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In this paper I identify a condition on the finite dimensional copulas of a univariate time
series that ensures the series is weakly dependent in the sense of Doukhan and Louhichi (1999).
This condition relates to the Kolmogorov-Smirnov distance between the joint copula of a group of
variables in the past and a group of variables in the future, and the copula that would obtain if the
past and future were independent. Interestingly, the implied form of weak dependence is not with
respect to the class of Lipschitz functions, the class considered in most depth by Doukhan and
Louhichi, but rather with respect to the class of absolutely continuous functions. I use the weak
dependence property to prove a new strong law of large numbers and new invariance principles
in which the only control on temporal dependence is expressed in terms of a condition on finite
dimensional copulas.
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1. Introduction

The recent book by Cherubini, Luciano and Vecchiato (2005) provides ample description
of the now widespread use of copulas in statistical models of multivariate financial data. The
majority of applications surveyed in said book share a common feature: copulas are used to model
the contemporaneous relationship between multiple time series. A related but distinct approach is
to use copulas to characterize the temporal relationship between observations in a univariate time
series. In this context, copulas have the potential to substantially enrich our current catalogue of
models for temporal dependence.

To the author’s knowledge, the first paper to explicitly consider the relationship between
copulas and temporal dependence was that of Darsow, Nguyen and Olsen (1992), who showed
that the finite dimensional copulas of a Markov chain satisfy a certain factorization property.
Ibragimov (2005) extended this result to the case of higher order Markov chains, and proposed a
consistent nonparametric estimator of the finite dimensional copulas of β-mixing processes. Chen
and Fan (2006) identified a condition on the bivariate copulas of stationary Markov chains that
ensures the chain is β-mixing.

This last result of Chen and Fan provides a partial answer to an interesting question. Loosely
speaking, mixing is a property of time series which depends on the way in which observations relate
to one another as they become more distantly separated. Finite dimensional copulas completely
characterize the temporal dependence structure of a time series. Therefore, one would expect (or
hope) that mixing can be verified directly from an explicit characterization of finite dimensional
copulas. In general, it is not known whether this is in fact the case. Chen and Fan’s result
provides an affirmative answer to this question for the special case of Markovian time series, but
no comparable result is available for the non-Markovian case. Moreover, even in the Markovian
context, verification of Chen and Fan’s condition on copulas is a difficult task which has yet to
be achieved in any cases of practical interest.

No general result linking the mixing property to the finite dimensional copulas of a time series
is provided in this paper. Instead, a link is established between copulas and an alternative notion
of weak dependence introduced by Doukhan and Louhichi (1999).2 Doukhan and Louhichi’s
definition of weak dependence involves placing a bound on the covariance between a function
of a finite number of variables in the past and another function of a finite number of variables
in the future. Said bound may depend on the functions in question and must tend to zero as
the past and future become more distantly separated. Doukhan and Louhichi prove moment
inequalities and functional central limit theory for time series that are weakly dependent in this
sense. The generality of their approach is convincingly demonstrated: strong mixing processes,
linear processes, and numerous models employed commonly in econometrics (Nze and Doukhan,
2004) are shown to satisfy their definition of weak dependence.

The contribution of this paper is the identification of a condition on the finite dimensional

2The author is deeply indebted to Rustam Ibragimov, who suggested the possibility of such a
link in private communication.
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copulas of a univariate time series that ensures Doukhan and Louhichi’s version of weak depen-
dence is satisfied. This condition relates to the Kolmogorov-Smirnov distance between the joint
copula of a group of variables in the past and a group of variables in the future, and the copula
that would obtain if the past and future were independent. Interestingly, the implied form of weak
dependence does not satisfy the assumptions of Doukhan and Louhichi’s central limit theorem.
We prove new laws of large numbers and invariance principles for functions of processes whose
copulas satisfy the aforementioned condition.

The remainder of this paper is structured as follows. In section 2 the link between finite
dimensional copulas and a version of Doukhan and Louhichi’s weak dependence is stated, proved,
and discussed. Section 3 contains a law of large numbers, central limit theorem, and functional
central limit theorem for functions of processes that are weakly dependent in this sense. Section
4 concludes with a discussion of possible avenues for future research on this topic.

2. Copulas and Weak Dependence

Doukhan and Louihichi (1999) proposed the following definition of weak dependence.

Definition 1: Let {Xt : t ∈ Z} be a collection of random variables, let θ = {θr : r ∈ N} be
a sequence of real numbers tending to zero as r → ∞, let F be a class of functions that each
map Ru to R for some u ∈ N, and let ψ be a function mapping F2 to R. Say that {Xt} is
(θ,F , ψ)-weak dependent if, for any u, v ∈ N, any h, k ∈ F defined on Ru and Rv respectively,
and any t1 < · · · < tu+v such that tu+1 − tu ≥ r,

∣∣Cov
(
h (Xt1 , . . . , Xtu) , k

(
Xtu+1 , . . . , Xtu+v

))∣∣ ≤ ψ (h, k) θr.

The usefulness of this definition depends largely on the choice of F and ψ. Doukhan and
Louhichi prove functional central limit theory for stationary (θ,L1, ψ)-weak dependent processes,
where L1 is the class of all real valued Lipschitz functions (w.r.t. the l1 norm on Ru) bounded by
unity, and ψ (h, k) = (u + v)d (Lip (h) + Lip (k))c for some d ≥ 0, c ∈ [0, 2]. Under appropriate
regularity conditions, (θ,L1, ψ)-weak dependence is satisfied for suitably chosen θ by α-mixing
processes, linear processes, and Markov chains; see Doukhan and Louhichi (1999) and Nze and
Doukhan (2004) for details on these and other examples.

An alternative choice of F and ψ naturally arises when studying the relationship between
copulas and (θ,F , ψ)-weak dependence. We will choose F to be the class of all absolutely contin-
uous real valued functions on Ru for some u ∈ N, and set ψK (h, k) = ‖h‖∗K ‖k‖∗K , where ‖h‖∗K is a
weighted sum of the supremum of each of the weak derivatives of h. This leads us to the following
special case of (θ,F , ψ)-weak dependence, which we term (θ,K)-dependence.

Definition 2: Let {Xt : t ∈ Z} be a collection of random variables. Given a sequence of real
numbers θ = {θr : r ∈ N} tending to zero as r → ∞, and a constant K ≥ 0, say that {Xt}
is (θ,K)-dependent if {Xt} is (θ,F , ψK)-weak dependent, where F is the class of all absolutely
continuous functions mapping Ru to R for some u ∈ N, ψK (h, k) = ‖h‖∗K ‖k‖∗K , and the norm
‖·‖∗K of an absolutely continuous function h : Ru → R is given by

‖h‖∗K = ‖h‖∞ +
u∑

s=1

∑

{j1,...,js}⊂{1,...,u}
Ks

∥∥∥∥
∂sh

∂xj1 · · · ∂xjs

∥∥∥∥
∞

.
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Moment inequalities and invariance principles for (θ,K)-dependent processes will be devel-
oped in section 3 of this paper. Our main result in this section identifies a condition on the finite
dimensional copulas of a process {Xt} that ensures Yt = φ (Xt) is (θ, K)-dependent for suitable
choices of θ, K and φ. This condition is as follows.

Assumption 1: Let {Xt : t ∈ Z} be a sequence of random variables with finite dimensional
copulas Ct1,...,tm : [0, 1]m → [0, 1], t1 < · · · < tm. Say that {Xt} satisfies Assumption 1 if, for
any u, v ∈ N and any t1 < · · · < tu+v such that tu+1 − tu ≥ r,

∥∥Ct1,...,tu+v − Ct1,...,tuCtu+1,...,tu+v

∥∥
∞ ≤ Mu+vθr

for some M ∈ R and some sequence {θr} converging to zero as r →∞.

The distance
∥∥Ct1,...,tu+v

− Ct1,...,tu
Ctu+1,...,tu+v

∥∥
∞ relates closely to the metrics introduced

by Schweizer and Wolff (1981) to quantify nonlinear dependence between random variables. Our
first theorem provides the link between Assumption 1 and (θ, K)-dependence.

Theorem 1: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying As-
sumption 1 for some M ∈ R and some sequence {θr} converging to zero as r → ∞. Let
Yt = φ (Xt) for some function φ : R→ R; then {Yt} is (θ, K)-dependent with K = M ‖φ‖TV

supp(X0)
,

M times the total variation of φ on the support of X0.

An important special case of Theorem 1 occurs when φ is the identity function and the
random variables {Xt} are bounded, with |Xt| ≤ a for some a < ∞; Theorem 1 then implies
that {Xt} is (θ, K)-dependent with K = 2Ma. Invariance principles for unbounded Xt can be
obtained via standard truncation arguments. We will see in the next section that this leads to
central limit theory with a tradeoff between memory decay and moment existence reminiscent of
McLeish’s (1975) foundational work on mixingales.

The key to proving Theorem 1 is provided by the following lemma, which relates the covariance
between h (Xt1 , . . . , Xtu) and k

(
Xtu+1 , . . . , Xtu+v

)
to a sum of distances between copulas.

Lemma 1: Let {Xt : t ∈ Z} be a collection of random variables with U (0, 1) marginal dis-
tributions and finite dimensional distribution functions Ft1,...,tm : [0, 1]m → [0, 1], t1 < · · · < tm.
Then for any u, v ∈ N and any functions h : [0, 1]u → R and k : [0, 1]v → R of bounded variation,

Cov
(
h (Xt1 , . . . , Xtu) , k

(
Xtu+1 , . . . , Xtu+v

))

=
u∑

m=1

v∑
n=1

∑

{i1,...,im}⊂{1,...,u}

∑

{j1,...,jn}⊂{1,...,v}
(−1)m+n

×
∫

[0,1]m+n

(
Fti1 ,...,tim ,tu+j1 ,...,tu+jn

− Fti1 ,...,tim
Ftu+j1 ,...,tu+jn

)
dhi1,...,imkj1,...,jn ,

where ∂hi1,...,im denotes the density of the restriction of h to [0, 1]m obtained by setting the ith
argument of h equal to 1 whenever i /∈ {i1, . . . , im}, and ∂kj1,...,jn is similarly defined.

Proof of Lemma 1: For notational clarity we assume that the finite dimensional distribution
functions Ft1,...,tm : [0, 1]m → [0, 1] and the functions h, k possess densities with respect to
multidimensional Lebesgue measure, but essentially the same proof holds without this assumption,
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using Riemann-Stieltjes integration by parts in place of the ordinary integration by parts formula
used below. Let F̃ = Ft1,...,tu,tu+1,...,tu+v − Ft1,...,tuFtu+1,...,tu+v . For a set B = {b1, . . . , bq} with
1 ≤ b1 < · · · < bq ≤ u + v and a number a ∈ {0, . . . , u + v}, define B (a) = {b ∈ B : b > a}, and
let

Za
B =

∫

[0,1]q

(
∂|B(a)|hk∏
b∈B(a) ∂xb

∣∣∣∣∣
xs=1∀s/∈B

)(
∂|B\B(a)|F̃∏
b∈B\B(a) ∂xb

∣∣∣∣∣
xs=1∀s/∈B

)
∏

b∈B

dxb.

Set Za
∅ = 0. Let p = max {p : bp ≤ a}, so that Za

B = Z
bp

B . Since F̃ (x) = 0 whenever any element
of x is zero, integration by parts gives

Za
B

=
∫

[0,1]q−1


 ∂|B(bp)|hk∏

B(bp) ∂xb

∣∣∣∣∣
xs=1,s/∈B\{bp}





 ∂|(B\{bp})\B(bp)|F̃∏

(B\{bp})\B(bp) ∂xb

∣∣∣∣∣
xs=1,s/∈B\{bp}


 ∏

B\{bp}
dxb

−
∫

[0,1]q


 ∂|B(bp−1)|hk∏

B(bp−1)
∂xb

∣∣∣∣∣
xs=1,s/∈B





 ∂|B\B(bp−1)|F̃∏

B\B(bp−1)
∂xb

∣∣∣∣∣
xs=1,s/∈B


∏

B

dxb

= Z
bp

B\{bp} − Z
bp−1
B .

Iterating this relation, we obtain

Za
B = Z

bp

B\{bp} − Z
bp−1

B\{bp−1} + Z
bp−2
B

=
p∑

m=0

(−1)m
Z

bp−m

B\{bp−m}

=
p∑

m=0

(−1)m
Z

bp−m−1

B\{bp−m}

where bi = 0 for i ≤ 0. It is now a simple matter to verify by induction that

Za
B =

p∑
m=0

∑

1≤i1<···<im≤p

(−1)p−m
Z0

B\{bi1 ,...,bim}.

(When m = 0, take
∑

1≤i1<···<im≤p (−1)p−m
Z0

B\{bi1 ,...,bim} = (−1)p
Z0

B .) Observe that

Cov
(
h (Xt1 , . . . , Xtu) , k

(
Xtu+1 , . . . , Xtu+v

))

= Zu+v
{1,...,u+v}

=
u+v∑
m=0

∑

1≤i1<···<im≤u+v

(−1)u+v−m
Z0
{1,...,u+v}\{i1,...,im}

=
u+v∑
m=0

∑

1≤i1<···<im≤u+v

(−1)m
Z0
{i1,...,im}.

It is clear from the definition of F̃ that Z0
{i1,...,im} = 0 whenever im ≤ u or i1 > u, and so

Cov
(
h (Xt1 , . . . , Xtu) , k

(
Xtu+1 , . . . , Xtu+v

))

=
u∑

m=1

v∑
n=1

∑

1≤i1<···<im≤u

∑

1≤j1<···<jn≤v

(−1)m+n
Z0
{i1,...,im,u+j1,...,u+jn}.

5



The proof is completed by observing that

Z0
{i1,...,im,u+j1,...,u+jn}

=
∫

[0,1]m+n

∂hi1,...,im
∂kj1,...,jn

(
F̃

∣∣∣
xs=1,s/∈{i1,...,im,u+j1,...,u+jn}

)

=
∫

[0,1]m+n

∂hi1,...,im
∂kj1,...,jn

(
Fti1 ,...,tim ,tu+j1 ,...,tu+jn

− Fti1 ,...,tim
Ftu+j1 ,...,tu+jn

)

=
∫

[0,1]m+n

(
Fti1 ,...,tim ,tu+j1 ,...,tu+jn

− Fti1 ,...,tim
Ftu+j1 ,...,tu+jn

)
dhi1,...,im

kj1,...,jn
. ¥

With Lemma 1 in hand, it is now a simple matter to prove Theorem 1.

Proof of Theorem 1: For t ∈ Z, let Zt be a U (0, 1) random variable such that F−1 (Zt) =
Xt, where F is the distribution function of X0. The collection of random variables {Zt} has finite
dimensional distribution functions Ct1,...,tm

: [0, 1]m → [0, 1], t1 < · · · < tm, so Lemma 1 implies
that, for any u, v ∈ N, any t1 < · · · < tu+v with tu+1 − tu > r, and any absolutely continuous
functions h : Ru → R and k : Rv → R,

∣∣Cov
(
h (Yt1 , . . . , Ytu

) , k
(
Ytu+1 , . . . , Ytu+v

))∣∣
=

∣∣Cov
(
h

(
φ

(
F−1 (Zt1)

)
, . . . , φ

(
F−1 (Ztu)

))
, k

(
φ

(
F−1

(
Ztu+1

))
, . . . , φ

(
F−1

(
Ztu+v

))))∣∣

≤
u∑

m=1

v∑
n=1

∑

{i1,...,im}⊂{1,...,u}

∑

{j1,...,jn}⊂{1,...,v}

∥∥∥∥
∂mh

∂xi1 · · · ∂xim

∥∥∥∥
∞

∥∥∥∥
∂nk

∂xj1 · · · ∂xjn

∥∥∥∥
∞

×
∫

[0,1]m+n

∣∣Cti1 ,...,tim ,tu+j1 ,...,tu+jn
− Cti1 ,...,tim

Ctu+j1 ,...,tu+jn

∣∣

d
∥∥φ ◦ F−1

∥∥TV

[0,x1]
· · · d∥∥φ ◦ F−1

∥∥TV

[0,xm+n]

≤
u∑

m=1

v∑
n=1

∑

{i1,...,im}⊂{1,...,u}

∑

{j1,...,jn}⊂{1,...,v}

∥∥∥∥
∂mh

∂xi1 · · · ∂xim

∥∥∥∥
∞

∥∥∥∥
∂nk

∂xj1 · · · ∂xjn

∥∥∥∥
∞

×∥∥Cti1 ,...,tim ,tu+j1 ,...,tu+jn
− Cti1 ,...,tim

Ctu+j1 ,...,tu+jn

∥∥
∞

(∫ 1

0

d
∥∥φ ◦ F−1

∥∥TV

[0,x]

)m+n

=
u∑

m=1

v∑
n=1

∑

{i1,...,im}⊂{1,...,u}

∑

{j1,...,jn}⊂{1,...,v}

∥∥∥∥
∂mh

∂xi1 · · · ∂xim

∥∥∥∥
∞

∥∥∥∥
∂nk

∂xj1 · · · ∂xjn

∥∥∥∥
∞

×
(
M

∥∥(
φ ◦ F−1

)∥∥TV

[0,1]

)m+n

θr

=
u∑

m=1

v∑
n=1

∑

{i1,...,im}⊂{1,...,u}

∑

{j1,...,jn}⊂{1,...,v}

∥∥∥∥
∂mh

∂xi1 · · · ∂xim

∥∥∥∥
∞

∥∥∥∥
∂nk

∂xj1 · · · ∂xjn

∥∥∥∥
∞

Km+nθr

≤ ‖h‖∗K ‖k‖∗K θr. ¥

We will now consider some sufficient conditions under which Assumption 1 is satisfied. de
la Peña, Ibragimov and Sharakhmetov (2006, Theorem 3) have shown that the density c of any
absolutely continuous n-dimensional copula C can be written as

c (x1, . . . , xn) = 1 +
n∑

j=2

∑

1≤i1≤···≤ij≤n

gi1,...,ij

(
xi1 , . . . , xij

)
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for some canonical functions
{
gi1,...,ij

}
satisfying specified conditions on integrability, degeneracy

and positive semidefiniteness. The following proposition relates Assumption 1 to these canonical
functions. For convenience, we set gi1,...,ij = 0 whenever j = 1.

Proposition 1: Let {Xt : t ∈ Z} be a stationary sequence of random variables with absolutely
continuous finite dimensional copulas Ct1,...,tm : [0, 1]m → [0, 1], t1 < · · · < tm, and corresponding
canonical functions gt1,...,tm

: [0, 1]m → [0, 1], t1 < · · · < tm. Suppose that, for any u, v ∈ N and
any t1 < · · · < tu+v such that tu+1 − tu ≥ r,

∥∥gt1,...,tu+v − gt1,...,tugtu+1,...,tu+v

∥∥
1
≤ Mu+vθr

for some M ∈ R and some sequence of real numbers {θr}. Then, for any u, v ∈ N and any
t1 < · · · < tu+v such that tu+1 − tu ≥ r,

∥∥Ct1,...,tu+v
− Ct1,...,tu

Ctu+1,...,tu+v

∥∥
∞ ≤ (1 + M)u+v

θr.

Proof of Proposition 1: We have
∥∥Ct1,...,tu+v − Ct1,...,tuCtu+1,...,tu+v

∥∥
∞

≤
∥∥ct1,...,tu+v − ct1,...,tuctu+1,...,tu+v

∥∥
1

=

∥∥∥∥∥∥

u+v∑
m=2

∑

1≤i1≤···≤im≤u+v

gti1 ,...,tim
−

u∑
m=2

∑

1≤i1≤···≤im≤u

gti1 ,...,tim

−
v∑

m=2

∑

1≤i1≤···≤im≤v

gtu+i1 ,...,tu+im

−



u∑
m=2

∑

1≤i1≤···≤im≤u

gti1 ,...,tim







v∑
m=2

∑

1≤i1≤···≤im≤v

gtu+i1 ,...,tu+im




∥∥∥∥∥∥
1

=

∥∥∥∥∥∥

u∑
m=1

v∑
n=1

∑

1≤i1≤···≤im≤u

∑

1≤j1≤···≤jn≤u

(
gti1 ,...,tim ,tu+j1 ,...,tu+jn

− gti1 ,...,tim
gtu+j1 ,...,tu+jn

)
∥∥∥∥∥∥

1

≤
u∑

m=1

v∑
n=1

∑

1≤i1≤···≤im≤u

∑

1≤j1≤···≤jn≤u

∥∥gti1 ,...,tim ,tu+j1 ,...,tu+jn
− gti1 ,...,tim

gtu+j1 ,...,tu+jn

∥∥
1

≤



u∑
m=1

∑

1≤i1≤···≤im≤u

Mm







v∑
n=1

∑

1≤j1≤···≤jn≤u

Mn


 θr

=

(
u∑

m=1

u!
(u−m)!m!

Mm

)(
v∑

n=1

v!
(v − n)!n!

Mn

)
θr.

Our desired result now follows from the binomial theorem. ¥
Given knowledge of the canonical functions corresponding to a class of finite dimensional

copulas, we can use Proposition 1 to verify Assumption 1. For instance, one well known class of
copulas is the class of generalized multivariate Eyraud-Farlie-Gumbel-Morgenstern copulas; see
Johnson and Kotz (1975), Cambanis (1977), and Sharakhmetov and Ibragimov (2002). These
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copulas are of the form

Ct1,...,tn
(x1, . . . , xn) =

(
n∏

i=1

xi

) 
1 +

n∑
m=2

∑

1≤j1≤···≤jm≤n

αj1,...,jm

m∏
i=1

(
1− xtji

)

 ,

where {αj1,...,jm} are constants satisfying

n∑
m=2

∑

1≤j1≤···≤jm≤n

αj1,...,jm
δj1 · · · δjm

≥ −1

for all n ∈ N, δi ∈ {0, 1}, i = 1, . . . , n. de la Peña, Ibragimov and Sharakhmetov (2006) observe
that the corresponding canonical functions are of the form

gt1,...,tn (x1, . . . , xn) = αt1,...,tn

n∏
i=1

(1− 2xi) .

It is easy to see that if
∣∣αt1,...,tu+v

− αt1,...,tu
αtu+1,...,tu+v

∣∣ ≤ Mu+vθr for some M and θ, then
these canonical functions satisfy

∥∥gt1,...,tu+v − gt1,...,tugtu+1,...,tu+v

∥∥
1

=
(∫ 1

0

|1− 2x| dx

)u+v ∣∣αt1,...,tu+v − αt1,...,tuαtu+1,...tu+v

∣∣

=
(

1
2

)u+v ∣∣αt1,...,tu+v − αt1,...,tuαtu+1,...tu+v

∣∣

≤
(

1
2
M

)u+v

θr.

Proposition 1 thus implies that
∣∣αt1,...,tu+v − αt1,...,tuαtu+1,...,tu+v

∣∣ ≤ Mu+vθr is a sufficient con-
dition for the class of generalized multivariate Eyraud-Farlie-Gumbel-Morgenstern copulas to
satisfy Assumption 1.

Darsow, Nguyen and Olson (1992) and Ibragimov (2005) have shown that, if {Xt} is a Markov
chain of order k with absolutely continuous finite dimensional copulas, then the densities of those
copulas satisfy

ct1,...,tm+n−k
(x1, . . . , xm+n−k) · ctm−k+1,...,tm (xm−k+1, . . . , xm)

= ct1,...,tm (x1, . . . , xm) · ctm−k+1,...,tm+n−k
(xm−k+1, . . . , xm+n−k)

for any t1 < · · · < tm+n−k, m ≥ k, n ≥ k. We can use this property to identify a sufficient
condition for the copulas of a Markov chain to satisfy Assumption 1.

Proposition 2: Let {Xt : t ∈ Z} be a stationary Markov chain of order k with absolutely
continuous finite dimensional copulas Ct1,...,tm : [0, 1]m → [0, 1], t1 < · · · < tm, and corresponding
copula densities ct1,...,tm : [0, 1]m → [0, 1], t1 < · · · < tm. Suppose that, for any u, v ≤ k and any
t1 < · · · < tu+v such that tu+1 − tu ≥ r,

∥∥ct1,...,tu+v − ct1,...,tuctu+1,...,tu+v

∥∥
1
≤ θr

for some sequence of real numbers {θr}. Then, for any u, v ∈ N and any t1 < · · · < tu+v such
that tu+1 − tu ≥ r, ∥∥Ct1,...,tu+v − Ct1,...,tuCtu+1,...,tu+v

∥∥
∞ ≤ θr.
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Proof of Proposition 2: For convenience we assume u, v > k; the proof can easily be
adapted for the case where u ≤ k or v ≤ k. We have

∥∥Ct1,...,tu+v
− Ct1,...,tu

Ctu+1,...,tu+v

∥∥
∞

≤
∥∥ct1,...,tu+v − ct1,...,tuctu+1,...,tu+v

∥∥
1

=
∥∥∥∥

ct1,...,tu
ctu−k+1,...,tu+k

ctu+1,...,tu+v

ctu−k+1,...,tu
ctu+1,...,tu+k

− ct1,...,tu
ctu+1,...,tu+v

∥∥∥∥
1

=
∥∥∥∥ct1,...,tu

(
ctu−k+1,...,tu+k

ctu−k+1,...,tu
ctu+1,...,tu+k

− 1
)

ctu+1,...,tu+v

∥∥∥∥
1

=
∫

[0,1]u+v

ct1,...,tu

∣∣∣∣
ctu−k+1,...,tu+k

ctu−k+1,...,tu
ctu+1,...,tu+k

− 1
∣∣∣∣ ctu+1,...,tu+vdxt1 · · · dxtu+v

=
∫

[0,1]2k

(∫

[0,1]u−k

ct1,...,tu
dxt1 · · · dxtu−k

) ∣∣∣∣
ctu−k+1,...,tu+k

ctu−k+1,...,tu
ctu+1,...,tu+k

− 1
∣∣∣∣

×
(∫

[0,1]v−k

ctu+1,...,tu+v
dxtu+k+1 · · · dxtu+v

)
dxtu−k+1 · · · dxtu+k

=
∫

[0,1]2k

ctu−k+1,...,tu

∣∣∣∣
ctu−k+1,...,tu+k

ctu−k+1,...,tuctu+1,...,tu+k

− 1
∣∣∣∣ ctu+1,...,tu+k

dxtu−k+1 · · · dxtu+k

=
∫

[0,1]2k

∣∣ctu−k+1,...,tu+k
− ctu−k+1,...,tuctu+1,...,tu+k

∣∣ dxtu−k+1 · · · dxtu+k

≤ θr. ¥

As an example of how Proposition 2 may be used to verify Assumption 1, suppose {Xt} is
an AR(1) process with i.i.d. Gaussian innovations and autoregressive parameter ρ bounded in
absolute value by unity. In this case, we know that {Xt} is a first order Markov chain whose
bivariate copulas ct1,t2 are Gaussian with correlation coefficient ρt2−t1 . Thus we have

∥∥ctu,tu+1 − 1
∥∥

1

=
∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣∣

1
2π exp

(
−(Φ−1(x)2+2ρtu+1−tuΦ−1(x)Φ−1(y)+Φ−1(y)2)

2

)

1√
2π

exp
(
−Φ−1(x)2

2

)
1√
2π

exp
(
−Φ−1(y)2

2

) − 1

∣∣∣∣∣∣∣∣
dxdy

=
∫ 1

0

∫ 1

0

∣∣exp
(
ρtu+1−tuΦ−1 (x)Φ−1 (y)

)− 1
∣∣ dxdy

=
∫ ∞

−∞

∫ ∞

−∞

(
1√
2π

exp
(−x2

2

))(
1√
2π

exp
(−y2

2

)) ∣∣exp
(−ρtu+1−tuxy

)− 1
∣∣ dxdy

=
∫ ∞

−∞

∫ ∞

−∞

1
2π

∣∣∣∣∣exp

(
− (

x2 + 2ρtu+1−tuxy + y2
)

2

)
− exp

(
− (

x2 + y2
)

2

)∣∣∣∣∣ dxdy.
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A mean value expansion around ρtu+1−tu = 0 yields, for some ρ̃ (x, y) between 0 and ρ,
∥∥ctu,tu+1 − 1

∥∥
1

=
∣∣ρtu+1−tu

∣∣
∫ ∞

−∞

∫ ∞

−∞
|xy| 1

2π
exp

(
− (

x2 + 2ρ̃tu+1−tu (x, y)xy + y2
)

2

)
dxdy

≤
∣∣ρtu+1−tu

∣∣
∫ ∞

−∞

∫ ∞

−∞
|xy| 1

2π
exp

(
− (

x2 − 2xy + y2
)

2

)
dxdy

+
∣∣ρtu+1−tu

∣∣
∫ ∞

−∞

∫ ∞

−∞
|xy| 1

2π
exp

(
− (

x2 + 2xy + y2
)

2

)
dxdy

≤ 2
∣∣ρtu+1−tu

∣∣ .

Thus we conclude from Proposition 2 that our Gaussian AR(1) process satisfies Assumption 1.
Another, more interesting, example of a process that satisfies Assumption 1 is that of a sta-

tionary first order Markov process whose bivariate copulas ct,t+1 are the power copulas proposed
by de la Peña, Ibragimov and Sharakhmetov (2006). These copulas have densities of the form

ct,t+1 (x, y) = 1 + α
(
(k + 1) xk − (k + 2) xk+1

) (
(k + 1) yk − (k + 2) yk+1

)

for some α ∈ (−1, 1), k ∈ Z+. Applying the product operation of Darsow, Nguyen and Olsen
(1992), we obtain

ct,t+2 (x, y)− 1

=
∫ 1

0

α2
(
(k + 1) xk − (k + 2) xk+1

) (
(k + 1) zk − (k + 2) zk+1

)2

× (
(k + 1) yk − (k + 2) yk+1

)
dz

= α2

(
k + 1

(2k + 1) (2k + 3)

) (
(k + 1) xk − (k + 2) xk+1

) (
(k + 1) yk − (k + 2) yk+1

)
.

It is easy to see that recursive application of this operation yields copulas ct,t+r of the form

ct,t+r (x, y)

= 1 + αr

(
k + 1

(2k + 1) (2k + 3)

)r−1 (
(k + 1) xk − (k + 2) xk+1

) (
(k + 1) yk − (k + 2) yk+1

)
.

Thus we obtain

‖ct,t+r − 1‖1
= αr

(
k + 1

(2k + 1) (2k + 3)

)r−1 ∥∥(
(k + 1) xk − (k + 2) xk+1

) (
(k + 1) yk − (k + 2) yk+1

)∥∥
1

= αr

(
k + 1

(2k + 1) (2k + 3)

)r−1 ∥∥(k + 1) xk − (k + 2) xk+1
∥∥2

1

= αr

(
k + 1

(2k + 1) (2k + 3)

)r−1
(

2
(k + 1)k+1

(k + 2)k+2

)2

≤ 4αr

(
k + 1

(2k + 1) (2k + 3)

)r−1

,
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and so from Proposition 2 we conclude that a stationary first order Markov process constructed
from power copulas satisfies Assumption 1 with an exponentially fast rate of decay of θr.

3. Limit theorems

In the previous section we defined a new characterization of temporal dependence, termed
(θ, K)-dependence, and identified a condition on the finite dimensional copulas of a time series
that implies this form of dependence. In this section we use the (θ,K)-dependence property to
prove laws of large numbers and invariance principles for functions of processes whose copulas
satisfy said condition.

Our first result is a strong law of large numbers for functions of a stationary time series
satisfying Assumption 1 and a suitable tradeoff between memory decay and moment existence.

Theorem 2: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying As-
sumption 1 for some M ∈ R and some sequence {θr}, and let Yt = φ (Xt) for some φ : R → R
satisfying

∥∥φ · 1{|φ|≤τ}
∥∥TV

R ≤ aτ for some a > 0 and all τ ≥ 0. Suppose
∑∞

1 rδθr < ∞ for some
δ > 0. Then, if E |Yt|2+ε

< ∞ for some ε > 2δ−1,

1
n

n∑
t=1

Yt →a.s. EY0.

Proof: Using the fact that E |Yt|2+ε
< ∞, it is easy to show that

|Cov (Yt, Yt+r)| =
∣∣Cov

(
Yt1|Yt|≤rδ/2 , Yt+r1|Yt+r|≤rδ/2

)

+Cov
(
Yt1|Yt|>rδ/2 , Yt+r

)
+ Cov

(
Yt1|Yt|≤rδ/2 , Yt+r1|Yt+r|>rδ/2

)∣∣

≤ ∣∣Cov
(
Yt1|Yt|≤rδ/2 , Yt+r1|Yt+r|≤rδ/2

)∣∣ + O
(
r−δε/2

)
.

Theorem 1 implies that
{
Yt1|Yt|≤rδ/2 : t ∈ Z}

is
(
θ, Marδ/2

)
-dependent; it follows that

∣∣Cov
(
Yt1|Yt|≤rδ/2 , Yt+r1|Yt+r|≤rδ/2

)∣∣ ≤
(
rδ/2 + Marδ/2

)2

θr

= O
(
rδθr

)
.

Thus
∑∞

r=1 |Cov (Yt, Yt+r)| < ∞ provided that δε/2 > 1, giving our desired result (Stout, 1974).
¥

The condition
∥∥φ · 1{|φ|≤τ}

∥∥TV

R ≤ aτ is satisfied by, for instance, polynomial functions φ (x) =∑p
0 akxk, for which a = 1+3p, and increasing functions, for which a = 4. The condition is violated

by the sine and cosine functions, for which
∥∥φ · 1{|φ|≤τ}

∥∥TV

R = ∞ whenever τ > 0. Note, however,
that if φ is a sine or cosine function, or any other function of locally bounded variation, then we
can write it as the difference of two increasing functions and then apply Theorem 2 to each part
separately, provided that the relevant moment conditions are satisfied.

We now turn our attention to the development of invariance principles for functions of sta-
tionary time series satisfying Assumption 1. The following lemma, which provides a bound on
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the second moments of sums of such processes, is a necessary preliminary step. It follows easily
from Theorem 1 of Doukhan and Louhichi (1999).

Lemma 2: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying Assump-
tion 1 for some M ∈ R and some sequence {θr}, and let Yt = φ (Xt) for some φ : R→ R satis-
fying

∥∥φ · 1{|φ|≤τ}
∥∥TV

R ≤ aτ for some a > 0 and all τ ≥ 0. Suppose EYt = 0 and E |Yt|2+ε
< ∞

for some ε > 0. Then, if θr = O
(
r−(2+ε)/ε

)
there exists b < ∞ such that, for any n ≥ 1,

E

(
n∑

t=1

Yt

)2

≤ bn.

Proof: This result follows from Theorem 1 of Doukhan and Louhichi (1999) if we can show
that |Cov (Y0, Yr)| = O

(
r−1

)
. We showed in the proof of Theorem 2 that |Cov (Y0, Yr)| =

O
(
rδθr + r−δε/2

)
for any δ > 0. Setting δ = 2ε−1 gives us |Cov (Y0, Yr)| = O

(
r−1

)
. ¥

We are now in a position to state and prove a central limit theorem for functions of stationary
processes satifying Assumption 1.

Theorem 3: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying As-
sumption 1 for some M ∈ R and some sequence {θr}, and let Yt = φ (Xt) for some φ : R→ R sat-
isfying

∥∥φ · 1{|φ|≤τ}
∥∥TV

R ≤ aτ for some a > 0 and all τ ≥ 0. Suppose EYt = 0 and E |Yt|2+ε
< ∞

for some ε > 0, and suppose θr ≤ b exp
(−rδ

)
for some b < ∞ and some δ > 1

2 + min
{
ε−1, 1

2

}
.

Then the series

σ2 = EY 2
0 + 2

∞∑

i=1

EY0Yi

converges absolutely; if σ2 > 0, then

1√
n

n∑
t=1

Yt →d N
(
0, σ2

)
.

Proof: {Yt} satisfies the assumptions of Theorem 2, in the proof of which we showed that∑∞
1 Cov(Y0, Yi) < ∞. Thus σ2 is absolutely convergent. Suppose σ2 > 0. We will prove

convergence in distribution by employing Lemma 11 of Doukhan and Louhichi (1999), itself a
version of results by Ibragimov and Linnik (1971) and Withers (1981). Split {Yt : 1 ≤ t ≤ n} into
Bernstein blocks of length n1, separated by gaps of length n2, as follows:

n∑
t=1

Yt =
k∑

i=1

ηi +
k+1∑

i=1

νi, k =
[

n

n1 + n2

]

ηi =
in1+(i−1)n2∑

t=(i−1)(n1+n2)+1

Yt, i = 1, . . . , k

νi =
i(n1+n2)∑

t=in1+(i−1)n2+1

Yt, i = 1, . . . , k

νk+1 =
n∑

t=k(n1+n2)+1

Yt.
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Let σ2
n = E (

∑n
1 Yt)

2. Doukhan and Louhichi’s lemma states that σ−1
n

∑n
1 Yt →d N (0, 1) if, for

some sequences n1 (n), n2 (n) such that n1 →∞, n2 →∞, n1 = o (n), n2 = o (n1), the following
four conditions are satisfied for any g, h among the functions x 7→ sin x and x 7→ cos x:

1
σ2

n

E

(
k+1∑

i=1

νi

)2

→ 0 (1)

1
σ2

n

k∑

i=1

Eη2
i → 1 (2)

1
σ2

n

k∑

i=1

Eη2
i 1 (|ηi| ≥ εσn) → 0 for all ε > 0 (3)

k∑

j=2

∣∣∣∣∣Cov

(
g

(
t

σn

j−1∑

i=1

ηi

)
, h

(
t

σn
ηj

))∣∣∣∣∣ → 0 for all t > 0. (4)

Absolute convergence of σ2 implies that n−1σ2
n → σ2 > 0, and Lemma 2 implies that E(

∑k
1 νi)2 =

O (kn2) and E(νk+1)2 = O (n1); (1) follows. n−1
1 Eη2

0 → σ2 by the same logic that n−1σ2
n → σ2,

so σ−2
n

∑k
1 Eη2

i = kn1n
−1 (1 + o (1)) → 1, proving (2). (3) holds since n−1

1 Eη2
01 (|η0| ≥ εσn) =

E(n−1/2
1 η0)21(|n−1/2

1 η0|2 ≥ ε2σ2
nn−1

1 ) → 0 by Lemma 2 and the dominated convergence theorem.
It remains to confirm (4). For any γ > 0, we can use the mean value theorem to show that

k∑

j=2

∣∣∣∣∣Cov

(
g

(
t

σn

j−1∑

i=1

ηi

)
, h

(
t

σn
ηj

))∣∣∣∣∣

≤
k∑

j=2

∣∣∣∣∣∣
Cov


g


 t

σn

j−1∑

i=1

in1+(i−1)n2∑

(i−1)(n1+n2)+1

Ys1{|Ys|≤nγ}


 , h


 t

σn

jn1+(j−1)n2∑

(j−1)(n1+n2)+1

Ys1{|Ys|≤nγ}







∣∣∣∣∣∣

+4
t

σn
k2n1

(
E

∣∣Y01{|Y0|>nγ}
∣∣2

)1/2

+ 2
(

t

σn

)2

k2n2
1E

∣∣Y01{|Y0|>nγ}
∣∣2

=
k∑

j=2

∣∣∣∣∣∣
Cov


g


 t

σn

j−1∑

i=1

in1+(i−1)n2∑

(i−1)(n1+n2)+1

Ys1{|Ys|≤nγ}


 , h


 t

σn

jn1+(j−1)n2∑

(j−1)(n1+n2)+1

Ys1{|Ys|≤nγ}







∣∣∣∣∣∣

+O
(
kn1/2−εγ/2 + n1−εγ

)
.

Theorem 1 implies that
{
Yt1{|Yt|≤nγ}

}
is (θ,Manγ)-dependent. Thus, using the binomial theo-

rem, we have

k∑

j=2

∣∣∣∣∣∣
Cov


g


 t

σn

j−1∑

i=1

in1+(i−1)n2∑

(i−1)(n1+n2)+1

Ys1{|Ys|≤nγ}


 , h


 t

σn

jn1+(j−1)n2∑

(j−1)(n1+n2)+1

Ys1{|Ys|≤nγ}







∣∣∣∣∣∣

≤ k




(k−1)n1∑
s=0

((k − 1)n1)!
((k − 1)n1 − s)!s!

(
tManγ

σn

)s



(
n1∑

s=0

n1!
(n1 − s)!s!

(
tManγ

σn

)s
)

θn2

= k

(
1 +

tManγ

σn

)kn1

θn2 .
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Let n1 =
[
nβ

]
and n2 = [nα], with 0 < α < β < 1. Then

k∑

j=2

∣∣∣∣∣Cov

(
g

(
t

σn

j−1∑

i=1

ηi

)
, h

(
t

σn
ηj

))∣∣∣∣∣

= O

(
k

(
1 +

tManγ

σn

)kn1

θn2

)
+ O

(
kn1/2−εγ/2 + n1−εγ

)

= O
(
n1−β

(
1 + O

(
nγ− 1

2

))n

exp
(
− [nα]δ

))
+ O

(
n3/2−β−εγ/2 + n1−εγ

)
.

Suppose δ > 1. In this case, we can satisfy (4) by choosing α > δ−1 and γ sufficiently large, so
that

k∑

j=2

∣∣∣∣∣Cov

(
g

(
t

σn

j−1∑

i=1

ηi

)
, h

(
t

σn
ηj

))∣∣∣∣∣

= O
(
n1−β+(γ− 1

2 )n exp
(
− [nα]δ

))
+ O

(
n3/2−β−εγ/2 + n1−εγ

)

= o (1) .

Now suppose that δ ≤ 1, and choose γ < 1
2 . This gives us

k∑

j=2

∣∣∣∣∣Cov

(
g

(
t

σn

j−1∑

i=1

ηi

)
, h

(
t

σn
ηj

))∣∣∣∣∣

= O
(
n1−β exp

(
O

(
nγ+ 1

2

)
− [nα]δ

))
+ O

(
n3/2−β−εγ/2 + n1−εγ

)
.

In order to satisfy (4) while maintaining γ < 1
2 , we require the following three inequalities to

hold:

γ <
1
2

γ < αδ − 1
2

γ >
3− 2β

ε
.

Since δ ≤ 1, the first of these inequalities is redundant. The remaining two inequalities can be
satisfied for suitable choice of γ if

3− 2β

ε
< αδ − 1

2
,

which is possible if

δ >
1
2

+ ε−1.

Thus (4) holds provided that δ > 1
2 + min

{
ε−1, 1

2

}
. This completes the proof. ¥

Observe that when ε ≤ 2, so that only four or fewer moments of Yt are assumed to exist, we
require a super-exponential rate of memory decay; i.e. δ > 1. When ε > 2, sub-exponential decay
rates are permissible, with a hyperbolic tradeoff between allowable values of ε and δ. As ε →∞,
the lower bound on allowable values of δ falls to 1/2.
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Before proving our functional central limit theorem, we require a version of Lemma 2 that
applies to fourth moments of sums of random variables.

Lemma 3: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying Assump-
tion 1 for some M ∈ R and some sequence {θr}, and let Yt = φ (Xt) for some φ : R→ R satis-
fying

∥∥φ · 1{|φ|≤τ}
∥∥TV

R ≤ aτ for some a > 0 and all τ ≥ 0. Suppose EYt = 0 and E |Yt|4+ε
< ∞

for some ε > 0. Then, if θr = O
(
r−(8+2ε)/ε

)
there exists b < ∞ such that, for any n ≥ 1,

E

(
n∑

t=1

Yt

)4

≤ bn2.

Proof: This result follows from Theorem 1 of Doukhan and Louhichi (1999) if we can verify
the following three conditions:

sup
t1<t2<t2+r≤t3<t4

|Cov (Yt1Yt2 , Yt3Yt4)| = O
(
r−2

)

sup
t1<t2<t2+r≤t3<t4

|Cov (Yt1Yt2Yt3 , Yt4)| = O
(
r−2

)

sup
t1<t2<t2+r≤t3<t4

|Cov (Yt1 , Yt2Yt3Yt4)| = O
(
r−2

)
.

We shall verify only the first condition; the others follow by similar arguments. Using the fact
that E |Yt|4+ε

< ∞, it is easy to show that, for any δ > 0,

sup |Cov (Yt1Yt2 , Yt3Yt4)|
≤ sup

∣∣∣Cov
(
Yt11|Yt1 |≤rδ/4Yt21|Yt2 |≤rδ/4 , Yt31|Yt3 |≤rδ/4Yt41|Yt4 |≤rδ/4

)∣∣∣

+sup
∣∣∣Cov

(
Yt11|Yt1 |≤rδ/4Yt21|Yt2 |≤rδ/4 , Yt3Yt41{max{|Yt3 |,|Yt4 |}>rδ/4}

)∣∣∣

+sup
∣∣∣Cov

(
Yt1Yt21{max{|Yt1 |,|Yt2 |}>rδ/4}, Yt3Yt4

)∣∣∣

≤ sup
∣∣∣Cov

(
Yt11|Yt1 |≤rδ/4Yt21|Yt2 |≤rδ/4 , Yt31|Yt3 |≤rδ/4Yt41|Yt4 |≤rδ/4

)∣∣∣ + O
(
r−δε/4

)
.

Theorem 1 implies that
{
Yt1|Yt|≤rδ/4 : t ∈ Z}

is
(
θ, Marδ/4

)
-dependent; it follows that

sup
∣∣∣Cov

(
Yt11|Yt1 |≤rδ/4Yt21|Yt2 |≤rδ/4 , Yt31|Yt3 |≤rδ/4Yt41|Yt4 |≤rδ/4

)∣∣∣

≤
(
rδ/2 + 2Marδ/2 + M2a2rδ/2

)2

θr

= O
(
rδθr

)
.

Thus sup |Cov (Yt1Yt2 , Yt3Yt4)| = O
(
rδθr + r−δε/4

)
. Our result follows by setting δ = 8ε−1. ¥

We are now in a position to state our final result: a functional central limit theorem for
functions of stationary processes satisfying Assumption 1.

Theorem 4: Let {Xt : t ∈ Z} be a stationary sequence of random variables satisfying As-
sumption 1 for some M ∈ R and some sequence {θr}, and let Yt = φ (Xt) for some φ : R→ R sat-
isfying

∥∥φ · 1{|φ|≤τ}
∥∥TV

R ≤ aτ for some a > 0 and all τ ≥ 0. Suppose EYt = 0 and E |Yt|2+ε
< ∞
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for some ε > 2, and suppose θr ≤ b exp
(−rδ

)
for some b < ∞ and some δ > 1

2 + ε−1. Then the
series

σ2 = EY 2
0 + 2

∞∑

i=1

EY0Yi

converges absolutely; if σ2 > 0, then

1√
n

[nr]∑
t=1

Yt ⇒ σB (r) ,

where B denotes a standard Brownian motion on [0, 1].

Proof: Finite dimensional convergence of our partial sum process to Brownian motion can
be shown using the Cramér-Wold device and a minor variation on the arguments employed in
the proof of Theorem 3. It remains to prove tightness. For this it suffices to show that, for any
ε > 0, there exists λ > 1 such that

λ2P

{
max

1≤m≤n

∣∣∣∣∣
m∑

t=1

Yt

∣∣∣∣∣ ≥ λσ
√

n

}
≤ ε

for all n; see Billingsley (1968, ch. 3). Lemma 3 implies that E(
∑n

1 Yt)4 ≤ bn2 for some b < ∞,
so Theorem 3.1 in Moricz, Serfling and Stout (1982) implies that E maxm≤n(

∑m
1 Yt)4 ≤ An2 for

some A < ∞. Thus Markov’s inequality gives us

λ2P

{
max

1≤m≤n

∣∣∣∣∣
m∑

t=1

Yt

∣∣∣∣∣ ≥ λσ
√

n

}
≤ E max1≤m≤n |

∑m
t=1 Yt|4

λ2σ4n2

≤ A

λ2σ4
,

which can be made arbitrarily small by choosing λ sufficiently large. ¥

Note that the allowable tradeoff between ε and δ is no more stringent in Theorem 4 than
it was in Theorem 3, provided that ε > 2, so that Yt possesses greater than four moments.
Theorem 4 does not encompass processes with only four or fewer moments because we are unable
to establish that the tightness condition holds.

4. Conclusion

In this paper we have proposed a new copula-based characterization of weak dependence, and
developed new laws of large numbers and invariance principles for time series that are weakly
dependent in this sense. There are a number of ways in which the work presented here can
be extended, five of which are: (1) weakening the moment condition in Theorem 4 using an
argument similar to that of Doukhan and Wintenberger (2005); (2) allowing the function φ to
depend on multiple arguments, so that Yt = φ (Xt−m, . . . , Xt+m) for some m > 0; (3) generalizing
Assumption 1 so that the Kolmogorov-Smirnov distance between copulas is replaced by an Lp

distance, for some p ∈ [1,∞]; (4) identifying specific parametric classes of copulas that satisfy
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Assumption 1 and may provide a realistic model for data observed in financial markets and
elsewhere; and (5) developing statistical techniques for modelling data using said parametric
classes of copulas. These five topics are the subject of current research by the author. It is hoped
that research in this area will ultimately enrich the field of time series analysis by providing
researchers with new methods for modelling nonlinear temporal dependence.
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