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Abstract

We consider identi�cation of nonparametric random utility models of multinomial choice
using observation of consumer choices. Our model of preferences nests random coe¢ cients
discrete choice models widely used in practice with parametric functional form and distribu-
tional assumptions. However, our model is nonparametric and distribution free. It incorpo-
rates choice-speci�c unobservables and endogenous choice characteristics, both of which are
essential to modeling demand in most settings. It also permits unknown heteroskedasticity
and correlated taste shocks. Under standard orthogonality, �large support,� and instru-
mental variables assumptions, we show identi�ability of choice-speci�c unobservables and
the joint distribution of preferences conditional on any vector of observed and unobserved
characteristics. We demonstrate robustness of these results to relaxation of the large sup-
port condition and show that when this condition is replaced with a much weaker �common
choice probability�condition, the demand structure is still identi�ed. We show that our key
maintained hypotheses are testable.

�We had helpful early conversations on this topic with Rosa Matzkin and Yuichi Kitamura. We also thank
Sunyoung Park and seminar participants at Chicago, Harvard, Northwestern, M.I.T., and Yale for helpful com-
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1 Introduction

We consider identi�cation of nonparametric random utility models of multinomial choice using

observation of consumer choices, i.e., �micro data.�1 Our model of preferences nests random

coe¢ cients discrete choice models widely used in practice with parametric functional form and

distributional assumptions. However, our model is nonparametric and distribution free. It in-

corporates choice-speci�c unobservables and endogenous choice characteristics, both of which

are essential to modeling demand in most settings. It also permits unknown heteroskedasticity

and correlated taste shocks. Under standard orthogonality, �large support,�and instrumental

variables assumptions, we show identi�ability of choice-unobservables and of the joint distribu-

tion of preferences conditional on any vector of observed and unobserved characteristics. We

demonstrate robustness of these results to relaxation of the large support condition and show

that when this condition is replaced with a much weaker �common choice probability�condition

(de�ned below), the demand structure is still identi�ed. We also show that our key maintained

hypotheses are testable.

Motivating our work is the extensive use of discrete choice models of demand for di¤erenti-

ated products in a wide range of applied �elds of economics and related disciplines. Important

examples include transportation economics (e.g., Domenich and McFadden (1975)), industrial

organization (e.g., Berry, Levinsohn, and Pakes (2004)), international trade (e.g., Goldberg

(1995)), marketing (e.g., Guadagni and Little (1983)), urban economics (e.g., Bayer, Ferreira,

and McMillan (2007)), education (e.g., Hastings, Staiger, and Kane (2007)), migration (e.g.,

Kennan and Walker (2006)), political science (e.g., Rivers (1988)), and health economics (e.g.,

Ho (2007)). We focus in particular on discrete choice random utility models with unobserved

characteristics in the spirit of Berry (1994), Berry, Levinsohn, and Pakes (1995) and a large

related literature. Although this class of models has been applied to research in many areas, the

sources of identi�cation of these models have not been fully understood. Without such an un-

derstanding it is di¢ cult to know what quali�cations are necessary when interpreting estimates

or policy conclusions.

1We consider identi�cation using market level data in our companion paper, Berry and Haile (2008).
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Our analysis demonstrates that with su¢ ciently rich data, random utility multinomial choice

models featuring unobserved characteristics are identi�ed without the parametric assumptions

used in practice � typically, linear utility with independent taste shocks (entering additively

and/or multiplicatively) drawn from parametrically speci�ed distributions. Indeed, we pro-

vide positive identi�cation results for more general models of preferences than those considered

previously (to our knowledge) in the econometrics or applied literatures.

Our results may therefore lead to greater con�dence in estimates and policy conclusions

obtained using estimates of discrete choice demand models. In particular, parametric speci�-

cations used in practice can often be viewed as parsimonious approximations in �nite samples

rather than essential maintained assumptions. We view this as our primary message. However,

our results also suggest that with large samples even richer speci�cations (parametric or non-

parametric) of preferences might be considered in empirical work, and our identi�cation proofs

may suggest estimation approaches.

The identi�ability of random utility discrete choice models is not a new question, and our

results build on two well-known ideas (we relate our results more precisely to the prior literature

in section 7). The �rst is that of a �special regressor�� an observable (or vector of observables)

with large support (e.g., Manski (1985), Matzkin (1992), Lewbel (2000)). Following standard

arguments, su¢ cient variation in such observables enables one to �trace out� the distribution

of the random component of utilities for all choices within a given choice set. The second

idea is the use of variation in choice characteristics, within and across choice sets, to decompose

variation in the distribution of utilities into the contributions of observed and unobserved factors

(e.g., Berry (1994), Berry, Levinsohn, and Pakes (1995), Berry, Levinsohn, and Pakes (2004)).

Combining and extending these ideas enables us to obtain positive results for a less restrictive

nonparametric model than those considered previously. In particular, the use of within-market

variation in consumer attributes allows us to trace out a very �exible joint distribution while

unobservable product characteristics are held �xed. Cross-market (and cross-product) variation

in choice characteristics then allows identi�cation of choice-speci�c unobservables.2

2 In a fully parametric context, a similar intuition is suggested by Berry, Levinsohn, and Pakes (2004).
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Although the generality of our model is a strength, it also brings some limitations. One

is a constraint on the types of out-of-sample counterfactuals that can be identi�ed. This is a

constraint inherent to nonparametric models: functional form assumptions will often be required

if one is to extrapolate outside the support of the data generating process. A second limitation is

that our model lacks su¢ cient structure to permit full characterizations of welfare. In particular,

we do not assume a structure that would enable one to track a given consumer�s position in

the distribution of indirect utilities across environments. Thus, although we will be able to

identify changes in utilitarian social welfare (in aggregate or across subpopulations de�ned by

observables), characterization of other welfare measures (e.g., Pareto improvements) requires

additional structure on preferences. We provide additional discussion of these limitations below.

In the following section we set up the model and de�ne the structural features of interest.

In section 3 we demonstrate one of our main lines of argument for a simple case: binary choice

with exogenous characteristics. Section 4 then addresses multinomial choice with endogeneity,

considering two alternative instrumental variables conditions. We then move to discussion

of several important extensions. In section 5 we discuss the case in which the large support

condition fails. Section 6 then presents testable restrictions of key maintained hypotheses.

Having presented our results, we are then able to place our contribution within the context of

the large literature on identi�cation of multinomial choice models. After doing this in section

7, we conclude in section 8.

2 Model

2.1 Setup

Consistent with the motivation from demand estimation, we describe the model as one in which

each consumer i in each market t chooses from a set Jt of available products. We will use the

terms �product,� �good,� and �choice� interchangeably to refer to elements of the choice set.

The term �market�here is synonymous with the choice set. In particular, consumers facing the

same choice set can be viewed as being in the same market. In practice, markets will typically be
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de�ned geographically and/or temporally. Variation in the choice set will of course be essential

to identi�cation, and our explicit reference to markets provides a way to discuss this clearly.

In applications to demand it is important to model consumers as having the option to

purchase none of the products considered (see, e.g., Bresnahan (1981), Anderson, DePalma, and

Thisse (1992), Berry (1994) and Berry, Levinsohn, and Pakes (1995)). We represent this by

choice j = 0 and assume 0 2 Jt 8t. Choice 0 is often referred to as the �outside good.�We

denote the number of �inside goods�by Jt = jJtj�1.3 Each inside good j has observable (to us)

characteristics xjt, which may include price. Prices, of course, will generally be correlated with

product-speci�c unobservables. Unobserved choice characteristics are characterized by an index

�jt, which may also vary across markets. We will assume that �jt has an atomless marginal

distribution in the population.

Each consumer i in market t is associated with a vector of observables zijt. The j sub-

script on zijt allows the possibility that some characteristics are consumer-choice speci�c� e.g.,

interactions between consumer demographics and product characteristics (say, family size and

automobile size) or other consumer-speci�c choice characteristics (say, driving distance to re-

tailer j from consumer i�s home). For most of our results we will require at least one such

measure for each j � 1 (we consider the case without micro data in Berry and Haile (2008)).

We let xt = (x1t; : : : ; xJtt) and zit = (zi1t; : : : ; ziJtt)

We consider a random utility model. Consumers face no uncertainty themselves, but from

the perspective of an outsider the preferences of any individual are viewed as random (e.g.,

Luce (1959), Block and Marschak (1960), McFadden (1974), Manski (1977)), with the usual

interpretation that this re�ects unobserved consumer-speci�c tastes for products and/or char-

acteristics. Let (
;F ;P) denote a probability space. Each consumer i�s preferences are assumed

to be described by a random utility function

u (�; �; �; !it) : RKx � R� RKz ! R
3 In applications with no �outside choice� our approach can be adapted by normalizing preferences relative

to those for a given choice. The same adjustment applies when characteristics of the outside good vary across
markets in observable ways.
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where !it 2 
, and u is a measurable function. Given a choice set J and
��
xjt; �jt; zijt

�	
j2J ,

consumer i�s preferences are then determined by the conditional indirect utilities

vijt = u
�
xjt; �jt; zijt; !it

�
8i; j (1)

Implicit in this formulation is a standard restriction that, conditional on the values of�
xjt; �jt; zijt

�
, the random variation in the conditional indirect utilities is i.i.d. across individuals

and markets. We mark this restriction explicitly with the following.

Assumption 1 The measure P on 
 does not vary with i; t, Jt, or
��
xjt; �jt; zijt

�	
j2Jt

.

The invariance of P to i describes the sampling structure: conditional on
�
xjt; �jt; zijt

	
j2Jt

,

unobservable variation in the preferences of di¤erent individuals re�ects independent draws of

the elementary outcome !it from 
. This does not rule out within-market correlation in

consumers�preferences conditional on the observablesfxjt; zijtgj2Jt , since �jt can be interpreted

as an unobserved market-level taste for good j. The invariance to Jt and
�
xjt; �jt; zijt

	
j2Jt

(and

thus to t) re�ects the standard view of preferences as stable, rather than varying with the choice

set. In particular, the realization of !it determines the utility function u (�; �; �; !it) of a consumer,

while the values of
�
xjt; �jt; zijt

	
j2Jt

determined the relevant sets of arguments of this function.

Note that this structure allows arbitrary heterogeneity in the stochastic component of utilities

across consumers with di¤erent zijt.

As the following example illustrates, Assumption 1 does not require homoskedasticity or the

common assumption that taste shocks for a given individual are mutually independent.4

Example 1 A special case of our general framework is the linear random coe¢ cients model

u
�
xjt; �jt; zijt; !it

�
= xjt�it + zijt + �jt + �ijt (2)

4This example allows heterskedasticity in random utilities through to the linear random coe¢ cients. In general
our speci�cation allows arbitrary heterskedasticity in vijt under Assumption 1.
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where, for example, �it = (�
(1)
it (!it) ; : : : ; �

(k)
it (!it)) is a vector of random coe¢ cients and each

�ijt (!it) is a consumer-choice speci�c taste shock whose distribution varies with choice-speci�c

observables. With this speci�cation, Assumption 1 allows an arbitrary joint distribution of�
�
(1)
it ; : : : ; �

(k)
it ; �i1t; : : : ; �iJtt

�
but requires that this joint distribution be the same for all i, t, and��

xjt; �jt; zijt
�	
j=1:::J

.5 As an alternative, we could speci�y �it = (�
(1)
it (zit; !it) ; : : : ; �

(k)
it (zit; !it))

and �ijt (xjt; !it), where zit is a vector of individual characteristics that do not vary across j.

Now, for example, Assumption 1 requires that the joint distribution of (�i1t; : : : ; �iJtt) be the same

for choice sets with identical observable characteristics.

Each consumer i maximizes her utility by choosing good j whenever

u
�
xjt; �jt; zijt; !it

�
> u (xkt; �kt; zikt; !it) 8k 2 Jt � fjg: (3)

Denote consumer i�s choice by

yit = argmax
j2Jt

u
�
xjt; �jt; zijt; !it

�
:

Let zijt =
�
z
(1)
ijt ; z

(2)
ijt

�
, with z(1)ijt 2 R. Let z(1)it denote the vector

�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�0
and z(2)it the

matrix
�
z
(2)
i1t ; : : : ; z

(2)
iJtt

�0
: We will require that for each possible z(2)it , there exist a representation

of preferences with the form

~uijt = �itz
(1)
ijt + ~�

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (4)

for some function ~� that is strictly increasing and continuous in �jt, and with the random

coe¢ cient �it = � (!it) strictly positive with with probability one.6 Here we have imposed two

restrictions: (i) additive separability in a �vertical�component, z(1)ijt , of zijt, (ii) monotonicity in

5This structure permits variation in Jt across markets. The realization of !it should be thought of as generating
values of �ijt = �j (!it) for all possible choices j, not just those in the current choice set. Thus, preferences exist
even over products not available. Note that here the joint distribution of f�ijtgj2K will be the same regardless
of whether K = Jt or K � Jt. Thus, a consumer�s preference between two products j and k does not depend on
the other products in the the choice set.

6 If �it < 0 w.p. 1, we replace z(1)ijt with �z
(1)
ijt . As long as j�itj > 0 w.p. 1, identi�cation of the sign of �it is

straightforward under the assumptions below.
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�jt. We show in section 6 that both restrictions have testable implications.

We rely on the separability restriction to provide a mapping between units of (latent) utility

and units of (observable) choice probabilities.7 Because unobservables have no natural order,

monotonicity in �jt would be without loss of generality if consumers had homogeneous tastes for

characteristics, as in standard multinomial logit, nested logit, and multinomial probit models.

With heterogeneous tastes for choice characteristics, monotonicity imposes a restriction that �jt

be a �vertical�rather than �horizontal�choice characteristic. Thus, all consumers agree that (all

else equal) larger values of �jt are preferred. Of course, our speci�cation does allow heterogeneity

in tastes for �jt, just as this is permitted for the vertical characteristic z
(1)
ijt . Furthermore, we

allow a di¤erent representation (4) for each value of z(2)it .
8

We need to make several normalizations in order to obtain a unique representation of pref-

erences from (4). First, because unobservables have no natural units we may normalize the

location and scale of �jt and assume without loss that it has a uniform marginal distribution on

(0; 1): We must also normalize the location and scale of utilities. Without loss, we normalize

the scale of consumer i�s utility using his marginal utility from z
(1)
ijt , yielding the representation

uijt = z
(1)
ijt +

~�
�
xjt; �jt; z

(2)
ijt ; !it

�
�it

8i; j = 1; : : : ; J t:

Letting

�
�
xjt; �jt; z

(2)
ijt ; !it

�
=
~�
�
xjt; �jt; ; z

(2)
ijt ; !it

�
�it

7We can extend this to allow z(1)ijt to be an index. For example if z
(1)
ijt = cijt�, the parameter vector � can be

identi�ed up to scale directly from the observed choice probabilities as long as �jt j= cijt.
8Athey and Imbens (2007) point out that the assumption of a scalar vertical unobservable �jt can lead to

testable restrictions in some models. In our model, if there were no variation across j in z(1)ijt holding consumer

characteristics �xed, consumers with the same z(2)it but di¤erent z(1)it must rank (probabalistically) any products
with identical observable characteristics the same way, as they point out. Their observation does not apply to
our model in general (e.g., conditional indirect utilities of the form vijt = �jt+z

(1)
ijt�it are permitted by our model

and do not lead to their their testable restriction), but we show below that there is a related testable restriction
for our more general model.
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this gives the representation of preferences we will work with below:

uijt = z
(1)
ijt + �

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ; J t: (5)

To normalize the location we set ui0t = 0 8i; t. Treating the utility from the outside good as

non-stochastic is without loss of generality here, since choices in (3) are determined by di¤erences

in utilities and we have not restricted correlation in the random components of utility across

choices.

Our model nests random utility models considered in applied work across a wide range of

�elds, including the following examples.

Example 2 Consider the model of preferences for automobiles in Berry, Levinsohn, and Pakes

(2004):

uijt = xjt�it + �jt + �ijt

�kit = �k1 + �
k0
2 �

k
it +

X
r

zrit�
kr
3 k = 1; : : : ;K

where xjt 2 Rk are auto characteristics, zrit are consumer characteristics, �ijt is assumed distrib-

uted type 1 extreme value, each �kit is a standard normal deviate, and all stochastic components

are i.i.d. Here �k1; �
k0
2 ; and �

kr
3 are all parameters of our function � in (5).

Example 3 Consider the model of hospital demand in Capps, Dranove, and Satterthwaite

(2003), where consumer i�s utility from using hospital j depends on hospital characteristics

xjt, patient characteristics zit, interactions between these, and patient i�s distance to hospital j;

denoted zijt. In particular,

uijt = �xjt + �zit + xjt�zit + zijt + �ijt

with �ijt distributed type I extreme value.
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Example 4 Rivers (1988) considered the following model of voter preferences

uijt = �1i

�
z
(1)
it � x

(1)
jt

�2
+ �2i

�
z
(2)
it � x

(2)
jt

�2
+ �ijt

where z(1)it and x(1)jt are, respectively, measures of voter i�s and candidate j�s political positions,

z
(2)
it and x(2)jt are measures of party a¢ liation. Here the terms

�
z
(1)
it � x

(1)
jt

�2
and

�
z
(2)
it � x

(2)
jt

�
form the consumer-choice speci�c observables we call zijt.

2.2 Observables and Structural Features of Interest

When we discuss the case of endogenous choice characteristics we will require excluded instru-

ments, which we denote by �wjt.9 The observables consist of (yit; fxjt; �wjt; zijtgj2Jt)i;t. To

discuss identi�cation, we treat their joint distribution as known. Loosely speaking, we consider

the case of a large number of markets, each with a large number of consumers.

The observables directly reveal the conditional choice probabilities

pijt = pj (Jt; fxjt; �wjt; zijtgj2Jt) = Pr (yit = jjJt; fxkt; �wkt; ziktgk2Jt) : (6)

Although these alone reveal some important features of the model (e.g., average marginal rates

of substitution between exogenous characteristics), they are not adequate for most purposes

motivating demand estimation� for example, calculation of (own and cross-price) elasticities of

demand. This is merely the standard observation that equilibrium prices and quantities do not

identify demand.

Our �rst objective is to derive su¢ cient conditions for identi�cation of the choice-speci�c

unobservables and the distribution of preferences over choices in sets Jt, conditional on the char-

acteristics
�
xjt; zijt; �jt

	
j2Jt

. In particular, we will show identi�cation of the joint distribution

of fui1tgj2Jt conditional on any
�
Jt;
�
xjt; zijt; �jt

	
j2Jt

�
in their support. These conditional

distributions fully characterize the primitives of this model.

9Depending on the environment, instruments might include cost shifters excludable from the utility function,
prices in other markets (e.g., Hausman (1996), Nevo (2001)), and/or characteristics of competing products (e.g.,
Berry, Levinsohn, and Pakes (1995)). Because the arguments are standard, we will not discuss assumptions
necessary to justify the exlusion restrictions, which we will assume directly.
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We will also consider a type of partial identi�cation. For many economic questions motivat-

ing demand estimation, the joint distribution of utilities is not actually required. For example,

to discuss cross-price elasticities, equilibrium pricing or market shares under counterfactual own-

ership or cost structures, knowledge of the demand structure alone is adequate. Identi�cation of

demand naturally requires less from the model and/or data than identi�cation of the underlying

distribution of preferences. In the multinomial choice setting, demand is fully characterized by

the structural choice probabilities

�j
�
Jt; fxjt; �jt; zijtgj2Jt

�
= Pr

�
yit = jjJt; fxjt; �jt; zijtgj2Jt

�
: (7)

These conditional probabilities fully characterize demand; however, they are not directly observ-

able from (6) because of the unobservables �jt; which are typically correlated with at least some

elements of xjt (e.g., price). Some of our results below address identi�cation of these choice

probabilities, i.e., of the demand structure.

2.3 Some Limitations of the Model

The generality of our model of preferences comes with some costs. One is that we know

before starting that some out-of-sample counterfactuals will not be identi�able.10 An example

is demand for a hypothetical product with characteristics outside their support in the data

generating process. This kind of limitation is not special to our setting, of course: extrapolation

outside the support of the data generating process typically requires some parametric structure.

Our results, however, provide conditions under which such structure will be necessary only for

such extrapolation. Furthermore, one may have more con�dence in out-of-sample extrapolations

if the in-sample preferences are nonparametrically identi�ed.

A second issue more special to the demand application concerns welfare. Our speci�cation

of preferences has su¢ cient structure to characterize changes in the distribution of utilities in

meaningful units and, therefore, of utilitarian social welfare. In particular, (5) incorporates

10The economic model enables identi�cation of some out-of-sample counterfactuals� for example, removal of a
product from the choice set.
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quasilinearity preferences.11 However, (5) lacks the structure required for welfare analysis that

depends on the distribution of welfare changes. Identi�cation of Pareto improvements, for ex-

ample, will require additional restrictions enabling one to link an individual consumer�s position

in the distribution of utilities before a policy change to that after. This is because our model

speci�es a distribution of conditional indirect utilities, not a distribution of parameters whose

realizations can be associated with a given individual. This points out a limitation of nonpara-

metric random utility models as a theoretical foundation for some kinds of welfare analysis.

It should not be surprising that some welfare calculations require stronger assumptions than

those necessary to identify demand, and our results will help to clarify which questions require

these additional restrictions and which do not. Nonetheless, this will be an important limitation

in some applications. An example of a model with su¢ cient structure to carry out the additional

welfare analyses is the linear random coe¢ cients model with independent choice-speci�c taste

shocks. Because we show identi�ability of a more general model, it should be possible (under

additional assumptions) to project the identi�ed joint distributions onto the space of linear

random coe¢ cients models.

3 Binary Choice with Exogenous Characteristics

Often one will want to allow for endogeneity of at least one component of xjt. In applications

to demand estimation, in particular, price will typically be an observed characteristic that

is correlated with the unobserved �quality� �jt through the optimizing behavior of sellers.
12

However, we begin with the simple case of binary choice with exogenous xjt. This will illustrate

11The quasilinearity generally will not be in income, but one can describe changes in aggregate compensat-
ing/equivalent variation in units of the normalized marginal utility for z(1)ijt . Income (and/or price) will typically
enter preferences through the function � in (5). The potential nonlinearity of �, combined with our inability to
track indivuals�positions in the distributions of normalized utilities as the choice environment varies, prevents
characterization of aggregate compensating variation or equivalent variation in income units.
12 In the case of demand estimation with endogenous prices, identi�cation arguments using control variates do

not appear to be applicable in general. This is because in most models price is chosen by a �rm that has observed
all the cost and demand �shocks� in the model, not just its own demand shock �jt: This violates the usual
requirement that the endogenous right-hand-side variable be one-to-one with a scalar unobservable, conditional
on observables (see, e.g., Imbens and Newey (2006)). An exception is the case of binary choice with no cost
shocks. For binary response models, Blundell and Powell (2004) consider identi�cation and estimation of a linear
semiparametric model using a control function approach.
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key elements of our approach and may be of independent interest.

Here we can drop the subscript j, with consumer i selecting choice 1 (i.e., yi1 = 1) whenever

z
(1)
it + �

�
xt; �t; z

(2)
it ; !it

�
> 0:

We consider identi�cation under the following assumptions.

Assumption 2 �t j= (xt; zit) :

Assumption 3 supp z(1)it jxt; z
(2)
it = R 8xt; z(2)it :

Assumption 2 states that we consider the case of exogenous observables. This assumption

is relaxed in the following section. A �large support�condition like Assumption 3 is common

in the econometrics literature on nonparametric and semiparametric identi�cation of discrete

choice models (e.g., Manski (1985), Matzkin (1992), Matzkin (1993), Lewbel (2000)).13 We

relax this assumption in section 5, where the analysis will also clarify the role that the large

support assumption plays in the results that maintain it. Here we show that Assumptions 1-3

are su¢ cient for identi�cation.

Begin by �xing a value of z(2)it , which can then be suppressed. Rewrite (5) as

uit = z
(1)
it + �it (8)

where we have let �it = � (xt; �t; !it). Holding t �xed, all variation in �it is due to !it. Thus,

�it j= z
(1)
it by Assumption 1. Since the observed conditional probability that a consumer chooses

the outside good is given by

p0 (xt;wit) = Pr
�
�it � �z

(1)
it

�

we see that Assumption 3 guarantees that the distribution of �itjt (i.e., of �it in market t) is
13As usual, the support of z(1)it need not equal the entire real line but need only cover the support of

�
�
xt; �t; z

(2)
ijt ; !it

�
. We will nonetheless use the real line (real hyperplane below) for simplicity of exposition.
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identi�ed from variation in z(1)it within market t. Denote this distribution by F�itjt (�). This

argument can be repeated for all markets t.

In writing �itjt, we condition on the values of xt and �t, although only the former is actually

observed. However, once we have determined the distribution of �itjt for all t, we can recover

the value of each �t.

To see this, let

�t = med [�itjt] = med [�itjxt; �t] :

Given F�itjt (�), each �t is known. Under Assumption 1, we can write

�t = D (xt; �t) (9)

for some function D that is strictly increasing in its second argument. To show identi�cation

of D, for � 2 (0; 1) let �� (xt) denote the �th quantile of �tjxt across markets. By the strict

monotonicity of D in �t, this quantile is unique. By (9) and the normalization of �t

�� (xt) = D (xt; �) :

Since �� (xt) is identi�ed for all xt and � , D is identi�ed on supp xt � (0; 1). With D known,

each �t is known as well.

Above we obtained identi�cation of the distribution of �itjt. Now we also have shown

identi�ability of the latent �t associated with each market t. Thus, for any (xt; �t) in their

support, we now have identi�cation of

F� (mjxt; �t) = Pr (� (xt; �t; !it) � mjxt; �t)

= F�itjt (m)

for all m 2 R. With (8) this proves the following result.

Theorem 1 Consider the binary choice setting with preferences given by (5). Under Assump-

13



tions 1�3, the distribution of uit conditional on any (xt; �t; zit) in their support is identi�ed.

Our argument involved two simple steps, each standard on its own. First, we showed that

variation in z(1)it within each market can be used to trace out the distribution of preferences

across consumers within a market. It is in this step that the role of idiosyncratic variation in

tastes is identi�ed. Antecedents for this step include Matzkin (1992), Matzkin (1993), Lewbel

(2000), and indeed this idea is used in analyzing identi�cation of a wide range of qualitative

response and selection models (e.g., Heckman and Honoré (1990), Athey and Haile (2002)).

Second, we use variation in choice characteristics across markets (within and across markets

in the case of multinomial choice) to decompose the nonstochastic variation in utilities across

products into the variation due to observables and that due to the choice-speci�c unobservables

�jt. This idea has been used extensively in estimation of parametric multinomial choice demand

models following Berry (1994), Berry, Levinsohn, and Pakes (1995), and Berry, Levinsohn, and

Pakes (2004). This second step is essential once we allow the possibility of endogenous choice

characteristics (e.g., correlation between price and �jt), as will nearly always be necessary when

one considers demand estimation. Our approach for the more general cases follows the same

outline.

4 Multinomial Choice with Endogenous Characteristics

Here we consider multinomial choice, allowing endogeneity of choice characteristics. Let xt =

(x1t; : : : ; xJtt). We consider the following generalization of the large support assumption:

Assumption 4 For all Jt, supp
n
z
(1)
ijt

o
j=1;:::;Jt

j
n
xjt; z

(2)
ijt

o
j=1;:::;Jt

= RJt :

This is a strong assumption requiring su¢ cient variation in
�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�
to move choice

probabilities through the entire unit simplex. Equivalent conditions are assumed in the prior

work on multinomial choice by Matzkin (1993), Lewbel (2000), and Briesch, Chintagunta, and

Matzkin (2005). Such an assumption provides a natural benchmark for exploring identi�ability

under ideal conditions. As discussed previously, however, we will also explore results that do

not require this assumption in section 5.
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Without the assumption (x1t; : : : ; xJtt) j=

�
�1t; : : : ; �Jtt

�
, we will require instruments. To

state our instrumental variables assumptions, let xjt =
�
x
(1)
jt ; x

(2)
jt

�
, where x(1)jt denotes the

endogenous characteristics. We then let wjt �
�
x
(2)
jt ; �wjt

�
denote the vector of instrumental

variables. We will assume x(1)jt is continuously distributed across j and t, with conditional

density function fx
�
x
(1)
jt jwjt

�
. We begin with the exclusion restriction.

Assumption 5 �jt j= (wjt; zijt)8j; t:

The remaining IV condition we take from Chernozhukov and Hansen (2005). To state it we

will need some notation. For simplicity, �x x(2)jt in what follows, dropping it from the notation,

so that xjt now represents only the endogenous x
(1)
jt . Let

�jt = D
�
xjt; �jt

�
� med

�
�
�
xjt; �jt; !it

�
jxjt; �jt

�
and let f� (�jxjt;wjt) denote its density conditional on wjt.14 Fix some small positive constants

�q; �f > 0. For each � 2 (0; 1), de�ne L (�) to be the convex hull of functions m (�; �) that satisfy

(i) for all wjt, Pr (�jt � m (xjt; �) j� ;wjt) 2 [� � �q; � + �q]; and

(ii) for all x in the support of xjt, m (x; �) 2 sx � f� : f� (�jx;w) � �f 8w with fx (xjw) > 0g.

Assumption 6 The random variables xjt and �jt have bounded support. For any � 2 (0; 1), for

any bounded function B (x; �) = m (x; �)�D (x; �) with m (�; �) 2 L (�) and "jt � �jt�D (xjt; �),

E [B (xjt) (xjt;wjt) jwjt] = 0 a.s. only if B (xjt) = 0 a.s., where  (x;w) =
R 1
0 f" (�B (x) jx;w) d�.

Assumption 6 is a particular type of �bounded completeness� condition, ensuring that the

instruments induce su¢ cient variation in the endogenous variables. We take this conditions

directly from Chernozhukov and Hansen (2005) (Appendix C).15 This plays the role of the

standard rank condition for linear models, but for the nonparametric nonseparable model � =

D(x; �). With these assumptions, we can prove the following result

14Chernozhukov and Hansen�s �rank invariance� property holds here case because the same unobservable �jt
determines potential values of �jt for all possible values of the endogenous characteristics.
15They discuss su¢ cient conditions. We also consider an alternative to Assumption 6 below.

15



Theorem 2 Under the representation of preferences in (5), suppose Assumptions 1, 4, 5, and

6 hold. Then the joint distribution of fuijtgj2Jt conditional on any
�
Jt;
�
(xjt; zijt; �jt)

	
j2Jt

�
in their support is identi�ed.

Proof. Fix Jt, with Jt = J . Fix a value of the vector
�
z
(2)
i1t ; : : : ; z

(2)
iJt

�
and drop these arguments

in what follows. Let �ijt = �
�
xjt; �jt; !it

�
. Observe that

lim
z
(1)
ikt!�1
8k 6=j

pijt = Pr
�
z
(1)
ijt + �ijt � 0

�
:

Holding t �xed, �ijt j= z
(1)
ijt by Assumption 1. Assumption 4 then guarantees identi�cation of

the marginal distribution of each �ijtjt. This implies identi�cation of the conditional median

�jt = med
�
�
�
xjt; �jt; !it

�
jt
�

� D
�
xjt; �jt

�
(10)

where the unknown function D is strictly increasing in �jt. Under Assumption 6, Theorem 4 of

Chernozhukov and Hansen (2005) implies that D (and therefore each �jt) is identi�ed. Finally,

observe that

pi0t = Pr
�
z
(1)
i1t + �i1t < 0; : : : ; z

(1)
iJt + �iJt < 0

�
= Pr

�
�i1t < �z

(1)
i1t ; : : : ; �iJt < �z

(1)
iJt

�
(11)

so that Assumption 4 implies identi�cation of the joint distribution of (�i1t; : : : ; �iJt) jt. Since

each xjt is observed and �jt is identi�ed, this implies identi�cation of the joint distribution of

(�i1t; : : : ; �iJt) conditional on any (x1t; �1t; zi1t) ; : : : ; (xJt; �Jt; ziJt) in their support given Jt.

Since uijt = z
(1)
ijt + �ijt, the result follows.

This result demonstrates the identi�ability of a very general model of multinomial choice with

endogeneity. A possible limitation is that Assumption 6 is both di¢ cult to check and di¢ cult to

interpret. Whether there are useful su¢ cient conditions on primitives delivering this property
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is an open question of broad interest in the literature on nonparametric instrumental variables

regression, but beyond the scope of this paper. However, if we are willing to impose somewhat

more structure on the utility function, we can obtain a more intuitive su¢ cient condition. Doing

so will also enable us to relax the excludability restriction to require only mean independence.

To show this, suppose each consumer i�s conditional indirect utilities can be represented by

~uijt = �itz
(1)
ijt + ~�

�
xjt; z

(2)
ijt ; !it

�
+ it�jt j = 1; : : : ;Jt (12)

where �it > 0 w.p. 1, and the expectations E [�it], E [it], and E
h
~�
�
xjt; z

(2)
ijt ; !it

�
jxjt; z(2)ijt

i
are

�nite. This imposes a restriction relative to (4) but is still quite general relative to the prior

literature. It is similar to the speci�cation in Lewbel (2000), for example, but with random

coe¢ cients on both z(1)ijt and �jt, and with a nonparametric speci�cation of ~�. A representation

of preferences equivalent to (12) is

uijt = z
(1)
ijt + �

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (13)

where now

�
�
xjt; �jt; z

(2)
ijt ; !it

�
=
~�
�
xjt; z

(2)
ijt ; !it

�
�it

+
it
�it

�jt: (14)

Let �ijt denote �
�
xjt; �jt; z

(2)
ijt ; !it

�
.

Here we will use a di¤erent normalization of �jt. Instead of letting �jt have a standard

uniform distribution, we make the location normalization

E
�
�jt
�
= 0

and scale normalization

E

�
it
�it

�
= 1: (15)

Both are without further loss of generality. The latter de�nes units of the unobservable �jt by

�xing the mean marginal rate of substitution between z(1)ijt and �jt.
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With this structure we can replace the full independence assumption with a mean indepen-

dence assumption.

Assumption 7 E
�
�jtj (wjt; zijt)

�
= 0 8j; t; (wjt; zijt).

To prove identi�cation of the joint distribution of fuijtgj conditional on
�
xjt; zijt; �jt

	
j
, �rst

note that the argument in the proof of Theorem 2 remains valid here through equation (10).

Recall that we have �xed the value of
�
z
(2)
i1t ; : : : ; z

(2)
iJt

�
and dropped these arguments. With the

separable structure (14) and the normalization (15) now we let

�jt � E
�
�
�
xjt; �jt; !it

�
jt
�
= D (xjt) + �jt (16)

for some function D. As before, each �jt is identi�ed from variation within each market.

It is then straightforward to con�rm that, under Assumption 7, the following �completeness�

condition is equivalent to identi�cation of the function D (Newey and Powell (2003)) from

observation of (�jt; xjt; �wjt).

Assumption 8 For all functions B (xjt) with �nite expectation, E [B (xjt) jwjt] = 0 a.s. implies

B (xjt) = 0 a.s.

We can now state a second result for the multinomial choice model.

Theorem 3 Under the utility representation (13), suppose Assumptions 1, 4, and 7 hold. Then

the joint distribution of fuijtgj2Jt conditional on any
�
Jt;
�
(xjt; zijt; �jt)

	
j2Jt

�
in their support

is identi�ed if and only if Assumption 8 holds.

Proof. From the preceding argument, under the completeness Assumption 8, we have identi�-

cation of D and therefore of each �jt. The remainder of the proof then follows that of Theorem

2 exactly, beginning with (11).

The completeness condition (Assumption 8) is the analog of the rank condition in linear

models. It requires that variation in wijt induce su¢ cient variation in x
(1)
jt to reveal D (xjt) at

all points xjt. Lehman and Romano (2005) give standard su¢ cient conditions. Severini and
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Tripathi (2006) point out that this condition is equivalent to the following: for any bounded

function f (xjt) such that E[ f (xjt)] = 0 and var (f (xjt)) > 0, there exists a function h (�) such

that f (xjt) and h (wjt) are correlated. Additional intuition can be gained from the discrete case:

as shown by Newey and Powell (2003), when xjt and wjt have discrete support
�
x̂1; : : : ; x̂K

�
��

ŵ1; : : : ; ŵL
�
, completeness corresponds to a full rank condition on the matrix f�klg where

�kl = Pr(xjt = x̂kjwjt = ŵl).

5 Limited Support

The large support assumption (Assumption 4) in the preceding section is both common in

the literature and controversial. Our results using this condition demonstrate that su¢ cient

variation in the vector
�
z
(1)
i1 ; : : : ; z

(1)
iJt

�
can identify the joint distribution of utilities on their full

support. Although our results describe only su¢ cient conditions for identi�ability, it should

not be surprising that a large support assumption may be needed: if the observable data can

move choice probabilities only through a subset of the unit simplex, we should only hope to

identify the joint distribution of utilities on a subset of their support. Of course, an important

question is whether even these more limited hopes are ful�lled. In particular, one would like to

understand how heavily the results rely on the tails of the large support, and to know what can

be learned from more limited variation in the data. We explore these questions here.

We show that much more limited variation can be su¢ cient to identify the structural choice

probabilities �j
�
Jt; fxjt; �jt; zijtgj2Jt

�
at all points of support. The relaxed condition of a �com-

mon choice probability� requires that there be vector of choice probabilities that is attainable

in every market when conditioning on the appropriate vector
�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�
for each market

t. As discussed above, the structural choice probabilities are su¢ cient by themselves for many

questions that motivate estimation of discrete choice demand models. Given the observability

of pijt, the essential step is demonstrating identi�ability of the choice-speci�c unobservables �jt.

In addition, we show a type of continuity that suggests that the hopes described above are

ful�lled. In particular, there is a natural sense in which moving from our limited support

condition to the full support condition moves the identi�ed features of the model smoothly
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toward the full identi�cation results of the preceding section. For the multinomial choice case

we obtain this result under a somewhat more restrictive speci�cation of preferences. Up to this

quali�cation, however, this should be a comforting observation regarding the robustness of the

results we obtain using the large support assumption. Although we can obtain full identi�ability

of the model only with the large support, the result is not knife-edge. In particular, the tails of

the support are needed only to determine the tails of the joint distributions of utilities.

In section 5.1 we �rst explore identi�ability of the structural choice probabilities with no

support assumption whatsoever (indeed even without separability in, or even existence of, z(1)ijt ).

Thus far we have obtained positive results only for the binary choice case in this situation.

This o¤ers one motivation for exploration in section 5.2 of conditions that rely on the separable

structure used above but utilizing the common choice probability condition. Our results under

this condition will illustrate the robustness discussed above.

5.1 Identi�cation of �jt With No Support Condition

Consider the general speci�cation of preferences in (1), without requiring separability in z(1)it .

In the case of binary choice the consumer selects the inside good if

u (xt; �t; zit; !it) > 0: (17)

Note that we have dropped the earlier requirement of additive separability in z(1)it . In fact,

there need not exist any individual-choice speci�c observables at all. Under Assumption 1, the

probability of the event (17) can be written

�it = � (xt; zit; �t) (18)

where � is a strictly increasing function of �t. Since these probabilities are observed (along with

xt; zit) the results of Chernozhukov and Hansen (2005) can be applied as above to identify the

function � and, therefore, each latent �t. With each �t known, the structural choice probabilities

� (xt; zit; �t) are then identi�ed at all points of support.
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Theorem 4 Consider the binary choice model with the representation of preferences in (1).

Suppose Assumptions 1, 5, and 6 hold. Then the structural choice probabilities � (xt; zit; �t) are

identi�ed at all points of support.

A key to this result can be seen from the case without endogeneity. For that case, consider the

cumulative distribution F� (�jxt; zit) of �it across markets conditional on (xt; zit). The market

with choice probability at the �th quantile of the distribution of F� (�jxt; zit) is the market with

�t = � (recalling that �t is u (0; 1)). Thus, one identi�es each �t by inverting equation (18):

�t = ��1 (�it;xt; zit) = F� (�itjxt; zit) :

The instrumental variables results of Chernozhukov and Hansen (2005) enable us to extend this

idea to the case of endogenous characteristics.

An open question is whether a similar possibility exists in the multinomial case. Letting

�ijt denote the probability that an individual i in market t selects good j, we have

�ijt = �j (Jt; x1t; : : : ; xJt; zi1t; : : : ziJt; �1t; : : : ; �Jt) j = 1 : : : J . (19)

With (�ijt;Jt; x1t; : : : ; xJt; zi1t; : : : ziJt) observable, this yields, for each market t, a system of Jt

equations in the Jt unknown values of �jt. Following the �inversion� result of Berry (1994)

and Berry and Pakes (2007), we can solve for the product-level unobservables in terms of the

purchase probabilities:

�jt = ��1j (�1t; : : : ; �Jt;Jt; x1t; : : : ; xJt; zi1t; : : : ziJt) :

5.2 Identi�cation of �jt with a Common Choice Probability

5.2.1 Binary Choice

As before, we will begin with the binary choice case to illustrate our insights most simply. Here

we will discuss two results. We �rst consider the general speci�cation of preferences in (5)
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above. We then consider the a more restrictive speci�cation (analogous to (13)) that appears

to be more useful for the multinomial case. For both results we make the following �common

choice probability�assumption:

Assumption 9 For some � 2 (0; 1), for every market t there exists a unique z�t 2supp z
(1)
it such

that Pr
�
yit = 1jz(1)it = z�t

�
= � .

Here we require su¢ cient variation in z(1)it to push the choice probability to � in each market,

not over the whole interval (0; 1) in each market.16 This is a much weaker requirement and is

likely to be satis�ed in many applications.

General Case Consider the speci�cation of preferences in (5). In the binary choice case, the

consumer chooses the inside good if (�xing z(2)it )

z
(1)
it + � (xt; �t; !it) > 0:

With the common choice probability assumption, for each market t we can identify the value z�it

such that

Pr
�
�� (xt; �t; !it) < z

(1)
it jxt; �t; z

(1)
it

����
z
(1)
it =z

�
t

= � :

Then each z�t is the �th quantile of the random variable ��it � �� (xt; �t; !it) conditional on t,

i.e., on (xt; �t). Thus, we can write

z�t = � (xt; �t; �) (20)

for some function � (�; �) that is strictly decreasing in �t.

Identi�cation of the function � (�; �) and, therefore, of each �t; then follows from (20) as

in the preceding sections, again using the nonparametric instrumental variables result of Cher-

nozhukov and Hansen (2005). With each �t known, the observable choice probabilities reveal

16 Implicitly we also require a continuous (region of) support for �
�
xt; �t; z

(2)
it ; !it

�
jxt; �t; z

(2)
it to gaurantee

uniqueness.
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the structural choice probabilities

� (xt; �t; zit) = Pr (yit = 1jxt; �t; zit) (21)

at all points (xt; �t; zit) of support. Thus, we have shown the following result.

Theorem 5 In the binary choice model with preferences given by (5), suppose Assumptions 1,

5, 6, and 9 hold. Then the structural choice probabilities � (xt; �t; zit) are identi�ed at all points

(xt; �t; zit) in their support.

Although we cannot identify the full probability distribution of ui1tjxt; zit; �t, we can obtain

some information about this distribution from every common choice probability. In particular,

we can identify a � (�; �) for each common choice probability � , each then determining the �th

quantile of �� (xt; �t; !it). Since

uit = z
(1)
it + � (xt; �t; !it)

this determines the corresponding quantiles of the distribution of uit conditional on (xt; �t; zit).

In the limit� i.e., with su¢ cient variation in z(1)it to make every � 2 (0; 1) a common choice

probability� all quantiles of the distribution of uit conditional on (xt; �t; zit) are identi�ed, and

we are back to full identi�cation as in Theorem 2. This illustrates the notion of �continuity�

discussed above: the tails of z(1)ijt under the large support assumption are used only to identify

the tails of the conditional distributions of utilities.

Additive � As before, we can replace Assumptions 5 and 6 with Assumptions 7 and 8 if we

impose linear separability in �t, as in (16). Here we also impose a further restriction on the

utility speci�cation in (12)� in particular, that it�it to equal one for each consumer rather than

merely in expectation. After normalizing by it, this leads to the representation

uijt = z
(1)
ijt + �

�
xjt; z

(2)
ijt ; !it

�
+ �jt 8i; j = 1; : : : ;Jt: (22)
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This involves a signi�cant restriction on preferences relative to our previous results, although a

similar restriction has been required for the most general prior results for identi�cation of linear

semiparametric models with heteroskedasticity and endogeneity (e.g., Lewbel (2000)). Thus,

our most restrictive speci�cation (22) is still a generalization relative to the literature, even

without our relaxation of the the large support assumption here.

Theorem 6 In the binary choice model with preferences given by (22), suppose Assumptions 1,

7, 8, and 9 hold. Then the structural choice probabilities � (xt; �t; zit) are identi�ed at all points

(xt; �t; zit) in their support.

Proof. Fixing z(2)it , suppressing it, and de�ning z
�
t as before, we have

� = Pr(��(xt; !it) < z�t + �t jt)

Thus z�t + �t is the �th quantile of ��(xt; !it) conditional on t. Since quantiles of �(xt; !it)jt

are functions of xt alone, we can write

z�t + �t = � (xt; �)

for some function � (�; �), which gives

z�t = � (xt; �)� �t: (23)

Equation (23) can then be used as before to identify � (�; �) (and therefore �t) using the results

of Newey and Powell (2003). As in the preceding section, this is su¢ cient to determine the

structural choice probabilities � (x; �t; zit) = Pr (yit = 1jxt; �t; zit) at all points (xt; �t; zit) of

support.

Once we have identi�ed �t from some common choice probability � , we can generate a large

set of quantiles of �(xt; !it), even if � is the only common choice probability. Consider all the

choice probabilities q generated within market t by moving z(1)it across its entire support in t.

Call each of these q
�
z
(1)
it

�
. For each

�
z
(1)
it ; q

�
z
(1)
it

��
pair, the q

�
z
(1)
it

�
th quantile of �(xt; !it) is
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given by

�
�
xt; q

�
z
(1)
it

��
= z

(1)
it + �t:

Thus, we obtain a new quantile of �(xt; !it) for every observed choice probability in market t.

Additional quantiles of �(xt; !it) may also be obtained from other markets t0with xt0 = xt but

�t0 6= �t. Thus we may be able to recover the CDF of uitjxt; �t; zit over a signi�cant portion of

its domain, even with only a single common choice probability.

5.2.2 Multinomial Choice

For the multinomial case we will maintain the more restrictive representation of preferences in

(22), where

uijt = z
(1)
ijt + �

�
xjt; z

(2)
ijt ; !it

�
+ �jt 8i; j = 1; : : : ;Jt: (24)

Letting 4Jt denote the jJtj�1 dimensional unit simplex, we generalize the previous common

choice probability assumption in the natural way:

Assumption 10 For all Jt, there exists some q = (q0; q1; : : : ; qJ) 2 4Jt such that for every

market t there is a unique vector zqt = (z
q
1t; : : : ; z

q
1t) 2supp

�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�
such that qj = Pr(yit =

j jx1t; : : : ; xJtt; zi1t; : : : ; ziJtt)z(1)it =zqt for all j = 1; : : : ; Jt:

If �
�
xjt; z

(2)
ijt ; !it

�
is continuously distributed, uniqueness of zqt is guaranteed by the one-to-

one mapping between choice probabilities and the deterministic component of utilities, demon-

strated in Berry (1994) and Berry and Pakes (2007). Beyond this, the requirement of Assump-

tion 10 is that the vector
�
z
(1)
i1t ; : : : ; z

(1)
iJt

�
have su¢ cient support to drive the choice probability

vector to q in each market. This is clearly weaker than the full support condition, which requires

all elements of 4Jt to be common choice probabilities. In practice, this condition is most likely

to hold when the choice characteristics
�
xjt; �jt

�
do not vary too wildly across markets.

Theorem 7 In the multinomial choice model with preferences given by (24), suppose Assump-

tions 1, 7 , 8, and 10 hold. Then the structural choice probabilities �j
�
Jt; fxjt; �jt; zijtgj2Jt

�
are identi�ed at all

�
Jt; fxjt; �jt; zijtgj2Jt

�
in their support.
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Proof. Under (24), choice probabilities depend only on the sums

�ijt � z
(1)
ijt + �jt (25)

rather than on each z(1)ijt and �jt separately. In particular, �xing the vector z
(2)
t ,

pijt = Pr(yit = j jx1t; : : : ; xJtt; �1t; : : : ; �Jtt; zi1t; : : : ; ziJtt)

= Pr(yit = j jx1t; : : : ; xJtt; �i1t; : : : ; �iJtt)

= Pr

�
� (xjt; !it) + �ijt � max

�
0;max

k
� (xkt; !it) + �ikt

��
:

From (25) and Assumption 10, for all (x1t; : : : ; xJtt) there is a unique vector

� (xt; q) = (�1 (xt; q) :; : : : ; �Jt (xt; q))

such that

�j (xt; q) = �jt + z
q
jt (26)

and

qj = pijt = Pr(yit = j jx1t; : : : ; xJtt; �1 (xt; q) ; : : : ; �Jt (xt; q)) 8j:

From (26),

zqjt = �j (xt; q)� �jt 8j; t: (27)

These equations identify the functions �j (�; q) and each �jt for all j and t under Assumptions

7 and 8, using the results for the additively separable nonparametric IV regression in Newey

and Powell (2003). As demonstrated above, knowledge of all �jt identi�es the structural choice

probability functions.
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6 Testable Restrictions

Our model is quite general but relies on two important assumptions: (i) existence of a vertical

additively separable observable, z(1)ijt ; (ii) adequacy of a scalar vertical choice-speci�c unobserv-

able, �jt. Here we show that both assumptions imply testable restrictions.
17

Our assumption that preferences can be represented by conditional indirect utilities in which

z
(1)
ijt enters in an additively separable fashion (with positive coe¢ cient) has two implications. The

�rst concerns the reduced form choice probabilities, and is immediate from the assumption that

the utility from good j is strictly increasing in z(1)ijt .

Theorem 8 Suppose preferences are characterized by (5). Then under Assumption 1, pijt �

Pr (yit = jjJt; fxjt;wjt; ziktgk2Jt) is increasing in z
(1)
ijt .

The second involves an overidentifying restriction. Let Fu
�
�jfxjt; �jt; zijtgj2Jt

�
denote the

joint distribution of conditional indirect utilities for the choice set Jt. De�ne the sets

Aj =

�
(u1; : : : ; uJt) 2 RJt : uj > max

�
0;max

k 6=j
uk

��
:

so that

�j
�
Jt; fxjt; �jt; zijtgj2Jt

�
=

Z
Aj

dFu
�
u1; : : : ; uJt jfxjt; �jt; zijtgj2Jt

�
8j: (28)

Under the large support condition, we showed in Theorems 2 and 3 that Fu
�
�jfxjt; �jt; zijtgj2Jt

�
was identi�ed, as was each �jt. Knowledge of Fu

�
�jfxjt; �jt; zijtgj2Jt

�
determines the right-

hand-side of (28). With each �jt known, the observable choice probabilities also directly identify

the structural choice probabilities �j
�
Jt; fxjt; �jt; zijtgj2Jt

�
on the left-hand side, as noted above.

Noting that the proofs of Theorems 2 and 3 did not use the condition (28) (but did rely on the

linearity of utilities in z(1)ijt ), we have the following.

Theorem 9 Under the hypotheses of Theorem 2 or Theorem 3, the overidentifying restrictions

(28) must hold.

17The random utility discrete choice paradigm with stable preferences (as in our Assumption 1) also generates
well known testable restrictions (see, e.g., Block and Marschak (1960) and Falmagne (1978)).
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The assumption of a scalar vertical unobservable also leads to testable implications. We

show this here for the binary choice case for simplicity. To state the result it will be useful to

recall Theorem 5 and let �t (z
�
t ; � ; xt) denote the value of �t identi�ed from the common choice

probability � in each market t. As usual, we condition on z(2)it and suppress it in the notation.

Theorem 10 In the binary choice model with preferences given by (5), suppose Assumptions 1,

5, 6, and 9 hold. Then �t (z
�
t ; � ; xt) must be strictly decreasing in z

�
t across markets.

Proof. This is immediate from the fact that uit is strictly increasing in both z
(1)
it and �t under

the assumptions of the model.

The following example shows one way that a model with a horizontal rather than a vertical

unobservable characteristic can lead to a violation of this restriction.

Example 5 Suppose � (xt; �t; �it) = ��it�t, with �it �N(0; 1). Take � > 1=2 and consider the

set of markets in which �t (z
�
t ; � ; xt) > 0.18 Recall that each z�t is observable and de�ned such

that Pr (�it�t < z�t ) = � . Letting � denote the standard normal CDF, this requires

�

�
z�t
�t

�
= � 8t: (29)

Therefore, by construction, z
�
t
�t
will take the same value in every market. Since each z�t must

also be positive when � > 1=2, this requires a strictly positive correspondence between z�t and �t

across markets. Thus, �t (z
�
t ; � ; xt) will violate the testable restriction of the Theorem 10.

Theorem 11 In the binary choice model with preferences given by (5), suppose Assumptions 1,

5, 6, and 9 hold. In addition, suppose that for distinct � and � 0 in the interval (0; 1), for every

market t there exists a unique z�t 2supp z
(1)
it such that Pr

�
yit = 1jz(1)it = z�t

�
= � and a unique

z�
0
t 2supp z

(1)
it such that Pr

�
yit = 1jz(1)it = z�

0
t

�
= � 0. Then �t (z

�
t ; � ; xt) = �t

�
z�

0
t ; �

0; xt
�
for all

t.

Proof. This is immediate from the fact that, under the assumptions of the model, �t (z�t ; � ; xt) =

�t

�
z�

0
t ; �

0; xt
�
= �t.

18An analogous argument applies to the set of markets with �t (z
�
t ; � ; xt) < 0.
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The following example demonstrates that this restriction can fail if the restriction to a scalar

unobservable is violated.

Example 6 Consider a model with two vertical unobservables, �1t and �
2
t . Let

�
�
xt; �

1
t ; �

2
t ; !it

�
=

8<: �it
�
�1t + �

2
t

�
�it < 1=2

�it
�
�1t + 2�

2
t

�
�it � 1=2

with �it �u[0; 1]. Let �1t and �
2
t be independent, each uniform on (0; 1). By de�nition, when

z
(1)
it = z�t only consumers with vit > 1�� choose the inside good. Thus, the value of z�t is deter-

mined by the preferences of the consumer with vit = 1�� . Now consider the �t (�) inferred under

the incorrect assumption of a scalar unobservable. When � > 1=2, �t (�) = F�1+�2
�
�1t + �

2
t

�
where F�1+�2 is the CDF of the sum of two independent uniform random variables. Thus, if

for market t,
�
�1t + �

2
t

�
falls at the � quantile in the cross-section of markets, �t (�) will equal �.

For � 0 < 1=2, �t (�
0) = F�1

�1+2�2

�
�1t + 2�

2
t

�
; i.e, if �1t + 2�

2
t fall at the �

0 quantile of this sum in

the cross section of markets, �t (�
0) will be �0. In general, � 6= �0:

7 Relation to the Literature

Important early work on identi�cation of discrete choice models includes Manski (1985), Manski

(1988), Matzkin (1992), and Matzkin (1993). Manski considered a semi-parametric linear

random coe¢ cients model of binary response, focusing on identi�cation of the slope parameters

determining mean utilities. Matzkin considered nonparametric speci�cations of binomial and

multinomial response models with independent, additively separable taste shocks (no random

coe¢ cients). None of this earlier work allowed choice-speci�c unobservables �jt or endogenous

choice characteristics.

Relative to this early work our framework involves two important generalizations. One is

heterogeneity in consumer preferences for choice characteristics. The other is the existence of

unobserved choice characteristics that are correlated with observable choice characteristics.

Heterogeneity in preferences for characteristics has previously been explored using random
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coe¢ cients models. Identi�cation of linear random-coe¢ cients binary choice models has been

considered by Ichimura and Thompson (1998) and Gautier and Kitamura (2007). Briesch, Chin-

tagunta, and Matzkin (2005) consider multinomial choice, allowing some generalizations of the

linear random coe¢ cients model but requiring mutual independence of all taste shocks. Recent

work by Fox and Gandhi (2008) explores identi�ability of several related models, including a

semiparametric random coe¢ cients multinomial choice model. All of these papers require addi-

tional assumptions, and none relaxes our requirement of linearity in at least one characteristic.

Importantly, none provides a complete treatment of choice-speci�c unobservables or endogenous

choice characteristics, which are typically essential in the context of demand estimation.

Work considering endogenous choice characteristics includes Lewbel (2000), Honoré and Lew-

bel (2002), Hong and Tamer (2004), Blundell and Powell (2004), Lewbel (2005), and Magnac

and Maurin (2007). These all consider linear semiparametric models with a single additively

separable taste shock for each choice; i.e. no heterogeneity in preferences for choice character-

istics. All but the two papers by Lewbel limit attention to binary response models, which can

be signi�cantly simpler and can, under additional restrictions, be amenable to control function

methods in the context of demand estimation.

8 Conclusion

We have examined the identi�ability of multinomial choice models of demand. Our framework

allows a nonparametric distribution-free speci�cation of random utility with endogenous choice

characteristics, unknown heteroskedasticity, and correlated taste shocks. Our results are ob-

tained using standard assumptions from the literature, and we have shown that for some ques-

tions a �large support�assumption can be relaxed considerably while preserving identi�cation

of key features. Our general approach relied on using variation in choice probabilities within a

market to trace out some or all of the distribution of utilities conditional on a choice set, while

using variation in the marginal distribution of utility across choices (within and across markets)

to identify the role of unobserved product characteristics.

One reason we have been able to make progress in well worn territory is the generality of the
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model we consider. This may be counterintuitive. One might have thought that starting with

more restrictive models� e.g., the linear random coe¢ cient model� would make identi�cation

results more easily attainable. So it might be surprising that we obtain results for a much more

general model while simultaneously avoiding some restrictions (e.g., independence of random

coe¢ cients) required in the prior literature. However, this intuition may be misleading. To

see why, consider the dimensionality of the primitives of our model. Given a choice set, the joint

distribution of the conditional indirect utilities is Jt-dimensional. Contrast this with a linear

random coe¢ cients model without unobserved product characteristics, where

uijt = xjt�i + �ijt:

In that case the structure consists of the joint distribution of f�i; �ijgj . If xjt is k-dimensional,

the joint distribution of f�i; �ijgj has Jt + k components. Since the observable (conditional

on the choice set) is the Jt-dimensional vector (pi1t; : : : ; piJtt), it should not be surprising that

additional assumptions must be imposed to obtain identi�cation of the linear random coe¢ cients

model. Focusing on the nonparametric joint distribution of utilities directly, however, naturally

limits the dimensionality of the primitives to that of the observables.

A second source of progress is our recognition that for many purposes the structural choice

probabilities alone determine the answers to the economic questions of interests. In particu-

lar, excluding welfare analysis, motivations for demand estimation in practice typically require

identi�cation only of the demand system, not of the underlying preference structure. For this,

the critical step is uncovering choice-speci�c unobservables, �jt. Such unobservables have often

been ignored in the prior literature, limiting the applicability to many important environments

(notably, almost any application to demand). We have shown that these choice-speci�c unob-

servables, and therefore the structural choice probabilities that fully characterize demand, are

identi�ed with under support conditions likely to hold in many applications.

One important distinction between our work and much (indeed, most) of the prior literature

is our neglect of estimation. Although our identi�cation proofs may suggest new nonparametric

or semiparametric estimation approaches, additional work is needed. Moving from identi�cation
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typically requires additional smoothness conditions at a minimum, and in practice additional

structure may be desirable for estimation. However, our main objective has been to provide

additional exploration of identi�cation in a very general setting in order to better understand the

potential scope and limitations of empirical work using choice data to estimate the underlying

structure of demand and preferences.
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