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TESTING A PARAMETRIC QUANTILE-REGRESSION MODEL
WITH AN ENDOGENOUS EXPLANATORY VARIABLE AGAINST A

NONPARAMETRIC ALTERNATIVE

1 Introduction

Let Y , X, and W be random variables, and let g be a function that is identified by the

relation

Y = g(X) + U ; P (U ≤ 0|W = w) = q(1.1)

for some q satisfying 0 < q < 1 and almost every w in the support of W . Equation (1.1) is a

quantile-regression model in which Y is the dependent variable, X is a possibly endogenous

explanatory variable, W is an instrument for X, and U ≡ Y −g(X) is an unobserved random

variable. This paper presents a test of the null hypothesis that g in (1.1) belongs to a finite-

dimensional parametric family against a nonparametric alternative hypothesis. Specifically,

let Θ be a compact subset of Rd for some finite integer d > 0. The null hypothesis, H0, is

that

g(x) = G(x, θ)(1.2)

for some θ ∈ Θ and almost every x in the support of X, where G is a known function. The

alternative hypothesis, H1, is that there is no θ such that (1.2) holds for almost every x.

Under mild conditions, the test presented here is consistent against any alternative model.

In large samples, its power is arbitrarily close to 1 uniformly over a class of alternative

models whose “distance” from H0 is O
(
n−1/2

)
, where n is the sample size.

Quantile regression models are increasingly important in applied econometrics. There

has been much recent interest in nonparametric instrumental-variables (IV) estimation of

quantile-regression models such as (1.1) and of models in which identification is achieved

through the conditional mean restriction E(U |W = w) = 0. Chesher (2003, 2005, 2007);

Chernozhukov and Hansen (2005); Chernozhukov, Imbens, and Newey (2007); and Horowitz

and Lee (2007) discuss nonparametric identification and estimation of several versions

of quantile-regression models with endogenous explanatory variables. Newey and Powell

(2003); Darolles, Florens, and Renault (2006); Hall and Horowitz (2005); and Blundell,

Chen, and Kristensen (2007) discuss nonparametric estimation of g under the conditional
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mean restriction E(U |W = w) = 0. Newey, Powell and Vella (1999) present a “control

function” approach to estimating g.

Methods for testing (1.2) against a nonparametric alternative under the conditional

mean restriction E(U |W = w) = 0 have been developed by Donald, Imbens, and Newey

(2003); Tripathi and Kitamura (2003); and Horowitz (2006). In addition, the test of a

conditional mean function developed by Bierens (1990) and Bierens and Ploberger (1997)

can be modified to provide a test of (1.2) under the restriction E(U |W = w) = 0 (Horowitz

2006). Horowitz and Spokoiny (2001, 2002) provide extensive references to other tests

for conditional mean and quantile functions. However, we are unaware of any existing

method for testing (1.2) against a nonparametric alternative under the quantile restriction

P (U ≤ 0|W = w) = q. This paper presents such a test.

An ability to test the hypothesis (1.2) for model (1.1) is important because results

obtained with a misspecified parametric model can be highly misleading, whereas nonpara-

metric IV estimation of g can be very imprecise. Methods for parametric estimation of

quantile-regression models with endogenous regressors are well known. Estimators of lin-

ear quantile regression models with endogenous right-hand side variables are described by

Amemiya (1982), Powell (1983), Chen and Portnoy (1996), Honoré and Hu (2004), Cher-

nozhukov and Hansen (2006), Ma and Koenker (2006), Sakata (2007), and Lee (2007),

among others. Chernozhukov and Hansen (2004) and Januszewski (2002) used such models

in economic applications. Nonlinear parametric models can be estimated by the gener-

alized method of moments (GMM). Parametric estimators typically have a n−1/2 rate of

convergence in probability but are subject to misspecification. Nonparametric estimation

essentially eliminates the possibility of misspecifying g but, owing to the ill-posed-inverse

problem of nonparametric IV estimation, nonparametric IV estimators can have very slow

rates of convergence. The rate of convergence of a nonparametric IV estimator of g is always

slower than O
(
n−1/2

)
and, depending on the details of the distribution of (Y, X,W ), may

be slower than O (n−ε) for any ε > 0 (Hall and Horowitz 2005; Horowitz and Lee 2007).

Consequently, parametric IV estimation is more attractive than nonparametric estimation

if there is justification for believing that the parametric model is not seriously misspecified.

This paper provides a way to test the specification of a parametric model.

The test developed here is not affected by the ill-posed inverse problem and, conse-

quently, is more “precise” than any nonparametric estimator of g. Specifically, the test

can detect a large class of nonparametric alternative models whose distance from the null-

2



hypothesis model is O
(
n−1/2

)
. It is not unusual in nonparametric estimation for rates of

testing to be faster than rates of estimation. Nonparametric estimation and testing of con-

ditional mean and median functions and nonparametric IV estimation and testing under

the conditional moment restriction E[U |W = w] = 0 are other settings in which the rate

of testing is faster than the rate of estimation. See Guerre and Lavergne (2002), Horowitz

and Spokoiny (2001, 2002), and Horowitz (2006).

The test developed here builds on the results of Horowitz (2006), who developed a

test of (1.2) against a nonparametric alternative under the conditional mean restriction

E(U |W = w) = 0. Although there are similarities between the test presented here and

that of Horowitz (2006), mean and quantile regressions are sufficiently different to require

separate treatments. Nonparametric quantile IV produces an estimation problem that is

nonlinear and non-smooth, whereas IV estimation under a conditional mean restriction has

neither of these complications. Consequently, the methods that are needed to establish

the properties of a test of (1.2) under a conditional quantile restriction are different from

those that work under a conditional mean restriction. Specifically, our test statistic is a

discontinuous function of an estimated parameter. See equation (2.3) in Section 2.1. The

discontinuity of the test statistic greatly complicates the derivation of the test statistic’s

asymptotic distribution. We use empirical process methods to deal with the discontinuity.

These methods are not needed for the test statistic of Horowitz (2006), which is a continuous

function of the estimated parameter and, therefore, much easier to analyze.

Section 2 describes the test statistic and its properties. Section 3 presents the results of

a Monte Carlo investigation of the finite-sample performance of the test. Section 4 presents

concluding comments. The proofs of theorems are in the mathematical appendix, which is

Section 5.

2 The Test Statistic and Its Asymptotic Properties

Assume for now that Y , X, and W are continuously distributed, scalar random variables

with joint probability density function fY XW . The extension to the case in which X and W

are vectors and some components of X may be exogenous is straightforward and is outlined

in Section 2.10. Assume, also, that the supports of X and W are contained in [0, 1]. This

assumption can always be satisfied by carrying out monotone transformations of X and W .

The data, {(Yi, Xi,Wi) : i = 1, . . . , n}, are a simple random sample of (Y, X, W ).
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2.1 The Test Statistic

Equation (1.1) implies that

P [Y − g(X) ≤ 0|W = w]− q = 0

for almost every w ∈ [0, 1]. Under H0, g(x) = G(x, θ) for almost every x ∈ [0, 1], some

unknown θ ∈ Θ, and a known function G. Therefore, H0 is equivalent to

P [Y −G(X, θ) ≤ 0|W = w]− q = 0.(2.1)

Let fW denote the probability density function of W . Define

FY XW (y, x, w) =
∫ y

−∞
fY XW (v, x, w)dv

and

S̃(w) =
∫ 1

0
{FY XW [G(x, θ), x, w]− qfW (w)} dx.

Then (2.1) is equivalent to

S̃(w) = 0(2.2)

for almost every w ∈ [0, 1]. H1 is equivalent to the statement that there is no θ ∈ Θ such

that (2.2) holds for almost every w ∈ [0, 1]. A test of H0 can be based on a sample analog

of
∫ 1

0
S̃(w)2dw,

but the resulting rate of testing is slower than n−1/2. A rate of n−1/2 can be achieved by

smoothing S̃. To this end, let l(z, w) denote the kernel of a nonsingular integral operator,

L, on L2[0, 1]. That is, the operator L is defined by

Lϕ(z) =
∫ 1

0
l(z, w)ϕ(w)dw.

Because L is nonsingular, H0 is equivalent to

S(z) ≡ (LS̃)(z)

=
∫ 1

0

∫ 1

0
{FY XW [G(x, θ), x, w]− qfW (w)} l(z, w)dxdw

= 0
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for almost every z ∈ [0, 1] and for some θ ∈ Θ. H1 is equivalent to the statement that there

is no θ ∈ Θ such that S(z) = 0 for almost every z ∈ [0, 1]. Define

τ ≡
∫ 1

0
S(z)2dz.

Then H0 is true if and only if τ = 0. The test statistic developed here is a sample analog

of τ .

To form the analog, let θ̂ be an estimator of θ that is consistent under H0. For reasons

that are explained in Section 2.8, it is convenient to permit l to depend on the distribution

of (Y, X,W ) so that l must be estimated from the data. Let l̂ be a consistent estimator of

l, which can be l itself if l does not depend on the distribution of (Y, X,W ). The sample

analog of S(z) is

Sn(z) = n−1/2
n∑

i=1

[
I

{
Yi ≤ G(Xi, θ̂)

}
− q

]
l̂(z, Wi),(2.3)

where I(·) is the indicator function. The test statistic is

τn =
∫ 1

0
S2

n(z)dz.(2.4)

H0 is rejected if τn is large. The asymptotic distribution of τn under H0 is given in Theorem

1 in Section 2.3. Section 2.4 presents a method for computing the critical value.

2.2 Regularity Conditions

This section states the assumptions that are used to obtain the asymptotic properties of τn

under the null and alternative hypotheses.

Assumption 1. (i) The support of (X,W ) is [0, 1]2. (ii) (Y, X,W ) has a probability density

function fY XW with respect to Lebesgue measure. (iii) fY XW is bounded and is differentiable

with respect to its first argument with a uniformly bounded derivative. (iv) {(Yi, Xi,Wi) :

i = 1, . . . , n} is a simple random sample of (Y, X, W ).

Assumption 2. There is a constant CG < ∞ such that supx∈[0,1] |g(x)| ≤ CG,

supθ∈Θ supx∈[0,1] |G(x, θ)| ≤ CG, and the first and second derivatives of G(x, θ) with respect

to θ are bounded by CG uniformly over x ∈ [0, 1] and θ ∈ Θ.
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Assumption 3. (i) As n →∞, θ̂ →p θ0 for some θ0 ∈ Θ, a compact subset of Rd. (ii) If

H0 is true, then g(x) ≡ G(x, θ0), θ0 ∈ int(Θ), and

n1/2(θ̂ − θ0) = n−1/2
n∑

i=1

γ(Yi, Xi,Wi, θ0) + op(1)

for some function γ taking values in Rd such that E[γ(Y,X, W, θ0)] = 0 and Var[γ(Y, X, W, θ0)]

is a finite, nonsingular matrix.

Assumption 4. (i) sup(z,w)∈[0,1]2 |l̂(z, w)− l(z, w)| = op(1). (ii) The operator L is nonsin-

gular. (iii) There is a constant Cl < ∞ such that

sup
(z,w)∈[0,1]2

|l(z, w)| ≤ Cl,

sup
w∈[0,1]

|l(z1, w)− l(z2, w)| ≤ Cl|z1 − z2|,

sup
z∈[0,1]

|l(z, w1)− l(z, w2)| ≤ Cl|w1 − w2|,

and with probability approaching 1 as n →∞,

sup
(z,w)∈[0,1]2

|l̂(z, w)| ≤ Cl,

sup
w∈[0,1]

|l̂(z1, w)− l̂(z2, w)| ≤ Cl|z1 − z2|,

sup
z∈[0,1]

|l̂(z, w1)− l̂(z, w2)| ≤ Cl|w1 − w2|.

Assumption 1 specifies properties of the distribution of the data. Assumption 2 places

mild boundedness and smoothness restrictions on g and G. Assumption 3 is satisfied, for

example, by the GMM estimator of θ0 that is defined in Section 2.4. Assumption 4 can be

satisfied by making suitable choices of l and l̂. The choices of l and l̂ are discussed further

in Sections 2.8-2.9.

2.3 The Asymptotic Distribution of the Test Statistic under the Null
Hypothesis

To obtain the asymptotic distribution of τn under H0, define Gθ(x, θ) = ∂G(x, θ)/∂θ,

Γ(z) =
∫ 1

0

∫ 1

0
fY XW [G(x, θ0), x, w]l(z, w)Gθ(x, θ0)dxdw,

Bn(z) = n−1/2
n∑

i=1

[{I[Yi ≤ g(Xi)]− q} l(z, Wi) + Γ(z)′γ(Yi, Xi,Wi, θ0)
]
,
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and

V (z1, z2) = E [Bn(z1)Bn(z2)] .

Define the operator Ω on L2[0, 1] by

(Ωψ)(z) =
∫ 1

0
V (z, ζ)ψ(ζ)dζ.(2.5)

Let {ωj : j = 1, 2, . . .} denote the eigenvalues of Ω ordered so that ω1 ≥ ω2 ≥ . . . ≥ 0, and

let {χ2
1j : j = 1, 2, . . .} denote independent random variables that are distributed as chi-

square with 1 degree of freedom. The following theorem gives the asymptotic distribution

of τn under H0.

Theorem 1. Let Assumptions 1-4 hold. If H0 is true, then

τn →d

∞∑

j=1

ωjχ
2
1j .

2.4 Obtaining the Critical Value

The statistic τn is not asymptotically pivotal, so its asymptotic distribution cannot be

tabulated. This section presents a method for obtaining an approximate asymptotic critical

value for the τn test using a pseudo-true model, as in Horowitz (2006). Let Q(A|B) denote

the q-th quantile of a random variable A conditional on B and define a model

Ỹ = G(X, θ0) + Ũ ,(2.6)

where Ỹ = Y − Q[Y − G(X, θ0)|W ], Ũ = Ỹ − G(X, θ0), and θ0 is the probability limit of

θ̂. Note that this model coincides with (1.1) if H0 is true, since Q[Y − G(X, θ0)|W ] = 0

under H0. Furthermore, even if H0 is false, Q[Ỹ − G(X, θ0)|W ] = 0, thereby implying

that H0 holds for the pseudo-true model (2.6) whether or not H0 holds for (1.1). The

approximate critical value for the τn test is obtained from the asymptotic distribution of τn

under sampling from model (2.6).

Let {ω̃j : j = 1, 2, . . .} denote the eigenvalues of the version of Ω (say, Ω̃) that is

obtained by replacing model (1.1) with model (2.6). As before, order the eigenvalues such

that ω̃1 ≥ ω̃2 ≥ . . . ≥ 0. Then under sampling from (2.6), τn is asymptotically distributed

as

τ̃ ≡
∞∑

j=1

ω̃jχ
2
1j .
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Given any ε > 0, there is an integer Kε < ∞ such that

0 < P




Kε∑

j=1

ω̃jχ
2
1j ≤ t


− P (τ̃ ≤ t) < ε

uniformly over t. Define

τ̃ε =
Kε∑

j=1

ω̃jχ
2
1j .

Let zεα denote the 1− α quantile of the distribution of τ̃ε. Then

0 < P (τ̃ > zεα)− α < ε.

Thus, using zεα to approximate the asymptotic α-level critical value of τn creates an ar-

bitrarily small error in the probability that a correct H0 is rejected. Similarly, use of the

approximation creates an arbitrarily small change in the power of the τn test when H0

is false. However, the eigenvalues ω̃j are unknown. Accordingly, the approximate α-level

critical value for the τn test is the consistent estimator of the 1−α quantile of the distribu-

tion of τ̃ε that is obtained by replacing the unknown eigenvalues with consistent estimates

ω̂j , (j = 1, . . . , Kε). That is, the approximate value of τn is the 1 − α quantile of the

distribution of

τ̂n =
Kε∑

j=1

ω̂jχ
2
1j .

We now describe how to obtain the estimated eigenvalues ω̃j . To do so, let W be a

d-vector of instruments for X that is derived from W (for example, powers of W ). Let Wi

be the value of W that corresponds to Wi. Assume that θ̂ satisfies

n−1/2
n∑

i=1

Wi

[
I

{
Yi ≤ G(Xi, θ̂)

}
− q

]
= op(1)(2.7)

as n →∞. This relationship is satisfied, for example, by a GMM estimator with instruments

{Wi : i = 1, . . . , n} and by the IV quantile-regression estimator of Chernozhukov and Hansen

(2006). Let fU |XW denote the density function of U in (1.1) conditional on (X, W ). Define

the d× d matrix

Φ = E
[
fU |X,W (0|X, W )WGθ(X, θ0)′

]
,
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and define

γ̃(Yi, Xi,Wi, θ0) = Φ−1Wi [I {Yi ≤ G(Xi, θ0)} − q] .(2.8)

It can be shown that γ(Yi, Xi,Wi, θ0) in Assumption 3 is γ(Yi, Xi,Wi, θ0) = −γ̃(Yi, Xi,Wi, θ0).

Then

V (z1, z2) = q(1− q)E
[{

l(z1,W )− Γ(z1)′Φ−1W}{
l(z2,W )− Γ(z2)′Φ−1W}]

.

To construct a consistent estimator of V , let K denote a kernel function with a bandwidth

δn. Let ˆ̃Yi = Yi − Q̂[Y −G(X, θ̂)|Wi], where Q̂[·|W ] denotes a nonparametric estimator of

Q[·|W ], e.g. a local linear quantile regression estimator. Define

Γ̂(z) = (nδn)−1
n∑

i=1

K

( ˆ̃Yi −G(Xi, θ̂)
δn

)
l̂(z,Wi)Gθ(Xi, θ̂)(2.9)

and

Φ̂ = (nδn)−1
n∑

i=1

K

( ˆ̃Yi −G(Xi, θ̂)
δn

)
WiGθ(Xi, θ̂)′.(2.10)

Under regularity conditions, it is straightforward to show that Γ̂(z) and Φ̂ are consistent

estimators of Γ(z) and Φ. Then V (z1, z2) can be estimated consistently by

V̂ (z1, z2) = q(1− q)n−1
n∑

i=1

[{
l̂(z1,Wi)− Γ̂(z1)′Φ̂−1Wi

}{
l̂(z2,Wi)− Γ̂(z2)′Φ̂−1Wi

}]
.

Let Ω̂ be the integral operator whose kernel is V̂ (z1, z2) and let ω̂j be the eigenvalues of Ω̂.

Also, let ẑεα denote the 1−α quantile of the distribution of τ̂n. Theorem 2 gives conditions

under which the ω̂j ’s are consistent for the ω̃j ’s and ẑεα is consistent for zεα.

Theorem 2. Let Assumptions 1-4 hold. Assume that K has support [−1, 1], is bounded,

Lipschitz continuous, continuously differentiable, and symmetrical about 0, and
∫ 1
−1 K(u)du =

1. Assume that Q[Y −G(X, θ)|W = w] is continuously differentiable with respect to w. In

addition, assume that δn → 0, log n/(nδn) → 0, and δ−1
n n−1/3(log n)1/2 → 0. Then as

n →∞, (i) sup1≤j≤Kε
|ω̂j − ω̃j | = op(1) and (ii) ẑεα →p zεα.

We now describe how to obtain an accurate numerical approximation to the ω̂j ’s. Let

L̂(z) denote the n×1 vector whose ith component is l̂(z, Wi), let F̂ denote the n×d matrix

whose ith row is
1
δn

K

( ˆ̃Yi −G(Xi, θ̂)
δn

)
Gθ(Xi, θ̂)′,
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and let W̃ denote n×d matrix whose ith row is W ′
i. In addition, let M̂ = In−n−1F̂ Φ̂−1W̃ ′,

where In is the n× n identity matrix. Then

V̂ (z1, z2) = q(1− q)n−1L̂(z1)′M̂M̂ ′L̂(z2).

To obtain a finite-dimensional approximation to the ω̂j ’s, let {ψj : j = 1, 2, . . .} be an

orthonormal basis for L2[0, 1]. Then

l̂(z, w) =
∞∑

j=1

∞∑

k=1

d̂jkψj(z)ψk(w),

where

d̂jk =
∫ 1

0

∫ 1

0
l̂(z, w)ψj(z)ψk(w)dzdw.(2.11)

Approximate l̂(z, w) by the finite sum

Π(z, w) =
J∑

j=1

J∑

k=1

d̂jkψj(z)ψk(w)

for some finite integer J ≥ Kε, which can be chosen large enough to make Π approximate l̂

with any desired accuracy. Let ψ(z) denote the J × 1 vector whose jth component is ψj(z)

and Ψ denote the J × n matrix whose (j, k)th component is ψj(Wk). Let D̂ be the J × J

matrix {d̂jk}. Then V̂ (z1, z2) is approximated by

ˆ̂
V (z1, z2) = q(1− q)n−1ψ(z1)′D̂ΨM̂M̂ ′Ψ′D̂′ψ(z2).

The eigenvalues of Ω̂ are approximated by those of the J×J matrix q(1−q)n−1D̂ΨM̂M̂ ′Ψ′D̂′.

2.5 Consistency of the Test against a Fixed Alternative Model

In this section, it is assumed that H0 is false; that is, there is no θ ∈ Θ such that g(x) =

G(x, θ) for almost every x ∈ [0, 1]. Let θ0 denote the probability limit of θ̂n. Define

T (z) =
∫ 1

0

∫ 1

0
{FY XW [G(x, θ0), x, w]− FY XW [g(x), x, w]} l(z, w) dx dw.

Let z̃α denote the 1− α quantile of the distribution of τn under sampling from the pseudo-

true model (2.6). Let ẑεα denote the 1−α quantile of the distribution of τ̂n. The following

theorem establishes consistency of the τn test against a fixed alternative hypothesis.

10



Theorem 3. Let Assumptions 1-4 hold. If H0 is false and
∫ 1
0 T 2(z)dz > 0, then

lim
n→∞Pr(τn > z̃α) = 1

and

lim
n→∞Pr(τn > ẑεα) = 1.

If g is identified, then
∫ 1
0 T 2(z)dz = 0 only if G(x, θ0) = g(x) for almost every x ∈

[0, 1] (Horowitz and Lee, 2007). Therefore, the τn test is consistent against any identified

alternative model that differs from G(x, θ0) on a set of x values whose Lebesgue measure

exceeds 0.

2.6 Asymptotic Distribution under Local Alternatives

This section obtains the asymptotic distribution of τn under the sequence of local alternative

hypotheses

Y = G(X, θ0) + n−1/2∆(X) + U, P (U ≤ 0|W = w) = q(2.12)

for almost every w ∈ [0, 1], where ∆ is a bounded function on [0, 1] and θ0 ∈ int(Θ).

To obtain the asymptotic distribution, assume that θ̂ satisfies (2.7). Let {(ωj , φj) : j =

1, 2, . . .} denote the eigenvalues and orthonormal eigenvectors of the version of the operator

Ω in (2.5) that is obtained by setting

γ(Yi, Xi,Wi, θ0) = −γ̃(Yi, Xi,Wi, θ0),

where γ̃ is defined in (2.8). Order ωj ’s so that ω1 ≥ ω2 ≥ . . . ≥ 0. In addition, define

µ(z) = Γ(z)′Φ−1E
[
fU |X,W (0|X, W )∆(X)W]−E

[
fU |X,W (0|X,W )∆(X)l(z, W )

]

and

µj =
∫ 1

0
µ(z)φj(z)dz.

Let {χ2
1j(µ

2
j/ωj) : j = 1, 2, . . .} denote independent random variables that are distributed

as noncentral chi-square with one degree of freedom and noncentrality parameters {µ2
j/ωj}.

The following theorem states the result.
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Theorem 4. Let Assumptions 1-4 hold. Assume that θ̂ satisfies (2.7). Under the sequence

of local alternative hypotheses (2.12),

τn →d

∞∑

j=1

ωjχ
2
1j(µ

2
j/ωj).

Let zα denote the 1 − α quantile of the distribution of
∑∞

j=1 ωjχ
2
1j(µ

2
j/ωj). Let ẑεα

denote the estimated approximate α-level critical value defined in Section 2.3. Then it

follows from Theorems 2 and 4 that for any ε > 0

limsupn→∞ |P (τn > ẑεα)− P (τn > zα)| ≤ ε.

It also follows from Theorem 4 that the τn test has power against local alternatives whose

distance from the null-hypothesis model is O(n−1/2). If µ(z) = 0 for all z ∈ [0, 1], then

there is a non-stochastic sequence {θn} such that

G(x, θn) = G(x, θ) + n−1/2∆(x) + o(n−1/2).

Therefore, the distance between the null and alternative hypotheses is o(n−1/2).

2.7 Uniform Consistency

This section shows that for any ε > 0, the τn test rejects H0 with probability exceeding

1−ε uniformly over a class of alternative models whose distance from the null hypothesis is

O(n−1/2). Uniform consistency is important because it provides some assurance that there

are not alternatives against which a test has low power even with large samples. If a test

is not uniformly consistent over a specified set, then that set contains alternatives against

which the test has low power.

Let θg denote the probability limit of θ̂ under the hypothesis (not necessarily true) that

g(x) = G(x, θ) for some θ ∈ Θ and a given function G. Define Qg(x) = G(x, θg)− g(x) and

Tg(z) =
∫ 1

0

∫ 1

0
{FY XW [G(x, θg), x, w]− FY XW [g(x), x, w]} l(z, w) dx dw.

Define the set of functions Cα
Cg

(X ) as follows. Let α denote the greatest integer strictly

smaller than α. For any vector k = (k1, . . . , kd) of d integers, let Dk denote the differential

operator

Dk =
∂k.

∂xk1
1 · · · ∂xkd

d

with k. =
d∑

i=1

ki.

12



In addition, let

‖g‖α = max
k.≤α

sup
x
|Dkg(x)|+ max

k.=α
sup
x,y

|Dkg(x)−Dkg(y)|
‖x− y‖α−α ,

where the suprema are taken over all x, y in the interior of X with x 6= y. Then Cα
Cg

(X )

is the set of all continuous functions g : X ⊂ Rd 7→ R with ‖g‖α ≤ Cg. This class of

smooth functions is used in Van der Vaart and Wellner (1996, p.154), Chen, Linton and

Van Keilegom (2003), and Ichimura and Lee (2006), among others.

Let Θ̃ be a compact subset of int(Θ). Let ‖·‖ denote the L2[0, 1] norm. For each

n = 1, 2, . . . and C > 0, define Fnc as a set of functions g such that (i) g ∈ Cα
Cg

([0, 1])

for some α > 1 and some constant Cg < ∞, (ii) θg ∈ Θ̃, (iii) n1/2(θ̂ − θg) = Op(1)

uniformly over g ∈ Fnc, (iv) ‖Tg‖ ≥ n−1/2C, and (v) supg∈Fnc
‖Qg‖

∥∥∥l̂ − l
∥∥∥ / ‖Tg‖ = op(1)

as n →∞. Condition (ii) ensures the existence of the critical value defined in Section 2.3.

The condition is not restrictive in applications because Θ and Θ̃ can usually be made large

enough to include any reasonable θg. Condition (iv) implies that Fnc includes alternative

models for which ‖Qq‖ = O(n−1/2). To understand condition (v), define the operator Tg by

(Tgψ)(z) =
∫ 1

0

∫ 1

0
fY XW [g(x), x, w]l(z, w)ψ(x)dxdw.

Then Tg = TgQg + O
(
‖Qg‖2

)
. Condition (v) rules out deviations Qg(x) from the null

hypothesis that depend on x only through sequences of eigenvectors of Tg whose eigenvalues

converge to 0 too rapidly. The practical significance of this condition is that the τn test has

relatively low power against alternatives that differ from H0 only through eigenvectors of

Tg with very small eigenvalues.

The following theorem states the result of this section.

Theorem 5. Let Assumptions 1, 2, and 4 hold. Assume that θ̂ satisfies (2.7). Then for

any δ > 0 and α such that 0 < α < 1, and sufficiently large but finite constant C,

lim
n→∞ inf

Fnc

Pr(τn > zα) ≥ 1− δ

and

lim
n→∞ inf

Fnc

Pr(τn > ẑεα) ≥ 1− 2δ.
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2.8 Weight Functions

This section considers the choice of the weight function l(z, w). We show that setting

l(z, w) = fY XW [g(z), z, w] has certain power advantages over a weight function that does

not depend on the distribution of (Y, X, W ). Section 2.9 presents a method for estimating

fY XW [g(z), z, w].

Let τng denote the test statistic with l(z, w) = fY XW [g(z), z, w] and τnl denote the

statistic with a weight function that is independent of the distribution of (Y, X,W ). We

show that the power of the τnl test can be low relative to that of the τng test. Specifically,

there are combinations of density functions fY XW and local alternative models such that

an α-level τnl test based on a fixed weight function has asymptotic local power that is

arbitrarily close to α, whereas the asymptotic local power of the α-level τng test is bounded

away from and above α. The opposite situation cannot occur under the assumptions of this

paper. That is, it is not possible for the asymptotic local power of the α-level τng test to

approach α while the power of the α-level τnl test remains bounded away from α.

The conclusion that the power of τnl can be low relative to that of τng is reached by

constructing an example in which the α-level test has asymptotic power that is bounded

away from α but the τnl test has asymptotic power that is arbitrarily close to α. To minimize

the complexity of the example, assume that θ0 is known a priori and does not have to be

estimated. Define

B̄ng(z) = n−1/2
n∑

i=1

[I {Yi ≤ g(Xi)} − q] fY XW [g(z), z,Wi],

B̄nl(z) = n−1/2
n∑

i=1

[I {Yi ≤ g(Xi)} − q] l(z, Wi),

R̄g(z1, z2) = E
[
B̄ng(z1)B̄ng(z2)

]
, and R̄l(z1, z2) = E

[
B̄nl(z1)B̄nl(z2)

]
. Also, define the

operators Ω̄g and Ω̄l on L2[0, 1] by

(Ω̄gψ)(z) =
∫ 1

0
R̄g(z, ξ)ψ(ξ)dξ

(Ω̄lψ)(z) =
∫ 1

0
R̄l(z, ξ)ψ(ξ)dξ.

Let {(ω̄jg, ψ̄jg) : j = 1, 2, . . .} and {(ω̄jl, ψ̄jl) : j = 1, 2, . . .} denote the eigenvalues and

eigenvectors of Ω̄g and Ω̄l, respectively, sorted in decreasing order. For ∆ defined as in
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(2.12), define

µ̄g(z) = −
∫ 1

0

∫ 1

0
fY XW (g(x), x, w)∆(x)fY XW (g(z), z, w)dxdw,

µ̄l(z) = −
∫ 1

0

∫ 1

0
fY XW (g(x), x, w)∆(x)l(z, w)dxdw,

µ̄jg =
∫ 1

0
µ̄g(z)ψ̄jgdz,

and

µ̄jl =
∫ 1

0
µ̄l(z)ψ̄jldz.

Then arguments identical to those used to prove Theorem 4 yields that under the sequence

of local alternative hypotheses (2.12) with a known θ0,

τng →d

∞∑

j=1

ω̄jgχ
2
1j(µ̄

2
jg/ω̄jg),

and

τnl →d

∞∑

j=1

ω̄jlχ
2
1j(µ̄

2
jl/ω̄jl)

as n →∞.

Therefore, to establish the first conclusion of this section, it suffices to show that for

any fixed function l, fY XW and ∆ can be chosen so that ‖µ̄g‖2 /
∑∞

j=1 ω̄jg is bounded away

from 0 and ‖µ̄l‖2 /
∑∞

j=1 ω̄jl is arbitrarily close to 0.

To this end, let φ1(x) = 1 and φj+1(x) = 2−1/2 cos(jπx) for j ≥ 1. Let m > 1 be a finite

integer. Define

λj =
{

1 if j = 1 or m
e−2j otherwise.

Let

fUXW (0, x, w) = 1 +
∞∑

j=1

λ
1/2
j+1φj+1(x)φj+1(w).

Then

R̄g(z1, z2) = q(1− q)EW [fUXW (0, z1,W )fUXW (0, z2,W )] ,

ω̄jg = λj and
∑∞

j=1 ω̄jg is non-zero and finite. Set ∆(x) = Dφm(x) for some finite D > 0.

Then ‖µ̄g‖2 = D2λ2
m = D2. It suffices to show that m can be chosen so that ‖µ̄l‖ is
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arbitrarily close to 0. To do this, note that l(z, w) has the Fourier representation

l(z, w) =
∞∑

j=1

∞∑

k=1

hjkφj(z)φk(w),

where {hjk : j, k = 1, 2, . . .} are constants. Moreover, ‖µ̄l‖2 = D2
∑∞

j=1 h2
jm. Since l

is bounded, m can be chosen so that
∑∞

j=1 h2
jm < ε/D2 for any ε > 0. With this m,

‖µ̄l‖2 < ε, which establishes the first conclusion.

We next show that the opposite situation cannot occur. That is, we show below that

there exists a universal constant C such that

‖µ̄l‖ ≤ C ‖µ̄g‖(2.13)

for any l, provided that
∫ 1

0

∫ 1

0
[l(x,w)]2dxdw < Cl

and ‖∆‖2 < C∆ for some constants Cl < ∞ and C∆ < ∞. To show (2.13), use the

Cauchy-Schwarz inequality to obtain

‖µ̄l‖2 ≤
[∫ 1

0

∫ 1

0
[l(x,w)]2dxdw

] ∫ 1

0

[∫ 1

0
fY XW (g(x), x, w)∆(x)dx

]2

dw

≤ Cl

∫ 1

0

[∫ 1

0
fY XW (g(x), x, w)∆(x)dx

]2

dw

= Cl

∫ 1

0

∫ 1

0

[∫ 1

0
fY XW (g(x), x, w)fY XW (g(z), z, w)dw

]
∆(x)dx∆(z)dz

= Cl

∫ 1

0
|µ̄g(z)|∆(z)dz

≤ Cl ‖µ̄g‖2 ‖∆‖2

≤ ClC∆ ‖µ̄g‖2 ,

which proves (2.13). Therefore, ‖µ̄g‖2 can approach 0 only if ‖µ̄l‖2 also approaches 0.

2.9 Estimating the Weight Function

We now explain how to estimate the weight function l(z, w) = fY XW [g(z), z, w]. Let ĝ

denote Horowitz’s and Lee’s (2007) nonparametric estimator of g in (1.1). Let f̂Y XW (y, x, w)

denote a kernel nonparametric estimator of fY XW (y, x, w). Then f̂Y XW [ĝ(z), z, w] is an
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obvious estimator of fY XW [g(z), z, w], but this estimator does not satisfy assumption 4 of

Section 2.2. We overcome this problem by using a kernel to smooth ĝ.

Let K be a symmetrical, continuously differentiable probability density function on

[−1, 1]. Let {hn : n = 1, 2, . . .} be a sequence of strictly positive constants such that

h−2
n ‖ĝ − g‖ = op(1). Define smoothed versions of g and ĝ by

g̃(z) = h−1
n

∫ 1

0
K

(
x− z

hn

)
g(x)dx

and

˜̂g(z) = h−1
n

∫ 1

0
K

(
x− z

hn

)
ĝ(x)dx.

Also, define

τnh =
∫ hn

1−hn

S2
nh(z)dz,

where Snh is the version of Sn that is obtained by setting l̂(z, w) = f̂Y XW (˜̂g(z), z, w) on the

right-hand side of (2.3). Then τnh can be used in place of τn to test H0. As with τn, H0 is

rejected if τnh is large.

We show in Section 5 that

(i) The conclusions of Theorems 1 and 3 hold for τnh.

(ii) The test based on τnh rejects a false H0 with probability greater than or equal to 1−δ

for any δ > 0 uniformly over a class of alternative models whose “distance” from H0

on [hn, 1− hn] is O(n−1/2).

(iii) Inequality (2.13) holds if τnh is used in place of τn and n is sufficiently large.

Since hn → 0 as n →∞, these results imply that τnh can be used in place of τn in large

samples.

2.10 Multivariate Extension

We now extend the τn test to the multivariate model

Y = g(X, Z) + U ; P (U ≤ 0|Z = z,W = w) = q(2.14)

for for some q satisfying 0 < q < 1 and almost every (z, w), where Y and U are scalar random

variables, X and W are random variables whose supports are contained in [0, 1]px and
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[0, 1]pw , respectively, (pw ≥ px ≥ 1), and Z is a random variable whose support is contained

in [0, 1]r (r ≥ 0). If r = 0, then Z is not included in (2.14). X and Z, respectively, are

endogenous and exogenous explanatory variables. W is an instrument for X. The inferential

problem is to test the null hypothesis, H0, that

g(x, z) = G(x, z, θ)(2.15)

for some unknown θ ∈ Θ, known function G, and almost every (x, z) ∈ [0, 1]px+r. The

alternative hypothesis, H1 is that there is no θ ∈ Θ such that (2.15) holds for almost every

(x, z) ∈ [0, 1]px+r. The data, {Yi, Xi, Zi,Wi : i = 1, . . . , n}, are a simple random sample of

(Y,X, Z, W ).

To define the multivariate extension of τn, let fY XZW and fZW , respectively, denote the

probability density function of (Y, X,Z, W ) and (Z,W ). Define

FY XZW (y, x, z, w) =
∫ y

−∞
fY XZW (v, x, z, w)dv.

Let lMV (z, w; ζ, η) be the kernel of a nonsingular operator LMV on L2[0, 1]pw+r. That is,

for any function ψ ∈ L2[0, 1]pw+r,

LMV (z, w) =
∫

[0,1]pw

∫

[0,1]r
lMV (z, w; ζ, η)dζdη.

Then H0 is equivalent to

τMV =
∫

[0,1]pw

∫

[0,1]r
SMV (z, w)2dzdw

where

SMV (z, w) =
∫

[0,1]pw

∫

[0,1]px

∫

[0,1]r
{FY XZW [G(x, ζ, θ), x, ζ, η]− qfZW (ζ, η)} lMV (z, w; ζ, η)dζdxdη.

Let Sn,MV be the following sample analog of SMV :

Sn,MV (z, w) = n−1/2
n∑

i=1

{
I

[
Yi ≤ G(Xi, Zi, θ̂)

]
− q

}
l̂MV (z, w;Zi,Wi),

where θ̂ is an estimator of θ that is consistent under H0 and l̂MV is a consistent estimator

of lMV . The test statistic is

τn,MV =
∫

[0,1]pw

∫

[0,1]r
Sn,MV (z, w)2dzdw
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To obtain the asymptotic distribution of τn,MV under H0, assume that θ̂ →p θ0 as

n →∞ and that

n1/2(θ̂ − θ0) = n−1/2
n∑

i=1

γMV (Yi, Xi, Zi,Wi, θ0) + op(1)

for some function γMV taking values in Rd such that EγMV (Y,X, Z, W, θ0) = 0 and

Var[γMV (Y,X, Z, W, θ0)] is a finite, non-singular matrix. Set Gθ = ∂G/∂θ and

ΓMV (z, w) =
∫

[0,1]pw

∫

[0,1]px

∫

[0,1]r
fY XZW [G(x, ζ, θ0), x, ζ, η]lMV (z, w; ζ, η)Gθ(x, ζ, θ0)dζdxdη.

Define

Bn,MV (z, w) = n−1/2
n∑

i=1

[
{I[Yi ≤ g(Xi, Zi)]− q} lMV (z, w; Zi,Wi)

+ ΓMV (z, w)′γMV (Yi, Xi, Zi,Wi, θ0)
]

and

VMV (z1, w1; z2, w2) = E [Bn,MV (z1, w1)Bn,MV (z2, w2)] .

Let ΩMV denote the operator that is defined by

(ΩMV ψ)(z, w) =
∫

[0,1]pw

∫

[0,1]r
VMV (z, w; ζ, η)ψ(ζ, η)dζdη.

Let {ωj,MV : j = 1, 2, . . .} denote the eigenvalues of ΩMV sorted in decreasing order.

Then arguments similar to those used to prove Theorem 1 show that under the regularity

conditions given in Section 5.2,

τn,MV →d

∞∑

j=1

ωj,MV χ2
1j .

One notable regularity condition in Section 5.2 is that the smoothness assumption on the

weight function becomes more stringent as (p+ r) increases (α > (p+ r)/2; see Assumption

8 in Section 5.2).

In addition, results analogous to Theorems 3-5 hold for the multivariate statistic. Specif-

ically, the τn,MV test:

1. Is consistent against all identified, fixed alternative models;
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2. Has power exceeding its level against local alternative models whose distance from

the null hypothesis model is O
(
n−1/2

)
;

3. Has asymptotic power exceeding its level uniformly over a class of alternatives whose

distance from H0 is O
(
n−1/2

)
.

An approximate critical value for τn,MV can be obtained by modifying the methods of

Section 2.4. As in Section 2.4, approximate the asymptotic distribution of τn,MV under H0

by the distribution of
Kε∑

j=1

ωj,MV χ2
1j

for some constant Kε < ∞. Let Wi be a d-vector of instruments (possibly powers of

components of Z and W ), and let θ̂ satisfy

n−1/2
n∑

i=1

Wi

[
I

{
Yi ≤ G(Xi, Zi, θ̂)

}
− q

]
= op(1).

Let ˆ̃Yi = Yi − Q̂[Y − G(X,Z, θ̂)|W ]. Let L̂MV (z, w) denote the n × 1 vector whose ith

component is l̂MV (z, w; Zi,Wi), let F̂MV denote the n× d matrix whose ith row is

1
δn

K

( ˆ̃Yi −G(Xi, Zi, θ̂)
δn

)
Gθ(Xi, Zi, θ̂)′,

and let W̃MV denote n× d matrix whose ith row is W ′
i. Define

Γ̂MV (z, w) = (nδn)−1
n∑

i=1

K

( ˆ̃Yi −G(Xi, Zi, θ̂)
δn

)
l̂MV (z, w;Zi,Wi)Gθ(Xi, Zi, θ̂)

and

Φ̂MV = (nδn)−1
n∑

i=1

K

( ˆ̃Yi −G(Xi, Zi, θ̂)
δn

)
WiGθ(Xi, Zi, θ̂)′.

Let M̂MV = In − n−1F̂MV Φ̂−1
MV W̃ ′

MV and

V̂MV (z1, w1; z2, w2) = q(1− q)n−1L̂MV (z1, w1)′M̂MV M̂ ′
MV L̂(z2, w2).

Let {ψj : j = 1, 2, . . .} be an orthonormal basis for L2[0, 1]pw+r. Approximate l̂MV (z, w; ζ, η)

by the finite sum

ΠMV (z, w; ζ, η) =
J∑

j=1

J∑

k=1

d̂jkψj(z, w)ψk(ζ, η)
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for some finite integer J ≥ Kε, where

d̂jk =
∫

[0,1]pw

∫

[0,1]r

∫

[0,1]pw

∫

[0,1]r
l̂MV (z1, w1; z2, w2)ψj(z1, w1)ψk(z2, w2)dz1dw1dz2dw2.

Let ψ(z, w) denote the J × 1 vector whose jth component is ψj(z, w), and let ΨMV denote

the J × n matrix whose (j, k)th component is ψj(Zk,Wk). Let D̂MV be the J × J matrix

{d̂jk}. Let {ω̂j,MV : j = 1, . . . , J} be the eigenvalues of the matrix

q(1− q)n−1D̂MV ΨMV M̂MV M̂ ′
MV Ψ′

MV D̂′
MV .

Then the estimated approximate 1 − α critical value of τn,MV is the 1 − α quantile of the

distribution of
Kε∑

j=1

ω̂j,MV χ2
1j .

3 Monte Carlo Experiments

This section reports the results of a Monte Carlo investigation of the finite-sample perfor-

mance of the τn test. In the experiments, q = 0.5. The experiments consist of testing the

null hypothesis, H0, that

g(x) = θ0 + θ1x(3.1)

against the alternative hypotheses

g(x) = θ0 + θ1x + θ2x
2(3.2)

and

g(x) = θ0 + θ1x + θ2x
2 + θ3x

3.(3.3)

In all experiments, θ0 = 0 and θ1 = 0.5. When (3.2) is the correct model, θ2 = −0.5.

When (3.3) is the correct model, θ2 = −1.5 and θ3 = 1. In the experiments, p = 1

and r = 0, so Z does not enter the model. Realizations of (X, W ) were generated by

X = Φ(ξ) and W = Φ(ζ), where Φ is the cumulative standard normal distribution function,

ζ ∼ N(0, 1), ξ = ρζ +
√

1− ρ2ε, ε ∼ N(0, 1), and ρ = 0.8. Realizations of Y were generated

from Y = g(x) + σUU , where U = ηε +
√

1− η2ν, ν ∼ N(0, 1), σU = 0.1, and η = 0.5. The

τn test is obtained with the weight function l(z, w) = fY XW [g(z), z, w] that is estimated
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using the method described in Section 2.9. Under H0, θ is estimated by the IV quantile-

regression estimator of Chernozhukov and Hansen (2006). In particular, θ is estimated with

constant weights and instruments (1,W ).

To provide a basis for judging whether the τn performs well, this section also reports

the results of an asymptotic t test of the hypothesis θ2 = 0. Specifically, θ2 is estimated by

the IV quantile-regression estimator of Chernozhukov and Hansen (2006) under the model

(3.2). Constant weights are used and instruments are (1,W,W 2). The t test is an example

of an ad hoc test that might be used in applied research. The experiments use sample

sizes of n = 200, 400 and nominal levels of α = 0.10, 0.05, 0.01. There are 500 Monte Carlo

replications in each experiment.

To implement the τn test, it is necessary to specify tuning parameters. In all procedures

involving the kernel function, K(u) = (15/16)(1 − u2)I(|u| ≤ 1) is used. To compute the

asymptotic critical value, the basis functions {ψj(x) =
√

2 sin(jπx) : j = 1, . . . , J} are used.

The generalized Fourier coefficients d̂jk in (2.11) were computed by numerical integration

(the composite trapezoid rule). The asymptotic critical value was estimated with J = 10

and Kε = 10. Note that J and Kε are relatively small, because only first a few eigenvalues

are important and also higher-order terms of d̂jk are difficult to estimate by numerical

integration for a large value of J . In applications, J and K can be chosen large enough that

further increases in their values do not affect the value of the test statistic.

The smoothed version of Horowitz’s and Lee’s (2007) estimator of g can be obtained

with the regularization parameter an, a bandwidth hn,Y XW that is needed to compute the

kernel density estimator of fY XW , and another bandwidth hn that is needed to carry out the

smoothing procedure in Section 2.9. To obtain the critical value under sampling from (2.6),
ˆ̃Yi’s were generated using a local linear quantile regression estimator of Chaudhuri (1991)

with a bandwidth hn,LIQ. Also, a bandwidth δn is needed to compute Γ̂(z) and Φ̂. We have

used the following simple, rule-of-thumb, data-driven methods for choosing these tuning

parameters. First, hn,Y XW is chosen based on the normal reference rule (an extension of

Silverman’s rule to the multivariate density estimation): hn,Y XW = 2.7054 × n−1/7 after

re-scaling variables by their standard deviations. The bandwidth hn,LIQ is chosen by a

simple rule of thumb suggested by Fan and Gijbels (1996, p.202) and the bandwidth δn is

chosen by applying Silverman’s rule: δn = 2.7779 × σ̂U × n−1/5, where σ̂U is the sample

standard deviation of Ûi ≡ Yi − G(Xi, θ̂). The regularization parameter an was chosen by

an =
√

hn,Y XW and this choice ensures that Horowitz’s and Lee’s (2007) estimator of g
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is consistent. The choice of an does not make a first-order difference, provided that the

estimator of fY XW [g(z), z, w] is consistent. Finally, hn is chosen by hn = 0.5/ log(n). One

requirement for hn is that h−2
n ‖ĝ − g‖ = op(1). Since ĝ can converge very slowly, we have

used a sequence that converges to zero at a logarithmic rate. The constant 0.5 is multiplied

to [log(n)]−1 since the half the length of the support of X is the maximum possible value for

hn. To check the sensitivity to these choices of bandwidths, we carried out each experiment

with two sets of alternative bandwidths: one that are larger by 20% and the other that are

smaller by 20%.

The results are shown in Table 1. When H0 is true, the differences between the nominal

and empirical rejection probabilities are small. The results are not sensitive to the band-

widths choice. When H0 is false and the correct model is (3.2), the power of the τn at the

5% level is 0.620 (n = 200) and 0.810 (n = 400) with the rule-of-thumb bandwidths. The t

test is more powerful than the τn test. This result is not surprising given that the t test is a

consistent test under the alternative model (3.2). However, when H0 is false and the correct

model is (3.3), the t test has no power for n = 200, 400. On the other hand, the power of

τn test is almost 1 for n = 200. The τn test is shown theoretically to be a consistent test

against a general alternative and therefore the results of the Monte Carlo experiments are

in line with the theoretical property of the τn test.

4 Conclusions

This paper has presented a test of a parametric model of a quantile regression model with

a possibly endogenous right-hand side variable against a nonparametric alternative. The

model is identified through an instrumental variable. A parametric model typically can

be estimated with an n−1/2 rate of convergence in probability, whereas nonparametric IV

estimators can have much slower rates of convergence. This makes parametric estimation

attractive for applied research provided that there is justification for believing that the

parametric model is free of serious specification errors. This paper provides a specification

test. Under mild conditions, the test is consistent against any alternative model. In ad-

dition, in large samples, the test’s power is arbitrarily close to 1 uniformly over a class of

alternative models whose distance from the parametric model is O
(
n−1/2

)
. Some Monte

Carlo experiments have illustrated the satisfactory finite-sample performance of the test.
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5 Appendix

5.1 Proofs of Theorems

The asymptotic distribution of τn can be obtained using arguments similar to those used in

Horowitz (2006), combined with empirical process methods of Van der Vaart and Wellner

(1996).

Let {Xi ≡ (Yi, Xi,Wi) : i = 1, 2, . . . , n} denote observed data with sample size n. Let H
be a class of measurable functions with a measurable envelope function H. Let N(ε,H, ‖·‖H)

and N[ ](ε,H, ‖·‖H), respectively, denote the covering and bracketing numbers for the set

H (for exact definitions, see, for example, Van der Vaart and Wellner (1996, p.83)). In

addition, let J[ ](1,H, L2(P )) denote a bracketing integral of H, that is

J[ ](1,H, L2(P )) =
∫ 1

0

√
1 + log N[ ](ε ‖H‖L2(P ) ,H, L2(P )) dε,

where ‖·‖L2(P ) is the L2-norm with probability measure P . We will use the following lemma,

which is due to the last display of Theorem 2.14.2 of Van der Vaart and Wellner (1996, p.240)

and has also been used in Ichimura and Lee (2006).

Lemma 5.1. Assume that {Xi : i = 1, 2, . . . , n} is a random sample of X. Let H be a

class of measurable functions with a measurable envelope function H. Then there exists a

constant C such that

E

[
sup
h∈H

∣∣∣∣∣n
−1/2

n∑

i=1

{h(Xi)−E[h(X)]}
∣∣∣∣∣

]
≤ CJ[ ](1,H, L2(P )) ‖H‖L2(P ) .

To obtain the asymptotic distribution of τn, rewrite Sn(z) as

Sn(z) =
6∑

j=1

Snj(z),

where

Sn1(z) = n−1/2
n∑

i=1

[I {Yi ≤ g(Xi)} − q] l(z,Wi),

Sn2(z) = n−1/2
n∑

i=1

[I {Yi ≤ G(Xi, θ0)} − I {Yi ≤ g(Xi)}] l(z,Wi),

Sn3(z) = n−1/2
n∑

i=1

[
I

{
Yi ≤ G(Xi, θ̂)

}
− I {Yi ≤ G(Xi, θ0)}

]
l(z, Wi),
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Sn4(z) = n−1/2
n∑

i=1

[I {Yi ≤ g(Xi)} − q]
[
l̂(z,Wi)− l(z,Wi)

]
,

Sn5(z) = n−1/2
n∑

i=1

[I {Yi ≤ G(Xi, θ0)} − I {Yi ≤ g(Xi)}]
[
l̂(z,Wi)− l(z,Wi)

]
,

and

Sn6(z) = n−1/2
n∑

i=1

[
I

{
Yi ≤ G(Xi, θ̂)

}
− I {Yi ≤ G(Xi, θ0)}

] [
l̂(z, Wi)− l(z, Wi)

]
.

Lemma 5.2. As n →∞,

Sn3(z) = Γ(z)′n1/2(θ̂ − θ0) + op(1)

uniformly over z ∈ [0, 1].

Proof. Define

S3(Xi; θ, z) =
[
I {Yi ≤ G(Xi, θ)} − I {Yi ≤ G(Xi, θ0)}

]
l(z, Wi)

and

S∗3(θ, z) = E
{[

I {Y ≤ G(X, θ)} − I {Y ≤ G(X, θ0)}
]
l(z, W )

}
.

Note that by a Taylor series expansion,

S∗3(θ̂, z) = Γ(z)′(θ̂ − θ0) + O
[
(θ̂ − θ0)2

]
(5.1)

uniformly over z.

For any ε, define N3(ε) = {(θ, z) : ‖θ − θ0‖ ≤ ε and z ∈ [0, 1]}. Observe that using

arguments similar to those used in Chen, Linton and Van Keilegom (2003, pp.1599-1600),

sup
(θ,z)∈N3(ε)

|S3(Xi; θ, z)| ≤ [
I {Yi ≤ G(Xi, θ0) + εCg} − I {Yi ≤ G(Xi, θ0)− εCg}

]
Cl

≡ S̄3(Xi).

Thus, S̄3(x) is an envelope function for the class S3(ε) ≡ {S3(x; θ, z) : (θ, z) ∈ N3(ε)}
and

∥∥S̄3

∥∥
L2(P )

≤ Cε1/2 for some finite constant C. Since G(x, θ) is finite-dimensional and

l(z, w) is Lipschitz continuous with respect to z uniformly over w, it can be shown that

J[ ](1,S3(ε), L2(P )) < ∞ for any ε. Then by Lemma 5.1,

sup
(θ,z)∈N3(n−1/2)

∣∣∣∣∣n
−1/2

n∑

i=1

[S3(Xi; θ, z)− S∗3(θ, z)]

∣∣∣∣∣ ≤ Cn−1/4.(5.2)

Therefore, the lemma follows immediately from (5.1) and (5.2).
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Lemma 5.3. As n →∞,

Sn4(z) = op(1)

uniformly over z ∈ [0, 1].

Proof. This can be proved again by the empirical process technique used in the proof of

Lemma 5.2. To do so, define, for any function δ(z, w),

S4(Xi; δ, z) = [I {Yi ≤ g(Xi)} − q] δ(z, Wi)

and

S∗4(δ, z) = E
{

[I {Y ≤ g(X)} − q] δ(z, W )
}

.

Obviously, S∗4(δ, z) ≡ 0 since W is an instrument. Given that l̂(z, w) is uniformly consistent

for l(z, w), define N4(ε) = {(δ, z) : sup(z,w)∈[0,1]2 |δ(z, w)| ≤ ε and z ∈ [0, 1]} for any ε.

Consider the class S4(ε) ≡ {S4(x; δ, z) : (δ, z) ∈ N4(ε)} with an envelope function ε. Since

l(z, w) and l̂(z, w) are uniformly Lipschitz continuous with respect to both z and w, it can

be proved that

J[ ](1,S4(ε), L2(P )) < ∞(5.3)

by arguments identical to those used in the calculation of covering numbers in the proof of

Lemmas B.2 and B.3 of Ichimura and Lee (2006). Then the lemma follows from Lemma

5.1.

Lemma 5.4. As n →∞,

Sn6(z) = op(1)

uniformly over z ∈ [0, 1].

Proof. This can be proved again by arguments similar to those used in the proofs of Lemmas

5.2 and 5.3.

Proof of Theorem 1. Under H0, by Lemmas 5.2, 5.3, and 5.4,

Sn(z) = Bn(z) + op(1)

uniformly over z ∈ [0, 1]. Then the theorem follows by arguments identical to those used in

the proof of Theorem 1 of Horowitz (2006, Supplement).

26



Proof of Theorem 2. Using arguments similar to those used in the proof of Lemma A.9 of

Lee (2007), it can be shown that sup0≤z≤1 |Γ̂(z) − Γ(z)| = op(1) and
∥∥∥Φ̂− Φ

∥∥∥ = op(1).

By Theorem 5.1a of Bhatia, Davis, and McIntosh (1983), |ω̂j − ω̃j | = O
(∥∥∥Ω̂− Ω̃

∥∥∥
)
. Then

Part (i) of the theorem follows by the assumption that Γ̂(z) and Φ̂ are consistent estimators.

Part (ii) follows immediately from part (i).

Proof of Theorem 3. As in the proof of Theorem 3 of Horowitz (2006, Supplement), it can

be shown that

n−1/2Sn(z) →p T (z)

uniformly over z ∈ [0, 1]. Then the theorem follows immediately.

Proof of Theorem 4. If θ̂ satisfies (2.7), then under the sequence of local alternatives (2.12),

it can be shown that

n1/2(θ̂ − θ0) = −n−1/2
n∑

i=1

[γ̃(Yi, Xi,Wi, θ0)− Eγ̃(Y, X,W, θ0)]

+ Φ−1E
[
fU |X,W (0|X, W )∆(X)W]

+ op(1).

Furthermore, using arguments similar to those used to prove Lemmas 5.2 and 5.3, it can be

shown that under the sequence of local alternatives (2.12), as n →∞,

Sn2(z) = −E
[
fU |X,W (0|X, W )∆(X)l(z, W )

]
+ op(1)

and

Sn5(z) = op(1)

uniformly over z ∈ [0, 1]. Then under the sequence of local alternatives (2.12),

Sn(z) = Bn(z) + µ(z) + op(1)

uniformly over z ∈ [0, 1]. Then the theorem follows by arguments identical to those used in

the proof of Theorem 4 of Horowitz (2006, Supplement).

Proof of Theorem 5. The proof here is similar to that of Theorem 5 of Horowitz (2006,

Supplement). Thus, instead of following all the steps in the proof of Theorem 5 of Horowitz

(2006, Supplement), we sketch the proof and point out the main differences.
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Define

S∗2(g, z) = E
{[

I {Y ≤ G(X, θ0)} − I {Y ≤ g(X)} ]
l(z,W )

}

and

S∗5(g, δ, z) = E
{[

I {Y ≤ G(X, θ0)} − I {Y ≤ g(X)} ]
δ(z,W )

}

for any fixed function δ(z, w). Further, define Dn(z) = Sn3(z) + Sn6(z) + n1/2S∗2(g, z) +

n1/2S∗5(g, l̂ − l, z) and S̃n(z) = Sn(z) − Dn(z). Then using the empirical process method

combined with the assumption that g ∈ Cα
Cg

([0, 1]) with α > 1 and some finite constant Cg,

it can be shown that S̃n(z) is bounded in probability uniformly over g ∈ Fnc and z ∈ [0, 1].

This in turn implies that
∥∥∥S̃n

∥∥∥ is bounded in probability uniformly over g ∈ Fnc.

By arguments identical to those used in the proof of Theorem 5 of Horowitz (2006,

Supplement), for each ε > 0, there is Mε such that, for all M > Mε,

Pr(τn > z̃α) ≥ Pr(0.5 ‖Dn‖2 > z̃α + M)− ε.

Now notice that

S∗5(g, l̂ − l, z) = O
(
‖Qg‖

∥∥∥l̂ − l
∥∥∥
)

.

This implies that under the restriction that supg∈Fnc
‖Qg‖

∥∥∥l̂ − l
∥∥∥ / ‖Tg‖ = op(1),

n1/2S∗2(g, z) + n1/2S∗5(g, l̂ − l, z) ≥ 0.5n1/2(Tg)(z)

uniformly over g ∈ Fnc for all sufficiently large n. In addition, using empirical process

arguments again gives

‖Sn3 + Sn6‖ = Op(1)

uniformly over g ∈ Fnc. Then the remaining part of the proof can be completed by repeating

the arguments in the proof of Theorem 5 of Horowitz (2006, Supplement, page 7).

Proof of Claims in Section 2.9. To show claim (iii) in Section 2.9, note that if hn ≤ z ≤
(1− hn), then

g̃(z)− g(z) =
∫ 1

−1
K (ξ) [g(z + hnξ)− g(z)] dξ
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and

|g̃(z)− g(z)| ≤
∫ 1

−1
K (ξ) |g(z + hnξ)− g(z)| dξ

≤ Cghn

(5.4)

for some constant Cg < ∞. Now define

µ̃g(z) = −
∫ 1

0

∫ 1

0
fY XW (g(x), x, w)∆(x)fY XW (g̃(z), z, w)dxdw.

Then it follows from (5.4) that

‖µ̄g‖ − C3hn ≤ ‖µ̃g‖ ≤ ‖µ̄g‖ − C3hn

for some constant C3 < ∞. Moreover,

(ClC∆)1/2 ‖µ̄g‖ ≤ (ClC∆)1/2 ‖µ̃g‖
(

1 +
C3hn

‖µ̃g‖
)

≤ (ClC∆)1/2 ‖µ̃g‖
(

1 +
C3hn

‖µ̄g‖ − C3hn

)
.

Therefore, (2.13) holds if g is replaced by g̃ and hn is sufficiently small.

We now consider (i). It is easy to see that if g is Lipschitz continuous, then so is g̃(z)

on hn ≤ z ≤ 1− hn. Also,

˜̂g(z2)− ˜̂g(z1) = h−1
n

∫ 1

0

[
K

(
x− z2

hn

)
−K

(
x− z1

hn

)]
ĝ(x)dx

= h−1
n

∫ 1

0

[
K

(
x− z2

hn

)
−K

(
x− z1

hn

)]
g(x)dx

+ h−1
n

∫ 1

0

[
K

(
x− z2

hn

)
−K

(
x− z1

hn

)]
[ĝ(x)− g(x)]dx

≡ B1(z2, z1) + B2(z2, z1).

Assume that hn ≤ z2, z1 ≤ 1− hn. Then

B1(z2, z1) =
∫ 1

−1
K(ξ)[g(hnξ + z2)− g(hnξ + z1)]dξ.

It follows that

|B1(z2, z1)| ≤ Cg|z2 − z1|.
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In addition, for some constant CK < ∞,

|B2(z2, z1)| ≤ CK

h2
n

|z2 − z1|
∫ 1

0
|ĝ(x)− g(x)|dx

≤ CK
‖ĝ − g‖

h2
n

|z2 − z1|.

Therefore, it follows from the triangle inequality that

|˜̂g(z2)− ˜̂g(z1)| ≤
(

Cg + CK
‖ĝ − g‖

h2
n

)
|z2 − z1|.

Hence, ˜̂g(z) is Lipschitz continuous on hn ≤ z ≤ 1−hn with probability approaching 1 since

h−2
n ‖ĝ − g‖ = op(1).

To show the uniform convergence of ˜̂g(z) to g̃(z), note that

˜̂g(z)− g̃(z) = h−1
n

∫ 1

0
K

(
x− z

hn

)
[ĝ(x)− g(x)] dx.

Then, for any hn ≤ z ≤ 1− hn,

|˜̂g(z)− g̃(z)| = CK

hn

∫ 1

0
|ĝ(x)− g(x)| dx

≤ CK
‖ĝ − g‖

hn
.

Therefore, it follows from h−2
n ‖ĝ − g‖ = op(1) that

sup
hn≤z≤1−hn

|˜̂g(z)− g̃(z)| = op(1).

Then (i) follows from the proofs of Theorems 1 and 3 and the assumption that hn →∞ as

n →∞. Finally, (ii) can be proved using the arguments identical to those used in the proof

of Theorem 5 with the restriction that hn ≤ z ≤ 1− hn.

5.2 Regularity Conditions for the Multivariate Extension

This section states the assumptions that are used to obtain the asymptotic properties of

τn,MV under the null and alternative hypotheses.

Assumption 5. (i) The support of (X,Z, W ) is [0, 1]px+r+pw . (ii) (Y,X, Z, W ) has a prob-

ability density function fY XZW with respect to Lebesgue measure. (iii) fY XZW is bounded

and is differentiable with respect to its first argument with a uniformly bounded derivative.

(iv) {(Yi, Xi, Zi,Wi) : i = 1, . . . , n} is a simple random sample of (Y, X, Z, W ).
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Assumption 6. There is a constant CG,MV < ∞ such that sup(x,z)∈[0,1]px+r |g(x, z)| ≤
CG,MV , supθ∈Θ sup(x,z)∈[0,1]px+r |G(x, z, θ)| ≤ CG,MV , and the first and second derivatives

of G(x, z, θ) with respect to θ are bounded by CG,MV uniformly over (x, z) ∈ [0, 1]px+r and

θ ∈ Θ.

Assumption 7. (i) As n →∞, θ̂ →p θ0 for some θ0 ∈ Θ, a compact subset of Rd. (ii) If

H0 is true, then g(x, z) ≡ G(x, z, θ0), θ0 ∈ int(Θ), and

n1/2(θ̂ − θ0) = n−1/2
n∑

i=1

γMV (Yi, Xi, Zi,Wi, θ0) + op(1)

for some function γMV taking values in Rd such that E[γMV (Y, X,Z, W, θ0)] = 0 and

Var[γMV (Y, X, Z,W, θ0)] is a finite, nonsingular matrix.

Assumption 8. (i) sup(z,w;ζ,η)∈[0,1]2(pw+r) |l̂(z, w; ζ, η) − l(z, w; ζ, η)| = op(1). (ii) The op-

erator LMV is nonsingular. (iii) There is a constant Cl,MV < ∞ such that

sup
(z,w;ζ,η)∈[0,1]2(pw+r)

|lMV (z, w; ζ, η)| ≤ Cl,MV ,

sup
(ζ,η)∈[0,1]pw+r

|lMV (z1, w1; ζ, η)− l(z2, w2; ζ, η)| ≤ Cl,MV ‖(z1, w1)− (z2, w2)‖ ,

and for each fixed (z, w), the class of functions {lMV (z, w; ζ, η)} belongs to Cα
Cl,MV

([0, 1]pw+r)

with some α > (pw + r)/2. In addition, with probability approaching 1 as n →∞,

sup
(z,w;ζ,η)∈[0,1]2(pw+r)

|l̂MV (z, w; ζ, η)| ≤ Cl,MV ,

sup
(ζ,η)∈[0,1]pw+r

|l̂MV (z1, w1; ζ, η)− l(z2, w2; ζ, η)| ≤ Cl,MV ‖(z1, w1)− (z2, w2)‖ ,

and for each fixed (z, w), the class of functions {l̂MV (z, w; ζ, η)} belongs to Cα
Cl,MV

([0, 1]pw+r)

with some α > (pw + r)/2.

These assumptions are a straightforward multivariate generalization of regularity con-

dition in Section 2.2. Notice that the smoothness assumption on the weight function in

Assumption 8 becomes more stringent as (pw + r) increases. This condition is needed to

prove a multivariate extension of (5.3) using arguments those used in the calculation of

covering numbers in the proof of Lemmas B.2 and B.3 of Ichimura and Lee (2006).
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Table 1. Results of Monte Carlo Experiments

Empirical Probability that H0 is Rejected Using
Null Alternative Sample Bandwidth τn test t test

Model Model Size Nominal Level Nominal Level
0.10 0.05 0.01 0.10 0.05 0.01

H0 is true
(3.1) 200 c = 1.0 0.094 0.040 0.010 0.088 0.032 0.004

c = 0.8 0.090 0.036 0.010
c = 1.2 0.092 0.032 0.008

400 c = 1.0 0.086 0.050 0.016 0.086 0.042 0.010
c = 0.8 0.084 0.050 0.014
c = 1.2 0.086 0.048 0.016

H0 is false
(3.1) (3.2) 200 c = 1.0 0.698 0.620 0.454 0.770 0.666 0.470

c = 0.8 0.718 0.628 0.462
c = 1.2 0.670 0.594 0.426

400 c = 1.0 0.864 0.810 0.620 0.962 0.932 0.788
c = 0.8 0.902 0.846 0.688
c = 1.2 0.810 0.734 0.556

(3.1) (3.3) 200 c = 1.0 0.992 0.992 0.992 0.084 0.030 0.004
c = 0.8 0.994 0.992 0.990
c = 1.2 0.992 0.992 0.992

400 c = 1.0 1.000 1.000 1.000 0.084 0.050 0.008
c = 0.8 1.000 1.000 1.000
c = 1.2 1.000 1.000 1.000

Notes: Bandwidths with c = 1.0 are chosen by some rule-of-thumb, data-driven methods.
See descriptions in Section 3. Bandwidths with c = 0.8 and c = 1.2 are those that are
smaller by 20% and larger by 20%, respectively, than the rule-of-thumb bandwidths.
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