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Abstract

This paper develops methods for estimating continuous linear functionals in a nonpara-

metric instrumental variables (IV) setting. Examples of such functionals include consumer

surplus and applications to tests for shape restrictions like monotonicity, concavity and addi-

tive separability. The estimation procedure is robust to a setting where the underlying model

is not identified but the linear functional of interest is. In order to attain such robustness, it

is necessary to use a nuisance parameter that is not identified. A procedure is proposed that

circumvents this challenge and delivers a
√

n asymptotically normal estimator for the linear

functional of interest. A Monte Carlo study examines the finite sample performance of the

procedure.
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1 Introduction

Numerous estimation problems in microeconometrics have encountered the challenge of endogenous

regressors. The underlying structural relations often imply the estimated models do not fit the

classical regression framework but are instead of the form:

Y = m0(X) + ε (1)

where E[ε|X] 6= 0. The parametric analysis of m0(x) through instrumental variables (IV) is well

understood. Unfortunately, the extension of such procedures to a more robust nonparametric frame-

work has encountered a number of difficulties. As originally pointed out in Newey & Powell (2003),

the nonparametric identification of m0(x) is hard to attain. Without a parametric assumption,

the identification of m0(x) requires the availability of an instrument satisfying far more stringent

conditions than the usual covariance restrictions in the linear case. A lack of identification of m0(x),

however, does not preclude interesting characteristics of the model from being identified. Severini &

Tripathi (2006, 2007), for example, argue that certain linear functionals of m0(x) will be identified

even when m0(x) is not. In this paper I develop methods for the
√

n estimation of such functionals

without requiring m0(x) to be identified.

The linear functionals this paper focuses on are of the form
∫
X v∗(x)m0(x)dx, where v∗(x) is

known and X is the support of X. For notational convenience we will denote:

∫

X
v∗(x)m0(x)dx ≡ 〈v∗,m0〉 (2)

The canonical example of such a functional is consumer surplus, which is examined in the case

where X is exogenous in Newey & McFadden (1994). In addition, by judiciously choosing v∗(x),

it is also possible to utilize estimators for 〈v∗,m0〉 to test for shape restrictions on m0(x) such as

monotonicity, concavity and additive separability. For example, monotonicity of m0(x) will imply

that 〈v∗,m0〉 must be positive for particular choices of v∗(x). The framework developed in this

paper allows us to test whether 〈v∗, m0〉 is indeed positive and hence examine if m0(x) is monotone.

Examples of how to choose v∗(x) to test for monotonicity, concavity and additive separability are

discussed in Section 2.

Severini & Tripathi (2007) establish that a necessary condition for 〈v∗,m0〉 to be identified and

estimable at a
√

n rate is the existence of a function θ0(z) of the instrument Z such that:

E[θ0(Z)|x] =
v∗(x)

fX(x)
(3)
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where fX(x) is the density of X. It is important to note, as Severini & Tripathi (2006) argue, that

(3) may be satisfied even when the model m0(x) is not identified. Since identification of m0(x) is

difficult to both attain and test for, the estimator for 〈v∗,m0〉 I propose does not assume m0(x) is

identified. Instead, I base estimation off the necessary condition for
√

n estimability in (3). Under

the exogeneity assumption on the instrument E[ε|Z] = 0, we obtain through (1) and (3) that:

E[Y θ0(Z)] = E[m0(X)θ0(Z)] = 〈v∗,m0〉 (4)

The estimator developed in this paper is therefore based on a sample analogue to (4) given by

n−1
∑

i yiθ̂0(zi), where θ̂0(z) is a nonparametric estimator for θ0(z).

Unfortunately, the identification of θ0(z) is even more problematic than the identification of

m0(x). The nonparametric identification of θ0(z) requires the existence of a unique function θ(z)

satisfying (3). Such requirement is similar to what is necessary for identification of m0(x), the exis-

tence of a unique function m(x) agreeing with the exogeneity assumption on Z: E[Y −m(X)|Z] = 0.

The conditioning in (3), however, is on X instead of Z, and hence identification of θ0(z) necessitates

that there be no nonzero function θN (z) such that E[θN (Z)|x] = 0. Intuitively, for θ0(z) to be iden-

tified the regressor X must be able to explain all variation of the instrument Z. This requirement is

problematic, as in most instances instruments posses variation that is unrelated to the endogenous

regressor X.

The lack of identification of θ0(z) presents considerable technical challenges, but it does not

hinder the identification and
√

n estimability of 〈v∗,m0〉. The function θ0(z) is simply a nuisance

parameter, and hence its identification is irrelevant to the final goal of estimating 〈v∗,m0〉. Any

solution to (3) will provide a valid nuisance parameter for recovering 〈v∗,m0〉 through (4). Hence, a

general estimation procedure should be robust to the lack of identification of both m0(x) and θ0(z).

I will therefore not assume that θ0(z) is identified, but instead define the identified set (see Manski

(2003)) as:

Θ0 =

{
θ(z) ∈ Θ : E[θ(Z)|x] =

v∗(x)

fX(x)

}
(5)

where Θ is a nonparametric set of functions. Any function θ(z) ∈ Θ0 provides a suitable nuisance

parameter for recovering 〈v∗, m0〉.

I propose two different estimators for 〈v∗, m0〉 that are robust to both m0(x) and θ0(z) not

being identified. The first approach I consider is a minimum distance estimator θ̂0(z) similar to

Newey & Powell (2003) and Ai & Chen (2003). If θ0(z) is not identified, then it is still possible to

show θ̂0(z) is contained in a shrinking neighborhood of Θ0 with probability tending to one. The

estimator θ̂0(z), however, will not converge to any particular element in Θ0. This result is sufficient
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for establishing that n−1
∑

i yiθ̂0(zi) is a
√

n consistent estimator for 〈v∗,m0〉, but not for obtaining

the asymptotic normality of n−
1
2

∑
i(yiθ̂0(zi) − 〈v∗,m0〉). Under the additional assumption that

n−
1
2

∑
i(yiθ̂0(zi) − 〈v∗,m0〉) has an aymptotic distribution, however, we can resort to subsampling

for determining appropriate critical values.

A second, more complex, estimation procedure is able to recover
√

n asymptotic normality. In

order to do so, it is necessary to construct an estimator θ̃0(z) in such a way as to ensure that it

converges to some unique θ0(z) ∈ Θ0. As a first step, results in Chernozhukov, Hong & Tamer (2007)

are generalized to arbitrary metric spaces to obtain a consistent estimator Θ̂0 for Θ0. Furthermore,

building off arguments in Ai & Chen (2003) it is possible to establish that Θ̂0 converges to Θ0 at a

op(n
− 1

4 ) rate with respect to a weak norm. I then show we can recover a unique element θ0(z) ∈ Θ0

by carefully choosing a unique element θ̃0(z) ∈ Θ̂0. This procedure is analogous to a classical M-

estimation problem where the domain Θ0 is unknown but instead estimated by Θ̂0. The approach

developed in this paper provides a general useful technique for recovering nonparametric nuisance

parameters when they are not identified. With this particular construction for θ̃0(z), it is possible

to show that n−
1
2

∑
i(yiθ̃0(zi)− 〈v∗,m0〉) is asymptotically normally distributed.

This paper is highly complementary to previous work in Severini & Tripathi (2006, 2007). The

authors are the first to explore conditions for the identification of 〈v∗,m0〉 when m0(x) is not

identified and to derive efficiency bounds for its estimation. They, however, provide no estima-

tion procedures. Darolles, Florens & Renault (2003) derive asymptotically normal estimators for

〈v∗,m0〉 that assume m0(x) is identified and are possibly asymptotically biased. Within the larger

nonparametric IV literature, Newey & Powell (2003) and Hall & Horowitz (2005) propose consistent

estimators for m0(x), while Horowtiz (2007) derives the asymptotic distribution for estimators of

m0(x). Santos (2007) proposes test statistics for inference when the model is partially identified. Ai

& Chen (2003) and Blundell, Chen & Kristensen (2004) examine the properties of a semiparametric

specification. In related work, Newey, Powell & Vella (1999), Chesher (2003, 2005, 2007), Imbens &

Newey (2006) and Schennach, Chalak & White (2007) explore estimation and identification in tri-

angular systems, while Chalak & White (2006) and White & Chalak (2006) study the identification

of causal effects. This paper is also related to the vast partial identification literature that explores

the limits of inference without identification. See Manski (1990, 2003) and references within.

The remainder of the paper is organized as follows. Section 2 provides examples of choices

for v∗(x) that allow for interesting inference on m0(x) by examining 〈v∗,m0〉. Section 3 develops

the two proposed estimators, while Section 4 analyzes their performance in a Monte Carlo Study.

Section 5 briefly concludes. All proofs are contained in a mathematical appendix.
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2 Motivating Examples

In this section I provide examples of choices of v∗(x) for which the functional 〈v∗,m0〉 is of interest.

The first example is that of consumer surplus. Let m0(x) be an inverse demand function, set

v∗(x) = 1{0 ≤ x ≤ q∗} for some quantity q∗ and denote the corresponding market clearing price by

p∗. Then, we can write consumer surplus for m0(x) as:

∫ q∗

0

m0(x)dx− p∗q∗ =

∫

X
v∗(x)m0(x)dx− p∗q∗ = 〈v∗, m0〉 − p∗q∗ (6)

If the market clearing price p∗ corresponding to q∗ is observable, then the functional 〈v∗,m0〉 deter-

mines consumer surplus in (6). Hence, the estimators for 〈v∗,m0〉 proposed in this paper will allow

us to build confidence intervals for consumer surplus when it is identified. By the same arguments,

choosing v∗(x) = 1{0 ≤ x ≤ q∗} can also be used to perform inference on firm profit when m0(x) is

a cost function.

A judicious choice of v∗(x) also enables us to use functionals of the form 〈v∗,m0〉 to test for

shape restrictions on m0(x). In Lemmas 2.1, 2.2 and 2.3 I provide examples of choices of v∗(x)

that allow for tests of monotonicity, concavity and additive separability. These Lemmas assume

compact support on [−π, π] because they utilize Fourier expansions. Knowledge of X for their

implementation is unnecessary, as it is always possible to map a known connected subset of X into

[−π, π] and test for shape restrictions in such subset. Similar results for other set of restrictions

and choices of basis can be derived. Such tests may have better power properties. Lemmas 2.1, 2.2

and 2.3 are meant for illustrative purposes, and are unlikely to be the optimal choices of v∗(x) for

testing their respective hypotheses.

Lemma 2.1. Assume X has compact support on [−π, π], and let v∗i (x) = sin(ix). If m0(x) is

weakly increasing in x, then sign{〈v∗i ,m0〉} = (−1)i+1 for all integer i.

Lemma 2.2. Assume X has compact support on [−π, π], and let v∗i (x) = cos(ix). If m0(x) is

concave and differentiable, then sign{〈v∗i ,m0〉} = (−1)i+1 for all integer i.

Lemma 2.3. Assume X = (X1, X2) has compact support on [−π, π]2 and let v∗ij = sin(ix1) sin(jx2).

If m0(x) = m01(x1) + m02(x2), then 〈v∗ij,m0〉 = 0 for all integer i, j.

A disadvantage of using functionals of the form 〈v∗,m0〉 to test for shape restrictions is the likely

lack of consistency of the test. For example, using Lemma 2.1 we may test whether m0(x) is weakly

increasing by examining whether
∫ π

−π
sin(x)m0(x)dx ≥ 0. Numerous non-increasing functions m0(x)
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satisfy
∫ π

−π
sin(x)m0(x)dx < 0, in which case a test based off

∫ π

−π
sin(x)m0(x)dx will be consistent.

On the other hand, there are also non-increasing functions for which
∫ π

−π
sin(x)m0(x)dx ≥ 0, and

hence such functions will asymptotically not be rejected. The lack of consistency simply reflects

that the space of alternatives is very large. In a nonparametric setting it is not possible to fully

characterize a shape restriction such as monotonicity by a single, or even finite, number of moment

restrictions. By increasing the number of functionals 〈v∗,m0〉 we examine, however, it is possible to

reduce the set of functions that do not satisfy the shape restriction we test for, but do agree with

the implied moment restrictions on 〈v∗,m0〉.

3 Estimation

In this section I develop two
√

n consistent estimators for 〈v∗, m0〉 that differ on how the nuisance

parameter θ0(z) is estimated. Section 3.1 introduces the general framework, while Sections 3.2 and

3.3 explore the properties of an estimator that recovers θ0(z) using a series procedure similar to

Newey & Powell (2003) and Ai & Chen (2003). This estimator provides insight into the nature

of the estimation problem by illustrating the challenges in utilizing a regular minimum distance

framework when the parameter of interest is not identified. I show that even if θ0(z) is not iden-

tified, this approach will yield a
√

n consistent estimator for 〈v∗,m0〉, though one that will not be

asymptotically normally distributed. In contrast, in Sections 3.4, 3.5 and 3.6 I examine a more

complex estimator for the nuisance parameter that converges to a unique element of Θ0. This

second procedure yields a
√

n asymptotically normal estimator for 〈v∗,m0〉.

3.1 General Framework

The principal challenge in recovering 〈v∗,m0〉 consists in obtaining a first stage estimator for θ0(z)

solving (3). Once such an estimator is available, we can estimate 〈v∗,m0〉 = E[Y θ0(Z)] by the

sample analogue n−1
∑

i yiθ̂0(zi). Assuming a unique solution to (3) is too strict a requirement

and we therefore let the nuisance parameter be partially identified. The identified set can be

characterized as the set of minimizers to a criterion function, as in Chernozhukov, Hong & Tamer

(2007) and Romano & Shaikh (2006). Hence, we define:

Θ0 = {θ(z) ∈ Θ : Q(θ) = 0} Q(θ) = E
[
(E[v∗(X)− θ(Z)fX(X)|X])2] (7)

where Θ is a nonparametric set of functions. In order to attain consistency and uniform behavior

of the empirical process on the parameter space, I will require Θ to be a smooth set of functions.
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Let Z ∈ <dz and define λ to be a dz dimensional vector of nonnegative integers, also known as a

multi-index. In addition, define |λ| =
∑dz

i λi and let Dλθ(z) = ∂|λ|θ(z)/∂zλ1
1 . . . ∂z

λdz
dz

. For ω the

greatest integer smaller than ω, and Z the support of Z, define the norm:

||θ||Λω = max
|λ|≤ω

sup
z∈Z

|Dλθ(z)|+ max
|λ|=ω

sup
z 6=z′

|Dλθ(z)−Dλθ(z′)|
||z − z′||ω−ω

(8)

We denote the set of functions that is bounded in this norm by Λω
C(Z) = {θ(z) : ||θ||Λω ≤ C}.

The functions θ(z) ∈ Λω
C(Z) have partial derivatives up to order ω uniformly bounded, and partial

derivatives of order ω Lipschitz of order ω − ω. Throughout the paper I will assume Θ = Λω
C(Z)

for a particular ω and the existence of a θ(z) ∈ Λω
C(Z) satisfying E[θ(Z)|x] = v∗(x)/fX(x). While

these smoothness conditions are often used in nonparametric estimation, in other contexts the

requirement often is that the “true” model is sufficiently smooth. These assumptions are imposed

on m0(x), for example, in Newey & Powell (2003) and Santos (2007). In our problem, however,

there is no “true” model. All we require is that there exist some solution to (3) that is sufficiently

smooth, because any solution can be used to estimate 〈v∗,m0〉.

Both estimation strategies I develop use the characterization of Θ0 in (7). We will employ a

sample analogue Qn(θ) to the criterion function Q(θ) given by:

Qn(θ) =
1

n

n∑
i=1

m̂2(xi, θ) m̂(xi, θ) = Ê[v∗(X)− θ(Z)f̂X(X)|xi] (9)

where Ê[v∗(X)−θ(Z)f̂X(X)|xi] and f̂X(xi) are nonparametric estimators of E[v∗(X)−θ(Z)f̂X(X)|xi]

and fX(xi) respectively. For Ê[v∗(X)− θ(Z)f̂X(X)|xi] I will use a traditional series estimator. As-

sume X ∈ <dx and let {pj(x)}∞j=1 be a sequence of known basis functions. Denote the vector of the

first kn terms in the basis by pkn(x) = (p1(x), . . . , pkn(x)) and the matrix of pkn(x) evaluated at the

sample by P = (pkn(x1), . . . , p
kn(xn))′. The nonparametric estimator Ê[v∗(X) − θ(Z)f̂X(X)|xi] is

then given by the linear regression of (v∗(x1)−θ(z1)f̂X(x1), . . . , v
∗(xn)−θ(zn)f̂X(xn)) on P . Hence,

we define:

Ê[v∗(X)− θ(Z)f̂X(X)|x] = pk
′
n(x)(P ′P )−1

n∑
i=1

pkn(xi)(v
∗(xi)− θ(zi)f̂X(xi)) (10)

If kn → ∞ at the appropriate rate and in addition the basis {pj(x)}∞j=1 can approximate the true

conditional expectations E[v∗(X) − θ(Z)f̂X(X)|x] arbitrarily well, then Ê[v∗(X) − θ(Z)f̂X(X)|x]

provides a consistent estimator for E[v∗(X)− θ(Z)f̂X(X)|x] under a variety of norms. This series

estimator is studied in detail in Newey (1997) and Ai & Chen (2003).

For the nonparametric estimator f̂X(xi), I will use a Nadaraya-Watson kernel estimator. Suppose
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X ∈ <dx , then for K(u) the kernel and h the bandwidth, the kernel estimator of fX(xi) is given by:

f̂X(xi) =
1

nhdx

∑

j 6=i

K

(
xi − xj

h

)
(11)

In certain cases it will necessary to resort to higher order kernels in order to attain the appropriate

rates of convergence. The kernel K(u) : <dx → < is of order k if
∫
<dx K(u)du = 1, it is bounded

and for all multi-indices |λ| ≤ k:

max
|λ|≤k

∫

<dx

||u||k−k|u1|λ1 . . . |udx |λdx |K(u)|du < ∞
∫

<dx

uλ1
1 . . . u

λdx
dx

K(u)du = 0 ∀|λ| ≤ k (12)

The assumption on the kernel K(u) and the bandwidth h are stated in Section 3.3.

3.2 Estimation Strategy for
√

n Consistency

If θ0(z) were identified, then a natural estimator for the nuisance parameter would be the minimizer

of Qn(θ) over the parameter space Θ. Minimizing over the whole parameter space, however, is not

only computationally challenging but can also lead to slow rates of convergence. For this reason

it is advantageous to minimize over a sieve Θn ⊆ Θ that grows to be dense in Θ. The resulting

estimator for θ0(z) is then defined by:

θ̂(z) ∈ arg min
Θn

Qn(θ) (13)

If θ0(z) is identified, then θ̂(z) can be consistent under a variety of norms. In this case, it is possible

to establish the asymptotic normality of the statistic n−
1
2

∑
i(yiθ̂(zi)− 〈v∗, m0〉).

As argued, however, the identification of θ0(z) is not a tenable assumption. Hence, I now study

the behavior of the estimator n−1
∑

i yiθ̂(zi) for 〈v∗,m0〉 when identification of θ0(z) breaks down.

As in most two stage estimation problems where the first stage is nonparametric, the nuisance

parameter estimator must satisfy ||θ̂ − θ0|| = op(n
− 1

4 ) in order for the second stage to be
√

n

consistent. Because the first stage is nonparametric, it is important to specify the norm under

which ||θ̂ − θ0|| = op(n
− 1

4 ). Unlike the parametric case, different choices of norm often imply

drastically different rates of convergence. Ai & Chen (2003) show we can focus on the fairly weak

norm || · ||w, which in the present context is given by:

||θ||w =
[
E

[
(E[θ(Z)|X])2 f 2

X(X)
]] 1

2 (14)

Interestingly, the norm || · ||w makes the whole identified set Θ0 an equivalence class, since for any

θ0(z), θ
′
0(z) ∈ Θ0 we have ||θ0 − θ

′
0||2w = E[(v∗(X) − v∗(X))2] = 0. Therefore, when establishing
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||θ̂ − θ0||w = op(n
− 1

4 ), identification of θ0(z) is not relevant because for any θ0(z), θ
′
0(z) ∈ Θ0, we

have ||θ̂ − θ0||w = ||θ̂ − θ
′
0||w. The distance between θ̂(z) and any point θ0(z) ∈ Θ0 is the same.

The requirement ||θ̂ − θ0||w = op(n
− 1

4 ) is often a necessary but not sufficient condition for

obtaining the asymptotic normality of a two stage estimator. Unfortunately, while the identification

of θ0(z) is inconsequential for establishing ||θ̂− θ0||w = op(n
− 1

4 ), the same is not true regarding the

asymptotic normality of n−
1
2

∑
i(yiθ̂(zi)−〈v∗,m0〉). The asymptotic behavior of two stage estimators

is analyzed through an equality that in the present context takes the form:

1√
n

n∑
i=1

(
yiθ̂(zi)− 〈v∗,m0〉

)
=

1√
n

n∑
i=1

(
yiθ̂(zi)− E[Y θ̂(Z)]

)
+
√

nE[Y (θ̂(Z)− θ0(Z))] (15)

The term
√

nE[Y (θ̂(Z) − θ0(Z))] in (15) captures the contribution to the asymptotic distribution

of not knowing θ0(z) and having to estimate it instead. Under identification and the stochastic

equicontinuity of the empirical process, it is possible to analyze the first term in (15) by deriving:

n−
1
2

n∑
i=1

(yiθ̂(zi)− E[Y θ̂(Z)]) = n−
1
2

n∑
i=1

(yiθ0(zi)− E[Y θ0(Z)]) + op(1) (16)

Hence, the term n−
1
2

∑
i(yiθ̂(zi)− E[Y θ̂(Z)]) captures the uncertainty in estimating 〈v∗,m0〉, as if

θ0(z) were known. In order for (16) to hold, however, θ̂(z) must be a consistent estimator for θ0(z)

under a norm stronger than || · ||w. This dependency is reflected in that the right hand side of (16)

will have a different asymptotic distribution when evaluated at alternative θ0(z), θ
′
0(z) ∈ Θ0. Thus,

for (16) to hold, θ̂(z) must converge to θ0(z) under a norm that is able to differentiate the elements

in Θ0. Without such convergence, the statistic n−
1
2

∑
i(yiθ̂(zi)−〈v∗,m0〉) will not be asymptotically

normally distributed.

In a general setting, the results in Santos (2007) imply θ̂(z) will not converge to a unique

element θ0(z) ∈ Θ0. Santos (2007) studies a statistic Q̃n(θ) that is analogous to Qn(θ) but utilizes

kernels instead of series estimators to estimate conditional expectations. This statistic satisfies

Q̃n(θ̂)
L→ minΘ0 G(θ), where G(θ) is a Gaussian process on l∞(Θ0), the space of bounded functionals

on Θ0. If θ̂(z) converged to a specific θ0(z) ∈ Θ0, however, then Q̃n(θ̂) would be asymptotically

normally distributed. Thus, the asymptotic distribution of Q̃n(θ̂) indicates θ̂(z) fails to converge to

a specific θ0(z) ∈ Θ0. See Theorem 3.2 and Corollary 3.1 in Santos (2007) for a detailed exposition.

3.3 Establishing
√

n Consistency

I now formalize the discussion in the previous section. First, I establish that ||θ̂ − θ0||w = op(n
− 1

4 )

even when θ0(z) is not identified. As argued, this result is not sufficient for deriving the asymptotic
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normality of the statistic n−
1
2

∑
i(yiθ̂(zi) − 〈v∗,m0〉). It is still possible, however, to show that

n−1
∑

i(yiθ̂(zi)− 〈v∗,m0〉) = Op(n
− 1

2 ). If in addition n−
1
2

∑
i(yiθ̂(zi)− 〈v∗,m0〉) actually converges

in distribution, then subsampling provides a simple procedure for constructing confidence intervals

for 〈v∗,m0〉 by using the estimator n−1
∑

i yiθ̂(zi).

Assumptions 1-5 are sufficient for showing ||θ̂− θ0||w = op(n
− 1

4 ). Assumptions 2(ii), 3(iii), 4(ii),

5(i) and 5(iv) are meant to hold for some δ0 satisfying 0 < δ0 < (2γ − dx)/16γ.

Assumption 1: (i) {yi, xi, zi}n
i=1 are i.i.d. generated according to (1) with E[Y 2] < ∞, E[ε|X] 6= 0

and E[ε|Z] = 0; (ii) X is convex and compact with nonempty interior; (iii) fX(x) is bounded and

bounded away from 0.

Assumption 2: (i) The smallest and largest eigenvalues of E[pkn(X)pk
′
n(X)] are bounded and

bounded away from zero uniformly in kn; (ii) For any ν(x) ∈ Λγ
C(X ) with γ > dx/2 there exists

pk
′
n(x)π ∈ Λγ

C(X ) such that ||ν − pk
′
nπ||∞ = O

(
k
− γ

dx
n

)
uniformly in Λγ

C(X ) and k
− γ

dx
n = o(n−

1
4
− δ0

2 ).

Assumption 3: (i) Θ ≡ Λω
C(Z) for ω > dz/2 and Θ0 6= ∅; (ii) Θn ⊆ Θ are closed under || · ||∞ and

dim(Θn) = k1n; (iii) supΘ infΘn ||θ− θn||∞ = o(n−
1
4
− δ0

2 ); (iv) v∗(x)−E[θ(Z)|x]fX(x) ∈ Λγ
C(X ) with

γ > dx/2 for all θ(z) ∈ Θ.

Assumption 1 states the distributional assumptions on (Y, X,Z). Assumptions 2(i) and 2(ii)

are standard in the use of series estimators for approximating conditional mean functions, while

the requirement k
− γ

dx
n = o(n−

1
4
− δ0

2 ) is necessary to ensure Ê[v∗(X) − θ(Z)fX(X)|x] converges to

E[v∗(X) − θ(Z)fX(X)|x] at the appropriate rate. Assumption 3(i) restricts Θ to a smooth set of

functions and requires that there is at least one θ0(z) ∈ Θ that is also a solution to (3). Assumptions

3(ii) and 3(iv) are common in the sieves literature, while Assumption 3(iii) is necessary to guarantee

the bias present in θ̂(z) from optimizing over the approximating space Θn instead of Θ decreases at

the right rate. The approximation rates of numerous sieves such as Fourier and Hermite series for

the space Λω
C(Z) are well known. See Chen (2006) for an excellent reference.

In order to show ||θ̂ − θ0||w = op(n
− 1

4 ) I also need Assumptions 4 and 5. In Assumption 4,

ξjn = supx,|λ|=j ||Dλpkn
(x)|| and N(ε, Θn, || · ||) is the minimal number of balls of size ε under the

norm || · || that are necessary to cover Θn.

Assumption 4: (i) kn ≥ 1 + k1n, k1n → ∞ and kn/n → 0; (ii) k1n × log n × ξ2
jn × n−

1
2
+δ0 = o(1)

for j ∈ {0, 1}; (iii) log(N(ε, Θn, || · ||∞)) ≤ C × k1n × log(k1n/ε).

Assumption 5: (i) The kernel K(u) is of order k > dx; (ii) The bandwidth h satisfies h ³ n−ν with

(2k)−1 < ν < (2dx)
−1; (iii) The density fXZ(x, z) ∈ Λk

C(X ) for all z; (iv) kn × n−(1−νdx)+ 1
2
+δ0 → 0.

10



Assumption 4 helps us control the uniform rate of convergence in Θn of Ê[v∗(X)−θ(Z)fX(X)|x]

to E[v∗(X) − θ(Z)fX(X)|x]. Assumption 4(ii) prevents the sieve Θn from growing too fast.

This is at tension with Assumption 3(ii), which requires the approximation error to vanish suf-

ficiently fast. Such tension can be resolved by assuming additional smoothness in Θ. The re-

quirement log(N(ε, Θn, || · ||∞)) ≤ C × k1n × log(k1n/ε) in Assumption 4(iii) is satisfied by all

standard sieves. Finally, Assumption 5 states the requirements for a higher order kernel to satisfy

supΘn
n−1

∑
i(Ê[θ(Z)(f̂X(X) − fX(X))])2 = op(n

− 1
2
− δ0

2 ). Any density estimator meeting this rate

requirement can also be used in the analysis.

Assumptions 1-5 allow us to derive the required rate of convergence.

Theorem 3.1. Under Assumptions 1, 2(i)-(ii), 3(i)-(iv), 4(i)-(iii), 5(i)-(iv), ||θ̂− θ0||w = op(n
− 1

4 ).

Theorem 3.1 is not sufficient for showing n−1
∑

i(yiθ̂(zi) − 〈v∗,m0〉) = Op(n
− 1

2 ). Further as-

sumptions are needed that require the introduction of additional notation. Let V be the closure of

the linear span of Θ under || · ||w. The space V is a Hilbert Space with inner product given by:

〈θ1, θ2〉w = E
[
E[θ1(Z)|X]E[θ2(Z)|X]f 2

X(X)
]

(17)

The linear functional E[Y θ(Z)] : V → < is continuous under || · ||w since by Cauchy-Schwarz

and Jensen’s inequality, the exogeneity of the instrument and fX(x) bounded below we have

|E[Y θ(Z)]| ≤ M [E[m2
0(X)]]

1
2 ||θ||w for some M > 0. Therefore, the Riesz Representation theo-

rem implies the existence of a ṽ(z) ∈ V such that:

E[Y θ(Z)] = E
[
E[ṽ(Z)|X]E[θ(Z)|X]f 2

X(X)
]

= 〈ṽ, θ〉w (18)

By equation (18), 〈ṽ, θ0〉w provides an alternative representation for the parameter of interest

〈v∗,m0〉. In analyzing the asymptotic behavior of our estimator, the representation 〈ṽ, θ0〉w can

sometimes be the most convenient as it is solely in terms of functions of Z.

We can now introduce the final regularity conditions necessary to establish the
√

n consistency

of n−1
∑

i yiθ̂(zi). Assumption 3(v) requires ṽ(z) to not only be in the closure of the linear span

of Θ, but in Θ itself. The smoothness assumption 3(vi) is necessary to ensure Ê[E[θ(Z)|X]|x] and

Ê[E[θ(Z)|X]fX(X)|x] converge to E[θ(Z)|x] and E[θ(Z)|X]fX(X) respectively at the appropriate

rate under ||·||L2 . Assumption 4(iv) guarantees this convergence also holds under ||·||∞. Assumption

5(v) is satisfied by a wide variety of kernels, and it guarantees that supx |f̂X(x)− fX(x)| = op(1).

Assumption 3: (v) ṽ(z) ∈ Θ; (vi) E[θ(Z)|x]fX(x), E[θ(Z)|x] ∈ Λγ
C(X ) for all θ ∈ Θ.

11



Assumption 4: (iv) knξ2
0nn−1 → 0.

Assumption 5: (v) The kernel K(u) has an absolutely integrable Fourier Transform.

The previous assumptions are standard when employing nonparametric estimators. In contrast,

Assumption 6(i) is particular to the partially identified setting. When deriving the asymptotic

distribution of nonparametric estimators, it is often necessary to evaluate the derivative of the

sample criterion function at the point θ̂(z). Implicitly, this dictates θ̂(z) lie in the interior of Θn.

This requirement is easily met when θ0(z) is identified. If θ0(z) is an interior point of Θ, then the

consistency of θ̂(z) implies it will lie in the interior of Θn with probability tending to one. In a

partially identified setting, however, a complication arises as Θ0 will not lie in the interior of Θ

unless it is a singleton.1 Assumption 6(i) allows us to nonetheless calculate the derivative of the

sample criterion function at the point θ̂(z). Intuitively, Assumption 6(i) demands that θ̂(z) converge

to Θ0 ∩Θ◦ for Θ◦ the interior of Θ.

Assumption 6: (i) Let u(z) = ±ṽ(z) and un(z) = arg minΘn ||u − θn||∞, then there is some

εn = o(n−
1
2 ) such that P

(
θ̂(z) + εnun(z) ∈ Θn

)
→ 1.

With the stated assumptions we can now establish the main theorem in this section:

Theorem 3.2. If Assumptions 1, 2(i)-(ii), 3(i)-(vi), 4(i)-(v), 5(i)-(v) and 6(i) hold, then it follows

that n−1
∑

i

(
yiθ̂(zi)− 〈v∗,m0〉

)
= Op(n

− 1
2 ).

Theorem 3.2 does not imply n−
1
2

∑
i(yiθ̂(zi) − 〈v∗,m0〉) actually has a limiting distribution.

As is shown in the next section, if in addition θ̂(z) converged to a specific θ0(z) ∈ Θ0, then

n−
1
2

∑
i(yiθ̂(zi)− 〈v∗,m0〉) would be asymptotically normally distributed. A reasonable conjecture

therefore is that the statistic n−
1
2

∑
i(yiθ̂(zi) − 〈v∗,m0〉) converges in distribution to a mixture of

normals, where the mixture is taken over Θ0. The derivation of this asymptotic distribution is a

considerable technical challenge beyond the scope of the present paper. Instead, in the next section

we focus in deriving a first stage estimator that delivers asymptotic normality.

3.4 Estimation Strategy to Recover Asymptotic Normality

The principal drawback of utilizing θ̂(z) as the first stage estimator is its failure to converge to a

particular element θ0(z) ∈ Θ0. As a result, the second stage estimator n−
1
2

∑
i(yiθ̂(zi) − 〈v∗,m0〉)

1If θ0(z), θ
′
0(z) ∈ Θ0, then θN (z) = θ0(z)− θ

′
0(z) satisfies E[θN (Z)|x] = 0 and λθN ∈ Θ for λ small enough. We

can choose λ such that ||θ0 + λθN ||Λw = C for Θ = {θ : ||θ||Λw ≤ C}. Hence θ0(z) + λθN is in both Θ0 and the

boundary of Θ.

12



is not asymptotically normally distributed. In this section we remedy this problem by constructing

a different first stage estimator that converges to a unique element θ0(z) ∈ Θ0.

3.4.1 General Estimation Procedure

Intuitively, if we could observe Θ0, then we would simply choose a unique element θ0(z) from it

and employ it to estimate 〈v∗,m0〉. The set Θ0, however, is itself identified and can therefore be

estimated. Hence, a natural estimation procedure for a unique element θ0(z) ∈ Θ0 is given by:

1. Construct a consistent estimator Θ̂0 for Θ0.

2. Choose θ̃(z) ∈ Θ̂0 in such a way as to ensure it converge to a unique element θ0(z) ∈ Θ0.

In order to implement this strategy it is necessary to develop a set estimation procedure for

arbitrary metric spaces. Chernozhukov, Hong & Tamer (2007) provide a method for estimating

sets in <d, but since Θ0 is an infinite dimensional set of functions their results do not apply. Their

estimation framework is generalized in the appendix to the present context. The estimator Θ̂0 for

Θ0 is defined by:

Θ̂0 = {θ(z) ∈ Θn : Qn(θ) ≤ εn} (19)

for εn ↘ 0 at an appropriate rate. Similarly to the parametric case, we examine the set of near-

minimizers on Θn instead of the exact minimizers. The requirement εn ↘ 0 ensures that in the

limit Θ̂0 only includes those θn(z) ∈ Θn that approximate elements θ0(z) ∈ Θ0 well. On the other

hand, if εn ↘ 0 slowly enough, then we can ensure Θ̂0 includes all such θn(z). Sieves are employed

in (20) not only for computational purposes, but also to allow us to attain the necessary rates of

convergence. The requirements on the rate at which εn ↘ 0 are different than in the parametric

case.

Under certain regularity conditions it is possible to obtain the consistency of Θ̂0 for Θ0 under a

variety of norms. I will focus on the family of Haussdorf norms, which is defined by:

dH(Θ1, Θ2, || · ||) = max{h(Θ1, Θ2), h(Θ2, Θ1)} h(Θ1, Θ2) = sup
θ1(z)∈Θ1

inf
θ2(z)∈Θ2

||θ1 − θ2|| (20)

Hence, Θ̂0 provides a consistent estimator for Θ0 under the Haussdorf norm if both the maximal ap-

proximation error of Θ̂0 by Θ0 and of Θ0 by Θ̂0 converges to 0 in probability. Unlike the parametric

case, however, using different norms for the projections in (20) implies significantly different Hauss-

dorf norms. For example, since || · ||w makes Θ0 an equivalence class, Theorem 3.1 actually implies

13



that dH(θ̂(z), Θ0, || · ||w)
p→ 0. On the other hand, θ̂(z) will not be a consistent estimator for Θ0

under dH(·, ·, || · ||∞) unless Θ0 is a singleton. In Section 3.5 I establish dH(Θ̂0, Θ0, || · ||w) = op(n
− 1

4 ),

so that Θ̂0 converges to Θ0 at the required rate. Equally important, however, Θ̂0 also satisfies

dH(Θ̂0, Θ0, || · ||∞)
p→ 0. The consistency of Θ̂0 to Θ0 under a norm that can differentiate the

elements in Θ0 is necessary for recovering a unique element θ0(z) ∈ Θ0.

Given the estimator Θ̂0 for Θ0, the second challenge consists in selecting an element θ̃(z) ∈ Θ̂0

in such a way as to ensure it converges to a unique element θ0(z) ∈ Θ0. For this purpose I derive

a generalization of extremum estimators to problems where the parameter space is unknown but

consistently estimated. Suppose M(θ) is a population criterion function attaining a unique minimum

on Θ0 and Mn(θ) is the finite sample analogue. Intuitively, if θ0(z) is the unique minimizer of M(θ)

on Θ0, then the minimizer of Mn(θ) over the estimated parameter space Θ̂0 should provide a

consistent estimator for θ0(z). Theorem 3.3 formalizes this argument.

Theorem 3.3. If (i) Θ0 is a closed subset of a compact set Θ such that M(θ) has a unique minimum

on Θ0 at θ0(z), (ii) Θ̂0 ⊆ Θ satisfies dH(Θ̂0, Θ0, || · ||) p→ 0, (iii) Mn(θ) and M(θ) are continuous in

Θ, and (iv) supθ∈Θ |Mn(θ)−M(θ)| p→ 0. Then θ̂(z) = arg minθ∈Θ̂0
Mn(θ) satisfies ||θ̂ − θ0|| p→ 0.2

There are two technical complications present in the proof of Theorem 3.3. First, since θ̂(z) is a

minimizer over a random set, it is not immediately clear whether θ̂(z) is measurable. Results from

Stinchcombre & White (1992), however, imply measurability is in fact not a problem. Second, even

though θ0(z) is a minimum of M(θ) on Θ0, it is often not the minimum on the larger parameter

space Θ. In fact, since Θ0 often has no interior relative to Θ, θ0(z) will lie in the boundary of Θ0

and hence not even be a local minimum of M(θ) on Θ. The requirement that Θ̂0 converge to Θ0

under the Haussdorf norm, however, is enough to overcome this difficulty and attain consistency

for θ0(z).

The principal purpose of the criterion function M(θ) is to help us attain a consistent estimator for

a unique element θ0(z) ∈ Θ0. Any population criterion function M(θ) with a unique minimizer on Θ0

is a suitable choice. Under the result dH(Θ̂0, Θ0, ||·||∞)
p→ 0, Theorem 3.3 can be used to construct an

estimator θ̃(z) ∈ Θ̂0 that converges to a unique element θ0(z) ∈ Θ0 under the norm || · ||∞. Because

under ||·||w the set Θ0 is an equivalence class, the result dH(Θ̂0, Θ0, ||·||w) = op(n
− 1

4 ) will immediately

imply ||θ̃ − θ0||w = op(n
− 1

4 ). Thus, by employing any M(θ) with a unique minimizer in Θ0 it will

be possible to produce an estimator θ̃(z) satisfying ||θ̃ − θ0||∞ = op(1) and ||θ̃ − θ0||w = op(n
− 1

4 ).

2Continuity, closedness and compactness in (i)-(iii) are with respect to the metric under which dH(Θ̂0,Θ0, ||·||) p→ 0
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3.4.2 Selecting M(θ) to Achieve Asymptotic Normality

While ||θ̃ − θ0||w = op(n
− 1

4 ) and ||θ̃ − θ0||∞ = op(1) are sufficient for establishing the asymptotic

normality of n−
1
2

∑
i(yiθ̃(zi) − 〈v∗,m0〉) in a regular two stage procedure, an additional complica-

tion arises in the present framework. In establishing the asymptotic distribution of the statistic

n−
1
2

∑
i(yiθ̃(zi)−〈v∗,m0〉), we employ a standard linearization that is analogous to a Taylor expan-

sion in the parametric setting:

〈ṽ, θ̃ − θ0〉w = E[E[ṽ(Z)|X]E[θ̃(Z)− θ0(Z)|X]f 2
X(X)]

=
1

n

n∑
i=1

Ê[ṽn(Z)f̂X(X)|xi](m̂(xi, θ0)− m̂(xi, θ̃)) + op(n
− 1

2 ) (21)

where ṽn(z) = arg minΘn ||ṽ − θn||∞. The similarity to a regular Taylor expansion can be seen by

noting that −2n−1
∑

i Ê[ṽn(Z)f̂X(X)|xi]m̂(xi, θ̃) is the pathwise derivative of Qn(θ) with respect

to θ̃(z). More precisely, −2n−1
∑

i Ê[ṽn(Z)f̂X(X)|xi]m̂(xi, θ̃) = ∂Qn(θ̃(z)+τ ṽn(z))
∂τ

∣∣∣
τ=0

. In a standard

two stage estimation problem, we would employ θ̂(z), the exact minimizer of Qn(θ). Therefore, the

pathwise derivatives would satisfy ∂Qn(θ̂(z)+τ ṽn(z))
∂τ

∣∣∣
τ=0

= op(n
− 1

2 ) and (22) would then simplify to:

〈ṽ, θ̂ − θ0〉w =
1

n

n∑
i=1

Ê[ṽn(Z)f̂X(X)|xi]m̂(xi, θ0) + op(n
− 1

2 ) (22)

Since the right hand side of (22) no longer depends on θ̂(z), it is then possible to establish its

asymptotic normality.

The additional complication that arises when employing θ̃(z) is that it is the minimizer of

Mn(θ) over Θ̂0, not of Qn(θ) over Θn. Therefore, the derivative of Qn(θ) evaluated at θ̃(z) does not

necessarily vanish at the required rate. By virtue of θ̃(z) ∈ Θ̂0, θ̃(z) is one of the near-minimizers

of Qn(θ). Consequently, ∂Qn(θ̃(z)+τ ṽn(z))
∂τ

∣∣∣
τ=0

= op(1), but without the appropriate rate, such result is

not sufficient for obtaining the desired linearization in (22). Ensuring that the derivative of Qn(θ)

vanishes sufficiently fast for all θ(z) ∈ Θ̂0 necessitates εn ↘ 0 at prohibitively fast rates.

The approach I implement to solve this problem is to carefully choose Mn(θ) and perturb Θ̂0

so that the derivative of Mn(θ) over the perturbation of Θ̂0 is similar to that of Qn(θ) over Θn. If

the derivatives are alike, then their respective minimizers will behave in similar ways. In particular,

we will be able to prove ∂Qn(θ̃(z)+τ ṽn(z)
∂τ

∣∣∣
τ=0

= op(n
− 1

2 ) for θ̃(z) the minimizer of Mn(θ) over the

perturbation of Θ̂0. In this way we obtain (22) by using a near-minimizer that is consistent for

a unique θ0(z) ∈ Θ0 instead of the exact minimizer θ̂(z) that fails to converge to a particular
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θ0(z) ∈ Θ0. With this goal in mind, we define:

M(θ) = E
[
(v∗(X)− θ(Z)fX(X))2] Mn(θ) =

1

n

n∑
i=1

(v∗(xi)− θ(zi)f̂X(xi))
2 (23)

Since M(θ) is a strictly convex continuous functional on Θ0 under || · ||∞ and Θ0 is convex and

compact, the criterion function M(θ) attains a unique minimum on Θ0. Therefore, Theorem 3.3

implies that under regularity conditions θ̃(z) = arg minΘ̂0
Mn(θ) is a consistent estimator for a

unique element θ0(z) ∈ Θ0. Equally important, however, by using Mn(θ) we can construct a first

stage estimator for which the representation in (22) holds. Simple calculations show that:

∂

∂τ
Q (θ(z) + τ ṽ(z))

∣∣∣
τ=0

= −2E [(v∗(X)− θ(Z)fX(X)) E[ṽ(Z)|X]fX(X)]

=
∂

∂τ
M (θ(z) + τE[ṽ(Z)|x])

∣∣∣
τ=0

(24)

Hence, for all θ(z) ∈ Θ, the pathwise derivative of Q(θ) in the direction of ṽ(z) is the same

as the pathwise derivative of M(θ) in the direction of E[ṽ(Z)|x]. Lemma .2 in the Appendix

establishes that an analogue to (24) exists for Qn(θ) and Mn(θ) when evaluated at θ̃(z) satisfying

||θ̃ − θ0||w = op(n
− 1

4 ):

∂

∂τ
Qn(θ̃(z) + τ ṽn(z))

∣∣∣
τ=0

= − 1

n

n∑
i=1

f̂X(xi)Ê[ṽn(Z)|xi](v
∗(xi)− θ̃(zi)f̂X(xi)) + op(n

− 1
2 )

=
∂

∂τ
Mn(θ̃(z) + τÊ[ṽn(Z)|x])

∣∣∣
τ=0

+ op(n
− 1

2 ) (25)

As (25) shows, the derivatives of Qn(θ) and Mn(θ) are closely related. The minimizer θ̃(z) of

Mn(θ) over the proper domain satisfies ∂Mn(θ̃(z)+τÊ[ṽn(Z)|x])
∂τ

∣∣∣
τ=0

= op(n
− 1

2 ). Therefore, by (25) we

can conclude ∂Qn(θ̃(z)+τ ṽn(z))
∂τ

∣∣∣
τ=0

= op(n
− 1

2 ) and hence for such a θ̃(z), n−
1
2

∑
i(yiθ̃(zi)− 〈v∗,m0〉) is

asymptotically normally distributed. Minimizing Mn(θ) over Θ̂0, however, does not imply this result

because Ê[ṽn(Z)|x] /∈ Θ̂0. The minimizer θ̃(z) does not necessarily zero the pathwise derivative of

Mn(θ) in the direction of Ê[ṽn(Z)|x] unless it is allowed to take such values in the optimization

problem. For this reason, Θ̂0 is perturbed and we define the first stage estimator to be:

θ̃(z, x) = arg min
Θ̂0+λnEn

Mn(θ) (26)

where En = {Ê[θn(Z)|x] : θn(z) ∈ Θn} and λn ↘ 0. In the limit, this perturbation is innocuous.

As can be seen in (24), evaluated at any θ(z) ∈ Θ0 the pathwise derivative of M(θ) in the direction

of E[θ′(Z)|x] is zero for all θ′(z) ∈ Θ. It follows that if θ0(z) = arg minΘ0 M(θ), then θ0(z) is also

the minimum of M(θ) over Θ0 + E for E = {E[θ′(Z)|x] : θ′(z) ∈ Θ}. Therefore, while in finite

samples the perturbation of Θ̂0 ensures that θ̃(z, x) zeroes the derivatives of Mn(θ) and Qn(θ),

in the population this perturbation is harmless as expanding Θ0 to Θ0 + E does not change the

minimizer of M(θ).
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3.5 Establishing Asymptotic Normality

The first step in showing the asymptotic normality of the statistic n−
1
2

∑
i(yiθ̃(zi, xi) − 〈v∗,m0〉),

for θ̃(z, x) as defined in (26), is to establish that Θ̂0 is indeed a consistent estimator for Θ0. For

this purpose I will need the following additional assumption:

Assumption 3: (vii) supΘ infΘn ||θ − θn||∞ = o(n−
1
2
− δ0

2 ).

Assumption 3(vii) requires the approximation error from using sieves to decrease at a consid-

erably faster rate than what is needed in the point identified case. This rate can be obtained by

assuming sufficient smoothness in the parameter space Θ. In order for Θ̂0 to be consistent under

dH(·, ·, || · ||∞) we need to ensure that all θn(z) ∈ Θn that approximate θ0(z) ∈ Θ0 well are in-

cluded in Θ̂0. Such requirement is met if supΘ0pn
Qn(θ) = op(εn), for Θ0pn the projection of Θ0

onto Θn under || · ||∞. Unfortunately, in order for Θ̂0 to also be consistent at the required rate

dH(Θ̂0, Θ0, || · ||w) = op(n
− 1

4 ), the bandwidth εn must decrease to zero sufficiently fast. Assumption

3(vii) allows us to use such εn while still satisfying supΘ0pn
Qn(θ) = op(εn) and hence remaining

consistent under dH(·, ·, || · ||∞).

Assumptions 1-5 are sufficient for establishing that Θ̂0 is consistent at the proper rates:

Theorem 3.4. Under Assumptions 1, 2(i)-(ii), 3(i)-(ii), 3(iv)-(vii), 4(i)-(iii) and 5(i)-(iv), if

Θ̂0 = {θn ∈ Θn : Qn(θ) ≤ bn/an} for an = Can
1
2
+

δ0
2 and bn = Cb log n, then dH(Θ̂0, Θ0, || · ||∞)

p→ 0

and dH(Θ̂0, Θ0, || · ||w) = op(n
− 1

4 ).

The second step in our estimation procedure consists in employing Theorem 3.3 to construct

an estimator for a unique element θ0(z) ∈ Θ0. While Theorem 3.4 establishes Θ̂0 is a consistent

estimator for Θ0, the proposed first stage estimator solves a minimization problem over Θ̂0 + λnEn,

not Θ̂0. Assumptions 7(i)-(ii) require λn ↘ 0 at the appropriate rate so that the perturbation

Θ̂0 + λnEn also satisfies dH(Θ̂0 + λnEn, Θ0, || · ||w) = op(n
− 1

4 ) and dH(Θ̂0 + λnEn, Θ0, || · ||∞) = op(1).

Assumption 7: (i) λn = o(n−
1
4 ), (ii) λnξjn → 0 for j ∈ {0, 1}

Because Θ0 is an equivalence class under || · ||w, dH(Θ̂0 +λnEn, Θ0, || · ||w) = op(n
− 1

4 ) immediately

implies θ̃(z, x) ∈ Θ̂0 + λnEn also meets the rate requirement ||θ̃ − θ0||w = op(n
− 1

4 ). Theorem 3.5

shows that Assumptions 1-5 and 7 imply θ̃(z, x) is consistent for a unique θ0(z) ∈ Θ0 under the

stronger norm || · ||∞ as well.

Theorem 3.5. Under Assumptions 1, 2(i)-(ii), 3(i)-(ii), 3(iv)-(vii), 4(i)-(iii), 5(i)-(iv) and 7(i)-

(ii), it follows that ||θ̃ − θ0||w = op(n
− 1

4 ) and ||θ̃ − θ0||∞ = op(1).
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The first stage estimator θ̃(z, x) therefore meets the necessary rate requirements. Furthermore,

as discussed in Section 3.4, θ̃(z, x) also satisfies the needed linearization in (22). Under two addi-

tional assumptions, θ̃(z, x) can be used to construct an asymptotically normal estimator for 〈v∗,m0〉.
Assumption 6(ii) is an interior condition analogous to Assumption 6(i) that allows us to differenti-

ate by ruling out the possibility that θ̃(z, x) lies on the boundary of Θ̂0 + λnEn. Assumption 7(iii)

guarantees the endogenous component λnÊ[θn(Z)|xi] of θ̃(z, x) is asymptotically negligible in the

second stage.

Assumption 6: (ii) Let θ̃(z) = θ̄(z) + Ê[θn(Z)|x], then there is some εn = o(n−
1
2 ) such that

P (θn(z) + un(z)εn/λn ∈ Θn) → 1.

Assumption 7: (iii) λn × n
1
2 × ξ0n → 0

Assumptions 1-7 are sufficient for establishing our main result. Theorem 3.6 shows that the two

stage estimaor n−
1
2

∑
i(yiθ̃(zi, xi)− 〈v∗,m0〉) is asymptotically normally distributed.

Theorem 3.6. Under Assumptions 1, 2(i)-(ii), 3(i)-(ii), 3(iv)-(vii), 4(i)-(iii), 5(i)-(iv), 6(ii) and

7(i)-(iii), n−
1
2

(∑
i yiθ̃(zi, xi)− 〈v∗,m0〉

) L→ N(0, σ2) where the asymptotic variance is given by

σ2 = V ar ((Y − E[ṽ(Z)|X]f 2
X(X))θ0(Z)).

The asymptotic variance obtained in Theorem 3.6 depends on what element θ0(z) ∈ Θ0 the first

stage estimator θ̃(z, x) is consistent for. Modifying the criterion functions to improve efficiency is a

challenging exercise. The derivatives of Q(θ) and M(θ) need to remain linked as in (24) in order to

preserve asymptotic normality. Hence, a weight function w2(x) can only be introduced into Q(θ)

and M(θ) through the joint modification:

Qw(θ) = E[(v∗(X)− E[θ(Z)|X]fX(X))2w2(X)] Mw(θ) = E[(v∗(X)− θ(Z)fX(X))2w2(X)]

(27)

The asymptotic variance of the second stage estimator corresponding to the criterion functions

in (27) is given by:3

σ2
w = V ar((Y − E[ṽw(Z)|X]f 2

X(X)w2(X))θw(Z)) θw(z) = arg min
θ∈Θ0

Mw(θ) (28)

Therefore, the weight function w2(x) enters directly into the formula for σ2
w, but also indirectly by

affecting the element θw(z) ∈ Θ0 that the first stage estimator is consistent for.

3The proper weak norm for these criterion functions is implied by the dot product 〈θ1, θ2〉 =

E[E[θ1(Z)|X]E[θ2(Z)|X]f2
Xw2(X)]. The function ṽw(Z) in (28) corresponds to the Riesz representor of E[Y θ(Z)]

under this new dot product.
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In a special case, the optimal weight function w2(x) can be found and the resulting estimator is

efficient in that it attains the semiparametric efficiency bound derived in Severini & Tripathi (2007).

Let m∗
0(x) denote the projection of m0(x) onto N (E[·|Z])⊥, where N (E[·|Z]) is the null space of

the operator E[·|Z], and define

ε̃ = Y −m∗
0(X) (29)

If there exists a solution to the system of integral equations (in τ(x) ∈ L2(X ) and η(z) ∈ V̄ ):

E[ε̃2|z] = E[f 2
X(X)τ 2(X)|z] (30)

m∗
0(x)

f 2
X(x)w2(x)

= E[η(Z)|x] (31)

then the optimal weight function is given by w(x) = τ ∗(x) for τ ∗(x) solving (30), while the Riesz

Representor ṽw(z) is given by ṽw(z) = η∗(z) for η∗(z) solving (31). With this choice of w2(x), the

asymptotic variance simplifies to:

σ2
w = E[ε̃2θ2

w(Z)] θ2
w(z) = arg min

θ∈Θ0

E[θ2(Z)f 2
X(X)w2(X)] (32)

Under the conditions of Theorem 2.4 in Severini & Tripathi (2007), the semiparametric efficiency

bound for estimating 〈v∗, m0〉 is given by

E[ε̃2ϑ2(Z)] (33)

where ϑ(z) is a function that solves (3). Hence, if we further assume ϑ(z) is sufficiently smooth,

then ϑ(z) ∈ Θ0. Because w2(x) solves (30), however, it follows from (32) and ϑ(z) ∈ Θ0 that

E[ε̃2θ2
w(Z)] ≤ E[ε̃2ϑ2(Z)] (34)

Therefore, the resulting estimator attains the semiparametric efficiency bound obtained in Severini

& Tripathi (2007).

The preceding discussion, however, hinges on the existence to solutions to (30) and (31). Finding

the optimal weight function w2(x) in a general setting is a complicated open problem. We believe

that unless solutions to (30) and (31) exist, the optimal weight function will not be able to yield

an estimator that attains the semiparametric efficiency bound.

3.6 Estimating the Asymptotic Variance

In order to construct confidence intervals for 〈v∗,m0〉 we still require a consistent estimator for

the asymptotic variance of the statistic n−
1
2

∑
i(yiθ̃(zi, xi) − 〈v∗,m0〉). The only remaining com-

plication is obtaining a consistent estimator for ṽ(z). Because ṽ(z) satisfies E[Y θ(Z)] = 〈ṽ, θ〉w
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for all θ(z) ∈ V , it follows that ṽ(z) zeroes all pathwise derivatives of the convex functional

1
2
E

[
(E[v(Z)|X])2 f 2

X(X)
] − E[Y v(Z)] in any direction within V . Hence, we can characterize ṽ(z)

as:

ṽ(z) ∈ arg min
v(z)∈V

1

2
E

[
(E[v(Z)|X])2 f 2

X(X)
]− E[Y v(Z)] (35)

In the general case where Θ0 is not a singleton, ṽ(z) will not be identified either. If Θ0 is not a

singleton, then there exists at least one θN (z) ∈ Θ such that E[θN (Z)|x] = 0. Therefore, the set of

minimizers to (35) includes ṽ(z) + λθN (z) for any λ ∈ <. The set of minimizers to (35), however,

forms an equivalence class under the weak norm || · ||w.4 Fortunately, since ṽ(z) only affects the

asymptotic variance σ2 through the term E[ṽ(Z)|x], consistency to ṽ(z) under || · ||w is sufficient

for recovering an estimator for σ2. Therefore, define the sample analogue to (35) by:

v̂(z) ∈ arg min
θn(z)∈Θn

1

n

n∑
i=1

1

2
(Ê[θn(Z)|xi])

2f̂ 2
X(xi)− yiθn(zi) (36)

where for Ê[θ(Z)|x] and f̂X(x) we continue using a series and a Kernel estimator respectively.

Utilizing the estimators θ̃(z, x), Ê[v̂(Z)|x] and f̂X(x) for the nuisance parameters determining

the asymptotic variance σ2 = V ar ((Y − E[ṽ(Z)|X]f 2
X(X))θ0(Z))), we define the estimator σ̂2 as:

σ̂2 =
1

n

n∑
i=1

(
(yi − Ê[v̂(Z)|xi]f̂

2
X(xi))θ̃(zi, xi)

)2

−
[

1

n

n∑
i=1

(yi − Ê[v̂(Z)|xi]f̂
2
X(xi))θ̃(zi, xi)

]2

(37)

Lemma 3.1 establishes the consistency of σ̂2 for σ2.

Lemma 3.1. Under Assumptions 1, 2(i)-(ii), 3(i)-(ii), 3(iv)-(vii), 4(i)-(iii), 5(i)-(iv), 6(ii) and

7(i)-(iii), the estimator σ̂2 satisfies σ̂2 p→ σ2.

4 Monte Carlo Performance

In order to illustrate the implementation of the outlined procedure and examine the finite sample

performance we conduct a small-scale Monte Carlo study. The functional of interest is the change in

consumer surplus associated with a decrement in price from p1 to p2. For m0(x) an inverse demand

4Let W = {w(x) = E[θ(Z)|x] : θ(z) ∈ V }. The uniqueness of the Riesz Representation theorem implies all

v(z) satisfying E[v(Z)θ(Z)] = E[Y θ(Z)] form an equivalence class. Hence, E[ṽ(Z)|x] is the sole function zeroing all

pathwise derivatives of E[w2(x)f2
X(x)]−E[m0(x)w(x)] within W . Because E[ε|Z] = 0, this problem is equivalent to

(35) and hence all minimizers v(z) satisfy E[v(Z)|x] = E[ṽ(Z)|x].
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function and q1 and q2 the market clearing quantities corresponding to prices p1 and p2, the change

in consumer surplus is given by:

∫ q2

0

m0(x)dx− p2q2 −
∫ q1

0

m0(x)dx + p1q1 = 〈v∗,m0〉 − (p2q2 − p1q1) (38)

where v∗(x) = 1{q1 ≤ x ≤ q2}. If (p1, q1) and (p2, q2) are observable, then only 〈v∗,m0〉 needs to be

estimated. To facilitate exposition, the Monte Carlo was designed so that the integral equation in

(3) has a closed form solution. Assume X, Z ∈ [0, 1]2 are distributed according to the density:

fXZ(x, z) = 3|x− z| for (x, z) ∈ [0, 1]2 (39)

For this choice of density, there is no solution to the integral equation E[θ0(Z)|x] = v∗(x)/fX(x).

Instead, we estimate 〈vt,m0〉 for vt(x) an approximation to v∗(x). Let Ft(x) = Φ
(

x−q2

t

)−Φ
(

x−q1

t

)

where Φ(·) is the c.d.f. of the standard normal distribution and let At = −1
2
(F

′
t (1) + F

′
t (0)) and

Bt = 1
2
(F

′
t (1)− Ft(1)− Ft(0)). We approximate v∗(x) with the function vt(x) defined as:

vt(x) = Ft(x) + Atx + Bt (40)

Notice that pointwise limt→0 vt(x) = v∗(x) almost everywhere and that limt→0〈vt,m0〉 = 〈v∗,m0〉.
Furthermore, for any choice of t > 0 and φ(u) the density of a standard normal random variable,

we have by Polyanin & Manzhirov (1998):

E
[
θ0(Z)

∣∣∣X = x
]

=
vt(x)

fX(x)
for θ0(z) =

1

t2

(
φ
′
(

z − q2

t

)
− φ

′
(

z − q1

t

))
(41)

Given the specifications in (38), (39) and (40), θ0(z) as defined in (41) is actually the unique so-

lution to E[θ0(Z)|x] = vt(x)/fX(x). In this setting the statistic n−
1
2

∑
i(yiθ̂(zi)−〈vt,m0〉) proposed

in Sections 3.2-3.3 is asymptotically normally distributed. We will therefore first examine the per-

formance of such estimator and then proceed to evaluate the statistic n−
1
2

∑
i(yiθ̃(zi, xi)−〈vt,m0〉)

discussed in Sections 3.4-3.5.

By (41), θ0(z) is infinitely differentiable, though it has large derivatives in a neighborhood of q1

and q2. For the parameter space we set Θ = {θ(z) :
∑

|λ|≤ω

∫ 1

0
[Dλθ(z)]2dz ≤ C} for ω = 5 and C

large enough to ensure θ0(z) ∈ Θ.5 The elements in Θ can be approximated arbitrarily well by a

sieve Θn of B-Splines of order 6. Similarly, for the basis {pj(x)}∞j=1 we utilize B-Splines of order 3.

By results in Chen (2006) and Newey (1997), these choices are compatible with our assumptions if

5By the Sobolev Imbedding Theorem Θ ⊂ Λω−1
C1

([0, 1]) for some constant C1. Hence, this definition of the

parameter space is compatible with Assumption 3. The constraint θ(z) ∈ Θ, however, is more tractable as it is

quadratic in the coefficients of a linear sieve. See Newey & Powell (2003) for a detailed discussion.
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kn ³ n
1
8 and k1n ³ n

1
8 . Due to the low dimensionality of the problem, the kernel used to estimate

fX(x) only needs to be of order k > 4/3. Hence, we use φ(u), the density of a standard normal

random variable, as the choice of kernel K(u) for constructing f̂X(x).

The computation of the estimator θ̂(z) is straightforward, as it is defined by the solution to a

quadratic programming problem. Because we are using a linear sieve Θn, every element θn(z) ∈ Θn

is of the form θn(z) = qk
′
1n(z)β for {qi(z)}∞i=1 an appropriate basis and β ∈ <k1n . Furthermore, for

Λk1n =
∑

|λ|≤ω

∫ 1

0
Dλqk1n(z)Dλqk

′
1n(z)dz, the constraint

∑
|λ|≤ω

∫ 1

0
[Dλθn(z)]2dz ≤ C is equivalent to

β
′
Λk1nβ ≤ C. Hence, the first stage estimator θ̂(z), defined in (13) is given by:

θ̂(z) = qk
′
1n(z)β̂ β̂ = arg min

β

1

n

n∑
i=1

(
Ê[vt(X)|xi]− Ê[f̂X(X)qk

′
1n(Z)|xi]β

)2

s.t. β
′
Λk1nβ ≤ C

(42)

The optimal coefficients β̂ have a ridge regression form, see Newey & Powell (2003) for a discussion.

The estimation of the nuisance parameter θ0(z) does not require observations of Y , which reflects

that the proposed procedure imposes strong assumptions on the joint distribution of X and Z but

almost none on the economic model m0(x). For the simulations we created 1000 replications of

sample size n = 1000 from the model:6

Y = 2−X2 + ε ε = − U

12

(
1

fX|Z(X|Z)
− 1

)
(43)

where U ∼ U [0, 1] independent of X and Z and fX|Z(x|z) is the conditional density of X given Z.

By construction, E[ε|Z] = 0, and straightforward calculations show E[ε|x] = (1− fX(x))/24fX(x).

For the simulations, we set t = 0.01, q1 = 0.25 and q2 = 0.75 when constructing vt(x) as in

(40). The resulting approximation to
∫ q2

q1
m0(x)dx has a value of 〈vt, m0〉 = 0.865, while the true

parameter is 〈v∗,m0〉 = 0.866. All simulation results, such as bias and size, are reported with respect

to 〈vt,m0〉. They are almost identical to the results with respect to 〈v∗,m0〉. The assumptions in

Section 3.3 impose rate requirements on the different bandwidths, but offer little guidance as to

how to choose their level. For the B-Splines of order 6 used to construct Θn we used 3 knots placed

at {0, 1/2, 2}, implying k1n = 7. Similarly, for the B-Splines of order 3 used to compute Ê[·|x] we

placed 7 equally spaced knots including the end-points {0, 1}, implying kn = 10. Simulations with

larger sieves yielded qualitatively similar results. Table 1 reports the simulation results for different

choices of the bandwidth h used in constructing f̂X(x). The last column in Table 1 contains the

6The random variable −U
(

1
fX|Z(X|Z) − 1

)
has significantly fat tails: the maximum draw across samples and

replications was -214. The scaling by 1/12 ensures that ε retains variability while preventing most of its large

realization from driving the results.
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actual confidence level of a confidence interval of nominal size 0.05 constructed using a normal

approximation and σ̂2 as in Lemma 3.1.

Table 1: Simulations for 1
n

∑
yiθ̂(zi)

Bandwidth h Mean
(

1
n

∑
i yiθ̂(zi)

)
Bias Std

(
1
n

∑
i yiθ̂(zi)

)
Mean

(
σ̂/
√

n
)

CI size for α = 0.05

h = 0.1 0.821 -0.044 0.030 0.037 0.773

h = 0.075 0.829 -0.036 0.033 0.038 0.872

h = 0.05 0.835 -0.029 0.035 0.042 0.918

h = 0.025 0.839 -0.025 0.041 0.053 0.963

h = 0.01 0.839 -0.025 0.056 0.079 0.979

Table 1 indicates that the usual bias/variance tradeoff present in choosing h when estimating

f̂X(x) translates into a similar tradeoff for the final estimator of 〈vt,m0〉. On the other hand, the

estimated standard deviation σ̂/
√

n overstates the actual finite sample variability of n−1
∑

i yiθ̂(zi).

These two results affect the actual size of the confidence interval in opposite directions. While the

bias in our estimator causes the confidence interval to be improperly centered, and hence increases

its actual size, the overstatement of the finite sample variability causes the confidence intervals to be

conservative. The consequence of these two effects is reflected in Table 1 as h decreases, with actual

size of the confidence interval being larger than α = 0.05 for h > 0.025, and slightly conservative

for h ≤ 0.025.

We now proceed to evaluate the finite sample performance of the estimator n−1
∑

i yiθ̃(zi, xi),

which is robust to θ0(z) not being identified. The principal practical challenge in implementing this

procedure is in the selection of the bandwidths εn and λn. Their respective rate requirements offer

no restrictions as to how their levels should be chosen. The simulation analysis therefore focuses

on the selection of εn and λn. All other bandwidths are left at the same level as in the simulations

for n−1
∑

i yiθ̂(zi) and we set h = 0.01.

The first stage estimator θ̃(z, x) is easy to compute. Because the sieve Θn is linear, the first

stage estimator is of the form θ̃(z, x) = qk
′
1n(z)β̂1 + λnÊ[qk

′
1n(Z)|x]β̂2. The coefficients (β̂1, β̂2) are

the solution to the following quadratic programming problem:

(β̂1, β̂2) = arg min
β1,β2

1
n

n∑

i=1

(
vt(xi)− f̂X(xi)qk

′
1n(zi)β1 − λnf̂X(xi)Ê[qk

′
1n(Z)|xi]β2

)2

s.t. 1)
1
n

n∑

i=1

(
Ê[vt(X)|xi]− Ê[f̂X(X)qk

′
1n(Z)|xi]β1

)2

≤ εn 2)β
′
1Λk1nβ1 ≤ C 3)β

′
2Λk1nβ2 ≤ C (44)

Constraints 1) and 2) imply qk
′
1n(z)β̂1 ∈ Θ̂0, while constraint 3) ensures Ê[qk

′
1n(Z)|x]β̂2 ∈ En. Since

θ̃(z, x) is consistent for θ0(z) = arg minΘ0 M(θ) and θ0(z) is generically not the global minimizer of
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Figure 1: Effects of γ and λ

M(θ),7 it follows that constraint 1) asymptotically impacts the solution to (44). It therefore seems

prudent to select εn small enough so that constraint 1) affects the solution to (44) for every n as

well. For θ̄(z) the unconstrained minimizer to (44), we implement the following ad-hoc rule for

selecting εn:

εn = γQn(θ̄) + (1− γ)Qn(θ̂) (45)

For γ ∈ (0, 1), setting εn according to (45) ensures both that constraint 1) affects the optimal value

7Ignoring all constraints, the minimizer to M(θ) is given by Ẽ[vh(X)|z] where Ẽ[·|z] is the conditional expecta-

tion with respect to the measure fXZ(x, z)f2
X(x)/[

∫
fXZ(x, z)f2

X(x)dxdz]. Hence, the global minimizer is in Θ0 iff

E[Ẽ[vh(X)|Z]|x] = vh(x), i.e. vh(x) is the unit eigenfunction for the operator E[Ẽ[·|Z]|X]. Notice that if this is the

case, then θ0(z) = Ẽ[vh(X)|z] is a unique identified element in Θ0, implying we can estimate it directly.
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in (44) and that Θ̂0 contains other elements in addition to θ̂(z).

Figure 1 reports the results from simulations for different combinations of values for γ and λn.8

Enlarging Θ̂0 by increasing γ worsens the bias of the estimator n−1
∑

i yiθ̃(zi, xi) for 〈vt,m0〉 while

at the same time decreasing its variance. In accordance to the theory, however, the perturbation by

λnEn greatly helps remedy the situation. For λn = 0.01 and λn = 0.001, the bias of n−1
∑

yiθ̃(zi, xi)

remains stable across values of γ. These values of λn represent perturbations small in magnitude.

Table 5 in Appendix E shows the endogenous component λnf̂X(xi)Ê[qk′1n(Z)|xi]β̂2 contributes less

than 5.5% to the total variability of θ̃(zi, xi) for all values of γ. The smaller bias causes the confidence

intervals constructed using a normal approximation to provide a better control on the actual size

for λn = 0.01 and λn = 0.1 than for λn = 0 and λn = 0.001. The simulation results suggest that the

introduction of the bandwidth parameter λn is indeed necessary to ensure the derivative of Qn(θ)

evaluated at θ̃(z, x) vanishes at the required rate. Without this derivative vanishing, the second

stage estimator n−1
∑

i θ̃(zi, xi)yi will be asymptotically biased at the
√

n rate.

5 Conclusion

The results in this paper allow for the estimation of continuous linear functionals in an additive

separable model with endogenous regressors. Two estimators are examined that rely on the mini-

mal assumption that 〈v∗,m0〉 is
√

n estimable and do not require the underlying model m0(x) be

identified. These estimators make use of a nuisance parameter that is itself not identified. An

adaptation of procedures derived in Newey & Powell (2003) and Ai & Chen (2003) yield a
√

n

consistent estimator that fails to be asymptotically normal. A second more complex procedure is

able to reestablish asymptotic normality. The construction of this second estimator required the

generalization of set estimation results in Chernozhukov, Hong & Tamer (2007) to arbitrary metric

spaces. These techniques should also be applicable to other estimation problems with partially

identified nonparametric nuisance parameters.

8See Appendix E for an analysis of what the different levels of γ and λ mean.
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APPENDIX A - Notation and Definitions

The following is a table of the notation and definitions that will be used throughout the appendix, including

many that go beyond the ones already introduced in the main text:

a . b a ≤ Mb for some constant M which is universal in the context of the proof

||θ||∞ The sup-norm supz∈Z |θ(z)|
||θ||w The norm

(
E

[
(E[θ(Z)|X])2

]) 1
2

〈θ1, θ2〉w The dot product E [E[θ1(Z)|X]E[θ2(Z)|X]] corresponding to the norm ||θ||w
||θ||Λω The norm max|λ|≤ω supz∈Z |Dλθ(z)|+ max|λ|=ω sup

z 6=z
′ |D

λθ(z)−Dλθ(z′)|
||z−z′||ω−ω

ρn(θ1, θ2) The random semimetric
[
n−1

∑
i(θ1(zi)− θ2(zi))

2
] 1

2

h(Θ1, Θ2) The maximal approximation error h(Θ1, Θ2) = supθ1∈Θ1
infθ2∈Θ2 ||θ1 − θ2||

dH(Θ1, Θ2, || · ||) The Haussdorf norm under || · || given by dH(Θ1, Θ2, || · ||) = max{h(Θ1, Θ2), h(Θ2, Θ1)}
m(x, θ) The mapping on θ given by m(x, θ) = E[v∗(X)− θ(Z)fX(X)|x]

N(ε,F , || · ||) The covering numbers of size ε for F under the norm || · ||
N[ ](ε,F , || · ||) The bracketing numbers of size ε for F under the norm || · ||

l∞(Θ) The space of bounded functionals on Θ

Θ
ε,||·||
0 The closed neighborhood of Θ0 given by Θ

ε,||·||
0 = {θ ∈ Θ : infΘ0 ||θ − θ0|| ≤ ε}

Θ
ε,||·||
0n The closed neighborhood of Θ0 given by Θ

ε,||·||
0n = {θ ∈ Θn : infΘ0 ||θ − θ0|| ≤ ε}

En The set of functions En = {Ê[θn(Z)|x] : θn(z) ∈ Θn}
ṽ(z) The Riesz Representor for the functional E[Y θ(Z)] under the inner product 〈θ1, θ2〉w
u(z) Define to equal u(z) = ±ṽ(z)

un(z) The projection of u(z) onto Θn under || · ||∞, given by un(z) = arg minΘn ||θn − u||∞
V The closure of the linear span of Θ under || · ||w

ξjn Defined by ξjn = supx,|λ|=j ||Dλpkn (x)||

APPENDIX B - Proof of Theorem 3.1, 3.2, Auxiliary Lemmas .1, .2 and Corollary .1

Lemma .1. Let m(x, θ) = E[v∗(X)− θ(Z)fX(X)|x] and Θε,||·||w
0n = {θ ∈ Θn : infΘ0 ||θ− θ0||w ≤ ε}. Under Assump-

tions 1, 2(i)-(ii), 3(i)-(iv), 4(i)-(iii) and 5(i)-(iv), a) supΘn
n−1

∑
i(m̂(xi, θ)−m(xi, θ))2 = op(n−

1
2−δ0). If εn = o(ηn)

for ηn = n−τ with 1/8 ≤ τ ≤ 1/4 and εnn
1
4+

δ0
2 → ∞ then b) sup

Θ
εn,||·||w
0n

n−1
∣∣∑

i m2(xi, θ)− E[m2(xi, θ)]
∣∣ =

op(n−
1
2−δ0); c) sup

Θ
εn,||·||w
0n

n−1
∑

i m2(xi, θ) = op(η2
n) and sup

Θ
εn,||·||w
0n

n−1
∑

i m̂2(xi, θ) = op(η2
n).

Proof of Lemma .1: To establish part a) I study supΘn
n−1

∑
i(m̂(xi, θ)−m(xi, θ))2 through the inequality:

sup
Θn

1
n

n∑

i=1

(m̂(xi, θ)−m(xi, θ))2 ≤ sup
Θn

2
n

n∑

i=1

(E[v∗(X)− θ(Z)fX(X)|xi]− Ê[v∗(X)− θ(Z)fX(X)|xi])2

+ sup
Θn

2
n

n∑

i=1

(Ê[θ(Z)(f̂X(X)− fX(X))|xi])2 (46)

I will first show supΘn
n−1

∑
i(E[v∗(X) − θ(Z)fX(X)|xi] − Ê[v∗(X) − θ(Z)fX(X)|xi])2 = op(n−

1
2−δ0) by verifying

the conditions in Lemma A.1 in Ai & Chen (2003). Assumptions 3.1 and 3.2(i) are implied by our Assumptions

1 and 2(i). Since v∗(x) = E[θ0(Z)|x]fX(x) for some bounded θ0(z) and fX(x) is bounded, it follows that v∗(x) is

bounded. Hence, condition (i) is satisfied for c1(Z) a constant and c1n = 1, while condition (ii) is satisfied with c2(Z)
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constant by fX(x) being bounded, κ = 1 and || · ||s = || · ||∞. I verify condition (iii) for δ1n = n−
1
4−

δ0
2 . Assumption

4(ii) implies ξ0nδ1n → 0 and therefore to show condition (iii) we need to establish:

[
dx log

(
ξ1nn

1
4+

δ0
2

)
+ log

(
N(ξ−1

0n n−
1
4−

δ0
2 , Θn, || · ||∞)

)]
ξ2
0nn−

1
2+δ0 → 0 (47)

Assumption 4(ii) implies ξ1nn−
1
4−

δ0
2 = o(1), and therefore for large n, log

(
ξ1nn

1
4+

δ0
2

)
≤ (1/2 + δ0) log n. As-

sumption 4(iii) implies log
(
N(ξ−1

0n n−
1
4−

δ0
2 , Θn, || · ||∞)

)
. k1n log

(
k1nξ0nn

1
4+

δ0
2

)
. k1n log n because k1n/n → 0

and ξ0nn−
1
4−

δ0
2 = o(1). Hence, (47) holds if k1nξ2

0nn−
1
2+δ0 log n = o(1), which is implied by Assumption 4(ii). It

therefore follows from Lemma A.1 (A) in Ai & Chen (2003) that:

sup
x,Θn

pk′n(x)(P ′P )−1
n∑

i=1

pkn(xi) (θ(zi)fX(xi)− E[θ(Z)|xi]fX(xi)) = op(n−
1
4−

δ0
2 ) (48)

In addition, Assumption 2(ii) and 3(iv) imply condition (iv) of Lemma A.1 (B) in Ai & Chen (2003) is satisfied for

δ2n = n−
1
4−

δ0
2 , and therefore we conclude:

sup
Θn

1
n

n∑

i=1


pkn(xi)′(P ′P )−1

n∑

j=1

pkn(xj)(v∗(xj)− E[θ(Z)|xj ]fX(xj))− (v∗(xj)−E[θ(Z)|xi]fX(xj))




2

= op(n−
1
2−δ0)

(49)

Combining (48) and (49) we find that supΘn

1
n

∑
i(E[v∗(X) − θ(Z)fX(X)|xi] − Ê[v∗(X) − θ(Z)fX(X)|xi])2 =

op(n−
1
2−

δ0
2 ), hence controlling the first term in (46). I now examine the term supΘn

n−1
∑

i(Ê[θ(Z)(f̂X(X) −
fX(X))|xi])2 in (50). The second inequality in (50) follows by the Cauchy-Schwarz inequality and the θ ∈ Θ being uni-

formly bounded. As shown in the proof of Theorem 1 in Newey (1997), E[n−1
∑

i pk
′
n(xi)(P

′
P )−1pkn(xi)] = O(kn/n),

and hence by Markov’s inequality n−1
∑

i pk
′
n(xi)(P

′
P )−1pkn(xi) = Op(kn/n). Furthermore, Assumption 5 and The-

orem 4.2 2) in Bosq (1998) implies supx E[(f̂X(x)− fX(x))2] ≤ supx 2E[(E[f̂X(x)]− fX(x))2]+ supx 2E[(E[f̂X(x)]−
f̂X(x))2] = O(n−2νk) + O(n1−νdx), and hence Markov’s inequality and k > dx imply the third equality in (50).

Assumption 5(iv) gives us the final result in (50).

sup
Θn

1
n

n∑

i=1

(Ê[θ(Z)(f̂X(X)− fX(X))|xi])2 = sup
Θn

1
n

n∑

i=1


pk

′
n(xi)(P

′
P )−1

n∑

j=1

pk
′
n(xj)θ(zj)(f̂X(xj)− fX(xj))




2

.
[

1
n

n∑

i=1

pk
′
n(xi)(P

′
P )−1pkn(xi)

] 


n∑

j=1

(f̂X(xj)− fX(xj))2


 = Op

(
kn

n

)
×Op

(
n1−νdx

)
= op(n−

1
2−δ0) (50)

Together, (46), (48), (49) and (50) establish part a) of the Lemma.

For establishing parts b) and c), first note that Assumption 3(iii), εnn
1
4+

δ0
2 → +∞ and ||θ||w . ||θ||∞ imply

Θεn,||·||w
0n 6= ∅ for n large enough. Let An =

{
α(x) = m2(x, θ)− E[m2(X, θ)] : θ ∈ Θεn,||·||w

0n

}
and note that in order

to establish part b) it is sufficient to show supAn
n−1 |∑i α(xi)| = op(n−

1
2−δ0). Let Dn be the diameter of An under

the metric ρn. Then, the first result in (51) follows by a standard maximal inequality for empirical processes, see

for example Theorem .2 in Santos (2007). Let M = {m(x, θ) : θ ∈ Θ} and A = {α(x) = m2(x, θ) − E[m2(X, θ)] :

m(x, θ) ∈ M}. Since An ⊆ A and ρn(α1, α2) ≤ ||α1 − α2||∞, it follows that N(ε,An, ρn) ≤ N[ ](ε,A, || · ||∞).

Furthermore, for αi(x) ∈ A with αi(x) = m2(x, θi) − E[m2(X, θi)], the fact that m(x, θ) ∈ M are uniformly

bounded implies ||α1 − α2||∞ . ||m1 − m2||∞ and hence Theorem 2.7.11 in van der Vaart & Wellner implies

N[ ](ε,A, || · ||∞) . N[ ](ε,M, || · ||∞). Together with M ⊆ Λγ
C(X ) by Assumption 3(iv), this gives us the second

inequality in (51). Theorem 2.7.1 in van der Vaart & Wellner, γ > dx/2, the definition of Dn and Jensen’s inequality
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in turn implies the third inequality. For the final inequality we exploit that An ⊆ A.

E

[
sup
An

√
n

∣∣∣∣∣
n∑

i=1

α(xi)

∣∣∣∣∣

]
. E

[∫ Dn

0

[log N(ε,An, ρn)]
1
2 dε

]
. E

[∫ Dn

0

[
log N[ ](ε, Λ

γ
C(X ), || · ||∞)

] 1
2 dε

]

.
(

E

[
sup
An

n−1
n∑

i=1

α2(xi)

]) 1
2− dx

4γ

≤
(

E

[
sup
A

n−1

∣∣∣∣∣
n∑

i=1

α2(xi)− E[α2(X)]

∣∣∣∣∣

]
+ sup

An

E[α2(X)]

) 1
2− dx

4γ

(51)

Let A2 = {ω(x) = α2(x) − E[α2(X)] : α(x) ∈ A}. Since m(x, θ) ∈ M are uniformly bounded, it follows that

N[ ](ε,A2, || · ||∞) . N[ ](ε,M, || · ||∞). Hence, Theorems 2.7.1 and 2.5.6 in van der Vaart & Wellner imply A2 is a

Donsker class, and therefore E
[
supA n−1

∣∣∑
i α2(xi)− E[α2(X)]

∣∣] = Op(n−
1
2 ). In addition, m(x, θ) ∈M being uni-

formly bounded implies supAn
E[α2(X)] . sup

Θ
εn,||·||w
0n

E
[
(E[v∗(X)/fX(X)− θ(Z)|X])2 f2

X(X)
]

= ε2n. Therefore,

it follows from Markov’s inequality and (51) that sup
Θ

εn,||·||w
0n

n−1
∣∣∑

i m2(xi, θ)− E[m2(X, θ)]
∣∣ = Op(n−

1
2 (n−

1
2 +

ε2n)
1
2− dx

4γ ). Together with εn = o(n−
1
8 ) and δ0 < (2γ − dx)/16γ this concludes showing part b) of the Lemma.

I now establish part c). In (52), the first inequality follows from Θεn,||·||w
0n ⊆ Θεn,||·||w

0 for Θεn,||·||w
0 = {θ ∈ Θ : infΘ0 ||θ−

θ0||w ≤ εn}. Since E[θ(Z)|x] = v∗(x)/fX(x) for all θ ∈ Θ0, it follows that E[m2(X, θ)] = infΘ0 ||θ − θ0||2w ≤ ε2n.

Therefore, part b) of the lemma and εn = o(ηn), imply the final result in (52).

sup
Θ

εn,||·||w
0n

n−1
n∑

i=1

m2(xi, θ) ≤ sup
Θ

εn,||·||w
0n

n−1

∣∣∣∣∣
n∑

i=1

m2(xi, θ)− E[m2(xi, θ)]

∣∣∣∣∣ + sup
Θ

εn,||·||w
0

E[m2(X, θ)] = op(η2
n) (52)

For the second claim of part c), note that the first inequality in (53) is implied by Θεn,||·||w
0n ⊆ Θn. Part a) and (52)

establish the final equality in (53).

sup
Θ

εn,||·||w
0n

n−1
n∑

i=1

m̂2(xi, θ) ≤ 2 sup
Θn

n−1
n∑

i=1

(m̂(xi, θ)−m(xi, θ))
2 + 2 sup

Θ
εn,||·||w
0n

n−1
n∑

i=1

m2(xi, θ) = op(η2
n) (53)

Results (52) and (53) verify claim c) and hence conclude the proof of the Lemma. ¥

Corollary .1. Let Q̄n = n−1
∑

i m2(xi, θ). Under Assumptions 1, 2(i)-(ii), 3(i)-(iv), 4(i)-(iii) and 5(i)-(iv), a)

supΘn
|Qn(θ) −Q(θ)| = op(n−

1
4−

δ0
2 ). Furthermore, if in addition εn = o(ηn) for ηn = n−τ with 1/8 ≤ τ ≤ 1/4 and

εnn
1
4+

δ0
2 → +∞, then it follows that b) sup

Θ
εn,||·||w
0n

|Qn(θ)−Q(θ)| = op(ηnn−
1
4−

δ0
2 )

Proof of Corollary .1: I first show part a) and begin by examining supΘn
|Qn(θ) − Q̄n(θ)|. In (54), the second

equality follows from the Cauchy-Schwarz inequality, m(x, θ) being uniformly bounded because m(x, θ) ∈ Λγ
C(X ) by

Assumption 3(iv) and part a) of Lemma (.1).

sup
Θn

|Qn(θ)− Q̄n(θ)| ≤ sup
Θn

1
n

n∑

i=1

|(m̂(xi, θ)−m(xi, θ))(m̂(xi, θ) + m(xi, θ))| = op(n−
1
4−

δ0
2 ) (54)

Let M2 = {m2(x, θ) : θ ∈ Θ}. Since the m(x, θ) are uniformly bounded, M2 is Lipschitz in M⊆ Λγ
C(X ). Therefore,

by Theorem 2.10.6 in van der Vaart & Wellner M2 is Donsker and supΘ |Q̄n(θ) − Q(θ)| = Op(n−
1
2 ). Hence, (54)

implies supΘn
|Qn(θ)−Q(θ)| ≤ supΘn

|Qn(θ)− Q̄n(θ)|+ supΘ |Q̄n(θ)−Q(θ)| = op(n−
1
4−

δ0
2 ), establishing part a).

I now show part b). First note that since the Cauchy Schwarz inequality implies that sup
Θ

εn,||·||w
0n

∣∣Qn(θ)− Q̄n(θ)
∣∣ ≤

[
supΘn

∑
i(m̂(xi, θ)−m(xi, θ))2

] 1
2

[
sup

Θ
εn,||·||w
0n

∑
i(m̂(xi, θ) + m(xi, θ))2

] 1
2
, parts a) and c) of Lemma .1 imply that

sup
Θ

εn,||·||w
0n

∣∣Qn(θ)− Q̄n(θ)
∣∣ = op(ηnn−

1
4−

δ0
2 ). Together with part b) of Lemma .1 and ηn = n−τ for 1/8 ≤ τ ≤ 1/4,

this implies the final result in (55)

sup
Θ

εn,||·||w
0n

|Qn(θ)−Q(θ)| ≤ sup
Θ

εn,||·||w
0n

|Qn(θ)− Q̄n(θ)|+ sup
Θ

εn,||·||w
0n

|Q̄n(θ)−Q(θ)| = op(ηnn−
1
4−

δ0
2 ) (55)
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which concludes the proof of the Corollary. ¥

Proof of Theorem 3.1: To establish the Theorem, I first show ||θ̂−θ0||w = op(n−
1
8−

δ0
8 ) and then use this result to

refine the rate of convergence. In (56), the first inequality holds for any ε > 0 and θ0n = infΘn
||θ0 − θn||∞ because

by definition θ̂ ∈ arg minΘn
Qn(θ). In turn, since supΘn

|Qn(θ)−Q(θ)| = op(n−
1
4−

δ0
2 ) by part a) of Corollary .1, the

second inequality in (56) follows. The final result in (56) is implied by noting that Q(θ) = E[(fX(x)E[θ(Z)|X] −
v∗(X))2] = ||θ − θ0||2w because E[θ0(Z)|x] = v∗(x)/fX(x) and that ||θ0 − θ0n||2w ≤ ||θ0 − θ0n||2∞ = o(n−

1
2−δ0) by

Assumption 3(iii).

P
(
||θ̂ − θ0||w ≥ n−

1
8−

δ0
8 ε

)
≤ P


 inf

θ∈Θn:||θ−θ0||w≥n−
1
8−

δ0
8 ε

Qn(θ) ≤ Qn(θ0n)




≤ P


 inf

θ∈Θn:||θ−θ0||w≥n−
1
8−

δ0
8 ε

Qn(θ) ≤ Qn(θ0n)
⋂

sup
Θn

|Qn(θ)−Q(θ)| ≤ n−
1
4−

δ0
2


 + o(1)

≤ P


 inf

θ∈Θn:||θ−θ0||w≥n−
1
8−

δ0
8 ε

Q(θ) ≤ Q(θ0n) + 2n−
1
4−

δ0
2


 + o(1) = o(1) (56)

The derivations in (56) imply that ||θ̂ − θ0||w = op(n−
1
8−

δ0
8 ). To improve on this rate, let δ0n = n−

1
8−

δ0
8 ε and δ1n =

n−
1
8− 1

16−
δ0
8 ε for any ε > 0. Since we have already shown ||θ̂ − θ||w = op(n−

1
8−

δ0
8 ) = op(δ0n) we can use arguments

similar to (56) to derive the first inequality in (57). Using part b) of Corollary .1 gives us the second inequality in (57).

The final result is follows by Q(θ) = ||θ− θ0||2w, Assumption 3(iii) implying ||θ0− θ0n||2w ≤ ||θ0− θ0n||2∞ = o(n−
1
2−δ0)

and recalling that δ2
1n = n−

1
4− 1

8−
δ0
4 .

P
(
||θ̂ − θ0||w ≥ δ1n

)
≤ P

(
inf

θ∈Θn:δ0n≥||θ−θ0||w≥δ1n

Qn(θ) ≤ Qn(θ0n)
)

+ o(1)

≤ P


 inf

θ∈Θn:δ0n≥||θ−θ0||w≥δ1n

Qn(θ) ≤ Qn(θ0n)
⋂

sup
Θ

δ0n,||·||w
0n

|Qn(θ)−Q(θ)| ≤ n−
1
4− 1

8−
δ0
2


 + o(1)

≤ P

(
inf

θ∈Θn:δ0n≥||θ−θ0||w≥δ1n

Q(θ) ≤ Q(θ0n) + 2n−
1
4− 1

8−
δ0
2

)
+ o(1) = o(1) (57)

Hence, (57) implies ||θ̂ − θ0||w = op(n−
1
8− 1

16−
δ0
8 ). It is now possible to improve on this rate again by letting δ0n =

n−
1
8− 1

16−
δ0
8 ε, δ1n = n−

1
8− 1

16− 1
32−

δ0
8 ε and repeating the arguments in (57), which shows ||θ̂−θ||w = op(n−

1
8− 1

16− 1
32−

δ0
2 ).

By repeating this argument a large, but finite, number of times we can establish that ||θ̂ − θ0||w = op(n−
1
4 ). ¥

Lemma .2. Let u(z) = ±ṽ(z) and un(z) = arg minΘn ||θn− ṽ||∞. Under Assumptions 1, 2(i)-(ii), 3(i)-(vi), 4(i)-(iv)

and 5(i)-(v), if θ̂ ∈ Θn satisfies ||θ̂ − θ0||w = op(n−
1
4 ), then:

a) n−1
∑

i Ê[un(Z)f̂X(X)|xi]m̂(xi, θ̂) = n−1
∑

i fX(xi)E[u(Z)|xi]m̂(xi, θ̂) + op(n−
1
2 ).

b) If in addition ||θ̂−θ0||∞ = op(1), then n−1
∑

i E[u(Z)fX(X)|xi](m̂(xi, θ̂)−m̂(xi, θ0)) = 〈u, θ0− θ̂〉w +op(n−
1
2 ).

c) n−1
∑

i E[u(Z)fX(X)|xi]m̂(xi, θ0) = n−1
∑

i E[u(Z)fX(X)|xi](v∗(xi)− θ0(zi)f̂X(xi)) + op(n−
1
2 ).

d) n−1
∑

i E[ṽ(Z)fX(X)|xi]θ0(zi)(fX(xi) − f̂X(xi)) = n−1
∑

i E[ṽ(Z)v∗(X)fX(X)] − E[ṽ(Z)|xi]v∗(xi)fX(xi) +

op(n−
1
2 )

Proof of Lemma .2: For a), we first examine n−1
∑

i

(
Ê[f̂X(X)un(Z)|xi]− Ê[fX(X)un(Z)|xi]

)
m̂(xi, θ̂). The first

result in (58) follows from the Cauchy-Schwarz inequality. Since by assumption θ̂ ∈ Θε,||·||w
0n for εn = o(n−

1
4 ) with
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probability tending to one, part c) of Lemma .1 and (50) imply the second result in (58).

∣∣∣∣∣
1
n

n∑

i=1

(
Ê[f̂X(xi)un(Z)|xi]− Ê[fX(X)un(Z)|xi]

)
m̂(xi, θ̂)

∣∣∣∣∣

≤
[

1
n

n∑

i=1

(
Ê[un(Z)(f̂X(X)− fX(X))|xi]

)2
] 1

2
[

1
n

n∑

i=1

m̂2(xi, θ̂)

] 1
2

= op(n−
1
2 ) (58)

Now we examine n−1
∑

i

(
Ê[fX(X)un(Z)|xi]− E[fX(X)un(Z)|xi]

)
m̂(xi, θ̂). In (59) the first result follows by the

Cauchy-Schwarz inequality. The same arguments as in (48) and (49) but setting v∗(x) = 0 together with Assumption

3(vi) imply n−1
∑

i

(
Ê[un(Z)fX(X)|xi]− E[un(Z)fX(X)|xi]

)2

= op(n−
1
2 ). Together with part c) of Lemma .1, this

implies the final equality in (59).

∣∣∣∣∣
1
n

n∑

i=1

(
Ê[fX(X)un(Z)|xi]− E[fX(X)un(Z)|xi]

)
m̂(xi, θ̂)

∣∣∣∣∣

≤
[

1
n

n∑

i=1

(
Ê[fX(X)un(Z)|xi]− E[fX(X)un(Z)|xi]

)2
] 1

2
[

1
n

n∑

i=1

m̂2(xi, θ̂)

] 1
2

= op(n−
1
2 ) (59)

Next, we examine the term n−1
∑

i fX(xi) (E[un(Z)|xi]− E[u(Z)|xi]) m̂(xi, θ̂). In (60), we apply the Cauchy-Schwarz

inequality to derive the first result. Since u ∈ Θ, it follows by Assumption 3(iii) that ||un−u||∞ = o(n−
1
4 ). Therefore,

the inequality E[un(Z) − u(Z)|xi]2 ≤ ||un − u||2∞ implies n−1
∑

i (E[un(Z)|xi]− E[u(Z)|xi])
2 = o(n−

1
2 ). The final

result in (60) then follows by fX(x) bounded and n−1
∑

i m̂2(xi, θ̂) = op(n−
1
2 )

∣∣∣∣∣
1
n

n∑

i=1

fX(X) (E[un(Z)|xi]− E[u(Z)|xi]) m̂(xi, θ̂)

∣∣∣∣∣

≤
[

1
n

n∑

i=1

(E[un(Z)|xi]− E[u(Z)|xi])
2

] 1
2

[
1
n

n∑

i=1

f2
X(xi)m̂2(xi, θ̂)

] 1
2

= op(n−
1
2 ) (60)

Combining (58), (59) and (60), concludes the proof of part a) of the Lemma.

We now establish part b). The first result in (61) is obtained by rearranging terms. The final equality in (61) follows by

exchanging the order of summation, where Ê[E[u(Z)fX(X)|X]|xj ] = pk
′
n(xj)(P ′P )−1

∑
i pkn(xi)E[u(Z)fX(X)|xi].

1
n

n∑

i=1

E[u(Z)fX(X)|xi](m̂(xi, θ̂)− m̂(xi, θ0))

=
1
n

n∑

i=1

E[u(Z)fX(X)|xi]pk
′
n(xi)(P ′P )−1

n∑

j=1

pkn(xj)(θ0(zj)− θ̂(zj))f̂X(xj)

=
1
n

n∑

j=1

(θ0(zj)− θ̂(zj))Ê[E[u(Z)fX(X)|X]|xj ]f̂X(xj) (61)

Since E[u(Z)fX(X)|x] ∈ Λγ
C(X ) by Assumption 3(vi), Theorem 1 in Newey (1997) implies that under Assump-

tions 1-2, 3(vi) and 4(iv) ||Ê[E[u(Z)fX(X)|X]|x] − E[u(Z)fX(X)|x]||∞ = op(1). A straightforward extension

of Theorem 2.8 in Pagan & Ullah (1999) to X multidimensional, shows that Assumptions 1 and 5(i)-(v) imply

||f̂X − fX ||∞ = op(1). Therefore, E[u(Z)|x]fX(x) and fX(x) being bounded implies that for M large enough,

P (||Ê[E[u(Z)fX(X)|x]]f̂X(x)||∞ > M) → 0. Hence, for Fn = {(θ0(z) − θ(z))Ê[E[u(Z)fX(X)|X]|x]f̂X(x) : θ ∈ Θ}
and M large enough we have with probability arbitrarily close to one N[ ](ε,Fn, || · ||∞) ≤ N[ ]( ε

M , Θ, || · ||∞) . eε
− dx

γ .

Thus, n−
1
2

∑
i

(
(θ0(zi)− θ(zi))Ê[E[u(Z)fX(X)|X]|xi]f̂X(xi)− E[(θ0(Z)− θ(Z))Ê[E[u(Z)fX(X)|X]|X]f̂X(X)]

)
is
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asymptotically tight in l∞(Θ) by Theorem 2.11.23 in van der Vaart & Wellner. Since in addition we have that

supx,z |(θ0(z) − θ̂(z))Ê[E[u(Z)fX(X)|X]|x]f̂X(x)| = op(1) by virtue of supx |Ê[E[u(Z)fX(X)|X]|x]f̂X(x)| = Op(1)

as shown, and ||θ̂ − θ0||∞ = op(1) by assumption, we conclude using (61) that:

1
n

n∑

i=1

E[u(Z)fX(X)|xi](m̂(xi, θ̂)− m̂(xi, θ0)) = E[(θ0(Z)− θ̂(Z))Ê[E[u(Z)fX(X)|X]|X]f̂X(X)] + op(n−
1
2 ) (62)

We now analyze the right hand side of (62). Since E[u(Z)fX(X)|x] ∈ Λγ
C(X ) by Assumption 3(vi), Theorem 1 in

Newey (1997) implies under Assumption 1, 2(i)-(ii), 3(vi) and 4(iv), E[(Ê[E[u(Z)fX(X)|X]|X]−E[u(Z)fX(X)|X])2] =

Op(kn/n+k
−2γ/dx
n ) = op(n−

1
2 ) by Assumptions 4(iv) and 2(ii). As argued, for M large enough P (||f̂X ||∞ > M) → 0,

so that with arbitrary large probability |E[(θ0(Z) − θ̂(Z))(Ê[E[u(Z)fX(X)|X]|X] − E[u(Z)fX(X)|X])f̂X(X)]| .
||θ̂ − θ||w(E[(Ê[E[u(Z)fX(X)|X]] − E[u(Z)fX(X)|X])2])

1
2 = op(n−

1
2 ) as ||θ̂ − θ||w = op(n−

1
4 ) by assumption. To-

gether with (62), this implies the first equality in (63). Furthermore, Assumption 1 and 5(i)-(iv) imply by Theorem

4.2 2) in Bosq (1998) that supx E[(f̂X(x) − fX(x))2] = o(n−
1
2 ). The Cauchy-Schwarz inequality, E[u(Z)fX(X)|x]

being bounded and ||θ̂ − θ0||w = op(n−
1
4 ) in turn imply the second equality in (63).

1
n

n∑

i=1

E[u(Z)fX(X)|xi](m̂(xi, θ̂)− m̂(xi, θ0)) = E[(θ0(Z)− θ̂(Z))E[u(Z)fX(X)|X]f̂X(X)] + op(n−
1
2 )

= E[(θ0(Z)− θ̂(Z))E[u(Z)|X]f2
X(X)] + op(n−

1
2 ) = 〈θ0 − θ̂, u〉w + op(n−

1
2 ) (63)

Hence, (63) concludes the proof of part b) of the Lemma.

I now establish part c) of the Lemma. In (64) we use arguments identical to those in (61) to obtain the first equal-

ity for Ê[E[u(Z)fX(X)|X]|xi] = pk
′
n(xi)(P ′P )−1

∑
j pkn(xj)E[u(Z)fX(X)|xj ]. As shown in the derivation of (63),

E[(Ê[E[u(Z)fX(X)|X]|X] − E[u(Z)fX(X)|X])2] = op(n−
1
2 ), and hence since E[θ0(Z)fX(X) − v∗(X)|xi] = 0, it

follows by Markov’s inequality that n−1
∑

i

(
Ê[E[u(Z)fX(X)|X]|xi]− E[u(Z)fX(X)|xi]

)
(v∗(xi)− θ0(zi)fX(xi)) =

op(n−
1
2 ). In addition, as argued in (63), supx E[(f̂X(X) − fX(X))2] = op(n−

1
2 ). Hence, θ0 bounded, the Cauchy

Schwarz inequality and Markov’s inequality imply n−1
∑

i

(
Ê[E[u(Z)|X]|xi]− E[u(Z)|xi]

)(
fX(xi)− f̂X(xi)

)
θ0(zi) =

op(n−
1
2 ), and hence the final result in (64) follows.

n−1
n∑

i=1

E[u(Z)fX(X)|xi]
(
m̂(xi, θ0)− (v∗(xi)− θ0(zi)f̂X(xi))

]

= n−1
n∑

i=1

(
Ê[E[u(Z)fX(X)|X]|xi]− E[u(Z)fX(X)|xi]

)
(v∗(xi)− θ0(zi)fX(xi))

+ n−1
n∑

i=1

(
Ê[E[u(Z)fX(X)|X]|xi]− E[u(Z)fX(X)|xi]

)(
fX(xi)− f̂X(xi)

)
θ0(zi) = op(n−

1
2 ) (64)

Thus, (64) establishes the third claim in the Lemma.

In order to show part d), let g(x, z) = E[ṽ(Z)fX(X)|x]θ0(z) and define the following kernel for a U-Statistic:

Hn(xi, zi, xj , zj) = g(xi, zi)
(∫

K

(
xi − x

h

)
fX(x)dx−K

(
xi − xj

h

))

+ g(xj , zj)
(∫

K

(
xj − x

h

)
fX(x)dx−K

(
xj − xi

h

))
(65)

Note that since fX(x), ṽ(z), θ0(z) ∈ Θ they are bounded, which implies |g(x, z)(E[f̂X(x)]−fX(x))]| . supx |E[f̂X(x)]−
fX(x)|. Furthermore, under Assumption 5(i)-(iv) by Theorem 4.2 2) in Bosq (1998) we have supx |E[f̂X(x)]−fX(x)| =
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O(hk) = o(n−
1
2 ) by Assumption 5(i)-(ii), which implies the first equality in (66). The second equality in (66) can be

obtained by rearranging terms, where Hn(xi, zi, xj , zj) is the U-Statistic Kernel defined in (66).

n−
1
2

n∑

i=1

g(xi, zi)(fX(xi)− f̂X(xi)) = n−
1
2

n∑

i=1

g(xi, zi)(E[f̂X(xi)|xi]− f̂X(xi)) + op(1)

=
1

n
3
2 hdx

n∑

i=1

∑

j>i

Hn(xi, zi, xj , zj) + op(1) (66)

In (67) I show (n
3
2 hdx)−1

∑
i

∑
j>i Hn(xi, zi, xj , zj) = (n

3
2 hdx)−1

∑
i

∑
j>i E[Hn(xi, zi, X, Z)|xi, zi]+op(1). The first

equality in (67) follows by noting that all crossterms have zero expectation. Standard calculations can be used to

show E[H2
n(Xi, Zi, Xj , Zj)] = O(hdx) and E[(E[Hn(Xi, Zi, Xj , Zj)|Xi, Zi])2] = O(h2dx). Combining both results,

implies the last equality in (67).

E





 1

n
3
2 hdx

n∑

i=1

∑

j>i

Hn(xi, zi, xj , zj)− E[Hn(xi, zi, X, Z)|xi, zi]




2



=
1

n3h2dx

n∑

i=1

∑

j>i

E
[
(Hn(xi, zi, xj , zj)− E[Hn(xi, zi, X, Z)|xi, zi])

2
]

=
n− 1
n2h2dx

E
[
(Hn(xi, zi, xj , zj)− E[Hn(xi, zi, X, Z)|xi, zi])

2
]

= O(nhdx) (67)

Therefore, Markov’s inequality and nhdx →∞ together with (66) imply the first equality in (68). The second result

in (68) can be obtained by rearranging terms and noticing that the expectation of the first term in Hn(xi, zi, xj , zj)

conditional on (xi, zi) is zero.

n−
1
2

n∑

i=1

g(xi, zi)(fX(xi)− f̂X(xi)) =
1

n
3
2 hdx

n∑

i=1

∑

j>i

E[Hn(xi, zi, X, Z)|xi, zi] + op(1)

=
1

n
1
2 hdx

n∑

i=1

∫
g(xj , zj)

(∫
K

(
xj − x

h

)
fX(x)dx−K

(
xj − xi

h

))
fXZ(xj , zj)dxjdzj + op(1) (68)

Assumptions 5(i)-(iv), Theorem 4.2 2) in Bosq (1998) imply supx |E[f̂X(x)]−fX(x)| = supx |h−dx
∫

K
(

x−u
h

)
fX(u)du−

fX(x)| = O(hk) = o(n−
1
2 ). Since g(x, z) = E[ṽ(Z)|x]fX(x)θ0(z) and fXZ(x, z) have uniformly bounded deriva-

tives up to order k with respect to x by Assumption 5(iii) and θ0(z) bounded, so does g(x, z)fXZ(x, z). There-

fore, a standard Taylor expansion argument, as in Theorem 4.2 2) in Bosq (1998), can be used to establish that

supxz |h−dx
∫

g(u, z)fXZ(u, z)K
(

u−x
h

)
du − g(x, z)fXZ(x, z)| = O(hk) = o(n−

1
2 ). Combining these two results with

(69) gives us the first equality in (69). The second result is implied by E[θ0(Z)|x] = v∗(x)/fX(x).

n−
1
2

n∑

i=1

g(xi, zi)(fX(xi)−f̂X(xi)) = n−
1
2

n∑

i=1

∫
g(xj , zj)fX(xj)fXZ(xj , zj)dxjdzj−

∫
g(xi, zj)fXZ(xi, zj)dzj+op(1)

n−
1
2

n∑

i=1

E[ṽ(Z)v∗(X)fX(X)]− E[ṽ(Z)|xi]v∗(xi)fX(xi) + op(1) (69)

which establishes the proof of part d) of the Lemma. ¥

Proof of Theorem 3.2: In order to establish that n−
1
2

∑
i(yiθ̂(zi) − 〈v∗,m0〉) is Op(1), we begin in (70) by

decomposing the expression into 2 terms. We use that 〈v∗,m0〉 = E[Y θ0(Z)] for any θ0 ∈ Θ0 to obtain the first

equality in (70). Define the class of functions F = {yθ(z) : θ ∈ Θ}. Since E[Y 2(θ1(Z)−θ2(Z))2] ≤ E[Y 2]||θ1−θ2||2∞,

it follows that N[ ](ε,F , || · ||L2) ≤ N[ ](ε/E[Y 2],Θ, || · ||∞) ≤ N[ ](ε/E[Y 2], Λω
C(Z), || · ||∞) . eε−

dz
ω , by Theorem 2.7.1 in
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van der Vaart & Wellner (2000). Therefore, Theorem 2.5.6 in van der Vaart & Wellner (2000) implies F is Donsker,

and hence supΘ n−
1
2

∑
i yiθ(zi)− E[Y θ(Z)] = Op(1). Together with E[Y (θ1(Z)− θ2(Z))] = 〈ṽ, θ1 − θ2〉w, this gives

us the second equality in (70). The last equality in (70) follows by (62) and (63).

n−
1
2

n∑

i=1

yiθ̂(zi)− 〈v∗,m0〉 = n−
1
2

n∑

i=1

(yiθ̂(zi)− E[Y θ̂(Z)]) + n
1
2 E[Y (θ̂(Z)− θ0(Z))]

= n
1
2 〈ṽ, θ̂ − θ0〉w + Op(1) = n

1
2 E[(θ̂(Z)− θ0(Z))Ê[E[ṽ(Z)fX(X)|X]|X]f̂X(X)] + Op(1) (70)

To conclude, we need to show n
1
2 E[(θ0(Z) − θ̂(Z))Ê[E[ṽ(Z)fX(X)|X]|X]f̂X(X)] is bounded in probability. Define

the class of functions Fn = {(θ0(z)− θ(z))Ê[E[ṽ(Z)fX(X)|X]|x]f̂X(x) : θ ∈ Θ}. As shown in the derivation of (62),

n−
1
2

∑
i

(
(θ0(zi)− θ(zi))Ê[E[ṽ(Z)fX(X)|X]|xi]f̂X(xi)− E[(θ0(Z)− θ(Z))Ê[E[ṽ(Z)fX(X)|X]|X]f̂X(X)]

)
is asymp-

totically tight in l∞(Θ), which implies the first equality in (71). The second equality in (71) follows from (61). It

follows from parts c) and d) of Lemma .2, that n−
1
2

∑
i fX(xi)E[ṽ(Z)|xi]m̂(xi, θ0) = n−

1
2

∑
i E[ṽ(Z)v∗(X)fX(X)]−

E[ṽ(Z)|xi]θ0(zi)f2
X(xi)+op(1). Therefore, the central limit theorem and part a) of Lemma .2 imply the final equality

in (71) for ṽn(Z) = arg minΘn
||ṽ − θn||∞.

n
1
2 E[(θ0(Z)− θ̂(Z))Ê[E[ṽ(Z)fX(X)|X]|X]f̂X(X)] = n−

1
2

n∑

i=1

(θ0(zi)− θ̂(zi))Ê[E[ṽ(Z)fX(X)|X]|xi]f̂X(xi)+Op(1)

= n−
1
2

n∑

i=1

fX(xi)E[ṽ(Z)|xi](m̂(xi, θ̂)− m̂(xi, θ0)) + Op(1) = n−
1
2

n∑

i=1

Ê[f̂X(X)ṽn(Z)|xi]m̂(xi, θ̂) + Op(1) (71)

To conclude the proof, I examine the term n−
1
2

∑
i Ê[f̂X(X)ṽn(Z)|xi]m̂(xi, θ̂) in (72). Since θ̂ minimizes Qn(θ) on

Θn, the first equality in (72) holds with probability approaching 1 by Assumption 6(i) for some εn = o(n−
1
2 ).

0 ≥ 1
n

n∑

i=1

(Ê[v∗(X)− θ̂(Z)f̂X(X)|xi])2 − 1
n

n∑

i=1

(Ê[v∗(X)− (θ̂(Z) + εnun(Z))f̂X(X)|xi])2

= 2
εn

n

n∑

i=1

m̂(xi, θ̂)Ê[un(Z)f̂X(X)|xi] +
ε2n
n

n∑

i=1

(Ê[un(Z)f̂X(X)|xi])2 (72)

By (50), n−1
∑

i(Ê[un(Z)f̂X(X)|xi]−Ê[un(Z)fX(X)|xi])2 = op(n−
1
2 ). As argued in showing (62), supx,Θ Ê[θ(Z)|x] =

Op(1), and hence by fX(x) being bounded we get ε2nn−1
∑

i(Ê[un(Z)f̂X(X)|xi])2 = Op(ε2n). Furthermore, since (72)

holds for u = ±ṽ and εn = o(n−
1
2 ), it follows from (72) that n−1

∑
i m̂(xi, θ̂)Ê[un(Z)f̂X(X)|xi] = op(n−

1
2 ). Together

with (71) and (70), this implies n−
1
2

∑
i(yiθ̂(zi)− 〈v∗,m0〉) = Op(1), which establishes the Theorem. ¥

APPENDIX C - Proof of Theorems 3.4, 3.5, 3.6, Lemma 3.1, Auxiliary Theorems .1, 3.3 and Auxiliary Lemma .3

Theorem .1. Assume (i) Q(θ) ≥ 0 and Θ0 = {θ ∈ Θ : Q(θ) = 0} with Θ compact with respect to || · ||, (ii)

Θn ⊆ Θ are closed and supΘ infΘn ||θ − θn|| = o(c1n) with c1n = o(1), (iii) supΘn
|Qn(θn) − Q(θn)| = op(c2n) with

c2n = o(1) and sup
Θ

c1n,||·||
0n

|Qn(θn) − Q(θn)| = op(c3n) with c3n = o(1), (iv) Q(θ) is continuous in Θ with respect

to || · || and sup
Θ

ε,||·||
0

Q(θ) ≤ C1ε
κ1 for some κ1 > 0. Then for an → ∞ with an = O(max[cmin[κ1,1]

1n , c3n]−1) and

bn →∞ with bn = o(an), the set Θ̂0 = {θn ∈ Θn : Qn(θ) ≤ bn/an} satisfies dH(Θ̂0,Θ0, || · ||) p→ 0. If in addition (v)

inf
(Θ

ε,||·||
0 )c Q(θ) ≥ C2ε

κ2 for some κ2 > 0, then dH(Θ̂0, Θ0, || · ||) = Op(max[bn/an, c2n]
1

max[κ2,1] ).

Proof of Theorem .1: Define Θpn to be the pointwise projection of Θ0 onto Θn under || · ||. In (73) we derive a

bound for supΘpn
Qn(θ). The first inequality follows from Θpn ⊆ Θn, the definition of Θpn and condition (ii). The
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second inequality is implied by (iv), while the final result follows by (iii) and an = O(max[cmin[κ1,1]
1n , c2n]−1).

sup
Θpn

Qn(θ) ≤ sup
Θ

c1n,||·||
0n

|Qn(θ)−Q(θ)|+ sup
Θ

c1n,||·||
0

Q(θ) ≤ sup
Θ

c1n,||·||
0n

|Qn(θ)−Q(θ)|+ C1c
κ1
1n = Op(a−1

n ) (73)

Fix εn > 0, which we will set constant for consistency and equal to M max[bn/an, c2n]
1

max[κ2,1] to obtain a rate of

convergence. I now examine h(Θ0, Θ̂0). In (74), the final result follows by definition of Θpn and condition (ii).

h(Θ0, Θ̂0) = sup
Θ0

inf
Θ̂0

||θ0 − θ̂0|| ≤ sup
Θ0

inf
Θ̂0,Θpn

||θ0 − θpn
||+ ||θpn

− θ̂0||

≤ sup
Θ0

inf
Θpn

||θ0 − θpn ||+ sup
Θpn

inf
Θ̂0

||θpn
− θ̂0|| = sup

Θpn

inf
Θ̂0

||θpn
− θ̂0||+ o(c1n) (74)

For n large enough, c1n < εn/2. When εn is constant this is clear, while if εn = M max[bn/an, c2n]
1

max[κ2,1] , then the

result follows by bn →∞ and an = O(c−1
1n ). Together with (74) this implies the first inequality in (75). The second

inequality follows from Θpn
⊆ Θ̂0 implying supΘpn

infΘ̂0
||θpn

− θ̂0|| = 0.

P
(
h(Θ0, Θ̂0) < εn

)
≥ P

(
sup
Θpn

inf
Θ̂0

||θpn − θ̂0|| < εn/2

)
≥ P

(
Θpn ⊆ Θ̂0

)
(75)

By definition of Θ̂0, Θpn ⊆ Θ̂0 if and only if Qn(θpn) ≤ bn/an for all θpn ∈ Θpn . Hence, for n large enough,

P
(
h(Θ0, Θ̂0) < εn

)
≥ P

(
an supΘpn

Qn(θ) ≤ bn

)
→ 1, since by (73) an supΘpn

Qn(θ) = Op(1) and bn → ∞. It

therefore follows that h(Θ0, Θ̂0) = op(εn).

To finish the proof it is necessary to examine h(Θ̂0,Θ0). The continuity of Q(θ) and the definition of Θ0 imply:

δn = inf
(Θ

εn,||·||
0 )c

Q(θ) > 0 (76)

Note that P
(
h(Θ̂0,Θ0) > εn

)
= P

(
h(Θ̂0,Θ0) > εn; Θ̂0 = ∅

)
+ P

(
h(Θ̂0,Θ0) > εn; Θ̂0 6= ∅

)
. If Θ̂0 = ∅, then

h(Θ̂0, Θ0) = 0, implying P
(
h(Θ̂0,Θ0) > εn

)
= P

(
h(Θ̂0,Θ0) > εn; Θ̂0 6= ∅

)
. To conclude, note the definition of

Θ̂0 and (76) imply the first inequality in (77). For n large enough, bn/an ≤ δn/2. If εn is constant, then it is clear

since bn = o(an); while if εn = M max[bn/an, c2n]
1

max[κ2,1] , then we use (v) to derive δn ≥ Mκ2bn/an and the result

holds for M large enough. This result implies the second inequality in (77). For εn a constant, the final result follows

from supΘn
|Qn(θn) − Q(θn)| = op(c2n), while if εn = M max[bn/an, c2n]

1
max[κ2,1] the conclusion follows from (v),

which implies δn ≥ C2M
κ2c2n.

P
(
h(Θ̂0, Θ0) > εn; Θ̂0 6= ∅

)
≤ P (∃θ ∈ Θn : Qn(θ) ≤ bn/an and Q(θ) > δn)

≤ P

(
sup
Θn

|Q(θ)−Qn(θ)| > δn/2
)
→ 0 (77)

Hence, h(Θ̂0, Θ0) = op(1) under conditions (i)-(iv), and if (v) holds, then h(Θ̂0,Θ0) = Op(max[bn/an, c2n]
1

max[κ2,1] ).

Together with our discussion of h(Θ0, Θ̂0), this implies dH(Θ̂0, Θ0, || · ||) = op(1) under (i)-(iv) and dH(Θ̂0, Θ0, || · ||) =

Op(max[bn/an, c2n]
1

max[κ2,1] ) under (i)-(v), which concludes the proof of the Theorem. ¥

Proof of Theorem 3.3: By Example 3.1 in Stinchcombe & White (1992), the estimator θ̂(z) is measurable and

hence a well defined random variable. If the model is identified, so that Θ0 = {θ0}, then P (||θ̂ − θ0|| < ε) ≥
P (dH(Θ̂0,Θ0, || · ||) < ε) → 0 by Assumption (ii). Therefore, without loss of generality we assume Θ0 is not a

singleton. Let Nε(θ0) be an ε open neighborhood of θ0 in Θ. Since Θ0 is a closed subset of a compact set Θ, it follows
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that it is also compact. Furthermore, since Θ0 has more than one element, for ε small enough, the set Θ0 ∩N c
ε/2(θ0)

is not empty. Therefore, the continuity of M(θ), compactness of Θ0 ∩ N c
ε/2(θ0), and the fact that θ0 is the unique

minimum of M(θ) in Θ0 imply that:

δ = min
θ∈Θ0∩Nc

ε/2(θ0)
M(θ)−M(θ0) > 0

Since M(θ) is continuous and Θ is compact, M(θ) is also uniformly continuous in Θ. It follows that there exists

a ζ such that if ||θ − θ′|| < ζ then |M(θ) − M(θ′)| < δ/4 for all θ, θ′ ∈ Θ. Let γ = min{ζ, ε/2} and note that if

dH(Θ̂0, Θ0, || · ||) < γ and Θ̂0 ∩N c
ε (θ0) is not empty, then it also follows that:

min
θ∈Θ̂0∩Nc

ε (θ0)
M(θ)−M(θ0) > δ/2 (78)

To see this, pick any θ ∈ Θ̂0 ∩ N c
ε (θ0) and let θP = arg infθ′∈Θ0 ||θ − θ′||. Since dH(Θ̂0, Θ0, || · ||) < ε/2, it follows

that ||θ − θP || < ε/2. In addition, since θ ∈ N c
ε (θ0), ||θ0 − θP || ≥ ||θ0 − θ|| − ||θP − θ|| ≥ ε/2, which implies

that θP ∈ Θ0 ∩ N c
ε/2(θ0), and hence M(θP ) ≥ M(θ0) + δ. On the other hand, dH(Θ̂0, Θ0, || · ||) < ζ, and thus

|M(θ)−M(θP )| < δ/2, which implies M(θ)−M(θ0) ≥ M(θP )−M(θ0)− |M(θ)−M(θP )| ≥ δ/2, establishing (78).

It thus follows that:

P
(
||θ̂ − θ0|| < ε

)
≥ P

(
M(θ̂)−M(θ0) ≤ δ/2; dH(Θ̂0,Θ0, || · || < γ)

)
(79)

Let θ̃ = arg infθ′∈Θ̂0
||θ0 − θ′||. If dH(Θ̂0, Θ0, || · ||) < γ, then ||θ0 − θ̃|| < ζ, implying that M(θ̃) ≤ M(θ0) + δ/4.

Furthermore, by definition of θ̂, Mn(θ̂) ≤ Mn(θ̃) and hence, M(θ̂) − M(θ̃) ≤ |M(θ̂) − Mn(θ̂)| + |M(θ̃) − Mn(θ̃)|.
Thus, M(θ̃) ≤ M(θ0)+δ/4 and |M(θ̂)−Mn(θ̂)|+ |M(θ̃)−Mn(θ̃)| ≤ δ/4 imply that M(θ̂)−M(θ0) ≤ δ/2. Therefore,

using (79), we get that:

P
(
||θ̂ − θ0|| < ε

)
≥ P

(
|M(θ̂)−Mn(θ̂)|+ |M(θ̃)−Mn(θ̃)| ≤ δ/4; dH(Θ̂0, Θ0, || · || < γ)

)
(80)

But P
(
|M(θ̂)−Mn(θ̂)|+ |M(θ̃)−Mn(θ̃)| ≤ δ/4; dH(Θ̂0,Θ0, || · || < γ)

)
→ 1 under Assumptions (iii) and (iv) and

θ̂, θ̃ ∈ Θ̂0 ⊆ Θn, which using (80) establishes the theorem. ¥

Proof of Theorem 3.4: I first show consistency under dH(·, ·, || · ||∞) by verifying the conditions for Theorem .1.

By Newey & Powell (2003), Θ is compact under || · ||∞. Assumption 3(vii) implies condition (ii) is satisfied with

c1n = n−
1
2−δ0 , while by Corollary .1, || · ||w ≤ supx fX(x)|| · ||∞ and fX(x) bounded, condition (iii) is satisfied by

c2n = n−
1
4−

δ0
2 and c3n = n−

1
2−

δ0
2 . To verify condition (iv), in (81) we use the fact that E[θ0(Z)|x] = v∗(x)/fX(x)

for all θ0 ∈ Θ0 to obtain the first equality and use || · ||w ≤ supx fX(x)|| · ||∞ and fX(x) bounded for the second

inequality.

sup
Θ

ε,||·||∞
0

E[(E[v∗(X)− θ(Z)fX(X)|X])2] = inf
Θ0

sup
Θ

ε,||·||∞
0

E[(E[θ0(Z)− θ(Z)|X])2f2
X(X)] . ε2 (81)

Hence, (81) implies (iv) is satisfied for some C1 > 0 and κ1 = 2. Theorem .1 requires an = O(max[cmin[κ1,1]
1n , c3n]−1),

which given our parameter values simplifies to an = O(n
1
2+δ0). Hence, conditions (i)-(iv) of Theorem .1 are satisfied,

which implies dH(Θ̂0, Θ0, || · ||∞)
p→ 0.

I now proceed to show the second claim of the Theorem. Under Assumption 3(vii), Corollary .1 and since || · ||w .
|| · ||∞, conditions (i)-(iii) of Theorem .1 are still satisfied with c1n = c3n = n−

1
2−

δ0
2 and c2n = n−

1
4−

δ0
2 . Furthermore,

the same arguments as in (81) immediately imply sup
Θ

ε,||·||w
0

Q(θ) ≤ ε2. Hence, condition (iv) is satisfied for κ1 = 2
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and C1 = 1. To verify condition (v), we use E[θ0(Z)|x]fX(x) = v∗(x) for all θ0 ∈ Θ0 to derive the first equality in

(82), while the second inequality follows from the definition of (Θε,||·||w
0 )c.

inf(
Θ

ε,||·||w
0

)c
E[(E[v∗(X)− θ(Z)fX(X)|X])2] = sup

Θ0

inf(
Θ

ε,||·||w
0

)c
E[(E[θ0(Z)− θ(Z)|X])2f2

X(X)] ≥ ε2 (82)

Therefore, (82) implies condition (v) holds for C2 = 1 and κ2 = 2. Hence, conditions (i)-(v) of Theorem .1 are

verified, which implies dH(Θ̂0,Θ0, || · ||w) = Op(max[bn/an, c2n]
1

max[κ2,1] ) = Op(n−
1
8−

δ0
4 ). We can now exploit the

local behavior of the objective function to improve on this rate by using arguments similar to those in the proof

of Theorem .1. I start by showing h(Θ0, Θ̂0) = op(n−
1
4−

δ0
2 ). Let Θpn denote the projection of Θ0 onto Θn under

|| · ||∞ and set δ0n = n−
1
4−

δ0
2 . With these definitions we can derive (83), where the last inequality follows from

|| · ||w . || · ||∞ and Assumption 3(vii).

h(Θ0, Θ̂0) = sup
Θ0

inf
Θ̂0

||θ0 − θ̂0||w ≤ sup
Θ0

inf
Θ̂0,Θpn

||θ0 − θpn
||w + ||θpn

− θ̂0||w

≤ sup
Θ0

inf
Θpn

||θ0 − θpn ||w + sup
Θpn

inf
Θ̂0

||θpn − θ̂0||w = sup
Θpn

inf
Θ̂0

||θpn − θ̂0||w + o(δ0n) (83)

Derivation (83) implies that the first inequality in (84) holds for n large enough, while the second inequality simply

follows from Θpn ⊆ Θ̂0 implying supΘpn
infΘ̂0

||θpn − θ̂0||w = 0.

P
(
h(Θ0, Θ̂0) < δ0n

)
≥ P

(
sup
Θpn

inf
Θ̂0

||θpn − θ̂0||w < δ0n/2

)
≥ P

(
Θpn ⊆ Θ̂0

)
(84)

By definition of Θ̂0, the event Θpn ⊆ Θ̂0 is equivalent to Qn(θ) ≤ bn/an for all θ ∈ Θpn . Note, however, that

supΘpn
Qn(θ) ≤ sup

Θ
δ0n,||·||w
0n

|Qn(θ) − Q(θ)| + sup
Θ

δ0n,||·||∞
0

Q(θ) = op(n−
1
2−

δ0
2 ) + O(δ2

0n) by Corollary .1 and (81).

Therefore, since an = n
1
2+

δ0
2 , it follows that an supΘpn

= Op(1). Together with (84) and bn → ∞, this gives us the

conclusion in (85)

P
(
h(Θ0, Θ̂0) < δ0n

)
≥ P

(
an sup

Θpn

Qn(θ) ≤ bn

)
→ 1 (85)

which shows h(Θ0, Θ̂0) = op(n−
1
4−

δ0
2 ). Let ε1n = n−

1
8−

δ0
5 and δ1n = n−( 1

8+ 1
16 )−

δ0
4 . The first equality in (86)

is implied by dH(Θ̂0, Θ0, || · ||w) = Op(n−
1
8−

δ0
4 ) and h(Θ0, Θ̂0) = op(n−

1
4−

δ0
2 ). By (82), the second event in (86)

implies there exists a θ ∈ Θε1n,||·||w
0n with Qn(θ) ≤ bn/an and Q(θ) ≥ δ2

1n. Since bn/an = (Cb/Ca)n−
1
2−

δ0
2 log n and

δ2
1n = n−( 1

4+ 1
8 )−

δ0
2 we have that for n large enough bn/an ≤ δ2

1n/2, which establishes the second inequality in (86).

By Corollary .1, and since ε1n = o(n−
1
8 ), it follows that sup

Θ
ε1n,||·||w
0n

|Qn(θ)−Q(θ)| = op(n−( 1
4+ 1

8 )−
δ0
2 ), which implies

the final result in (86).

P
(
dH(Θ̂0, Θ0, || · ||w) > δ1n

)
= P

(
h(Θ̂0,Θ0) > δ1n; Θ̂0 ⊆ Θε1n,||·||w

0n

)
+ o(1)

≤ P


 sup

Θ
ε1n,||·||w
0n

|Qn(θ)−Q(θ)| > δ2
1n/2


 + o(1) → 0 (86)

Hence, (86) establishes that dH(Θ̂0, Θ0, || · ||w) = op(n−( 1
8+ 1

16 )−
δ0
4 ). Now we can improve on this rate of convergence

by letting ε2n = n−( 1
8+ 1

16 )−
δ0
4 and δ2n = n−( 1

8+ 1
16+ 1

32 )−
δ0
4 and repeating the same arguments as in (86) to conclude

that dH(Θ̂0, Θ0, || · ||w) = op(n−( 1
8+ 1

16+ 1
32 )−

δ0
4 ). Repeating this argument a large but finite number of times, we can

eventually establish dH(Θ̂0,Θ0, || · ||w) = op(n−
1
4 ), which concludes the proof of the Theorem. ¥

Proof of Theorem 3.5: I begin by establishing ||θ̃ − θ0||w = op(n−
1
4 ). Since Θ0 is an equivalence class under

|| · ||w and θ̃ ∈ Θ̂0 + λnEn, it is sufficient to show that dH(Θ̂0 + λnEn,Θ0, || · ||w) = op(n−
1
4 ). In (87) I first show
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h(Θ0, Θ̂0 + λnEn) = op(n−
1
4 ). The second inequality in (87) follows from Θ̂0 ⊆ Θ̂0 + λnEn, while the final result in

(87) follows from Theorem 3.4, which implies dH(Θ0, Θ̂0, || · ||w) = op(n−
1
4 ).

h(Θ0, Θ̂0 + λnEn) = sup
Θ0

inf
Θ̂0+λnEn

||θ0 − θ̃||w ≤ sup
Θ0

inf
Θ̂0

||θ0 − θ̃||w = op(n−
1
4 ) (87)

In order to establish h(Θ̂0 + λnEn, Θ0) = op(n−
1
4 ), in (88) use the fact that if θ̃ ∈ Θ̂0 + λnEn, then it can be written

in the form θ̃ = θ̄ + λnÊ[θn(Z)|x] for some θ̄ ∈ Θ̂0 and θn ∈ Θn to derive the first inequality. The final result in (88)

follows from Theorem 3.4, which implies dH(Θ0, Θ̂0, || · ||w) = op(n−
1
4 ).

h(Θ̂0 + λnEn,Θ0) = sup
Θ̂0+λnEn

inf
Θ0
||θ0 − θ||w ≤ sup

Θ̂0

inf
Θ0
||θ0 − θ̄||w + λn sup

Θn

||Ê[θn(Z)|x]||w

= op(n−
1
4 ) + λn sup

Θn

||Ê[θn(Z)|x]||w (88)

In order to control the term supΘn
||Ê[θn(Z)|X]||w in (88), first note that E[Ê[θn(Z)|X]|x] = Ê[θn(Z)|x] and use

fX(x) bounded to obtain the first equality in (89). The second inequality in (89) follows from Θn ⊆ Θ and the

triangle inequality. Theorem 1 in Newey (1997) implies that under Assumptions 1, 2(i)-(ii), 3(v) and 4(i), pointwise

in θ ∈ Θ, ||Ê[θ|X] − E[θ|X]||L2 = Op(k
1
2
n /n

1
2 + k

− γ
dx

n ). Theorem 1 in Newey (1997), however, actually implies the

result holds uniformly in Θ under our additional assumptions since the approximation error in Assumption 2(ii) is

uniform in Θ and θ ∈ Θ are uniformly bounded. Together with θ ∈ Θ being uniformly bounded, this implies the last

result in (89).

sup
Θn

||Ê[θn(Z)|X]||w . sup
Θn

||Ê[θn(Z)|X]||L2

≤ sup
Θ
||Ê[θn(Z)|X]− E[θn(Z)|X]||L2 + sup

Θ
||E[θn(Z)|X]||L2 = Op(k

1
2
n /n

1
2 + k

− γ
dx

n ) + O(1) (89)

Since k
1
2
n /n

1
2 + k

− γ
dx

n → 0 under Assumptions 4(i) (89) implies that λn supΘn
||Ê[θn|X]||w = Op(λn) = op(n−

1
4 )

due to Assumption 7(i). Together with (88) and (87) this implies dH(Θ̂0 + λnEn, Θ0, || · ||w) = op(n−
1
4 ), and hence

||θ̃ − θ0||w = op(n−
1
4 ), which establishes the first claim of the Theorem.

I will show that ||θ̃−θ0||∞ = op(1) by verifying the Assumptions of Theorem 3.3. To do so, we will first need to imbed

{Θ̂0 + λnEn} within a compact parameter space Θ̃. Let C1
B(X ) be the set of continuously differentiable functions on

X satisfying supx |Dαg(x)| ≤ B for |α| ≤ 1. Define Θ̃ = Θ+C1
B(X ). Newey & Powell (2003) show that Θ is compact

under || · ||∞. In addition, since X is convex and compact by Assumption 1, Theorem 1.34 in Adams & Fournier

(2003) implies that C1(X ) is compactly imbedded in C0(X ). Hence, as C1
B(X ) is a closed bounded subset of C1(X ),

it follows that C1
B(X ) is compact under || · ||∞ as well. We conclude that Θ̃ is compact under || · ||∞, and hence verify

the compactness requirement on Θ̃ in Assumption 1 of Theorem 3.3. Recall M(θ) = E[(v∗(X)− θ(Z)fX(X))2]. In

(90) I show M(θ) is strictly convex on Θ0. The first equality is derived by expanding the square. If v∗(x)/fX(x) = c

is constant, then the minimizer is clearly unique for θ0(z) = c. If on the other hand v∗(x)/fX(x) is not constant, then

for θ1(x) ∈ Θ0 and (a, b) 6= (0, 1) we have a+bθ1(x) /∈ Θ0, because E[a+bθ1(Z)|X] = a+bv∗(x)/fX(x) 6= v∗(x)/fX(x)

by X continuously distributed. Thus, if θ1, θ2 ∈ Θ0, then θ1 6= a + bθ2, which implies the Cauchy Schwarz inequality

holds strictly, giving the inequality in (90).

M(λθ1 + (1− λ)θ2) = λ2M(θ1) + (1− λ)2M(θ2) + 2λ(1− λ)E[(v∗(X)− θ1(Z)fX(X))(v∗(X)− θ2(Z)fX(X))]

< λ2M(θ1) + (1− λ)2M(θ2) + 2λ(1− λ)M
1
2 (θ1)M

1
2 (θ2) ≤ min{M(θ1),M(θ2)} (90)

37



Since M(θ) is strictly a convex continuous functional on Θ0, and Θ0 is a closed convex subset of compact set, it follows

that M(θ) attains a unique minimum on Θ0, which concludes verifying Assumption (i) of Theorem 3.3. In order to

verify Assumption (ii), we need to establish {Θ̂0 + λnEn} ⊂ Θ̃ with probability approaching 1. Since Θ̂0 ⊆ Θn ⊆ Θ,

the result will follow if λnEn ⊆ C1
B(X ) with arbitrarily large probability. In (91), the first equality follows by the

definition of Ê[θn(Z)|x] and the Cauchy-Schwarz inequality. The second result follows from the definition of ξjn.

Note that the largest eigenvalue of P (P ′P )−2P ′ is equal to λ̃−1
n , for λ̃n smallest eigenvalue of P ′P . Therefore, since

θn ∈ Θn are uniformly bounded we derive the final result in (91).

sup
Θn

sup
|α|=j,X

λn|DαÊ[θn(Z)|x]| ≤ sup
Θn

sup
|α|=j,X

λn||Dαpk
′
n(x)||||(P ′P )−1

n∑

i=1

pkn(xi)θn(zi)||

≤ sup
Θn

λnξjn

[
n∑

i=1

pk
′
n(xi)θn(zi)(P ′P )−2

n∑

i=1

pkn(xi)θn(zi)

] 1
2

= Op(λnξjnλ̃−1
n ) (91)

In the proof of Theorem 1 in Newey (1997), it is shown that λ̃−1
n = Op(1), and hence since under Assumption 7(ii)

λnξjn → 0 for j ∈ {0, 1}, (91) implies that supΘn
sup|α|≤1,X λn|DαÊ[θn|X]| = op(1). It follows that with probability

tending to one λnEn ⊆ C1
B(X ) and hence {Θ̂0 + λnEn} are subsets of Θ̃. To complete verifying Assumption (ii) of

Theorem 3.3 we still need to establish dH(Θ̂0 +λnEn, Θ0, || · ||∞)
p→ 0. In (92) I begin by examining h(Θ0, Θ̂0 +λnEn)

and using Θ̂0 ⊆ Θ̂0 + λnEn to obtain the first inequality. The final result in (92) follows from Theorem 3.4 which

shows dH(Θ̂0, Θ0, || · ||∞)
p→ 0.

h(Θ0, Θ̂0 + λnEn) = sup
Θ0

inf
Θ̂0+λnEn

||θ0 − θ̃||∞ ≤ sup
Θ0

inf
Θ̂0

||θ0 − θ̂||∞ = op(1) (92)

In (93), I examine h(Θ̂0 + λnEn,Θ0). To establish the first equality in (93) we use the triangle inequality and the

fact that if θ̃ ∈ Θ̂0 + λnEn, then it can be written in the form θ̃ = θ̄ + λnÊ[θn(Z)|x] for some θ̄ ∈ Θ̂0 and θn ∈ Θn.

Since dH(Θ̂0,Θ0, || · ||∞) = op(1) by Theorem 3.4, it follows that h(Θ̂0,Θ0) = op(1). In addition, (91), λ̃−1
n = Op(1)

by Theorem 1 in Newey (1997) and ξ0nλn → 0 by Assumption 7(ii) implies supΘn
λn||Ê[θn(Z)|x]||∞ = op(1), which

establishes the final result in (93).

h(Θ̂0 + λnEn,Θ0) = sup
Θ̂0+λnEn

inf
Θ0
||θ0 − θ̃||∞ ≤ sup

Θ̂0

inf
Θ0
||θ̂ − θ0||∞ + sup

Θn

λn||Ê[θn(Z)|x]||∞ = op(1) (93)

Thus, (92) and (93) imply dH(Θ̂0 + λnEn, Θ0, || · ||∞)
p→ 0, verifying Assumption (ii) in Theorem 3.3. Let Mn(θ) =

n−1
∑

i(v
∗(xi)− θ(zi, xi)f̂X(xi)2. The continuity of M(θ) and Mn(θ) on Θ̃ under || · ||∞ is immediate, which verifies

Assumption (iii). To verify Assumption (iv) in Theorem 3.3, let F̃n = {v∗(x) − θ(z, x)f̂X(x) : θ(z, x) ∈ Θ̃}. As

shown in (62), ||f̂X − fX ||∞ = op(1) and therefore fX(x) bounded implies for M large enough P (||f̂X ||∞ > M) → 0.

Therefore, with probability approaching one, we have N[ ](ε, F̃ , || · ||∞) ≤ N[ ](ε/M, Θ̃, || · ||∞) ≤ N[ ](ε/2,Θ, || · ||∞)×
N[ ](ε/2, C1

B(X ), || · ||∞) < ∞ by Theorem 2.7.1 in van der Vaart & Wellner (2000). Let F̃2 = {f2(z, x) : f(z, x) ∈
F̃}. Since with probability tending to one f(z, x) ∈ F̃ are uniformly bounded, it follows that for some C > 0,

N[ ](ε, F̃2, || · ||∞) ≤ N[ ](ε/C, F̃ , || · ||∞) < ∞. Hence, by Theorem 2.4.1 in van der Vaart & Wellner (2000), the class

F̃2 is Glivenko-Cantelli, establishing (94).

sup
θ∈Θ̃

|Mn(θ)−M(θ)| = sup
f∈F̃2

∣∣∣∣∣
1
n

n∑

i=1

f(xi, zi)− E[fX,Z)]

∣∣∣∣∣
p→ 0 (94)

Result (94)verifying Assumption (iv) in Theorem 3.3. Therefore, Theorem 3.3 implies ||θ̃ − θ0||∞ p→ 0, concluding

the proof of the second claim of the Theorem. ¥
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Lemma .3. Let ṽn = arg minΘn
||ṽ − θn||∞. Under Assumptions 1, 2(i)-(ii) and 3-5, if θ̂ ∈ Θn and ||θ̂ − θ0||w =

op(n−
1
4 ), then n−1

∑
i E[ṽ(Z)fX(X)|xi]m̂(xi, θ̂) = n−1

∑
i Ê[ṽn(Z)|xi]f̂X(xi)(v∗(xi)− θ̂(zi)f̂X(xi)) + op(n−

1
2 )

Proof of Lemma .3: To begin the proof, note that manipulations identical to those in deriving (61) imply the first

equality in (95). The second result in (95) follows for ε(xi, zi) = (v∗(xi)− θ̂(zi)f̂X(xi))−E[v∗(X)− θ̂(Z)f̂X(X)|xi].

1
n

n∑

i=1

E[ṽ(Z)fX(X)|xi]m̂(xi, θ̂) =
1
n

n∑

i=1

Ê[E[ṽn(Z)|X]fX(X)|xi](v∗(xi)− θ̂(zi)f̂X(xi))

=
1
n

n∑

i=1

Ê[E[ṽ(Z)|X]fX(X)|xi]E[v∗(X)− θ̂(Z)f̂X(X)|xi] +
1
n

n∑

i=1

Ê[E[ṽ(Z)|X]fX(X)|xi]ε(xi, zi) (95)

Let g(x) = E[ṽ(Z)fX(X)|x]. In (96) we examine the term n−1
∑

i Ê[g(X)|xi]E[v∗(X) − θ̂(Z)f̂X(X)|xi]. The first

result in (96) follows by the Cauchy-Schwarz inequality and recalling that m(xi, θ̂) = E[v∗(X)− θ̂(Z)fX(X)|xi]. By

Assumption 3(v), we can set v∗(x) = 0 in (49) to obtain n−1
∑

i(Ê[g(X)|xi]− g(xi))2 = op(n−
1
2 ). In addition, since

||θ̂ − θ0||w = op(n−
1
4 ), part c) of Lemma .1 implies n−1

∑
i m2(xi, θ̂) = op(n−

1
2 ). Furthermore, since θ̂ ∈ Θ, it is

uniformly bounded and as shown in deriving (50), n−1
∑

i(E[θ̂(Z)|xi])2(f̂X(xi) − fX(xi))2 = op(n−
1
2 ). Combining

these results we obtain the last equality in (96).

∣∣∣∣∣
1
n

n∑

i=1

(
Ê[g(X)|xi]− g(xi)

)
E[v∗(X)− θ̂(Z)f̂X(X)|xi]

∣∣∣∣∣ ≤
[

1
n

n∑

i=1

(
Ê[g(X)|xi]− g(xi)

)2
] 1

2
[

1
n

n∑

i=1

m2(xi, θ̂)

] 1
2

+

[
1
n

n∑

i=1

(
Ê[g(X)|xi]− g(xi)

)2
] 1

2
[

1
n

n∑

i=1

(
E[θ̂(Z)|xi]

)2

(f̂X(xi)− fX(xi))2
] 1

2

= op(n−
1
2 ) (96)

In (61) I show that n−1
∑

i g(xi)E[v∗(X)− θ̂(Z)f̂X(X)|xi] = n−1
∑

i Ê[ṽn(Z)|xi]f̂X(xi)E[v∗(X)− θ̂(Z)f̂X(X)|xi] +

op(n−
1
2 ). The first result in (97) follows by the Cauchy-Schwarz inequality and the same arguments used in (96). The

same arguments as in (49) but with v∗(x) = 0 and fX(x) = 1 and Assumption 3(v) imply supΘn
n−1

∑
i(Ê[θn(Z)|xi]−

E[θn(Z)|xi])2 = op(n−
1
2 ). In addition, as shown in (50), n−1

∑
i(f̂X(xi)− fX(xi))2 = op(n−

1
2 ). Therefore, it follows

that n−1
∑

i(g(xi)− Ê[ṽn(Z)|xi]f̂X(xi))2 = op(n−
1
2 ), which implies the final result in (97).

∣∣∣∣∣
1
n

n∑

i=1

(
Ê[ṽn(Z)|xi]f̂X(xi)− E[ṽ(Z)|xi]fX(xi)

)
E[v∗(X)− θ̂(Z)f̂X(X)|xi]

∣∣∣∣∣

≤
[

1
n

n∑

i=1

(
Ê[ṽn(Z)|xi]f̂X(xi)− E[ṽ(Z)|xi]fX(xi)

)2
] 1

2

× op(n−
1
4 ) = op(n−

1
2 ) (97)

The arguments in (96) and (97) imply that n−1
∑

i(Ê[E[ṽ(Z)|X]fX(X)|xi]− Ê[ṽn(Z)|xi]f̂X(xi))2 = op(n−
1
2 ). Since

in addition E[ε(xi, zi)|xi] = 0, Markov’s inequality implies (98).

1
n

n∑

i=1

Ê[E[ṽ(Z)|X]fX(X)|xi]ε(xi, zi) =
1
n

n∑

i=1

Ê[ṽn(Z)|xi]f̂X(xi)ε(xi, zi) + op(n−
1
2 ) (98)

Combining (95), (96), (97) and (98) establishes the claim of the Lemma. ¥.

Proof of Theorem 3.6: In order to establish the asymptotic normality of n−
1
2 (

∑
i yiθ̃(zi, xi) − 〈v∗,m0〉), we use

that since θ0 ∈ Θ0 we have E[θ0(Z)|x] = v∗(x)/fX(x) to obtain (99).

n−
1
2

n∑

i=1

yiθ̃(zi, xi)− 〈v∗,m0〉 = n−
1
2

n∑

i=1

yiθ0(zi)− E[Y θ0(Z)] + n
1
2 E[Y (θ̃(X, Z)− θ0(Z))]

+ n−
1
2

n∑

i=1

yi(θ̃(zi, xi)− θ0(zi))− E[Y (θ̃(Z, X)− θ0(Z))] (99)
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I first show the third term in (99) converges in probability to zero. Notice that if θ̃ ∈ Θ̂0 + λnEn, then it can be

written as θ̃ = θ̄ + λnÊ[θn(Z)|x] for some θ̄ ∈ Θ̂0 and θn ∈ Θn. Define the class of functions F = {yθ(z) : θ ∈ Θ}.
Since E[Y 2(θ1(Z) − θ2(Z))2] ≤ E[Y 2]||θ1 − θ2||2∞, it follows that N[ ](ε,F , || · ||L2) ≤ N[ ](ε/E[Y 2], Θ, || · ||∞) ≤
N[ ](ε/E[Y 2],Λω

C(Z), || · ||∞) . eε−
dz
ω , by Theorem 2.7.1 in van der Vaart & Wellner (2000). Therefore, Theorem 2.5.6

in van der Vaart & Wellner (2000) implies F is Donsker. Furthermore, Theorem 3.5 establishes ||θ̃ − θ0||∞ = op(1),

while by (91) λn supΘn
||Ê[θn(Z)|x]||∞ = op(1) and hence we have that ||θ̄ − θ0||∞ = op(1). Together with F being

Donsker, this implies the second result in (100).

n−
1
2

n∑

i=1

yi(θ̃(zi, xi)− θ0(zn))− E[Y (θ̃(Z, X)− θ0(Z))] = n−
1
2

n∑

i=1

yi(θ̄(zi)− θ0(zi))− E[Y (θ̄(Z)− θ0(Z))]

+ λnn−
1
2

n∑

i=1

Ê[θn(Z)|xn]− E[Ê[θn(Z)|X]] = λnn−
1
2

n∑

i=1

Ê[θn(Z)|xn]− E[Ê[θn(Z)|X]] + op(1) (100)

Furthermore, by (91) we also have that supΘn
λn||Ê[θn(Z)|x]||∞ = Op(λnξ0nλ̃−1

n ), for λ̃n the smallest eigenvalue

of P ′P . Hence, using (100) we derive the first result in (101). In Theorem 1 of Newey (1997) it is shown that

λ̃−1
n = Op(1), and therefore Assumption 7(iii) implies the final result in (101).

n−
1
2

n∑

i=1

yi(θ̃(zi, xi)− θ0(zi))− E[Y (θ̃(Z,X)− θ0(Z))] = Op(n
1
2 λnξ0nλ̃−1

n ) + op(1) = op(1) (101)

I now examine the second term in (99). Note that since θ̃ = θ̄ + λnÊ[θn(Z)|x] for some θ̄ ∈ Θ̂0 and θn ∈ Θn,

and in addition E[Y θ(Z)] = 〈θ, ṽ〉w for all θ ∈ V (but not necessarily for θ̃), we can obtain the first equality in

(102) by rearranging terms. In addition, n
1
2 λn|E[Ê[θn(Z)|X](Y − E[ṽ(Z)|X])]| ≤ n

1
2 λn supΘn

||Ê[θn|X]||∞E[|Y −
E[ṽ(Z)|X]|] = op(1) by the same arguments as in (101), which in turn implies the last result in (102).

n
1
2 E[Y (θ̃(X,Z)− θ0(Z))] = n

1
2 〈θ̃ − θ0, ṽ〉w + n

1
2 λnE[Ê[θn|X](Y − E[ṽ(Z)|X])] = n

1
2 〈θ̃ − θ0, ṽ〉w + op(1) (102)

Combining (102) with part b) of Lemma .2 we can derive the first equality in (103). In turn, parts c) and d) of

Lemma .2 implies the second equality in (103).

n
1
2 E[Y (θ̃(X,Z)− θ0(Z))] = n−

1
2

n∑

i=1

E[ṽ(Z)fX(X)|xi](m̂(xi, θ0)− m̂(xi, θ̃)) + op(1)

= −n−
1
2

n∑

i=1

E[ṽ(Z)fX(X)|xi]m̂(xi, θ̃)− n−
1
2

n∑

i=1

E[ṽ(Z)|xi]θ0(zi)f2
X(xi)− E[ṽ(Z)v∗(X)fX(X)] + op(1) (103)

To conclude, we need to show n−
1
2

∑
i E[ṽ(Z)fX(X)|xi]m̂(xi, θ̃) = op(1). In (104), we use the fact that θ̃ = θ̄ +λnθn

for some θ̄ ∈ Θ̂0 and θn ∈ Θn, and use Assumption 6(ii) to derive the first inequality with probability tending to one

for some εn = o(n−
1
2 ). Expanding the square and collecting terms gives the second equality in (104).

0 ≥ n−1
n∑

i=1

(v∗(xi)−(θ̄(zi)−λnÊ[θn(Z)|xi])f̂X(xi))2−n−1
n∑

i=1

(v∗(xi)−(θ̄(zi)−λnÊ[θn(Z)+un(Z)εn/λn|xi])f̂X(xi))2

= 2εnn−1
n∑

i=1

(v∗(xi)− θ̃(xi, zi)f̂X(xi))Ê[un(Z)|xi]f̂X(xi)− ε2nn−1
n∑

i=1

(Ê[un(Z)|xi]f̂X(xi))2 (104)

The arguments in (62) imply supx |Ê[un(Z)|x]f̂X(x)| = Op(1), so that ε2nn−1
∑

i(Ê[un(Z)|xi]f̂X(xi))2 = Op(ε2n).

Since (104) holds for u = ±ṽ and εn = o(n−
1
2 ), (104) implies n−1

∑
i(v

∗(xi) − θ̃(xi, zi)f̂X(xi))Ê[un(Z)|xi]f̂X(xi) =

op(n−
1
2 ). We now use this result to show n−

1
2

∑
i E[ṽ(Z)fX(X)|xi]m̂(xi, θ̃) = op(1). In (105), the first equal-

ity follows by θ̃(xi, zi) = θ̄(zi) + λnÊ[θn(Z)|xi] for some θ̄ ∈ Θ̂0 and θn ∈ Θn. As argued in (62), however,
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supx,Θn
|Ê[θ(Z)|x]f̂X(x)| = Op(1). In addition, since ||θ̃ − θ0||w = op(n−

1
4 ) by Theorem 3.5, it must be that

||θ̄ − θ0||w = op(n−
1
4 ). Hence, because θ̄ ∈ Θn Lemma .3 implies the second equality in (105). The final two results

in (105) then follow by λnn
1
2 → 0, supx,Θn

|Ê[θn(Z)|x]f̂X(x)| = Op(1) and |E[ṽ(Z)|x]fX(x)| being bounded.

1
n

n∑

i=1

(v∗(xi)− θ̃(xi, zi)f̂X(xi))Ê[ṽn(Z)|xi]f̂X(xi) =
1
n

n∑

i=1

(v∗(xi)− θ̄(zi)f̂X(xi))Ê[ṽn(Z)|xi]f̂X(xi)

− λn

n

n∑

i=1

Ê[ṽn(Z)|xi]f̂2
X(xi)Ê[θn(Z)|xi] =

1
n

∑

i

E[ṽ(Z)fX(X)|xi]m̂(xi, θ̄) + op(n−
1
2 ) + Op(λn)

=
1
n

∑

i

E[ṽ(Z)fX(X)|xi]m̂(xi, θ̃) +
λn

n

∑

i

E[ṽ(Z)fX(X)|xi]Ê[θn(Z)|xi]f̂X(xi) + op(n−
1
2 ) = op(n−

1
2 ) (105)

Combining (99), (101), (103) and (105) together with the Central Limit Theorem concludes the proof. ¥

Proof of Lemma 3.1: I begin by establishing that ||v̂ − ṽ||w = op(1). Let C(θ) = E[(E[θ(Z)|X])2f2
X(X)]/2 −

E[Y θ(Z)] and Cn(θ) = n−1
∑

i(Ê[θ(Z)|xi])2f̂2
X(xi)/2 − yiθ(zi). In (106) I show supΘn

∑
i |Cn(θ) − C(θ)| = op(1).

The first inequality in (106) follows by Θn ⊆ Θ. Let A1 = {f2
X(x)(E[θ(Z)|x])2 : θ ∈ Θ}. Since θ ∈ Θ and

fX(x) are uniformly bounded, supx |f2
X(x)(E[θ1(z)|x])2−f2

X(x)(E[θ2(z)|x])2| . ||θ1−θ2||∞. Therefore, N[ ](ε,A1, || ·
||∞) . N[ ](ε, Θ, || · ||∞) < ∞ for all ε > 0 by Theorem 2.7.1 in van der Vaart & Wellner (1996). Hence, the

class A1 is Glivenko Cantelli by Theorem 2.4.1 in van der Vaart & Wellner (1996) and therefore it follows that

supΘ |n−1
∑

i f2
X(xi)(E[θ(Z)|xi])2 − E[f2

X(X)(E[θ(Z)|X])2]| p→ 0. Similarly, let A2 = {yθ(z) : θ(z) ∈ Θ}. Because

E[|Y (θ1(Z) − θ2(Z)|] ≤ E[|Y |]||θ1 − θ2||∞, it follows that N[ ](ε,A2, || · ||L1) . N[ ](ε, Θ, || · ||∞) < ∞ for all ε > 0.

Hence, supΘ |n−1
∑

i yiθ(zi) − E[Y θ(Z)]| p→ 0. As discussed in (62), ||f̂X − fX ||∞ = op(1). Theorem 1 in Newey

(1997) implies that under Assumption 1, 2(i)-(ii), 3(v) and 4(i) pointwise in θ, ||Ê[θ|x]−E[θ|x]||∞ = op(1). Theorem

1 in Newey 1997 actually implies the result holds uniformly in Θ under our uniformity conditions in Assumption

2(ii). Combining these results implies the final result in (106).

sup
Θn

|Cn(θ)− C(θ)| ≤ sup
Θ

∣∣∣∣∣
1
2n

n∑

i=1

f̂2
X(xi)(Ê[θ(Z)|xi])2 − f2

X(xi)(E[θ(Z)|xi])2
∣∣∣∣∣

+ sup
Θ

∣∣∣∣∣
1
2n

n∑

i=1

f2
X(xi)(E[θ(Z)|xi])2 − 1

2
E[f2

X(X)(E[θ(Z)|X])2]

∣∣∣∣∣ + sup
Θ

∣∣∣∣∣
1
n

n∑

i=1

yiθ(zi)− E[Y θ(Z)]

∣∣∣∣∣
p→ 0 (106)

In (107) we conclude showing ||v̂ − ṽ||w = op(1). As argued in Section 3.6, the set of minimizers to C(θ) form an

equivalence class under || · ||w which includes ṽ. The first inequality in (107) follows for ṽ0n = arg infΘn ||ṽ − θn||∞
and ||ṽ0n − ṽ||∞ = o(1). By Newey & Powell (2003), Θ is compact under || · ||∞ and hence also under || · ||w. Since

C(θ) is continuous under || · ||w, it follows that minΘ∩||θ−ṽ||w>ε C(θ) − C(ṽ) > δ for some δ > 0. Using this δ we

obtain the second inequality in (107). In turn (106) gives us the third inequality in (107). The final result is implied

by ||ṽ0n − ṽ||∞ = o(1) and the continuity of C(θ) under || · ||∞.

P (||v̂ − ṽ||w > ε) ≤ P

(
inf

||θ−ṽ||w>ε
Cn(θ) ≤ Cn(ṽ0n)

)
≤ P

(
inf

||θ−ṽ||w>ε
Cn(θ) ≤ Cn(ṽ0n)

⋂
sup
Θn

|Cn(θ)− C(θ)| < δ

2

)

+ P

(
sup
Θn

|Cn(θ)− C(θ)| > δ

2

)
≤ P

(
inf

||θ−ṽ||w>ε
C(θ) ≤ C(ṽ0n) + δ

)
+ o(1) → 0 (107)

I now proceed to establish σ̂2 p→ σ2. In (108) the first equality follows by ||θ̃ − θ0||∞ = op(1) by Theorem 3.5,

||f̂X − fX ||∞ = op(1) and supΘ ||Ê[θ|x] − E[θ|x]||∞ = op(1) as discussed in the derivation of (106). Markov’s

inequality, ||ṽ − v̂||w = op(1) and θ0 and fX bounded in turn imply the second equality in (108). A law of large
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numbers gives us the last result in (108).

1
n

n∑

i=1

(yi − Ê[v̂(Z)|xi]f̂2
X(xi))θ̃(zi, xi) =

1
n

n∑

i=1

(yi − E[v̂(Z)|xi]f2
X(xi))θ0(zi) + op(1)

=
1
n

n∑

i=1

(yi − E[ṽ(Z)|xi]f2
X(xi))θ0(zi) + op(1)

p→ E
[
Y (−E[ṽ(Z)|X]f2

X(X))θ0(Z)
]

(108)

Identical arguments show n−1
∑

i

(
yi − Ê[v̂(Z)|xi]f̂2

X(xi)
)2

θ̃2(zi, xi)
p→ E

[
(Y − E[ṽ(Z)|X]f2

X(X))2θ2
0(Z)

]
. The

continuous mapping theorem completes the proof of the Lemma. ¥

APPENDIX D - Proof of Lemmas 2.1, 2.2 and 2.3

Proof of Lemma 2.1: In order to analyze the sign of 〈v∗i ,m0〉, we begin in (109) by examining the integral at

different intervals. The second equality in (109) follows by doing the change of variables u = x + π/i in the first

component of each summand and noting that sin i(u− π/i) = sin(iu− π) = − sin iu.

〈v∗,m0〉 =
∫ π

−π

sin(ix)m0(x)dx =
i∑

k=1

(∫ −π+
(2k−1)π

i

−π+
2(k−1)π

i

sin(ix)m0(x)dx +
∫ −π+ 2kπ

i

−π+
(2k−1)π

i

sin(ix)m0(x)dx

)

=
i∑

k=1

(∫ −π+ 2kπ
i

−π+
(2k−1)π

i

[m0(u)−m0(u− π/i)] sin(iu)du

)
(109)

By assumption, however, m0(x) is weakly increasing, and therefore m0(u)−m0(u−π/i) ≥ 0. In addition, sin(iu) > 0

on intervals of the form
(
−π + (2k−1)π

i ,−π + 2kπ
i

)
if i is odd and sin(iu) < 0 on these intervals if i is even. It therefore

follows that sign{〈v∗i ,m0〉} = (−1)i+1. ¥

Proof of Lemma 2.2: In order to see how concavity determines the sign of 〈v∗i ,m0〉, in (110) we integrate by parts

to obtain the first equality. The second equality follows from sin(iπ) = sin(−iπ) = 0 for all i.

〈v∗i ,m0〉 =
∫ π

−π

cos(ix)m0(x)dx =
sin(ix)

i
m0(x)

∣∣∣
π

−π
−

∫ π

−π

sin(ix)
i

∂m0(x)
∂x

dx = −
∫ π

−π

sin(ix)
i

∂m0(x)
∂x

dx (110)

Since m0(x) is concave, however, it follows that ∂m0(x)
∂x is weakly decreasing. Hence, by Lemma 2.1 we have that

sign
{
− ∫ π

−π
sin(ix)∂m0(x)

∂x dx
}

= (−1)i+1, which establishes the Lemma. ¥

Proof of Lemma 2.3: To establish the Lemma, simply use the assumed additive separability and Fubini’s Theorem

to attain the first equality in (111).

〈v∗ij ,m0〉 =
∫ π

−π

sin(ix1)m01(x1)dx1

∫ π

−π

sin(jx2)dx2 +
∫ π

−π

sin(jx2)m02(x2)dx2

∫ π

−π

sin(ix1)dx1 = 0 (111)

The final result in (111) follows from
∫ π

−π
sin(ix)dx = 0 for all i. ¥

APPENDIX E - TABLES

In this appendix we report results to help understand what the levels of the parameters γ and λn mean in

the Monte Carlos of Section 4. Recall that the first stage estimator θ̃(z, x) is of the form θ̃(z, x) = qk
′
1n(z)β̂1 +

λnÊ[qk
′
1n

(Z)|x]β̂2. To understand the magnitude of λn, we examine how much λnÊ[qk
′
1n(Z)|x]β̂2 contributes to the

variability of θ̃(z, x). For each replication and specification of (γ, λ), we calculated ||θ̃(z, x)||2n = 1
n

∑
i θ̃2(zi, xi) and
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Table 2: Mean
(
||λnÊ[qk

′
1n(Z)|x]β̂2||n

/
||θ̃(z, x)||n

)

λ = 0 λ = 0.001 λ = 0.01 λ = 0.1

γ = 0.01 0 0.0034 0.0106 0.0188

γ = 0.02 0 0.0034 0.0144 0.0248

γ = 0.03 0 0.0036 0.0186 0.0311

γ = 0.04 0 0.0042 0.0231 0.0372

γ = 0.05 0 0.0045 0.0283 0.0432

γ = 0.06 0 0.0061 0.0333 0.0490

γ = 0.07 0 0.0070 0.0389 0.0551

γ = 0.08 0 0.0089 0.0442 0.0609

γ = 0.09 0 0.0117 0.0495 0.0668

γ = 0.10 0 0.0148 0.0551 0.0728

||λnÊ[qk
′
1n(Z)|x]β̂2||2n = 1

n

∑
i λ2

n(Ê[qk
′
1n(Z)|xi]β̂2)2. Table 2 reports the mean of ||λnÊ[qk

′
1n(Z)|x]β̂2||n/||θ̃(z, x)||n

across replications. For all choices of λn, the endogenous component λnÊ[qk
′
1n(Z)|x]β̂2 is a small part of the total

variability of θ̃(z, x), with the ratio never exceeding 10%.

Let εn(γ) = γQn(θ̄)+(1−γ)Qn(θ̂) denote the rule used in the Monte Carlos of Section 4 to select the bandwidth

εn. To understand how γ translates into different values for εn(γ), we calculated the value of εn(γ)/Qn(θ̂) for each

replication and choice of γ. Table 3 reports the mean across replications of these series. The different values of γ span

a wide range of selections of εn(γ) from a modest increment of Qn(θ̂) by 18% for γ = 0.01 to a more considerable

increment of 180% for γ = 0.1.

Table 3: Mean
(
εn(γ)/Qn(θ̂)

)

γ = 0.01 γ = 0.02 γ = 0.03 γ = 0.04 γ = 0.05 γ = 0.06 γ = 0.07 γ = 0.08 γ = 0.09 γ = 0.1

εn(γ)/Qn(θ̂) 1.1796 1.3591 1.5387 1.7183 1.8979 2.0774 2.2570 2.4366 2.6162 2.7957
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