched with a type i seller is

vi(α, t) = αaBi − t.

Note that we have normalized the no-trade payoff to 0.

We set I = 2 and impose a number of restrictions on payoffs. First, both buyers and

sellers prefer type 2 apples and both types of agents like apples:

aS2 > aS1 > 0 and aB2 > aB1 > 0.

Second, there would be gains from trade, including the cost k of posting, if the buyer were

sure to trade:

aSi + k < aBi for i = 1, 2.

The available contracts are Y = [0, 1] × [0, aB2 ], with Ȳi = {(α, t) ∈ Y |αaSi ≤ t ≤ αaBi − k}.
Using these restrictions, we verify our three assumptions. As a preliminary step, note that

(α, t) ∈ Ȳi implies α ≥ k/(aBi − aSi ) > 0 and t ≥ kaSi /(a
B
i − aSi ) > 0, so in any equilibrium

contract, trades are bounded away from zero.

Since α > 0 whenever (α, t) ∈ Ȳi, the restriction aB1 < aB2 implies A1. Also, A2 holds

because for any (α, t) ∈ Ȳi, a movement to (α, t− ε) with ε > 0 is feasible and raises buyer

utility. The important assumption is again A3, which is here guaranteed by aS1 < aS2 . Fix

(α, t) ∈ Ȳ and ā ∈ (aS1 , a
S
2 ). For arbitrary δ > 0, consider (α′, t′) = (α − δ, t − āδ). This is

feasible for small δ because (α, t) ∈ Ȳ guarantees that α > 0 and t > 0. Then

u2(α′, t′)− u2(α, t) = δ(aS2 − ā) > 0

u1(α′, t′)− u1(α, t) = δ(aS1 − ā) < 0.

Now for fixed ε > 0, choose δ ≤ ε/
√

1 + ā2. This ensures (α′, t′) ∈ Bε(α, t), so A3 holds.

7.2 Equilibrium

We again use problem (P) to characterize the equilibrium.

Result 4 There exists a unique competitive search equilibrium with αi = 1, ti = aBi − k,

θ1 = 1, Ū1 = aB1 − aS1 − k, θ2 =
aB1 − aS1 − k
aB2 − aS1 − k

< 1, and Ū2 = θ2(aB2 − aS2 − k).

With full information, θ2 = 1 and Ū2 = aB2 − aS2 − k. Relative to this benchmark, buyers

post too few contracts designed to attract type 2 sellers, and hence too many of them fail to
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trade. Since type 2 sellers have better apples than type 1, they are more willing to accept this

in return for a better price when they do trade. Agents with inferior assets are less willing to

accept a low probability of trade because they do not want to be stuck with their own apple,

which is in fact a lemon. Note that the alternative of setting θ2 = 1 but rationing though the

probability of trade in a match, α2 < 1, wastes resources, because it involves posting more

contracts at cost k. In other words, extensive distortions—reducing the matching rate—are

more cost effective at screening than intensive distortions—lotteries.

7.3 Efficiency

Consider a pooling allocation, with α1 = α2 = 1 and t1 = t2 = t. That is, all buyers

post (1, t). Moreover, Θ̃(1, t) = 1, γ̃i(1, t) = πi, and λ({(1, t)}) = 1. Finally, set t =

π1a
B
1 +π2a

B
2 −k. This allocation is feasible, given that all sellers apply to the same contract,

the choice of t ensures zero profits, and the choice of λ ensures markets clear. The expected

payoff for type i sellers is

Ūi = π1a
B
1 + π2a

B
2 − aSi − k.

With this pooling allocation, type 1 sellers are always better off than they were in equilibrium

since aB1 < aB2 , and type 2 sellers are better off if and only if

π1a
B
1 + π2a

B
2 − aS2 − k >

(aB2 − aS2 − k)(aB1 − aS1 − k)

aB2 − aS1 − k
.

Since π2 = 1− π1, this reduces to

π1 <
aB2 − aS2 − k
aB2 − aS1 − k

=
Ū2

Ū1

.

Both the numerator and denominator are positive, but the numerator is smaller (gains from

trade are smaller for type 2 sellers) because aS2 > aS1 . Thus type 2 sellers prefer the pooling

allocation when there is not too much cross subsidization, or π1 is small, so that the cost of

subsidizing type 1 sellers is worth the increased efficiency of trade.

7.4 No Trade

So far, we have assumed there are gains from trade for both types of sellers. Now suppose

there are no gains from trade for type 1 apples, aB1 ≤ aS1 + k. Then not only will type 1

seller fail to trade, in equilibrium, the entire market will shut down:

Result 5 If aB1 ≤ aS1 + k then, in any equilibrium, Ū1 = Ū2 = 0.
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Notice that the market shuts down here even if there are still gains from trade in good apples,

aB2 > aS2 +k. Intuitively, it is only possible to keep bad apples out of the market by reducing

the probability of trade in good apples. If there is no market in bad apples, however, agents

holding them would accept any probability of trade. Hence we cannot screen out bad apples,

and this renders the good apple market inoperative. Whether this is related to the recent

collapse in asset-backed securities markets seems worth further exploration.

8 Conclusion

We have developed a tractable general framework to analyze adverse selection in competitive

search markets. Under our assumptions, there is a unique equilibrium, where principals post

separating contracts. We characterized the equilibrium as the solution to a set of constrained

optimization problems, and illustrated the use of the model through a series of examples. We

expect that one could extend the framework to dynamic situations, with repeated rounds of

posting and search, as seems relevant in many applications—including labor and asset mar-

kets. It may also be interesting to study the case opposite to the one analyzed here, where

the informed instead of the uninformed parties post contracts. In standard competitive

search theory the outcome does not depend on who posts. With asymmetric information,

contract posting by informed parties may introduce multiplicity of equilibrium through the

usual signaling mechanism (see Delacroix and Shi, 2007). All of this is left for future work.

APPENDIX

Proof of Lemma 1. In the first step, we prove that there exists a solution to (P). The

second and third steps establish the stated properties of the solution.

Step 1. Consider i = 1. If the constraint set in (P-1) is empty, set Ū1 = 0. Otherwise, (P-

1) is well-behaved, as the objective function is continuous and the constraint set compact.

Hence, (P-1) has a solution and a unique maximum m1. If m1 ≤ 0 set Ū1 = 0; otherwise set

Ū1 = m1 and let (θ1, y1) be one of the maximizers.

We now proceed by induction. Fix i > 1 and assume that we have found Ūj for all j < i

and (θj, yj) for all j ∈ I∗, j < i. Consider (P-i). If the constraint set is empty, set Ūi = 0.

Otherwise, (P-i) again has a solution and a unique maximum mi. If mi ≤ 0, set Ūi = 0;

otherwise let Ūi = mi and let (θi, yi) be one of the maximizers.
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Step 2. Suppose by way of contradiction that there exists i ∈ I∗ such that (θi, yi) solves

(P-i) but η(θi)vi(yi) > k. This together with Ūi = µ(θi)ui(yi) > 0 implies that yi ∈ Ȳi and

µ(θi) > 0. Fix ε > 0 such that η(θi)vi(y) ≥ k for all y ∈ Bε(yi). Then A3 ensures there

exists a y′ ∈ Bε(yi) such that

uj(y
′) > uj(yi) for all j ≥ i,

uj(y
′) < uj(yi) for all j < i.

Then the pair (θi, y
′) satisfies all the constraints of problem (P-i):

1. η(θi)vi(y
′) ≥ k from the choice of ε;

2. µ(θi)uj(y
′) < µ(θi)uj(yi) ≤ Ūj for all j < i, where the first inequality is by construction

of y′ and µ(θi) > 0, while the second holds since (θi, yi) solves (P-i).

Now (θi, y
′) achieves a higher value than (θi, yi) for the objective function in (P-i), given

µ(θi)ui(y
′) > µ(θi)ui(yi). Hence, (θi, yi) does not solve (P-i), a contradiction.

Step 3. Fix i ∈ I∗ and suppose by way of contradiction that there exists j > i such that

µ(θi)uj(yi) > Ūj. Let h be the smallest such j. Since i ∈ I∗, µ(θi)ui(yi) = Ūi > 0, which

implies µ(θi) > 0 and ui(yi) > 0. Also, from the previous step (θi, yi) satisfies η(θi)vi(yi) = k,

which ensures η(θi) > 0 and vi(yi) > 0. In particular, this implies that yi ∈ Ȳi.
The pair (θi, yi) satisfies the constraints of (P-h) since

1. η(θi)vh(yi) ≥ η(θi)vi(yi) = k, where the inequality holds by A1 given h > i and

yi ∈ Ȳi ⊂ Ȳ , and the equality comes from the previous step;

2. µ(θi)ul(yi) ≤ Ūl for all l < h, which holds for

(a) l < i because (θi, yi) satisfy the constraints of (P-i),

(b) l = i because Ūi = µ(θi)ui(yi) since i ∈ I∗,

(c) i < l < h by the choice of h as the smallest violation of µ(θi)uj(yi) > Ūj.

Since µ(θi)uh(yi) > Ūh ≥ 0, (θi, yi) is in the constraint set of (P-h) and delivers a strictly

positive value for the objective function; hence h ∈ I∗. But then the fact that Ūh is not the

maximized value of (P-h) is a contradiction.

Proof of Proposition 1. We proceed by construction.

• The vector of expected utilities is Ū = {Ūi}i∈I.
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• The set of posted contracts is Y P = {yi}i∈I∗ .

• λ is such that λ({yi}) = πiΘ(yi) for any i ∈ I∗.

• For all i ∈ I∗, Θ(yi) = θi. For any other y ∈ Y , let J(y) = {j|uj(y) > 0} denote the

types that attain positive utility from y. If J(y) 6= ∅ and minj∈J(y){Ūj/uj(y)} < µ̄

then

µ(Θ(y)) = min
j∈J(y)

Ūj
uj(y)

.

If this equation is consistent with multiple values of Θ(y), pick the largest one. Oth-

erwise, if J(y) = ∅ or minj∈J(y){Ūj/uj(y)} ≥ µ̄, then Θ(y) =∞.

• For all i ∈ I∗, let γi(yi) = 1 and so γj(yi) = 0 for j 6= i. For any other y ∈ Y , define

Γ(y) such that γh(y) > 0 only if h ∈ arg minj∈J(y){Ūj/uj(y)}. If there are multiple

minimizers, let γh(y) = 1 for the smallest such h. If J(y) = ∅, again choose Γ(y)

arbitrarily, e.g. γ1(y) = 1.

We now verify that all of the equilibrium conditions hold.

Condition (i): For any i ∈ I∗, (θi, yi) solves (P-i), and Lemma 1 implies η(θi)vi(yi) = k.

Thus, profit maximization and free entry hold for any contract yi, i ∈ I∗. Now consider an

arbitrary contract; we claim that principals’ profit maximization and free-entry condition is

satisfied. Suppose, to the contrary, that there exists y ∈ Y with η(Θ(y))
∑

i γi(y)vi(y) > k.

This implies η(Θ(y)) > 0, so Θ(y) < ∞, and there exists some type j with γj(y) > 0 and

η(Θ(y))vj(y) > k. Since γj(y) > 0 and Θ(y) < ∞, our construction of Θ(y) and Γ(y)

implies that j is the smallest solution to minh∈J(y){Ūh/uh(y)} and hence uj(y) > 0 and

Ūj = µ(Θ(y))uj(y). So, by construction, for all h < j with uh(y) > 0, Ūh > µ(Θ(y))uh(y).

Moreover, if uh(y) ≤ 0, Ūh ≥ µ(Θ(y))uh(y) since Ūh ≥ 0. This proves that (Θ(y), y) satisfies

the constraints of (P-j). Then, since η(Θ(y))vj(y) > k, Lemma 1 implies that there exists

(θ′, y′) that satisfies the constraints of (P-j) but delivers a higher value of the objective func-

tion, µ(θ′)uj(y
′) > Ūj ≥ 0. Since Ūj is at least equal to the maximized value of (P-j), this is

a contradiction.

Condition (ii): By construction, Θ and Γ ensure that Ūi ≥ µ(Θ(y))ui(y) for all con-

tracts y ∈ Y , with equality if Θ(y) < ∞ and γi(y) > 0. Moreover, for any i ∈ I∗,
Ūi = µ(θi)ui(yi) > 0 where θi = Θ(yi) and yi is the equilibrium contract offered to i.

Finally, for any y ∈ Y such that ui(y) < 0 for some i, it must be that i /∈ J(y). Then, either

J(y) = ∅, in which case Θ(y) =∞, or J(y) 6= ∅, in which case γh(y) = 1 for some h ∈ J(y)
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and so γi(y) = 0.

Condition (iii): Market clearing obviously holds given the way we construct λ. Since all the

equilibrium conditions are satisfied the proof is complete.

Proof of Proposition 2. From equilibrium condition (i), any y ∈ Y P has η(Θ(y)) > 0,

hence Θ(y) < ∞. From condition (iii), Ūi > 0 implies γi(y) > 0 for some y ∈ Y P . This

proves that for each i ∈ I∗, there exists a contract y ∈ Y P with Θ(y) <∞ and γi(y) > 0.

The remainder of the proof proceeds in five steps. The first four steps show that for any

i ∈ I∗ and yi ∈ Y P with θi = Θ(yi) < ∞ and γi(yi) > 0, (θi, yi) solves (P-i). First, we

prove that the constraint η(θi)vi(yi) ≥ k is satisfied. Second, we prove that the constraint

µ(θi)uj(yi) ≤ Ūj is satisfied for all j. Third, we prove that the pair (θi, yi) delivers Ūi to

type i. Fourth, we prove that (θi, yi) solves (P-i). The fifth and final step shows that for any

i /∈ I∗, either the constraint set of (P-i) is empty or the maximized value is nonpositive.

Step 1. Take i ∈ I∗ and yi ∈ Y P with θi = Θ(yi) < ∞ and γi(yi) > 0. We claim the

constraint η(θi)vi(yi) ≥ k is satisfied in (P-i). Note first that i ∈ I∗ implies Ūi > 0. By

equilibrium condition (ii), Ūi = µ(θi)ui(yi), and so µ(θi) > 0. To derive a contradiction,

assume η(θi)vi(yi) < k. Equilibrium condition (i) implies η(θi)
∑

j γj(yi)vj(yi) = k, so there

is an h with γh(yi) > 0 and η(θi)vh(yi) > k. Since η(θi) ≤ η̄, η̄vh(yi) > k. Moreover, because

θi = Θ(yi) <∞ and γh(yi) > 0, optimal search implies uh(yi) ≥ 0. This proves yi ∈ Ȳh.
Next, fix ε > 0 such that η(θi)vh(y) > k for all y ∈ Bε(yi). Then A3 together with

yi ∈ Ȳh guarantees that there exists y′ ∈ Bε(yi) such that

uj(y
′) > uj(yi) for all j ≥ h,

uj(y
′) < uj(yi) for all j < h.

Notice that y′ ∈ Ȳh as well, since uh(y
′) > uh(yi) ≥ 0 and η̄vh(y

′) ≥ η(θi)vh(y
′) > k.

Now consider θ′ ≡ Θ(y′). Note that

µ(θ′)uh(y
′) ≤ Ūh = µ(θi)uh(yi) < µ(θi)uh(y

′),

where the weak inequality follows from optimal search, the equality holds because θi < ∞
and γh(yi) > 0, and the strict inequality holds by the construction of y′, since µ(θi) > 0.

This implies µ(θ′) < µ(θi) < ∞, and so θ′ < θi. Next observe that for all j < h, either
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uj(y
′) < 0, in which case γj(y

′) = 0 by equilibrium condition (ii), or

µ(θ′)uj(y
′) < µ(θi)uj(yi) ≤ Ūj,

where the first inequality uses µ(θ′) < µ(θi) and the construction of y′, while the second

follows from optimal search. Hence, γj(y
′) = 0 for all j < h.

Finally, profits from posting y′ are

η(θ′)
I∑
j=1

γj(y
′)vj(y

′) ≥ η(θ′)vh(y
′) ≥ η(θi)vh(y

′) > k.

The first inequality follows because γj(y
′) = 0 if j < h and vh(y

′) is nondecreasing in h by

A1 together with y′ ∈ Ȳh ⊂ Ȳ , the second follows because θ′ < θi, and the last inequality

uses the construction of ε. A deviation to posting y′ is therefore strictly profitable. This is

a contradiction and completes Step 1.

Step 2. Again take i ∈ I∗ and yi ∈ Y P with θi = Θ(yi) < ∞ and γi(yi) > 0. Equilibrium

condition (ii) implies µ(θi)uj(yi) ≤ Ūj for all j so that the second constraint in (P-i) is

satisfied for all j.

Step 3. Again take i ∈ I∗ and yi ∈ Y P with θi = Θ(yi) < ∞ and γi(yi) > 0. Equilibrium

condition (ii) implies Ūi = µ(θi)ui(yi), since θi <∞ and γi(yi) > 0. Hence(θi, yi) delivers Ūi

to type i.

Step 4. Again take i ∈ I∗ and yi ∈ Y P with θi = Θ(yi) < ∞ and γi(yi) > 0. To find a

contradiction, suppose there exists (θ, y) that satisfies the constraints of (P-i) but delivers

higher utility. That is, η(θ)vi(y) ≥ k, µ(θ)uj(y) ≤ Ūj for all j < i, and µ(θ)ui(y) > Ūi.

We now use A2. Note that µ(θ)ui(y) > Ūi > 0 implies µ(θ) > 0 and ui(y) > 0, while

η(θ)vi(y) ≥ k implies vi(y) > 0 and so η̄vi(y) ≥ k. In particular, y ∈ Ȳi. We can therefore

fix ε > 0 such that for all y ∈ Bε(y), µ(θ)ui(y) > Ūi, and then choose y′ ∈ Bε(y) such that

vi(y
′) > vi(y) and uj(y

′) ≤ uj(y) for all j < i. This ensures η(θ)vi(y
′) > k, µ(θ)uj(y

′) ≤ Ūj

for all j < i, and µ(θ)ui(y
′) > Ūi. Note that we still have y′ ∈ Ȳi.

We now use A3. Fix ε′ > 0 such that for all y ∈ Bε′(y
′), η(θ)vi(y) > k and µ(θ)ui(y) > Ūi.

Choose y′′ ∈ Bε′(y
′) such that

uj(y
′′) > uj(y

′) for all j ≥ i,

uj(y
′′) < uj(y

′) for all j < i.
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This ensures η(θ)vi(y
′′) > k, µ(θ)uj(y

′′) < Ūj for all j < i, and µ(θ)ui(y
′′) > Ūi. Note that

we still have y′′ ∈ Ȳi.
Now consider the contract y′′. From equilibrium condition (ii), µ(θ)ui(y

′′) > Ūi implies

that µ(θ) > µ(Θ(y′′)), which guarantees η(Θ(y′′))vi(y
′′) > k. This also implies Θ(y′′) <∞.

We next claim γj(y
′′) = 0 for all j < i. Suppose γj(y

′′) > 0 for some j < i. Since

Θ(y′′) < ∞, equilibrium condition (ii) implies uj(y
′′) ≥ 0. We have already shown that

µ(θ) > µ(Θ(y′′)), and uj(y
′) > uj(y

′′) by construction. Thus µ(θ)uj(y
′) > µ(Θ(y′′))uj(y

′′).

Equilibrium condition (ii) requires Ūj ≥ µ(θ)uj(y
′) and thus Ūj > µ(Θ(y′′))uj(y

′′). This

together with Θ(y′′) <∞ implies γj(y
′′) = 0, a contradiction.

Now the profit from offering contract y′′ is

η(Θ(y′′))
I∑
j=1

γj(y
′′)vj(y

′′) ≥ η(Θ(y′′))vi(y
′′) > k,

where the first inequality uses γj(y
′′) = 0 for j < i and A1, and the second holds by con-

struction. This contradicts the first condition in the definition of equilibrium, and proves

(θi, yi) solves (P-i).

Step 5. Suppose there is an i /∈ I∗ for which the constraint set of (P-i) is nonempty and the

maximized value is positive. That is, suppose there exists (θ, y) such that η(θ)vi(y) ≥ k,

µ(θ)uj(y) ≤ Ūj for all j < i, and µ(θ)ui(y) > Ūi = 0. Replicating step 4, we can first find

y′ such that µ(θ)ui(y
′) > 0, η(θ)vi(y

′) > k, and µ(θ)uj(y
′) ≤ Ūj for all j < i. Then we find

y′′ such that µ(θ)ui(y
′′) > 0, η(θ)vi(y

′′) > k, and µ(θ)uj(y
′′) < Ūj for all j < i. Hence y′′

only attracts type i or higher and hence must be profitable and deliver positive utility, a

contradiction.

Proof of Proposition 3. By Lemma 1 there is a solution to (P). Proposition 1 shows that

if I∗, {Ūi}i∈I, {θi}i∈I∗ , and {yi}i∈I∗ solve (P), there is an equilibrium {Ū , λ, Y P ,Θ,Γ} with

the same Ū , Y P = {yi}i∈I∗ , Θ(yi) = θi, and γi(yi) = 1. This proves existence. Proposition

2 shows that in any equilibrium {Ū , λ, Y P ,Θ,Γ}, Ūi is the maximum value of (P-i) for all

i ∈ I∗, and Ūi = 0 otherwise. Lemma 1 shows there is a unique maximum value Ūi for (P-i)

for all i ∈ I∗. This proves that the equilibrium Ū is unique.

Proof of Proposition 4. Consider i = 1. Fix y satisfying η̄v1(y) > k and u1(y) > 0.

Then fix θ > 0 satisfying η(θ)v1(y) = k. These points satisfy the constraints of (P-1) and

deliver utility µ(θ)u1(y) > 0. This proves Ū1 > 0. Now suppose Ūj > 0 for all j < i. We

claim Ūi > 0. Again fix y satisfying η̄vi(y) > k and ui(y) > 0. Then fix θ > 0 satisfying
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η(θ)v1(y) ≥ k and µ(θ)uj(y) ≤ Ūj for all j < i; this is feasible since Ūj > 0 and µ(0) = 0.

These points satisfy the constraints of (P-i) and deliver utility µ(θ)ui(y) > 0, which proves

Ūi > 0. By induction, the proof is complete.

Proof of Proposition 5. First, we define a competitive search equilibrium in the general

environment where principals can post revelation mechanisms. Recall that C ⊂ Y I is the

set of revelation mechanisms. The proof uses yi to denote the contract that a mechanism

y offers to an agent who reports that her type is i, and similarly y′i for a mechanism y′. In

addition, ȳ is a degenerate mechanism that offers everyone a contract y.

Definition 4 A competitive search equilibrium with revelation mechanisms is a vector Ū =

{Ūi}i∈I ∈ RI
+, a measure λm on C with support CP , a function Θm : C 7→ [0,∞], and a

function Γm : C 7→ ∆I satisfying:

(i) principals’ profit maximization and free-entry: for any y ∈ C,

η(Θm(y))
∑
i

γmi (y)vi(yi) ≤ k,

with equality if y ∈ CP ;

(ii) agents’ optimal search: let

Ūi = max

{
0 , max

y′∈CP
µ(Θm(y′))ui(y

′
i)

}
and Ūi = 0 if CP = ∅; then for any y ∈ C and i, Ūi ≥ µ(Θm(y))ui(yi), with equality if

Θm(y) <∞ and γmi (y) > 0; moreover, if ui(yi) < 0, either Θm(y) =∞ or γmi (y) = 0;

(iii) market clearing:
∫
CP

γm
i (y)

Θm(y)
dλm({y}) ≤ πi for any i, with equality if Ūi > 0.

This is a natural generalization of our definition of competitive search with contract posting.

It implicitly assumes that agents always truthfully reveal their type, as a direct revelation

mechanism naturally induces them to do.

The proof proceeds in two steps. First, we show that any competitive search equilib-

rium with contract posting is a competitive search equilibrium with revelation mechanisms.

Second, we show that any competitive search equilibrium with revelation mechanisms is

payoff-equivalent to a competitive search equilibrium with contract posting.

Step 1. Take a competitive search equilibrium with contract posting {Ū , λ, Y P ,Θ,Γ}. We

construct a competitive search equilibrium with revelation mechanisms {Ū , λm, CP ,Θm,Γm},
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where λm({ȳ}) = λ({y}), so y ∈ Y P if and only if ȳ ∈ CP ; and for all y ∈ Y , Θm(ȳ) = Θ(y)

and Γm(ȳ) = Γ(y). We also need to construct Θm and Γm for general mechanisms y′ ∈ C.

As before, let Jm(y′) = {j|uj(y′j) > 0} denote the types that attain positive utility from y′.

If Jm(y′) 6= ∅ and minj∈Jm(y′){Ūj/uj(y′j)} < µ̄ then

µ(Θm(y′)) = min
j∈Jm(y′)

Ūj
uj(y′j)

.

If this equation is consistent with multiple values of Θm(y′), pick the largest one. Also

define Γm(y′) such that γmh (y′) > 0 only if h ∈ arg minj∈Jm(y′){Ūj/uj(y′j)}. If there are

multiple minimizers, γmh (y′) = 1 for the smallest such h. Otherwise, if Jm(y′) = ∅ or

minj∈Jm(y′){Ūj/uj(y′j)} ≥ µ̄, then Θm(y′) =∞ and Γm(y′) is arbitrary, e.g. γ1(y′) = 1.

Conditions (ii) and (iii) are satisfied by construction. Condition (i) is also satisfied

for degenerate mechanisms. Now suppose that there exists a general mechanism y′ ∈ C

with η(Θm(y′))
∑

i γ
m
i (y′)vi(y

′
i) > k. This implies Θm(y′) < ∞. In addition, Γm(y′) puts

all its weight on the smallest element of arg minj∈Jm(y′){Ūj/uj(y′j)}, some type h. That

is, η(Θm(y′))vh(y
′
h) > k. Now consider the degenerate mechanism ȳ′h. Since incentive

compatibility implies ui(y
′
i) ≥ ui(y

′
h) for all i, Θm(ȳ′h) = Θm(y′) and h is also the smallest

element of arg minj∈Jm(ȳ′h){Ūj/uj(y′h)}. Thus

η(Θm(ȳ′h))
∑
i

γmi (ȳ′h)vi(y
′
h) ≥ η(Θm(ȳ′h))vh(y

′
h) = η(Θm(y′))vh(y

′
h) > k.

The first inequality uses A1, since h is the worst type attracted to the mechanism. The

equality uses Θm(ȳ′h) = Θm(y′). And the final inequality holds by assumption. In other

words, the degenerate mechanism ȳ′h yields positive profits. But then so would y′h in the

original competitive search equilibrium with contracting posting, a contradiction.

Step 2. Take a competitive search equilibrium with revelation mechanisms {Ū , λm, CP ,Θm,Γm}.
We construct a competitive search equilibrium with contract posting, {Ū , λ, Y P ,Θ,Γ}, as

follows. First, for each type i with Ūi > 0, select a mechanism y with Θm(y) < ∞ and

γmi (y) > 0. Let yi be the contract offered to i by this mechanism. Then set Θ(yi) = Θm(y),

γi(yi) = 1, and λ({yi}) = πiΘ(yi). If for two (or more) types i and j, this procedure selects

mechanisms y for i and y′ for j with yi = y′j, it is straightforward to prove that Θm(y) =

Θm(y′); otherwise both types would prefer the mechanism with the higher principal-agent

ratio. Then let γi(yi) = πi/(πi + πj) and λ({yi}) = (πi + πj)Θ(yi). Finally, for any other

degenerate mechanism ȳ, Θ(y) = Θm(ȳ) and Γ(y) = Γm(ȳ).
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Conditions (ii) and (iii) in the definition of equilibrium with contract posting hold by

construction. Moreover, no contract y ∈ Y yields positive profits, since the associated de-

generate mechanism ȳ could have been offered in the equilibrium with revelation mech-

anisms. It only remains to verify that principals break even on equilibrium contracts,

η(Θ(y))
∑

i γi(y)vi(y) = k for y ∈ Y P . To prove this, consider any mechanism that is

offered in the equilibrium with revelation mechanisms, y ∈ CP . Part (i) of the definition

of equilibrium imposes η(Θm(y))
∑

i γ
m
i (y)vi(yi) = k. Suppose for some i with γmi (y) > 0,

η(Θm(y))vi(yi) > k. A3 ensures that there is a degenerate mechanism offering a perturba-

tion of contract yi, say ȳ′, which attracts only type i and higher agents and so, by A1, yields

positive profits: η(Θm(ȳ′))vi(y
′) > k for some y′ near yi. This is a contradiction with the

definition of competitive search equilibrium with revelation mechanisms, proving that for all

y ∈ CP and i with γmi (y) > 0, η(Θm(y))vi(yi) = k. Then by the construction of Θ, Γ, and

Y P , we have that for all yi ∈ Y P with γi(yi) > 0, η(Θ(yi))vi(yi) = k. This completes the

proof.

Proof of Result 1. By Lemma 1 the constraint in problem (P-1) is binding, so we can

eliminate c and reduce the problem to

Ū1 = max
θ,h

µ(θ) (f1(h)− φ1(h))− θk.

At the solution, h1 is such that f ′1(h1) = φ′1(h1) and θ1 solves µ′(θ1)(f1(h1) − φ1(h1)) = k.

Substituting this into the objective function delivers Ū1, and the constraint delivers c1.

Next, solve (P-2) using the Ū1 derived in the previous step:

Ū2 = max
θ∈[0,∞],(t,x)∈Y

µ(θ) (c− φ2(h))

s.t. µ(θ)(f2(h)− c) ≥ θk,

and µ(θ) (c− φ1(h)) ≤ Ū1.

Denoting by λ and ν the Lagrangian multipliers attached respectively to the first and the

second constraint, the first order conditions with respect to h and c can be combined to

obtain:

λ =
φ′1(h2)− φ′2(h2)

φ′1(h2)− f ′2(h2)
and ν =

φ′2(h2)− f ′2(h2)

φ′1(h2)− f ′2(h2)
.

Given that we restricted attention to the interesting case where both constraints are binding,

both λ and ν are positive. A3 (φ′1(h2) > φ′2(h2)) implies the numerator of λ is positive. Then

the denominator is positive as well, φ′1(h2) > f ′2(h2). This is also the denominator of ν, and

so its numerator is positive, proving φ′2(h2) > f ′2(h2). Since φ′2(h∗2) = f ′2(h∗2), convexity of φ2
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and concavity of f2 imply h2 > h∗2.

Next eliminate the multipliers from the first order condition with respect θ. Use φ1 = κφ2

to get

µ′(θ2)

(
f2(h2)− f ′2(h2)φ2(h2)

φ′2(h2)

)
= k. (2)

Note that with f2(h) = f̄2 for all h, this reduces to µ′(θ2)f̄2 = k. In the economy with

symmetric information, we had instead µ′(θ∗2)(f2(h∗2) − φ2(h∗2)) = k and f ′2(h∗2) = φ′2(h∗2)

(so if f2(h) = f̄2, h∗2 = 0 and µ′(θ∗2)f̄2 = k). Thus in any case equation (2) holds at

(h2, θ2) = (h∗2, θ
∗
2). Now if f2(h) = f̄2, equation (2) pins down θ2, independent of h2, so

θ2 = θ∗2. If f2 is strictly increasing, equation (2) describes an increasing locus of points in

(h2, θ2) space, so h2 > h∗2 implies θ2 > θ∗2.

Finally, consumption satisfies the zero profit condition. Eliminate k using equation (2)

to get

c2 = f2(h2)− θ2µ
′(θ2)

µ(θ2)

(
f2(h2)− f ′2(h2)φ2(h2)

φ′2(h2)

)
Again, if h2 = h∗2 and θ2 = θ∗2, c2 = c∗2. If h2 > h∗2 and θ2 > θ∗2, f2 strictly increasing and

concave, φ2 increasing and convex, and θ2µ′(θ2)
µ(θ2)

nonincreasing imply c2 > c∗2.

Proof of Result 2. We first prove that if the pooling contract raises the utility of type

2 workers relative to the equilibrium level, it raises the utility of type 1 as well. Since the

constraint to exclude type 1 workers from the type 2 contract binds in equilibrium, the

equilibrium utility of a type 1 worker is

Ū1 = Ū2 − µ(θ2)(φ1(h2)− φ2(h2)).

In the pooling contract, both types work the same hours and have the same market tightness.

Therefore,

Ūp
1 = Ūp

2 − µ(θp)(φ1(hp)− φ2(hp)),

where Ūp
i is the utility of a type i worker in the pooling contract. It follows that if Ūp

2 ≥ Ū2,

Ūp
1 − Ū1 ≥ µ(θ2)(φ1(h2)− φ2(h2))− µ(θp)(φ1(hp)− φ2(hp)).

Recalling that hp and θp are the first-best levels, result 1 proved hp ≤ h2 and θp ≤ θ2.

Therefore φ1(hp)− φ2(hp) < φ1(h2)− φ2(h2) and µ(θp) < µ(θ2). This proves Ūp
1 > Ū1.

Next, because condition (1) is not satisfied, the equilibrium expected utility of type 2

workers, Ū2, is strictly less than the first best level, say Ū∗2 . In addition, by construction hp

and θp are equal to the first best level for type 2, (h∗2, θ
∗
2), and cp is continuous in π1 and
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converges to the first best level c∗2 as π1 converges to 0. It follows that Ūp
2 is continuous in

π1 and converges to Ū∗2 > Ū2 as π1 converges to 0. This proves there is a π̄ such that for all

π1 < π̄, Ūp
2 > Ū2.

Proof of Result 3. For i ≤ i∗, consider (P-i) without the constraint of keeping out lower

types. This relaxed problem should yield a higher payoff

Ūi ≤ max
θ∈[0,∞],(ce,cu)∈Y

min{θ, 1}
(
piφ(ce) + (1− pi)φ(cu)

)
s.t. min{1, θ−1}(pi(1− ce)− (1− pi)cu) ≥ k.

At the solution, cu,i = ce,i = ci, so this reduces to

Ūi ≤ max
θ∈[0,∞],c≥c

min{θ, 1}φ(c)

s.t. min{1, θ−1}(pi − c) ≥ k.

Either the constraint set is empty (if pi < k + c) or there are no points in the constraint set

that give positive utility (given that pi − k ≤ 0). In any case, this gives Ūi = 0.

Turn next to a typical problem (P-i), i > i∗:

Ūi = max
θ∈[0,∞],(ce,cu)∈Y

min{θ, 1}
(
piφ(ce) + (1− pi)φ(cu)

)
s.t. min{1, θ−1}(pi(1− ce)− (1− pi)cu) ≥ k

and min{θ, 1}
(
pjφ(ce) + (1− pj)φ(cu)

)
≤ Ūj for all j < i.

Note first that the solution sets θi ≤ 1: if θi > 1, reducing θi to 1 relaxes the first constraint

without otherwise affecting the problem. Hence, we can rewrite the problem as

Ūi = max
θ≤1,(ce,cu)∈Y

θ
(
piφ(ce) + (1− pi)φ(cu)

)
s.t. pi(1− ce)− (1− pi)cu ≥ k

and θ
(
pjφ(ce) + (1− pj)φ(cu)

)
≤ Ūj for all j < i.

Lemma 1 ensures the first constraint is binding, which proves pi(1− ce,i)− (1− pi)cu,i = k.

It remains to prove that θi = 1, ce,i > ce,i−1, cu,i < cu,i−1, and the constraint for j = i − 1

binds.

We start by establishing these claims for i = i∗ + 1. In this case, ce,i = cu,i = 0 satisfies

the constraints but leaves the first one slack. Lemma 1 implies that it is possible to do better,
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which proves Ūi > 0. On the other hand, consider any (ce,i, cu,i) that delivers positive utility

and satisfies the last constraint, so

piφ(ce,i) + (1− pi)φ(cu,i) > 0 and pjφ(ce,i) + (1− pj)φ(cu,i) ≤ 0

for all j < i. Subtracting inequalities gives

(pi − pj)(φ(ce,i)− φ(cu,i)) > 0,

which proves ce,i > cu,i. Now if ce,i > cu,i ≥ 0, pjφ(ce,i) + (1 − pj)φ(cu,i) > 0, so this is

infeasible. If 0 ≥ ce,i > cu,i, piφ(ce,i) + (1− pi)φ(cu,i) < 0, so this is suboptimal. This proves

ce,i > 0 > cu,i when i = i∗ + 1. Finally, since pjφ(ce,i) + (1 − pj)φ(cu,i) ≤ 0 for all j < i,

setting θi = 1 raises the value of the objective function without affecting the constraints and

so is optimal.

We now proceed by induction. Fix i > i∗+1 and assume that for all j ∈ {i∗+1, . . . , i−1},
we have ce,j > ce,j−1, cu,j < cu,j−1, θj = 1, and

pj−1φ(ce,j) + (1− pj−1)φ(cu,j) = pj−1φ(ce,j−1) + (1− pj−1)φ(cu,j−1) = Ūj−1.

We establish the result for i. Setting ce,i = ce,i−1, cu,i = cu,i−1, and θi = 1 satisfies the

constraints in (P-i). Since it leaves the first constraint slack, Lemma 1 implies it is possible

to do better. Thus

θi
(
piφ(ce,i) + (1− pi)φ(cu,i)

)
> piφ(ce,i−1) + (1− pi)φ(cu,i−1).

On the other hand, the second constraint implies,

θi
(
pi−1φ(ce,i) + (1− pi−1)φ(cu,i)

)
≤ Ūi−1 = pi−1φ(ce,i−1) + (1− pi−1)φ(cu,i−1).

Subtracting inequalities gives (pi−pi−1)
(
θiφ(ce,i)−φ(ce,i−1)−θiφ(cu,i)+φ(cu,i−1)

)
> 0. Using

pi > pi−1, this implies θiφ(ce,i)− φ(ce,i−1) > θiφ(cu,i)− φ(cu,i−1). As before, we can rule out

the possibility that θiφ(cu,i) ≥ φ(cu,i−1), because this is infeasible. We can rule out the

possibility that θiφ(ce,i) ≤ φ(ce,i−1), because this is suboptimal. Hence θiφ(ce,i)−φ(ce,i−1) >

0 > θiφ(cu,i) − φ(cu,i−1). Now since φ(ce,i−1) > 0 and θi ∈ [0, 1], the first inequality implies

ce,i > ce,i−1. Since φ(cu,i−1) < 0, the second inequality implies cu,i < cu,i−1.

Next suppose θi < 1 and consider the following variation: raise θi to 1 and increase ce

and reduce cu while keeping both θ
(
piφ(ce) + (1− pi)φ(cu)

)
and pice + (1− pi)cu unchanged;
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i.e. set ce > ce,i and cu < cu,i so that

θi
(
piφ(ce,i) + (1− pi)φ(cu,i)

)
= piφ(ce) + (1− pi)φ(cu)

and pice,i + (1− pi)cu,i = pice + (1− pi)cu.

For all j < i, (pj − pi)
(
θiφ(ce,i) − φ(ce) + φ(cu) − θiφ(cu,i)

)
> 0 since pj < pi, 0 < ce,i < ce,

cu < cu,i < 0, and θi < 1. Add this to θi
(
piφ(ce,i)+(1−pi)φ(cu,i)

)
= piφ(ce)+(1−pi)φ(cu) to

obtain θi(pjφ(ce,i) + (1− pj)φ(cu,i)) > pjφ(cu) + (1− pj)φ(ce). This implies the perturbation

relaxes the remaining constraints and so is feasible. This proves θi = 1.

Finally, we prove that the constraints for j < i− 1 are slack. If not then

pjφ(ce,i) + (1− pj)φ(cu,i) = Ūj ≥ pjφ(ce,i−1) + (1− pj)φ(cu,i−1),

where the inequality uses the constraints in problem (P-(i− 1)). On the other hand,

pi−1φ(ce,i) + (1− pi−1)φ(cu,i) ≤ Ūi−1 = pi−1φ(ce,i−1) + (1− pi−1)φ(cu,i−1),

where the inequality is a constraint in (P-i) and the equality is the definition of Ūi−1. Sub-

tracting these equations, (pi−1 − pj)
(
φ(ce,i−1) − φ(ce,i) + φ(cu,i) − φ(cu,i−1)

)
≥ 0. Since

pi−1 > pj, ce,i > ce,i−1, and cu,i < cu,i−1, we have a contradiction. The constraints for all

j < i− 1 are slack, while the constraint for i− 1 binds, otherwise the solution to (P-i) would

have ce,i = cu,i = pi − k.

Proof of Result 4. Write (P-1) as

Ū1 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(
t− αaS1

)
s.t. min{1, θ−1}

(
αaB1 − t

)
≥ k.

By Lemma 1 we can rewrite the problem as

Ū1 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(
aB1 − aS1

)
− θk.

Since aB1 > aS1 + k, it is optimal to set α = θ = 1. It follows that Ū1 = aB1 − aS1 − k.
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Now consider (P-2)

Ū2 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(
t− αaS2

)
s.t. min{1, θ−1}

(
αaB2 − t

)
≥ k

min{θ, 1}
(
t− αaS1

)
≤ aB1 − aS1 − k.

Again, we can eliminate t using the first constraint to write

Ū2 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(
aB2 − aS2

)
− θk

s.t. min{θ, 1}α
(
aB2 − aS1

)
− θk = aB1 − aS1 − k.

Then use the last constraint to eliminate α and write

Ū2 = max
θ∈[0,∞]

aB1 − aS1 − (1− θ)k
aB2 − aS1

(
aB2 − aS2

)
− θk

s.t.
aB1 − aS1 − (1− θ)k
min{θ, 1}(aB2 − aS1 )

∈ [0, 1],

where the constraint here ensures that α is a probability. Since aS1 < aS2 < aB2 , the objective

function is decreasing in θ, and we set it to the smallest value consistent with the constraints:

θ2 =
aB1 − aS1 − k
aB2 − aS1 − k

< 1.

This implies α2 = 1, so the constraint binds. Then Ū2 is easy to compute.

Proof of Result 5. Write problem (P-1) as

Ū1 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(
t− αaS1

)
s.t. min{1, θ−1}

(
αaB1 − t

)
≥ k.

Again we can eliminate t and rewrite this as

Ū1 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(
aB1 − aS1

)
− θk.

Since aB1 ≤ aS1 + k, Ū1 = 0, which is attained by θ = 0.
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Now consider (P-2):

Ū2 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(
t− αaS2

)
s.t. min{1, θ−1}

(
αaB2 − t

)
≥ k

min{θ, 1}
(
t− αaS1

)
≤ 0.

Eliminating t using the first constraint gives

Ū2 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(
aB2 − aS2

)
− θk

s.t. min{θ, 1}α
(
aB2 − aS1

)
− θk = 0.

Eliminating α using the last constraint gives

Ū2 = max
θ∈[0,∞]

aS1 − aS2
aB2 − aS1

θk

s.t.
θk

min{θ, 1}(aB2 − aS1 )
∈ [0, 1].

Since aB2 > aS2 > aS1 , the fraction in the objective function is negative. Hence θ = 0 and

Ū2 = 0.
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