
Robust Implementation:
The Role of Large Type Spaces�

Dirk Bergemanny Stephen Morrisz

First Version: March 2003
This Version: April 2004

Abstract

We analyze the problem of fully implementing a social choice function when the planner
does not know the agents�beliefs about other agents�types.

We identify an ex post monotonicity condition that is necessary and - in economic environ-
ments - su¢ cient for full implementation in ex post equilibrium; we also identify an ex post
monotonicity no veto condition that is su¢ cient. These results are the ex post equilibrium
analogues of Jackson�s (1991) results about Bayesian implementation.

We show by example that ex post monotonicity implies neither Maskin monotonicity (neces-
sary and almost su¢ cient for complete information implementation) nor - for some type spaces
- interim monotonicity (i.e., the Bayesian monotonicity condition that is necessary and almost
su¢ cient for Bayesian implementation). We identify a robust monotonicity condition that is
equivalent to interim monotonicity on all type spaces; robust monotonicity implies both Maskin
monotonicity and ex post monotonicity.

Robust monotonicity is necessary for interim implementation on all type spaces and is suf-
�cient for interim implemention on all common support type spaces when there are at least
three agents and an economic condition is satis�ed. Without a common support restriction, we
show that interim implementation on all type spaces is equivalent to implementation under an
ex post version of dominance solvability.
Keywords: Mechanism Design, Implementation, Common Knowledge, Universal Type Space,
Interim Equilibrium, Ex-Post Equilibrium, Dominant Strategies.
Jel Classification: C79, D82

�This research is supported by NSF Grant #SES-0095321. The �rst author gratefully acknowledges support
through a DFG Mercator Research Professorship at the Center of Economic Studies at the University of Munich.
We bene�ted from discussion with Amanda Friedenberg, Matt Jackson and Mike Riordan. We would like to thank
seminar audiences at Caltech, Columbia University, Cornell Univerity, New York University and the University of
Michigan for helpful comments. Parts of this paper were reported in early drafts of our work on Robust Mechanism
Design (Bergemann and Morris (2001)).

yDepartment of Economics, Yale University, 28 Hillhouse Avenue, New Haven, CT 06511,
dirk.bergemann@yale.edu.

zDepartment of Economics, Yale University, 30 Hillhouse Avenue, New Haven, CT 06511, stephen.morris@yale.edu.

1

Robust Implementation May 4, 2004 2

Contents

1 Introduction 3

2 Example A 4
2.1 Ex Post Implementation . 5
2.2 Interim Implementation . 6

3 The Implementation Problem 7
3.1 Ex Post Equilibrium . 8
3.2 Interim Equilibrium . 8

4 Maskin Monotonicity and Ex Post Monotonicity 9
4.1 Maskin Monotonicity . 9
4.2 Ex Post Monotonicity . 10

5 Ex Post Implementation 11

6 Interim Monotonicity and Robust Monotonicity 15
6.1 Interim Monotonicity . 15
6.2 Robust Monotonicity . 15
6.3 Comparing Monotonicity Properties: Results . 16
6.4 Comparing Monotonicity Notions: Examples . 21

6.4.1 Example B . 21
6.4.2 Example C . 24

7 Implementation on All Type Spaces 25
7.1 Iterative Implementation . 28
7.2 Example D . 29
7.3 Example A Revisited . 30
7.4 Characterization . 31

8 Private Values and Dominant Strategies 32

9 Discussion 34
9.1 In�nite Action Games . 34
9.2 Finite Type Spaces . 34
9.3 The Pure Strategy Restriction . 34
9.4 Conclusion . 35

Robust Implementation May 4, 2004 3

1 Introduction

This paper looks at the problem of fully implementing a social choice function when agents have
interdependent values. Thus each agent has a payo¤type. The agents have preferences over outcomes
that depend on the pro�le of payo¤ types. The planner does not know the agents�types but must
choose a mechanism such that in every equilibrium of the mechanism, agents play of the game results
in the outcome speci�ed by the social choice function at every payo¤ type pro�le. This problem
has been analyzed under the assumption of complete information, i.e., there is common knowledge
among the agents of their payo¤ types (e.g., Maskin (1999)). It has also been analyzed under the
assumption of incomplete information, on the assumption that there is a �xed type space and there
is common knowledge among the agents of the prior (or the priors) according to which agents form
their beliefs (e.g., Jackson (1991)). We want to analyze the problem of full implementation under
the assumption that the planner knows nothing about what agents know or believe about other
agents�payo¤ types, or their higher order beliefs. We believe that by �xing a small type space and
assuming common knowledge among the agents of the type space and agents�beliefs on the type
space, researchers have been making very strong implicit assumptions. We would like to relax those
assumptions.
There has recently been much interest in the literature on using the concept of ex post equilibrium

since it seems unrealistic to allow the mechanism to depend on the planner�s knowledge of the type
space (e.g., Dasgupta and Maskin (2000)). We provide a complete analysis of full implementation
in ex post equilibrium. We introduce an ex post monotonicity condition that - along with ex
post incentive compatibility - is necessary for ex post implementation. We show that a slight
strengthening of ex post monotonicity - the ex post monotonicity no veto condition - is su¢ cient
for implementation with at least three agents. The latter condition reduces to ex post monotonicity
in economic environments. These results are the ex post analogues of the Bayesian implementation
results of Jackson (1991), and we employ similar arguments to establish our results.
However, for full implementation using a strong solution concept does not necessarily imply

stronger results: the fact that non truth-telling behavior may fail the stringent requirement of
being an ex post equilibrium may make implementation easier. We show in an economic example
that ex post monotonicity may hold even when both Maskin monotonicity (the necessary condition
for complete information implementation) and interim monotonicity on a �xed type space (the
necessary condition for interim implementation) fail. Thus ex post implementation is possible even
when complete information implementation and interim incomplete information implementation are
impossible.
We therefore �nd a condition - robust monotonicity - that is equivalent to requiring interim

monotonicity on every type space. Suppose that we �x a "deception" speci�ying, for each payo¤
type of each agent, a set of types that he might misreport himself to be. We require that for some
agent i and a type misreport of agent i under the deception, for every misreport �0�i that that the
other agents might make under the deception, there exists an outcome y which is strictly preferred
by agent i to the outcome he would receive under the social choice function for every possible payo¤
type pro�le that might misreport �0�i; where this outcome y satis�es the extra restriction that no
payo¤ type of agent i prefers outcome y to the social choice function if the other agents were really
types �0�i. This condition - while a little convoluted - is a somewhat easier to interpret than the
interim (Bayesian) monotonicity conditions. It is very strong and implies both Maskin monotonicity
and ex post monotonicity conditions (but is strictly weaker than dominant strategies).
Robust monotonicity is necessary for interim implementation on all type spaces and is su¢ cient

for interim implementation on all common support type spaces when there are at least three agents
and an economic condition is satis�ed. We show that interim implementation on all type spaces is
possible if and only if it is possible to implement the social choice function using an ex post iterative
deletion procedure: we �x a mechanism and iteratively delete messages for each payo¤ type that

Robust Implementation May 4, 2004 4

are strictly dominated by another message for each payo¤ type pro�le and message pro�le that has
survived the procedure. This requirement is stronger than robust monotonicity.
This last result about iterative deletion illustrates a general point well-known from the literature

on epistemic foundations of game theory (e.g., Brandenburger and Dekel (1987), Battigalli and
Siniscalchi (2003)): equilibrium solution concepts only have bite if we make strong assumptions
about type spaces, i.e., we assume small type spaces where the common prior assumption holds.
Our uniform implementation result says that equilibrium has no bite (relative to iterated deletion
of strictly dominated strategies) if we allow for su¢ ciently rich type spaces.
The results in this paper concern full implementation. An earlier companion paper of ours (Berge-

mann and Morris (2003)) addresses the analogous questions of robustness to rich type spaces, but
looking at the question of partial implementation, i.e., does there exist a mechanism such that some
equilibrium implements the social choice function. We showed that ex post (partial) implementation
of the social choice function is a necessary and su¢ cient condition for partial implementation on
all type spaces. This paper establishes that an analogous result does not hold for full implementa-
tion. In that paper, we also looked at the partial implementation of social choice correspondences,
but showed that partial implementation on all type spaces was sometimes easier than ex post par-
tial implementation. We leave for future work the question of full implementation of social choice
correspondences on large type spaces.
In the special case of private values, ex post incentive compatibility is equivalent to dominant

strategies incentive compatibility and thus partial implementation on all type spaces implies dom-
inant strategy implementation. But strictly dominant strategy implementation is a su¢ cient con-
dition for full implementation. Thus in the private values case, moving to the stronger solution
concept of ex post equilibrium / dominant strategies is always (up to the dominant / strictly dom-
inant strategies distinction) a more stringent requirement. This paper shows that this well known
observation does not translate to an interdependent values setting.
The paper is organized as follows. Section 2 describes a simple example that illustrates some

of the key points in the paper. Section 3 describes the formal environment and solution concepts.
Section 4 introduces our notion of ex post monotonicity and compares it to Maskin monotonicity.
Section 5 reports our analysis of the ex post implementation problem. Section 6 introduces interim
monotonicity and robust monotonicity, and characterizes how the monotonicity conditions relate to
each other using propositions and examples. Section 7 presents our results on interim implementation
on all type spaces and reports results on uniform implementability. Section 9 concludes.

2 Example A

Consider the following interdependent values social choice setting. There are two agents 1 and 2.
Each agent has two possible payo¤ types, �1 =

�
�1; �

0
1

	
and �2 =

�
�2; �

0
2

	
. There are four possible

social outcomes, A = fa; b; c; dg. The payo¤s of the two agents are given by:

a �2 �02
�1 3; 3 0; 0
�01 0; 0 1; 1

b �2 �02
�1 0; 0 3; 3
�01 1; 1 0; 0

c �2 �02
�1 0; 0 1; 1
�01 3; 3 0; 0

d �2 �02
�1 1; 1 0; 0
�01 0; 0 3; 3

Notice that the agents have identical interests and, for each payo¤ type pro�le, have a unique
preferred outcome. The social choice function f will select that outcome:

f �2 �02
�1 a b
�01 c d

Robust Implementation May 4, 2004 5

We are interested in a setting where all this information is common knowledge among the agents
and the planner, but the planner knows nothing about the agents�beliefs and higher order beliefs
about each others�types. What can the planner do?

2.1 Ex Post Implementation

One approach to this problem is to focus attention on ex post implementation. That is, suppose
the planner seeks a mechanism whose ex post equilibria implement f . Since ex post equilibria are
independent of agents�beliefs about other agents�types, this is one way of dealing with the lack of
common knowledge. We �rst analyze this approach.
Observe that the social choice function is ex post incentive compatible. Thus if the planner

simply invites the agents to announce their payo¤ types, each agent will have an incentive to tell
the truth as long as he expect others to do so, whatever his beliefs about the other agents�types.
Thus truth telling is an ex post equilibrium of the payo¤ type direct mechanism.
However, this game also has another ex post equilibrium where each type of each agent always

misreports his type. But it is easy to construct a simple augmented mechanism where all (pure
strategy) ex post equilibria yield desirable outcomes.1 Consider the mechanism where agent 2
simply announces his payo¤ type; and agent 1 announces his payo¤ type and also announces either
"truth" or "lie" (with the interpretation that the latter announcement is agent 1�s announcement
about whether he believes agent 2 has told the truth). This mechanism can be represented by the
following table:

�2 �02
(�1, truth) a b
(�01, truth) c d
(�1, lie) b a
(�01, lie) d c

(1)

What are the (pure strategy) ex post equilibria of this game? In any ex post equilibrium, type �2 of
agent 2 must announce �2 or �

0
2. If type �2 of agent 2 announces �2, then type �1 of agent 1 must

announce (�1, truth) and type �
0
1 of agent 1 must announce (�

0
1, truth); so type �

0
2 of agent 2 must

announce �02.
On the other hand, if type �2 of agent 2 announces �

0
2, then type �1 of agent 1 must announce

(�1, lie) and type �
0
1 of agent 1 must announce (�

0
1, lie); so type �

0
2 of agent 2 must announce �2.

Thus there are two possible ex post equilibria and both implement the social choice function.
Thus for this example, we have shown the possibility of ex post implementation. Theorem 1 in

Section 5 identi�es an ex post monotonicity condition that is necessary for ex post implementation;
we also show that this condition is su¢ cient if there are at least three agents in an economic
environment and that a slightly stronger ex post monotonicity no veto condition is su¢ cient in
non-economic environments.

1Mechanisms of this form - where the augmented mechanism contains a copy of the direct mechanism - are common
in the implementation literature; Mookerjee and Reichelstein (1990) refer to them as "augmented direct mechanisms."

Robust Implementation May 4, 2004 6

2.2 Interim Implementation

We can also analyze whether interim implementation is possible on di¤erent type spaces. Suppose
that agents had the following type space:

t2 t02 t002 t0002
t1

1
8 (1� ")

1
8 (1� ")

1
8"

1
8" �1

t01
1
8 (1� ")

1
8 (1� ")

1
8"

1
8" �01

t001
1
8"

1
8"

1
8 (1� ")

1
8 (1� ") �1

t0001
1
8"

1
8"

1
8 (1� ")

1
8 (1� ") �01

�2 �02 �2 �02

where " < 1
2 . The four types of agent 1 are represented as rows, the four types of agent 2 are

represented as columns and the numbers represent the prior on type pro�les. The payo¤ type of a
given type is recorded at the end of his row/column. If this is the true type space and agents are
invited to play the augmented mechanism (1), then there is clearly a strict pure strategy interim
equilibrium where agents follow strategies:

s1 (�) =

8>><>>:
(�1; truth) if t1
(�01; truth) if t01
(�1; lie) if t001
(�01; lie) if t0001

and

s2 (�) =

8>><>>:
�2 if t2
�02 if t02
�02 if t002
�2 if t0002

To see why this is an equilibrium, note that if " = 0, then we have disjoint type spaces consisting of
types (t1; t01; t2; t

0
2); and types (t

00
1 ; t

000
1 ; t

00
2 ; t

000
2), respectively and the above type space reduces to:

t2 t02 t002 t0002
t1

1
8

1
8 0 0 �1

t01
1
8

1
8 0 0 �01

t001 0 0 1
8

1
8 �1

t0001 0 0 1
8

1
8 �01

�2 �02 �2 �02

In this new type space, the types in the �rst disjoint type space (t1; t01; t2; t
0
2) play according to one

ex post equilibrium of the augmented mechanism (1), whereas the types in the second disjoint type
space (t001 ; t

000
1 ; t

00
2 ; t

000
2) play according to the other ex post equilibrium. Given the strict incentives,

allowing " to be positive but small does not stop these strategies being an equilibrium. But now,
with probability ", there is miscoordination.
This example illustrates one important message of this paper: there is a signi�cant gap between

ex post implementation and interim implementation. It is sometimes easier to ex post implement
than to interim implement. In this example, there is no mechanism that interim implements f on
every type space. Here is an informal argument by contradiction (the formal argument appears in
Section 7).
We �rst claim that a mechanism interim implements f on every type space if and only if it

iteratively implements f in the following sense. Iteratively delete for each payo¤ type all messages
that were not best responses to some belief over payo¤ type - message pairs of the opponent that
have not yet been deleted. There is iterative implementation of f if, for any payo¤ type pro�le,

Robust Implementation May 4, 2004 7

every surviving message pro�le is consistent with f . To prove the harder "only if" part of the claim,
construct a type space where each player has a type corresponding to every payo¤ type - message
pair that survive the iterated elimination. For each payo¤ type-message pair surviving the iterated
deletion, there is a belief over the surviving payo¤ type - message pairs of the opponent such that
that message is a best response for that payo¤ type. Thus we can construct beliefs on the type space
such that it is an equilibrium for each type to send the message with which it is labelled.
Now we argue that iterative implementation is not possible for our example. First, note that for

each type �i, there is at least one message (call it m�
i (�i)) with the property that g (m

� (�)) = f (�)
for each �. Also observe that message m�

i (�i) is never deleted for type �i. There must be a �rst
round - call it round n - when message m�

i (�i) is deleted for type �
0
i, for some i. Thus in the previous

round, m�
j (�j) had not been deleted for type �

0
j . Now if type �

0
i conjectures that his opponent is

type �0j sending message m
�
j (�j), then his payo¤ to sending message m

�
i (�i) is 1. Since this is not

a best response, there must exist another message bmi such that gi
� bmi;m

�
j (�j)

�
= f

�
�0i; �

0
j

�
. But

now this message bmi can never be deleted for type �
0
i, a contradiction.

3 The Implementation Problem

We �x a �nite set of agents, 1; 2; :::; I. Agent i�s payo¤ type is �i 2 �i, where �i is a �nite set.
We write � 2 � = �1 � ::: � �I . There is a set of outcomes Y . Each agent has utility function
ui : Y ��! R. Thus we are in the world of interdependent types, where an agent�s utility depends
on other agents�payo¤ types. A social choice function is a mapping f : � ! Y . If the true payo¤
type pro�le is �, the planner would like the outcome to be f (�). In this paper, we restrict our
analysis to the implementation of a social choice function rather than a social choice correspondence
or set.
We are interested in analyzing behavior in a variety of type spaces, including richer sets of types

than payo¤ types. For this purpose, we shall refer to agent i�s type as ti 2 Ti, where Ti is a �nite
set.2 A type of agent i must include a description of his payo¤ type. Thus there is a functionb�i : Ti ! �i with b�i (ti) being agent i�s payo¤ type when his type is ti. A type of agent i must
also include a description of his beliefs about the types of the other agents; thus there is a functionb�i : Ti ! �(T�i) with b�i (ti) being agent i�s belief type when his type is ti. Thus b�i (ti) [t�i] is
the probability that type ti of agent i assigns to other agents having types t�i. A type space is a
collection:

T =
�
Ti;b�i; b�i�I

i=1
.

The type space is a common support type space if there exists T � � T such that

b�i (ti) [t�i] > 0, (ti; t�i) 2 T �.

The type space if a common prior type space if there exists p 2 �(T) such that

b�i (ti) [t�i] = p (ti; t�i)P
t0�i

p
�
ti; t0�i

� .
The type space is a payo¤ type space if, for each i, Ti = �i and b�i is the identity map.
A planner must choose a game form or mechanism for the agents to play in order the determine

the social outcome. Let Mi be the countably in�nite set of messages available to agent i.3 Let

2The �nite set restriction clari�es the relation to the existing literature. In Section 9, we discuss what happens if
we allow for uncountable type spaces.

3This assumption clari�es the relation with the existing literature. We discuss in Section 9 what happens if we
restrict attention to �nite messages or allow larger sets of messages.

Robust Implementation May 4, 2004 8

g (m) be the outcome if action pro�le m is chosen. Thus mechanisms do not involve randomization
contingent on the message pro�le. But randomization can be built into the outcome space Y . Thus
a mechanism is a collection

M = (M1; :::;MI ; g (�)) ;
where g :M ! Y .
Now holding �xed the payo¤ environment, we can combine a type space T with a mechanism

M to get an incomplete information game (T ;M).
We are interested in a setting where the planner does not know the payo¤ types of the agents

and knows nothing about agents�beliefs and higher order beliefs about other agents�types. Two
approaches to this problem are to look at ex post equilibria of the game with payo¤ types; or we
can look at interim (Bayesian Nash) equilibria on a variety of richer type spaces. We consider each
in turn.

3.1 Ex Post Equilibrium

Consider the "payo¤ types game" where each agent�s possible types are �i. Thus we have an
incomplete information game where agent i�s payo¤ if message pro�le m is sent and payo¤ type
pro�le � is realized is

ui (g (m) ; �) .

A pure strategy in this game is a function si : �i !Mi.

De�nition 1 (Ex post equilibrium)
A pure strategy pro�le s = (s1; :::; sI) is an ex post equilibrium of the payo¤ types game if

ui (g (s (�)) ; �) � ui (g ((mi; s�i (��i))) ; �)

for all i, � and mi.4

De�nition 2 (Ex post implementation)
Social choice function f is ex post implementable if there exists a mechanism M such that every
(pure strategy) ex post equilibrium s of the gameM satis�es

g (s (�)) = f (�) .

We restrict attention to pure strategy equilibria. This helps make comparisons with the existing
literature (where the assumption is standard). However, when we conduct analysis allowing rich
type spaces, the restriction will not bite. This issue is discussed in detail in Section 9.

3.2 Interim Equilibrium

Next we consider an incomplete information game with an arbitrary type space T and a mechanism
M. The payo¤ of agent i if message pro�le m is chosen and type pro�le t is realized is then given
by

ui

�
g (m) ;b� (t)� :

A pure strategy for agent i in the incomplete information game (T ;M) is given by

si : Ti !Mi.

Pure strategy (interim, or Bayesian Nash) equilibria are de�ned in the usual way.
4Ex post incentive compatibility was discussed as "uniform incentive compatibility" by Holmstrom and Myerson

(1983). Ex post equilibrium is increasingly studied in game theory (see Kalai (2002)) and is often used in mechanism
design as a more robust solution concept (Cremer and McLean (1985), Dasgupta and Maskin (2000), Perry and Reny
(2002), Bergemann and Valimaki (2002)).

Robust Implementation May 4, 2004 9

De�nition 3 (Interim equilibrium)
A pure strategy pro�le s = (s1; :::; sI) is an interim equilibrium of the game (T ;M) ifX

t�i2T�i

ui

�
g (s (t)) ;b� (t)� b�i (ti) [t�i] � X

t�i2T�i

ui

�
g ((mi; s�i (��i))) ;b� (t)� b�i (ti) [t�i]

for all i, ti and mi.

De�nition 4 (Interim Implementation)
Social choice function f is interim implementable on type space T if there exists a mechanism M
such that every (pure strategy) equilibrium s of the game (T ;M) satis�es

g (s (t)) = f
�b� (t)�

for all t.

4 Maskin Monotonicity and Ex Post Monotonicity

The existing literature on complete information and Bayesian implementation identi�es "monotonic-
ity" conditions that are necessary and "almost su¢ cient" for implemention. It is useful to introduce
our notion of ex post monotonicity by comparing it with Maskin monotonicity.

4.1 Maskin Monotonicity

Maskin (1999) introduced a celebrated monotonicity notion for the complete information environ-
ment which constitutes a necessary and almost su¢ cient condition for complete information imple-
mentation.

De�nition 5 (Maskin monotonicity)
Social choice function f is (Maskin) monotone, if

ui
�
f
�
�0
�
; �0
�
� ui

�
y; �0

�
) ui

�
f
�
�0
�
; �
�
� ui (y; �)

for all i and y, then
f
�
�0
�
= f (�) .

�In words, monotonicity requires that if alternative x is f optimal with respect to some pro�le
of preferences and the pro�le is then altered so that, in each individual�s ordering a does not fall
below any alternative that it was not below before, then x remains f optimal with respect to
the new pro�le.� (Maskin (1999)). Maskin monotonicity is necessary for complete information
implementation and, when there are at least three agents and no veto power holds, also su¢ cient.
To motivate the monotonicity notions of this paper, it is useful to re-write this statement. First,

we can give the equivalent contrapositive statement: if f (�) 6= f
�
�0
�
, then there exists i and y such

that
ui
�
f
�
�0
�
; �0
�
� ui

�
y; �0

�
and

ui (y; �) > ui
�
f
�
�0
�
; �
�
.

Also, it is useful to think of the agents in a complete information setting engaging in a "deception"
where they misreport the true type pro�le in a coordinated way. Write

� : �! �

Robust Implementation May 4, 2004 10

for the common deception strategy. Now Maskin monotonicity requires that for every deception
with f � � 6= f , then there exists i, �, and y such that

ui (y; �) > ui (f (� (�)) ; �) ; (2)

while
ui (f (� (�)) ; � (�)) � ui (y; � (�)) : (3)

This alternative statement suggests a rather intuitive description why monotonicity is a necessary
condition for implementation. Suppose that f is complete information implementable. Then if the
agents were to deceive the designer by misreporting � (�) rather than reporting truthfully � and
if the deception � (�) would lead to a di¤erent allocation, i.e. f (� (�)) 6= f (�), then the designer
should be able to fend o¤ the deception. This requires that there is some agent i and pro�le � such
that the designer can o¤er agent i a reward y for denouncing the deception � (�) by the agents
if the true type pro�le is �. Yet, at the same time, the designer has be aware that the reward
could be used in the wrong circumstances, namely when the true payo¤ type pro�le is � (�) and
it is indeed reported to be � (�). The �rst strict inequality (2) then guarantees the existence of a
whistle-blower, whereas the second weak inequality (3) guarantees incentive compatible behavior by
the whistle-blower. Both these features will re-appear in all the monotonicity conditions studied in
this paper.

4.2 Ex Post Monotonicity

With incomplete information, a deception - i.e., a non truth-telling strategy in the direct mechanism
a deception, is a collection � = (�1; :::; �I), each �i : �i ! �i and

� (�) = (�1 (�1) ; :::; �I (�I)) :

In a direct revelation game �i would indicate i�s reported type as a function of his true type. For
a direct revelation mechanism, if agents report the deception � rather than truthfully, then the
resulting social outcome is given by f (� (�)) rather than f (�). We write f � � (�) � f (� (�)). For
any pro�le of payo¤ types of agents other than i, we write Y �i (��i) for the set of allocations that
make agent i worse o¤ than under the social choice function at all of his payo¤ types. So

Y �i (��i) �
�
y : ui

�
f
�
�0i; ��i

�
;
�
�0i; ��i

��
� ui

�
y;
�
�0i; ��i

��
; 8�0i 2 �i:

	
. (4)

De�nition 6 (Ex-post monotonicity)
Social choice function f satis�es ex post monotonicity (EM) if for every deception � with f 6= f ��,
there exists i; � and y 2 Y �i (��i (��i)) such that

ui (y; �) > ui (f (� (�)) ; �) : (5)

At �rst glace, ex post monotonicity looks like a stronger requirement than Maskin monotonicity,
since the whistle-blowing constraint for Maskin monotonicity (2) stays the same, while the single
incentive compatibility constraint (3) is replaced by the requirement that y 2 Y �i (��i (��i)), which
implies a family of constraints,

ui
�
f
�
�0i; ��i (��i)

�
;
�
�0i; ��i (��i)

��
� ui

�
y;
�
�0i; ��i (��i)

��
8�0i 2 �i: (6)

But because of the coordination built into the complete information deceptions, it becomes harder
to �nd a reward y for Maskin monotonicity than for ex post monotonicity. In Section 6, we will
describe an example that is Maskin monotonic and not ex post monotonic; and another example
that is ex post monotonic but not Maskin monotonic.

Robust Implementation May 4, 2004 11

5 Ex Post Implementation

We present necessary and su¢ cient conditions for a social choice function f to be ex-post imple-
mentable in the payo¤ type space. Our results extend the work of Maskin (1999) for complete
information implementation and Jackson (1991) on Bayesian implementation (i.e., interim imple-
mentation on a �xed type space) to the notion of ex post equilibrium.
If we were just interested in partially implementing f - i.e., constructing a mechanism with an ex

post equilibrium achieving f - then by the revelation principle we could restrict attention to direct
mechanisms and a necessary and su¢ cient condition is the following ex post incentive compatibility
condition.

De�nition 7 (Ex Post Incentive Compatibility)
Social choice function f is ex post incentive compatible (EPIC) if

ui (f (�) ; �) � ui
�
f
�
�0i; ��i

�
; �
�

for all i, � and �0i.

Ex post incentive and monotonicity conditions are necessary conditions for ex post implementa-
tion.

Theorem 1 (Necessity)
If f is ex post implementable, then it satis�es (EPIC) and (EM).

Proof. Let (M; g) implement f with equilibrium strategies si : �i ! Mi. Consider any i; �
0
i 2

�i. Since s is an equilibrium,

ui (g (s (�)) ; �) � ui
�
g
�
si
�
�0i
�
; s�i (��i)

�
; �
�

for all � 2 �. Noting that g
�
si
�
�0i
�
; s�i (��i)

�
= f

�
�0i; ��i

�
establishes (EPIC).

Suppose that for some deception �, f 6= f � �. It must be that s � � is not an equilibrium at some
� 2 �. Therefore there exists i and mi 2Mi such that we have

ui (g (mi; s�i (��i (��i))) ; �) > ui (g (s (� (�))) ; �)

Let y , g (mi; s�i (��i (��i))). Then, from above,

ui (y; �) > ui (f (� (�)) ; �) :

But since s is an equilibrium it follows that

ui
�
f
�
�0i; ��i (��i)

�
;
�
�0i; ��i (��i)

��
= ui

�
g
�
s
�
�0i; ��i (��i)

��
;
�
�0i; ��i (��i)

��
� ui

�
g (mi; s�i (��i (��i))) ;

�
�0i; ��i (��i)

��
= ui

�
y;
�
�0i; ��i (��i)

��
;8�0i 2 �i.

This establishes that y 2 Y �i (��i).

We proceed by showing that in a wide class of environments, to be referred to as economic
environments, ex post incentive and monotonicity condition are also su¢ cient conditions for ex post
implementation.

Robust Implementation May 4, 2004 12

De�nition 8 (Economic environment)
An environment is economic at state � 2 � if, for every allocation a 2 Y , there exist i 6= j and
allocations x and y respectively such that

ui (x; �) > ui (a; �)

and
uj (y; �) > uj (a; �) .

An environoment is economic if it is economic at every state.

We shall prove the su¢ ciency of the ex post monotonicity condition by using the following
augmented mechanism. It is similar to mechanisms used to establish su¢ ciency in the complete
information implementation literature (e.g., Maskin (1999)). Each agent sends a message of the
form mi = (�i; zi; yi), where �i 2 �i, zi is a non-negative integer and yi 2 Y . The mechanism is
described by three rules.

1. If zi = 0 for all i, then g (m) = f (�).

2. If zj = 1 and zi = 0 for all i 6= j, then outcome yj is chosen if yj 2 Y �j (��j); otherwise
outcome f (�) is chosen.

3. In all other cases, yej(z) is chosen, where ej (z) is the agent i with the highest value of zi (and,
in the event of a tie, the lowest label).

A strategy pro�le in this game is a collection s = (s1; :::; sI), with si : �i !Mi and we write

si (�) =
�
s1i (�) ; s

2
i (�) ; s

3
i (�)

�
2 �i � Z+ � Y ;

and sk (�) =
�
ski (�)

�I
i=1
. We shall refer to this mechanism as the augmented mechanism.

Theorem 2 (Economic Environment)
If I � 3 and f satis�es ex post incentive compatibility and ex post monotonicity and the environment
is economic, then f is ex post implementable.

Proof. The proposition is proved in three steps, using the above mechanism.
Step 1. There is an ex post equilibrium s with g (s (�)) = f (�) for all �. Any strategy pro�le s

of the following form is an ex post equilibrium:

si (�i) = (�i; 0; �) .

Suppose agent i thinks that his opponents are types ��i and deviates to a message of the form

si (�i) =
�
�0i; zi; yi

�
;

if either zi = 0 or zi > 0 but yi =2 Y �i (��i), then the payo¤ gain is

ui
�
f
�
�0i; ��i

�
; f (�i; ��i)

�
� ui (f (�i; ��i) ; f (�i; ��i)) ,

which is non-positive by (EPIC); if zi = 1 and yi 2 Y �i (��i), then the payo¤ gain is

ui (yi; (�i; ��i))� ui (f (�i; ��i) ; f (�i; ��i)) ,

which is non-positive by the de�nition of Y �i (��i).

Robust Implementation May 4, 2004 13

Step 2. In any ex post equilibrium, s2i (�i) = 0 for all i and �i. Suppose that rule 2 or rule 3
applies to the message pro�le sent at payo¤ type pro�le �, so that there exists i such that s2i (�i) = 1.
Given the strategies of the other agents, any agent j 6= i of type �j who thought his opponents were
types ��j could send any message of the form

(�; zj ; yj)

and obtain utility uj (yj ; �). Thus we must have uj (g (s (�)) ; �) � uj (a; �) for all a and all j 6= i.
This contradicts the economic environment assumption.
Step 3. In any ex post equilibrium with s2i (�i) = 0 for all i and �i, f � s1 = f . Suppose that

f � s1 6= f . By (EM), there exists i; � and y 2 Y �i
�
s1�i (��i)

�
such that

ui (y; �) > ui
�
f
�
s1 (�)

�
; �
�
.

Now suppose that type �i of agent i believes that his opponents are of type ��i and sends message
mi = (�; 1; y), while other agents send their equilibrium messages, then from the de�nition of g (�) :

g (mi; s�i (��i)) = y;

so that

ui (g (mi; s�i (��i)) ; �) = ui (y; �)

> ui
�
f
�
s1 (�)

�
; �
�

= ui (g (s (�)) ; �) ,

and this completes the proof of su¢ ciency.

The economic environment condition was used to show that in the augmented mechanism in
equilibrium, the integer reports zi all have to say zi = 0, or else any agent j could pro�tably
change his report zi and obtain a more desirable allocation to f (�), where the economic environment
guaranteed the existence of agent j with a preferred allocation.
We now proceed to establish su¢ cient conditions for ex post implementation outside of economic

environments. We begin by establishing an implication of non-economic environments.

Lemma 1 The environment is non-economic at � if and only if there exists j and b 2 Y such that
ui (b; �) � ui (a; �) for all a 2 A and i 6= j.

Proof. The environment is non-economic (by de�nition) if and only if there exists an allocation
b, such that if uj (y; �) > uj (b; �) for some j, y 2 Y , then there does not exist i 6= j and a 2 Y such
that ui (a; �) > ui (b; �). Thus ui (b; �) � ui (a; �) for all a 2 Y and i 6= j.

The ex post analogue of Jackson�s "no veto hypothesis" is simply the requirement that the state
be non-economic.

De�nition 9 (No Veto Power)
Social choice function f satis�es no veto power at � if ui (b; �) � ui (a; �) for all a 2 Y and all i 6= j
implies that f (�) = b.

De�nition 10 (Ex Post Monotonicity No Veto (EMNV))
A social choice function f satis�es ex post monotonicity no veto if the following is true. Fix any
deception � and sets �i � �i (write � = �Ii=1�i). Suppose that the environment in non-economic
at each � =2 �. Suppose also that either f (� (�)) 6= f (�) for some � 2 � or the no veto power
property fails for some � =2 �. Then there exists i, � 2 � and y 2 Y �i (��i (��i)) such that

ui (y; �) > ui (f (� (�)) ; �) .

Robust Implementation May 4, 2004 14

EPMV is almost equivalent to requiring ex post monotonicity and no veto power everywhere.
More precisely, we have:

1. If ex post monotonicity holds and no veto power holds at every type pro�le, then EMNV holds.

2. If EPMV holds, then (1) ex post monotonicity holds and (2) if the environment is non-economic
whenever �i = ��i , then no veto power holds whenever �i = ��i . To see (1), set �i = �i for
all i; to see (2), set � to be the truth-telling deception and, for some i, �i = �in f��i g and
�j = �j for all j 6= i.

Thus in an economic environment, EMNV is equivalent to ex post monotonicity.

Theorem 3 (Su¢ ciency)
For I � 3, f satis�es (EPIC) and (EMNV), then it is ex post implementable.

Proof. We use the same mechanism as before. The argument that there exists an ex post
equilibrium s with g (s (�)) = f (�) for all � is the same as before. Now we establish three claims
that hold for all equilibria. Let

�i = f�i : si (�i) = (�; 0; �)g

Claim 1. In any ex post equilibrium, for each � =2 �, (a) there exists i such that uj (g (s (�)) ; �) �
uj (a; �) for all a and j 6= i; and thus (b) the environment is non-economic at �.
First, observe that for each � =2 �, there exists i such that s2i (�i) > 0. Given the strategies of the

other agents, any agent j 6= i who thought his opponents were types ��j could send any message of
the form

(�; zj ; yj)
and obtain utility uj (yj ; �). Thus we must have uj (g (s (�)) ; �) � uj (a; �) for all a and j 6= i; thus
the environment is non-economic for all � =2 �.
Claim 2. In any ex post equilibrium, for all � 2 �,

ui
�
f
�
s1 (�)

�
; �
�
� ui (y; �)

for all y 2 Y �i
�
s1�i (��i)

�
. Suppose that y 2 Y �i

�
s1�i (��i)

�
and that type �i of agent i believes

that his opponents are of type ��i and sends message mi = (�; zi; y), while other agents send their
equilibrium messages. Now

g (mi; s�i (��i)) = y;

so ex post equilibrium requires that

ui (g (s (�)) ; �) = ui
�
f
�
s1 (�)

�
; �
�

� ui (g (mi; s�i (��i)) ; �)

= ui (y; �) .

Claim 3. If EPMV is satis�ed, then Claim 1 and 2 imply that g (s (�)) = f (�) for all �.
Fix any equilibrium. Claim 1(b) establishes that the environment is non-economic at all � 2 �.

Suppose g (s (�)) 6= f (�) for some � 2 �. Now EPMV implies that there exists i, � 2 � and
y 2 Y �i

�
s1�i (��i)

�
such that ui (y; �) > ui

�
f
�
s1 (�)

�
; �
�
, contradicting Claim 2. Suppose g (s (�)) 6=

f (�) for some � =2 �. By claim 1(a), there exists i such that uj (g (s (�)) ; �) � uj (a; �) for all a and
j 6= i. This establishes that no veto power fails at �. So again EPMV implies that there exists i,
� 2 � and y 2 Y �i (��i (��i)) such that ui (y; �) > ui (f (� (�)) ; �), contradicting Claim 2.
The structure of the proof is similar to Jackson (1991). The mechanism used to prove su¢ ciency

is simpler as we require the strategies to be in an ex-post rather than an interim equilibrium. The
entire argument is more compact due to the simplifying assumption of a social choice function rather
than social choice set.

Robust Implementation May 4, 2004 15

6 Interim Monotonicity and Robust Monotonicity

6.1 Interim Monotonicity

A deception for a type space T is a collection � = (�1; :::; �I), with

�i : Ti ! Ti.

Write � (t) = (�i (ti))
I
i=1; let f � b� : T ! A and f � b� � � : T ! A be de�ned by

f � b� (t) = f
�b� (t)�

and f � b� � � (t) = f
�b� (� (t))�

for all t.

De�nition 11 (Interim Monotonicity)
Social choice function f satis�es interim monotonicity on type space T if, for every deception � with
f � b� � � 6= f � b�, there exists i, ti and y : T ! Y such thatX

t�i2T�i

ui

�
y (� (t)) ;b� (t)� b�i (ti) [t�i] > X

t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (ti) [t�i] ; (7)

and X
t�i2T�i

ui

�
f
�b� (t0i; t�i)� ;b� (t0i; t�i)� b�i (t0i) [t�i] (8)

�
X

t�i2T�i

ui

�
y (�i (ti) ; t�i) ;b� (t0i; t�i)� b�i (t0i) [t�i] ; 8t0i 2 Ti:

Conditions like this are known as Bayesian monotonicity in the literature. We use the term
interim monotonicity both because we are interested in the case when there is no common prior and
to highlight the comparison with ex post monotonicity. Postlewaite and Schmeidler (1986) showed
that such an interim monotonicity condition is necessary and su¢ cient for full implementation in an
exchange economy with nonexclusive information and at least three agents. Palfrey and Srivastava
(1989) provide separate necessary and su¢ cient conditions for interim implementation when there is
exclusive information. Jackson (1991) showed that interim monotonicity is necessary and su¢ cient
for interim implementation in economic environments and that a slightly strengthened property
(Bayesian monotonicity no veto) is su¢ cient.

6.2 Robust Monotonicity

We will be interested in another new monotonicity notion that is equivalent to interim monotonicity
on all type spaces. In de�ning robust monotonicity, we therefore formalize a deception as a point-
to-set mapping. A deception is a collection � = (�1; :::; �I) with �i : �i ! 2�i and �i 2 �i (�i).
The interpretation is that �i (�i) is the collection of correct or incorrect reports that payo¤ type �i
might send. A deception is acceptable if �0 2 � (�)) f

�
�0
�
= f (�). A deception is unacceptable if

it is not acceptable. We write
��1i

�
�0i
�
�
�
�i : �

0
i 2 �i (�i)

	
and

��1�i
�
�0�i
�
� �

j 6=i
��1j

�
�0j
�
.

Thus ��1�i
�
�0�i
�
is the collection of ��i who might report themselves to be �

0
�i under deception �.

Robust Implementation May 4, 2004 16

De�nition 12 (Robust Monotonicity)
Social choice function f satis�es robust monotonicity if for every unacceptable deception �, there
exist i, �i, �

0
i 2 �i (�i) such that, for all �0�i 2 ��i and i 2 �

�
��1�i

�
�0�i
��
, there exists y 2 Y �i

�
�0�i
�

such that X
��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
. (9)

Note that the allocation y is allowed to depend on the misreport �0�i and the distribution i.
The notion of robust monotonicity shares many features with the ex post monotonicity condition.

Like ex post monotonicity, robust monotonicity refers only to payo¤ types and does not refer to priors
or posteriors over payo¤ types nor does it refer to any general type spaces. Robust monotonicity
also requires that the ex post incentive compatibility requirement y 2 Y �i

�
�0�i
�
be satis�ed. But the

whistle-blower inequality (9) is a stronger version of the ex post requirement.

6.3 Comparing Monotonicity Properties: Results

In this Subsection, we establish the relation between various monotonicity notions. We �rst show
that robust monotonicity is equivalent to interim monotonicity on all type spaces.

Theorem 4
Social choice function f satis�es robust monotonicity if and only if it satis�es interim monotonicity
on every type space.

Proof. ((). We �rst prove that interim monotonicity on every type space implies robust
monotonicity. It is convenient to work with the following contrapositive statement of robust monotonic-
ity. Thus for all i, �i, �

0
i 2 �i (�i), there exists a payo¤ pro�le �0�i 2 ��i, to be denoted by:

�i
�
�i; �

0
i

�
,
�
�ij
�
�i; �

0
i

��
j 6=i 2 ��i

and a conditional probability distribution i
�
�j�i; �0i

�
2 �

�
��1�i

�
�i
�
�i; �

0
i

���
such that

ui

�
f
�e�i; �i ��i; �0i�� ;�e�i; �i ��i; �0i��� � ui �y;�e�i; �i ��i; �0i��� ; (10)

for all e�i implies X
f��i2��i:�i(�i;�0i)2��i(��i)g

 i
�
��ij�i; �0i

�
ui
�
f
�
�0i; �i

�
�i; �

0
i

��
; (�i; ��i)

�
(11)

�
X

f��i2��i:�i(�i;�0i)2��i(��i)g
 i
�
��ij�i; �0i

�
ui (y; (�i; ��i)) .

Now we construct a type space based on the deception � such that if the social choice function
satis�es interim monotonicity on this type space, then � must be acceptable.
First, agent i has a set of "deception" types T 1i which are isomorphic to

	i =
��
�i; �

0
i

�
: �i 2 �i and �0i 2 �i (�i)

	
and for simplicity we identify every type ti 2 T 1i simply by such a pair of payo¤ types

�
�i; �

0
i

�
, or

T 1i , 	i. The type
�
�i; �

0
i

�
has payo¤ type �i and assigns probability i

�
��ij�i; �0i

�
to the event

that each agent j is type
�
�j ; �ij

�
�i; �

0
i

��
.

Robust Implementation May 4, 2004 17

Second, agent i has a set of "pseudo-complete information types" T 2i , which are isomorphic to
�, and for simplicity, again let T 2i = �i. The type corresponding to � has payo¤ type �i and he is
convinced that each other agent j is type �.
More formally, we have

Ti = T 1i [T 2i .
If ti 2 T 1i and ti =

�
�i; �

0
i

�
, then b�i (ti) = �i

and b�i (ti) [t�i] = � i
�
��ij�i; �0i

�
, if tj =

�
�j ; �ij

�
�i; �

0
i

��
for each j 6= i

0, otherwise;

if ti 2 T 2i and ti = �, then b�i (ti) = �i; (12)

and b�i (ti) [t�i] = � 1, if tj = (�j ; �j) for each j 6= i
0, otherwise.

(13)

Now we prove the proposition, by showing that interim monotonicity on this type space implies the
deception � we started with must be acceptable. Consider the deception �i on the constructed type
space where each type

�
�i; �

0
i

�
reports himself to be type

�
�0i; �

0
i

�
, and all other types report their

types truthfully. Thus:

�i (ti) =

� �
�0i; �

0
i

�
, if ti =

�
�i; �

0
i

�
ti, otherwise

.

Notice that type ti = (�i; �i) reports his type truthfully under this deception �i for all i. Now we
apply the interim monotonicity condition as presented in De�nition 11 to this deception. For any type
ti 2 T 2i , the deception �i changes neither his action nor his beliefs about his opponents�reporting
behavior. Thus he cannot be the critical type ti in the de�nition who "reports the deception". More
formally, for any type ti = � 2 T 2i , the interim monotonicity conditions reduce to, after using (12)
and (13):

ui (y (�) ; �) > ui (f (�) ; �)

and for all t0i = �0 2 T 2i , we would have

ui
�
f
�
�0
�
; �0
�
� ui

�
y
�
�; �0�i

�
; �0
�
,

which clearly leads to a contradiction for t0i = �. Thus there must exist i, ti 2 T 1i and y : T ! Y
such that (7) and (8) hold. Letting bti = ��i; �0i�, (7) becomes:X

f��i2��i:�i(�i;�0i)2��i(��i)g
 i
�
��ij�i; �0i

�
ui

�
y
��
�0i; �

0
i

�
;
�
�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

��
j 6=i

�
; (�i; ��i)

�
> (14)X
f��i2��i:�i(�i;�0i)2��i(��i)g

 i
�
��ij�i; �0i

�
ui
�
f
�
�0i; �i

�
�i; �

0
i

��
; (�i; ��i)

�
.

In the special case of the pseudo complete information types with t0i =
�e�i; �i ��i; �0i��, the interim

incentive compatibility condition (8) becomes

ui

�
f
�e�i; �i ��i; �0i�� ;�e�i; �i ��i; �0i���

� (15)

ui

�
y
��
�0i; �

0
i

�
;
�
�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

��
j 6=i

�
;
�e�i; �i ��i; �0i��� ; 8e�i:

Robust Implementation May 4, 2004 18

But now (10), (11) and (15) implies that (14) fails. Thus interim monotonicity on this type space
requires that

f
�b� (t)� = f

�b� (� (t))� for all t.
This requires � is acceptable. This completes the proof of robust monotonicity.
()) Suppose f satis�es robust monotonicity. Fix any type space T and any deception � with

f
�b� (t)� 6= f

�b� (� (t))� for some t. De�ne � by:
�i (�i) =

n
�0i : 9ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i

o
.

For every �i, �i (�i) is the collection of payo¤ types �
0
i which will be reported by some type ti when

he is using the deception �i and has a true payo¤ type �i. Deception � is unacceptable, so by robust
monotonicity, there exist i, �i, �

0
i 2 �i (�i) such that, for all �0�i 2 ��i and for all i with

 i 2 �
��
��i 2 ��i : �0�i 2 ��i (��i)

	�
;

there exists y
�
�0�i; i

�
such that X
f��i2��i:�0�i2��i(��i)g

 i (��i)ui
�
y
�
�0�i; i

�
; (�i; ��i)

�
(16)

>
X

f��i2��i:�0�i2��i(��i)g
 i (��i)ui

�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
and

ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� � ui �y ��0�i; i� ;�e�i; �0�i�� ; (17)

for all e�i. We emphasize that the distribution i only generates positive probabilities over ��i 2 ��i
which could lead to a deception �0�i for some types t�i 2 T�i. Thus in the following we omit the set
speci�cation

�
��i 2 ��i : �0�i 2 ��i (��i)

	
in the summation whenever we take expectations with

respect to i (��i) as pro�les �
00
�i with �

0
�i =2 ��i

�
�00�i
�
receive probability zero anyhow. Now choose

any ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i. Let

�i
�
�0�i
�
,

X
ft�i2T�i:b��i(��i(t�i))=�0�ig

b�i (ti) [t�i] (18)

and

 i
�
��ij�0�i

�
,
P
ft�i2T�i:b��i(t�i)=��i and b��i(��i(t�i))=�0�ig b�i (ti) [t�i]P

ft�i2T�i:b��i(��i(t�i))=�0�ig b�i (ti) [t�i] . (19)

For a given type space T and type ti, �i
�
�0�i
�
is the probability that agent i attaches to a payo¤

type report �0�i given the deception ��i. Consequently, i
�
��ij�0�i

�
is the conditional probability

that the true payo¤ type pro�le is ��i if the announced type pro�le is �
0
�i.

We construct a reward function y (t) on the type space T by setting:

y (�i (ti) ; t�i) , y
�b��i (t�i) ; i �� ���b��i (t�i)�� . (20)

Using the probabilities distributions de�ned in (18) and (19), and the reward function de�ned in
(20) we have the following equalities useful to establish the interim reward inequality:X

t�i2T�i

ui

�
y (� (t)) ;b� (t)� b�i (ti) [t�i] (21)

=
X

�0�i2��i

X
��i2��i

ui
�
y
�
�0�i; i

�
�j�0�i

��
; �
�
 i
�
��ij�0�i

�
�i
�
�0�i
�

Robust Implementation May 4, 2004 19

and X
t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (ti) [t�i] (22)

=
X

�0�i2��i

X
��i2��i

ui
�
f
�
�0
�
; �
�
 i
�
��ij�0�i

�
�i
�
�0�i
�
:

As the inequality (16) holds for every �0�i, we can infer from (16) thatX
�0�i2��i

X
��i2��i

ui
�
y
�
�0�i; i

�
�
���0�i �� ; �� i ���ij�0�i� �i ��0�i�

>
X

�0�i2��i

X
��i2��i

ui
�
f
�
�0
�
; �
�
 i
�
��ij�0�i

�
�i
�
�0�i
�

holds when we take the expectation with respect to �i
�
�0�i
�
. By appealing to the equalities (21)

and (22), we establish that: X
t�i2T�i

ui

�
y (� (t)) ;b� (t)� b�i (ti) [t�i] (23)

>
X

t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (ti) [t�i] .

Using again the probabilities distributions de�ned in (18) and (19), the reward function de�ned
in (20), we have the following equalities useful to establish the interim incentive inequalities:X

t�i2T�i

ui

�
f
�b� (t0i; t�i)� ;b� (t0i; t�i)� b�i (t0i) [t�i] (24)

=
X

�0�i2��i

X
��i2��i

ui

�
f
�b�i (t0i) ; ��i� ;�b�i (t0i) ; ��i�� i ���ij�0�i� �i ��0�i�

and X
t�i2T�i

ui

�
y (�i (ti) ; t�i) ;b� (t0i; t�i)� b�i (t0i) [t�i] (25)

=
X

�0�i2��i

X
��i2��i

ui

�
y (��i; i (� j��i)) ;

�b�i (t0i) ; ��i�� i ���ij�0�i� �i ��0�i� ; 8t0i:
By appealing the ex post incentive inequalities of robust monotonicity, (17), we know that

ui

�
f
�b�i (t0i) ; ��i� ;�b�i (t0i) ; ��i�� � ui �y ��0�i; i (� j��i)� ;�b�i (t0i) ; ��i�� ; (26)

for all t0i. The inequalities (26) then remain valid when we take expectations with respect to the
conditional and marginal distributions i

�
��ij�0�i

�
and �i

�
�0�i
�
respectively. By using the equalities

(24) and (25) we can then establish the interim incentive compatibility conditions:X
t�i2T�i

ui

�
f
�b� (t0i; t�i)� ;b� (t0i; t�i)� b�i (t0i) [t�i] (27)

�
X

t�i2T�i

ui

�
y (�i (ti) ; t�i) ;b� (t0i; t�i)� b�i (t0i) [t�i] ; 8t0i:

Robust Implementation May 4, 2004 20

But by (23) and (27), we have con�rmed interim monotonicity on this type space.

The proof may appear rather intricate in its details. We next give a brief outline of the basic
steps to show that interim implies robust monotonicity. We start with an arbitrary deception �
which satis�es the inequalities (10) and (11) and, crucially, do not insist on � being acceptable. For
the given deception �, we then create a type space, consisting of two components for every agent i.
The �rst component for agent i is created by the set of pairs of payo¤ types

�
�i; �

0
i

�
, where the �rst

entry is the true payo¤ type and the second entry is a feasible deception (under �), or �0i 2 �i (�i).
For this reason, we refer to these types as �deception types.�For every such pair

�
�i; �

0
i

�
there exists

one particular payo¤ pro�le �0�i which is �salient� for agent i of type
�
�i; �

0
i

�
, as the deception �

satis�es (10) and (11). Under the deception �, this payo¤pro�le could have been reported by all true
payo¤ pro�les which are in the support of i. Consequently, the belief component of type

�
�i; �

0
i

�
is given by simply adopting i

�
�
���i; �0i �. The second component are �pseudo complete information

types�, described by ti = � 2 �, which have a probability one belief that the true payo¤ pro�le is
given by � and that all other agents report the deception type (�j ; �j), and hence the �pseudo� in
the labelling.
Given this type space Ti, we then consider a particular deception �i : Ti ! Ti. The deception

�i is localized around the �deception types� and the �pseudo complete information types� report
thruthfully. The deception �i consists of agent i always reporting his deception type rather than
his true type, or �i

�
�i; �

0
i

�
=
�
�0i; �

0
i

�
. We then verify whether f is interim monotone under �.

The existence of the pseudo complete information types � forces the interim incentive compatibility
conditions to reduce to ex post incentive compatibility conditions. This guarantees the hypothesis
in the robust monotonicity notion, namely inequality (10), and thus leads to the conclusion in form
of the inequalities (11). But then we obtain a contradiction to the reward condition of interim
monotonicity, unless the hypothesis for the interim monotonicity condition, namely f 6= f ��, is not
satis�ed, i.e. f = f � � holds, but of course this implies that � is acceptable.
For the second part of the proof we use the full strength of robust monotonicity to establish

interim monotonicity. We start out with a deception � on an arbitrary type space T such that
f � � 6= f . We then extract from given type ti and associated belief type �i (ti) [t�i] a conditional
distribution over payo¤ types �i (ti) [��i]. For this conditional distribution, we can then construct
a reward by the robust monotonicity hypothesis, which we then employ for construct a reward
allocation o¤er to induce type ti to denounce the deception �.

Theorem 5
If f satis�es interim monotonicity on the complete information type space, then it satis�es Maskin
monotonicity.

Proof. The proof is by contrapositive. Suppose then that f is not Maskin monotone, and hence
there exists b� : �I ! �I such that for all i; �; with f (b� (�)) 6= f (�), and all h such that

ui (h (b� (�)) ; �) > ui (f (b� (�)) ; �) ;
we have

ui (f (b� (�)) ; b� (�)) < ui (h (b� (�)) ; b� (�)) :
Consider then the complete information type space Ti = �. For every i, let �i = b�. To obtain the
contradiction, let us then suppose that there exists i and ti such thatX

t�i2T�i

ui (h (� (t)) ; t) b�i (ti) [t�i] > X
t�i2T�i

ui (f (� (t)) ; t) b�i (ti) [t�i] (28)

whileX
t�i2T�i

ui (f (t
0
i; t�i) ; (t

0
i; t�i)) b�i (t0i) [t�i] � X

t�i2T�i

ui (h (�i (ti) ; t�i) ; t) b�i (t0i) [t�i] ; 8t0i 6= ti. (29)

Robust Implementation May 4, 2004 21

With the complete information type space and the symmetric deception strategy, the inequalities
(28) and (29) reduce to

ui (h (b� (�)) ; �) > ui (f (b� (�)) ; �) (30)

and
ui
�
f
�
�0
�
; �0
�
� ui

�
h
�b� (�) ; �0; :::; �0� ; �0� ; 8�0 6= �, (31)

but naturally there exists �0 = b� (�), and for this pro�le, the above inequality reads
ui (f (b� (�)) ; b� (�)) � ui (h (b� (�)) ; b� (�)) ; �0 = b� (�) ,

which leads to the desired contradiction with Maskin monotonicity.

Theorem 6
If f satis�es robust monotonicity, then it satis�es ex post monotonicity.

Proof. Let � be an ex post deception with f 6= f � �. Let � be a robust deception with
�i (�i) = f�ig [f�i (�i)g. By the de�nition of robust monotonicity, there exists i, �i, �0i 2 �i (�i)
such that, for all �0�i 2 ��i and i 2 �

�
��1�i

�
�0�i
��
, there exists y 2 Y �i

�
�0�i
�
such thatX

��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

By the construction of �, we must have �0i = �i (�i). Thus there exists i, �i, �
0
i = �i (�i), �

0
�i 2 ��i

with �0�i = ��i (��i) and y 2 Y �i
�
�0�i
�
such that

ui (y; (�i; ��i)) > ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

But this is ex post monotonicity.
While Maskin monotonicity is implied by interim monotonicity on complete information prior

type spaces, we do not have an argument implying ex post monotonicity or robust monotonicity
using type spaces that have a common prior, full support or common support. Because the strict
inequalities in the de�nition of interim monotonicity give rise to a non-compact set, it is not clear
that such an argument is possible. The following example shows how it is possible to have interim
monotonicity satis�ed for every type space with a sequence of full support priors, but fail in the
limit.

6.4 Comparing Monotonicity Notions: Examples

6.4.1 Example B

The example satis�es Maskin monotonicity and interim monotonicity for all common priors over the
payo¤ type space. Yet it fails to satisfy ex post monotonicity, and thus robust monotonicity.
There are three agents, i = 1; 2; 3 and each agent has a binary payo¤ type space �i 2 �i = f0; 1g.

The entire payo¤ type space is given by � = �3i=1�i. For simplicity of the example, the allocation
space is identical to the payo¤ type space, or A = � and the social choice function f : � ! A is
given by the identity mapping f (�) = � for all � 2 �. The payo¤s of the agents satisfy symmetry
across allocations a and payo¤ types: ui (a; �) = ui (�; a) for all i, a 2 A and � 2 � and invariance
with respect to symmetric permutations, for all i; a 2 A; � 2 � and � : �! �, we have:

ui (a; �) = ui (� (a) ; � (�)) .

The payo¤matrices below represent the payo¤s of the agents for allocation a = (0; 0; 0) at all possible
type pro�les � 2 �. Agent 1 is the row player, agent 2 the column player and agent 3 the matrix
player:

Robust Implementation May 4, 2004 22

(0; 0; 0)
0 0 1
0 1; 1; 1 1 + "; 0; 1 + �
1 0; 1 + �; 1 + " 0; 0; 0

(0; 0; 0)
1 0 1
0 1 + �; 1 + "; 0 0; 0; 0
1 0; 0; 0 1; 1; 1

The payo¤s generated by the remaining allocations can be generated by the symmetry assump-
tions from the above matrices and hence are omitted. We assume that 0 < " < � � 1. The
parameters " and � are assumed to be distinct solely to guarantee that the environment is an eco-
nomic environment for which ex post monotonicity is a necessary as well as su¢ cient condition.
With a direct mechanism the game displays two symmetric pure strategy ex post equilibria. The
�rst symmetric equilibrium is the truthtelling equilibrium, or

si (�i) = �i for all i and �i,

whereas the second symmetric equilibrium is the misreporting equilibrium:

si (�i) 6= �i for all i and �i.

Naturally, these ex post equilibria are also interim equilibria on any type space.

Ex Post Monotonicity Fails We �rst show that this example fails ex post monotonicity by
showing that for the �complete�deception �i (�i) 6= �i for all i and �i the social choice function does
not satisfy ex post monotonicity. By symmetry, it is su¢ cient to consider agent 1 and true state
� = (0; 0; 0). The complete deception (all misreport) leads to the allocation � (0; 0; 0) = (1; 1; 1).
The only allocations which would improve the utility of agent 1 are a 2 f(0; 1; 0) ; (0; 0; 1)g and
we shall argue next that neither of these allocations satis�es the incentive compatibility conditions
of the monotonicity condition. Consider �rst the reward y = (0; 1; 0), for which ex post incentive
compatibility would have to satisfy:

1 = u1 ((1; 1; 1) ; (1; 1; 1)) � u1 ((0; 1; 0) ; (1; 1; 1)) = 0

as well as
1 = u1 ((0; 1; 1) ; (0; 1; 1)) � u1 ((0; 1; 0) ; (0; 1; 1)) = 1 + �,

but obviously the second inequality is violated. Similarly, we observe that for the reward y = (0; 0; 1),
the ex post incentive compatibility conditions are:

1 = u1 ((1; 1; 1) ; (1; 1; 1)) � u1 ((0; 0; 1) ; (1; 1; 1)) = 0

as well as
1 = u1 ((0; 1; 1) ; (0; 1; 1)) � u1 ((0; 0; 1) ; (0; 1; 1)) = 1 + ",

and again the second inequality is violated. Thus we conclude that we can not �nd an allocation
which acts as a reward, yet leads to an incentive compatible denouncement strategy.

Maskin Monotonicity Holds With respect to the �complete� deception: �i (�i) 6= �i for all
i and �i, the above discussion of ex post monotonicity already allows us to conclude that Maskin
monotonicity is satis�ed. The violation of the ex post incentive compatibility condition for either
reward y 2 f(0; 1; 0) ; (0; 0; 1)g occurred at � = (0; 1; 1), but not at the deception � (0; 0; 0) = (1; 1; 1)
which is the only pro�le to be veri�ed with Maskin monotonicity. For all other deceptions, it su¢ ces
to observe that at most two agents bene�t from the deception f (� (�)) relative to the social choice
f (�) and hence there is always a third agent who can be rewarded by simply o¤ering him the
allocation y = f (�) at �, which also guarantees the incentive compatibility of the reward.

Robust Implementation May 4, 2004 23

Interim Monotonicity Holds on all Payo¤ Type Spaces We start by considering the �com-
plete� deception: �i (�i) 6= �i for all i and �i and then extend the argument to all deceptions.
We �rst suggest a reward rule y : � ! A which will work for agent 1 at �1 = 0 provided that
p ((0; 0) j0) > 0 and p ((1; 1) j0) � 1

1+" . We o¤er the following contingent reward to agent 1:

y =

�
(0; 0; 1) if � = (1; 1; 1)
f if � 6= (1; 1; 1) (32)

The reward condition at �1 = 0 then reduces to, after eliminating terms on both sides of the
inequality by using (32):

u1 ((0; 0; 1) ; (0; 0; 0)) p ((0; 0) j0) > u1 ((1; 1; 1) ; (0; 0; 0)) p ((0; 0) j0) (33)

and the interim incentive compatibility conditions for �1 = 0 is, after inserting the corresponding
utilities,

1 � (1 + ") � p ((1; 1) j0) (34)

and for �1 = 1:
1 � 1� p ((1; 1) j1) (35)

We observe that (33) is satis�ed by hypothesis of p ((0; 0) j0) > 0, inequality (34) by hypothesis of
p ((1; 1) j0) � 1

1+" and inequality (35) is always satis�ed.
For the instance of p ((0; 0) j0) > 0 but p ((1; 1) j0) > 1

1+" , we can o¤er a modi�ed reward rule:

y =

�
(0; 1; 0) if � = (1; 0; 0)
f if � 6= (1; 0; 0) (36)

which di¤ers from the reward rule (32) only by the type pro�le at which it o¤ers a reward. With
this modi�ed rule can then write the reward condition as:

u1 ((0; 1; 0) ; (0; 1; 1)) p ((1; 1) j0) > u1 ((1; 0; 0) ; (0; 1; 1)) p ((1; 1) j0) (37)

and the incentive compatibility conditions for �1 = 0 again after insert the utilities,

1 � (1 + ") � p ((0; 0) j0) (38)

and for �1 = 1 :
1 � 1� p ((0; 0) j0) (39)

By the hypothesis of p ((1; 1) j0) > 1
1+" , it follows that (37) and (38) holds, and (39) is always sat-

is�ed. We can thus conclude that we can satisfy interim monotonicity for the �complete�deception
for all priors.
Consider �nally all deceptions which are not complete in the above sense. In this case, there

exists at least some agent i and some state �i where he reports the truth. It is also true that every
deception must involve at least two agents who misreport for some types. (Observe that otherwise,
we could simple replace the deception by a single agent with the true state which would strictly
improve the welfare of the agent in question.) But at any type pro�le � at which exactly two agents
misreport, the payo¤ for every agent is 0, whereas it is 1 if we were to choose the corresponding
social choice f (�), which then provides the reward and guarantees ex post incentive compatibility.
We would like to point out that all of the above arguments did not depend on a common prior

nor did we need to make any full support assumption. The only necessary ingredient to demonstrate
the success of interim implementation was the fact that every payo¤ type has exactly one belief type
generate by the conditional belief, derived from a common prior or not.

Robust Implementation May 4, 2004 24

6.4.2 Example C

There are three agents, i = 1; 2; 3 and each agent has a binary payo¤ type space �i =
�
�i; �

0
i

	
. The

allocation space is given by A = fa; b; c; d; z1; z2; z3g. The social choice function f : �! A is given
by:

�3 �2 �02
�1 a b
�01 b c

�03 �2 �02
�1 b c
�01 c d

The payo¤s of the agents are identical for every allocation which appears at least once in the social
choice function. It therefore su¢ ces to represent the payo¤of agent 1 for each of these four allocations
fa; b; c; dg

a :
�3 �2 �02
�1 1 0
�01 0 0

�03 �2 �02
�1 0 0
�01 0 0

b :
�3 �2 �02
�1 �1 "
�01 " �1

�03 �2 �02
�1 " �1
�01 �1 �1

c :
�3 �2 �02
�1 �1 �1
�01 �1 "

�03 �2 �02
�1 �1 "
�01 " �1

d :
�3 �2 �02
�1 �1 �1
�01 �1 �1

�03 �2 �02
�1 �1 �1
�01 �1 "

The allocation a is e¢ cient if all agents are of type �i and d is e¢ cient if all agents are of type �
0
i. In

the remaining case the allocation b is e¢ cient if a majority of agents is of type �i and the allocation
c is e¢ cient if a majority of agents is of type �0i. The di¤erence between allocation a and b; c; d is
that if a is e¢ cient it has a strongly positive payo¤ 1 � " > 0 and if a is ine¢ cient, then it has a
0 payo¤, but not a strongly negative payo¤s as the other allocations. For this reason, receiving the
allocation a even if it is not e¢ cient is not as damaging as receiving any other ine¢ cient allocation.
The allocations z1; z2; z3 are not called upon by the social choice function and they are merely

introduced to turn the environment into an economic environment. We specify the payo¤s as

ui (�; zi) = x; 8i;8�

and
ui (�; zj) = �x; 8i 6= j; 8�

The allocation zi is thus the most preferred alternative for agent i in all states and for this rea-
son cannot be used as a reward as it would immediately violate the incentive constraints in the
monotonicity condition.
In the game induced by the direct mechanism there exists only one ex post equilibrium, namely

truthtelling, whereas depending on the priors over the payo¤ type space there may be many in-
terim equilibria. We shall now brie�y argue that the social choice function indeed satis�es ex post
monotonicity and then display uniform and independent priors over the payo¤ types for which
interim monotonicity fails.

Ex Post Monotonicity The social choice function is maximizes the sum of utilities at every type
pro�le �. Thus if a deception � generates a di¤erent social outcome at � than f (�), or f (� (�)) 6=
f (�), then we can always o¤er the reward y = f (�) following the report � (�) to anyone of the three
agents. Since the social choice function is ex post incentive compatible and e¢ cient we satisfy the
reward as well as the incentive constraints. This establishes ex post monotonicity.

Robust Implementation May 4, 2004 25

Maskin Monotonicity The same reward strategy to elicit the use of deceptions by the agents
also establishes that the social choice function satis�es Maskin monotonicity. Yet if we change
the payo¤s for all the agents resulting from allocation a at � =

�
�01; �

0
2; �

0
3

�
and increase it from

0 to ui
�
a;
�
�01; �

0
2; �

0
3

��
= 2", then f no longer satis�es Maskin monotonicity for the deception

�
�
�01; �

0
2; �

0
3

�
= (�1; �2; �3) as we cannot o¤er a suitable reward to elicit the denunciation. Yet,

the social choice function f preserves ex post monotonicity in this modi�ed environment as the
incomplete information deception �i

�
�0i
�
= �i for all i leads has type pro�les, say

�
�1; �

0
2; �

0
3

�
, where

the misreports by agent 2 and agent 3 lead the social choice function to select either a or b when c
is the e¢ cient choice and indeed can be used as a reward to eliminate the possibility of deceptive
equilibrium. Thus this example shows that a social choice function may satisfy ex post monotonicity,
yet display or not display Maskin monotonicity.

Interim Monotonicity Finally consider the notion of interim monotonicity with a uniform prior
over the payo¤ type space:

p (�) =
1

8
; 8�.

For this type space we analyze the following �pooling� deception in which every agent always
reports his type to be �i:

�i (�) = �i; 8i; 8�i;

Under this deception, the social choice function recommends to select allocation a for all true payo¤
type pro�les. As the designer attempts to identify a reward allocation y : � ! A, he faces the
problem that all types report identically �i, and he has to o¤er a single allocation regardless of the
true type pro�le. Thus he is necessarily forced to select an allocation, di¤erent from a, at payo¤
type pro�les where it is not e¢ cient. With the given payo¤s this will lead to substantial utility
losses whereas the allocation a, even if it is not e¢ cient, only leads to a small payo¤ loss. With the
uniform prior, the best possible reward structure relative to the equilibrium utility is to o¤er c to
an agent i of type �0i, yet when we evaluate the reward inequality:X

��i2��i

ui (y (� (�)) ; �) p (��i j�i) >
X

��i2��i

ui (f (� (�)) ; �) p (��i j�i)

we obtain

"

�
1

4
+
1

4

�
+ (�1)

�
1

4
+
1

4

�
> 0

which is clearly violated for small " and hence interim monotonicity will be violated for a large sets
of priors over the payo¤ type space.

7 Implementation on All Type Spaces

Proposition 1 If f is interim implementable on every type space T , then f satis�es (EPIC) and
robust monotonicity.

The necessity of EPIC is proved in our companion paper, Bergemann and Morris (2003).
To prove the necessity of robust monotonicity, it is enough to show the following lemma.

Proposition 2 If f is interim implementable on type space T , then f satis�es interim monotonicity
on type space T .

Robust Implementation May 4, 2004 26

This argument is standard from the Bayesian implementation literature and dates back to Postle-
waite and Schmeidler (1986). For completeness, we report a proof. One subtlety is that such results
are usually stated under the assumption of common support, with implementation required only on
that support. We do not make this assumption and we emphasize that our de�nition requires imple-
mentation at every type pro�le whether or not any agent thinks it occurs with positive probability.
Proof. Let (M; g) implement f with equilibrium strategies si : Ti !Mi. Suppose that for some

deception �, f � b� 6= f � b� � �. It must be that s � � is not an equilibrium. Therefore there exists i,
ti 2 Ti and mi 2Mi such thatX

t�i

ui

�
g (mi; s�i (��i (t�i))) ;b� (ti; t�i)� b�i (ti) [t�i]

>
X
t�i

ui

�
g (s (� (t))) ;b� (ti; t�i)� b�i (ti) [t�i]

Let y , g (mi; s�i (��i (t�i))). Then, from above,

ui (y; �) > ui (f (� (�)) ; �) :

But since s is an equilibrium it follows that

ui
�
f
�
�0i; ��i (��i)

�
;
�
�0i; ��i (��i)

��
= ui

�
g
�
s
�
�0i; ��i (��i)

��
;
�
�0i; ��i (��i)

��
� ui

�
g (mi; s�i (��i (��i))) ;

�
�0i; ��i (��i)

��
= ui

�
y;
�
�0i; ��i (��i)

��
;8�0i 2 �i.

This establishes that y 2 Y �i (��i).

De�nition 13 (Robustly Economic Environment)
An environment is robustly economic at � if for any y� 2 Y , there exist i and j, i 6= j, and allocations
a and b such that

ui (a; �) > ui (y
�; �)

and ui
�
a;
�
�i; �

0
�i
��
� ui

�
y;
�
�i; �

0
�i
��

for all y 2 Y and �0�i 2 ��i; and

uj (b; �) > uj (y
�; �)

uj
�
b;
�
�j ; �

0
�j
��
� uj

�
y;
�
�j ; �

0
�j
��

for all y 2 Y and �0�j 2 ��j. An environment is robustly economic if it is robustly economic at all
�.

Evidently, a robustly economic environment is also an ex post economic environment as the former
shares the strict inequality with the later condition. Yet, the former is more stringent requirement
through the addition of the weak inequalities which are necessitated by the robust implementation.
As di¤erent types ti of agent i may share the same payo¤ type b�i (ti), but pursue di¤erent deception
strategies, the weak inequalities have to hold for the allocations a; b 2 Y against all allocations
y 2 Y rather than a selection y : �! Y as in the notion of an interim economic environment.

Proposition 3 (Su¢ ciency of Robust Monotonicity)
In robustly economic environments with I � 3, if f satis�es robust monotonicity and (EPIC), then
there exists a mechanism that implements f on all full support type spaces.

Robust Implementation May 4, 2004 27

The following mechanism MR will be employed in the proof. Each agent reports a message
mi = (�i; zi;
i; yi), where �i 2 �i; zi is a non-negative integer,
i : ��i ! A is a mapping from
payo¤ type pro�les to outcomes, satisfying the property that
i (��i) 2 Y �i (��i) for all ��i; and
yi 2 Y . Outcomes are determined by the following rules:

1. If zi = 0 for all i, then g (m) = f (�).

2. If there exists j such that zi = 0 for all i 6= j and zj � 1, then g (m) =
j (��j).

3. In all other cases, g (m) = yej(z), where ej (z) is uniquely determined by the following rules:
(a) zej(z) � zi for all i;
(b) if zi = zej(z), then i � ej (z).

Proof. Fix any common support type space T (with common support T �).
STEP 1. There is an equilibrium where every type ti of agent i always sends a message of the

form
�b�i (ti) ; 0; �; ��. This strategy pro�le implements f .

No agent has an incentive to deviate. By choosing a message of the form
�
�0i; 0; �; �

�
, his payo¤

gain (if his opponents have payo¤ type pro�le ��i) is

ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
� ui (f (�i; ��i) ; (�i; ��i))

which is less than or equal to 0 by EPIC. By choosing a message of the form (�i; zi;
i; �) with zi � 1,
his payo¤ gain (if his opponents have payo¤ type pro�le ��i) is

ui (
i (��i) ; (�i; ��i))� ui (f (�i; ��i) ; (�i; ��i))

which is less than or equal to 0 by the requirement that
i (��i) 2 Y �i (��i).
STEP 2. In any equilibrium, all types of each agent sends a message of the form (�; 0; �; �).
We argue by contradiction. First suppose that there exists j and tj 2 Tj with sj (tj) = (�; zj ; �; �)

for some zj � 1. Pick any t�j such that (tj ; t�j) 2 T �. Now by the robustly economic environment,
there exists an agent i 6= j and an allocation a such that

ui

�
a;b� (t)� > ui

�
g (s (t)) ;b� (t)�

and
ui

�
a;b� �ti; t0�i�� � ui �g �s �ti; t0�i�� ;b� �ti; t0�i�� for all t0�i.

But then agent i could strictly increase his utility by setting si (ti) = (�; zi; �; a), with zi higher than
the integer chosen by any other type in equilibrium.
STEP 3. In any equilibrium where all types of each agent send a message of the form (�; 0; �; �),

social choice function f is implemented.
Again, we argue by contradiction. Let

�i (�i) = f�ig [
n
�0i 2 �i : 9ti with b�i (ti) = �i and si (ti) =

�
�0i; 0; �; �

�o
.

If f is not implemented, we must have that � is not acceptable. By robust monotonicity, there exists i,
�i and �

0
i 2 �i (�i) such that for every �0�i and i 2 �

�
��1�i

�
�0�i
��
, there exists y

�
�0�i; i

�
2 Yi

�
�0�i
�

such thatX
��i2��i

 i (��i)ui
�
y
�
�0�i; i

�
; (�i; ��i)

�
>

X
��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

Robust Implementation May 4, 2004 28

Now pick any ti such that b�i (ti) = �i and si (ti) =
�
�0i; 0; �; �

�
. Let

 i
�
��ij�0�i

�
=

P
ft�i2T�i:b�j(tj)=�j and sj(tj)=(�0j ;0;�;�);8j 6=ig

b�i [ti] (t�i)P
ft�i2T�i: sj(tj)=(�0j ;0;�;�);8 j 6=ig

b�i [ti] (t�i) .

If type ti follows his proposed strategy, he obtains utilityX
t�i2T�i

b�i [ti] (t�i)ui �f �s1 (t)� ;b� (t)� (40)

=
X

ft�i: sj(tj)=(�0j ;0;�;�);8j 6=ig
b�i [ti] (t�i) X

��i2��i

 i
�
��ij�0�i

�
ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

If instead, he chooses (�; 1;
i; �), where

i (��i) = y (��i; i (� j��i))

for each ��i, then he obtains utilityX
t�i2T�i

b�i [ti] (t�i)ui �
i �s1�i (t�i)� ;b� (t)� (41)

=
X

ft�i2T�i:sj(tj)=(�0j ;0;�;�);8j 6=ig
b�i [ti] (t�i) X

��i2��i

 i
�
��ij�0�i

�
ui
�
y
�
�0�i; i (� j��i)

�
; (�i; ��i)

�
.

But now the whistle blower inequality (??) implies that (41) is strictly greater than (40).

7.1 Iterative Implementation

We now show that interim implementation on all type spaces (including non-common support type
spaces) is equivalent to implementation in the strategy set surviving iterated deletion of never weak
best responses.
We begin by setting the notation for iterated deletion of never weak best responses. For a �xed

mechanismM = (M1; :::;MI ; g), we de�ne the set of surviving reports for agent i of payo¤ type �i
after k rounds

�
Mk
i (�i)

	
i;�i2�i

recursively as follows. Let M0
i (�i) =Mi and de�ne recursively:

Mk+1
i (�i) =

8>><>>:mi 2Mk
i (�i) :

��������
there exists �i 2 �(M�i ���i) such that
(1) �i (m�i; ��i) > 0) mj 2Mk�1

j (�j) for each j 6= i

(2)
P

m�i;��i

�i (m�i; ��i)

�
ui (g (mi;m�i) ; (�i; ��i))
�ui (g (m0

i;m�i) ; (�i; ��i))

�
� 0 for all m0

i 2Mi

9>>=>>; .
We write

M�
i (�i) =

\
k�0

Mk
i (�i) and M1 (�) = fM1

i (�i)gIi=1 .

When the mechanism is �nite, iterative deletion of never weak best responses is equivalent to
iterated deletion of strictly dominated strategies; and a countable number of rounds of deletion is
enough to converge to a �xed point. If there are an in�nite number of messages, we might need to
delete a trans�nitely, as noted by Lipman (1994) in a complete information contect. In this case, we
should understand the above de�nition as consisting of enough rounds of deletion to reach a �xed
point.

Robust Implementation May 4, 2004 29

De�nition 14 Social choice function f is iterative implementable if there exists a mechanism M
such that

m 2M1 (�)) g (m) = f (�) .

We refer to iterative implementable rather than the more exhaustive implementable in strategies
surviving iterated deletion of never weak best responses. We next present two examples to illustrate
this de�nition. The �rst example augments the introductory example by two additional outcomes
which are not called upon by the social choice function f . This example has the feature that the
social choice function is iterative implementable, yet not dominant strategy implementable. We show
iterative implementability by explicitly constructing the mechanism. The second example exactly
reprises the introductory example and shows that even though there the social choice function f is ex
post implementable, there does not exist a mechanism which would make f iterative implementable.

7.2 Example D

The introductory Example A had two agents, i = 1; 2 with binary payo¤ types: �1 =
�
�1; �

0
1

	
,

�2 =
�
�2; �

0
2

	
. The only variation is in the allocation space A = fa; b; c; d; z1; z2g which contains

the additional elements z1 and z2 . The social choice function is still given by:

f �2 �02
�1 a b
�01 c d

and the payo¤s of the agents remain identical for the original allocations fa; b; c; dg:

a �2 �02
�1 3; 3 0; 0
�01 0; 0 1; 1

b �2 �02
�1 0; 0 3; 3
�01 1; 1 0; 0

c �2 �02
�1 0; 0 1; 1
�01 3; 3 0; 0

d �2 �02
�1 1; 1 0; 0
�01 0; 0 3; 3

and for z1 and z2 are given by:

z1 �2 �02
�1 2; 2 2; 0
�01 2; 2 2; 0

z2 �2 �02
�1 2; 0 2; 2
�01 2; 0 2; 2

Consider the following augmented mechanism g (�) in which agent 1 can report besides his payo¤
type also a third message � whereas agent 2 is again restricted to report his payo¤ type:

g (�) �2 �02
�1 a b
�01 c d
� y z

The corresponding incomplete information game has the following payo¤s:

type �2 �02
type report �2 �02 �2 �02
�1 �1 3; 3 0; 0 0; 0 3; 3

�01 0; 0 1; 1 1; 1 0; 0
� 2; 2 2; 0 2; 0 2; 2

�01 �1 0; 0 1; 1 1; 1 0; 0
�01 3; 3 0; 0 0; 0 3; 3
� 2; 2 2; 0 2; 0 2; 2

Robust Implementation May 4, 2004 30

If we perform iterated deletion of never weak best responses, then we arrive in four steps at a
singleton for every type of every agent:

M0
1 (�1) =

�
�1; �

0
1; �
	
, M0

1

�
�01
�
=
�
�1; �

0
1; �
	
, M0

2 (�2) =
�
�2; �

0
2

	
, M0

2

�
�02
�
=
�
�2; �

0
2

	
M1
1 (�1) = f�1; �g , M1

1

�
�01
�
=
�
�01; �

	
, M1

2 (�2) =
�
�2; �

0
2

	
, M1

2

�
�02
�
=
�
�2; �

0
2

	
M2
1 (�1) = f�1; �g , M2

1

�
�01
�
=
�
�01; �

	
, M2

2 (�2) = f�2g , M2
2

�
�02
�
=
�
�02
	

M3
1 (�1) = f�1g , M3

1

�
�01
�
=
�
�01
	
, M3

2 (�2) = f�2g , M3
2

�
�02
�
=
�
�02
	

7.3 Example A Revisited

We now return to the original example and simply omit the allocations z1 and z2. Here we will
prove that the social choice function is not iterative implementable. We argue by contradiction.
Thus suppose that there is a �nite mechanismM such that

m 2M1 (�)) g (m) = f (�) .

Let
M�
i (�i) = fmi : g (mi;mj) = f (�i; �j) for some mj ; �jg .

By induction, M�
i (�i) � Mk

i (�i) for all k. Suppose that this is true for k. Then for any mi 2
M�
i (�i) � Mk

i (�i), there exists mj 2 M�
j (�j) � Mk

j (�j) such that g (mi;mj) = f (�i; �j). So
mi 2Mk+1

i (�i).
Thus we must have that (m1;m2) 2M�

1 (�1)�M�
2 (�2) implies g (m1;m2) = f (�1; �2). Let m�

i (�)
be any selection from M�

i (�). Now let k� be the lowest k such that, for some i,

m�
i

�
�0i
�
=2Mk

i (�i) .

Without loss of generality, let i = 1. Note m�
2

�
�02
�
2Mk�1

2 (�2) by assumption. If agent 1 was type
�1 and was sure his opponent were type �2 and choosing action m�

2

�
�02
�
, we know that he could

guarantee himself a payo¤ of 1 by choosing m�
1

�
�01
�
. Since m�

1

�
�01
�
is deleted for type �1 at round

k, we know that there exists m0
1 2M1 such that

g1
�
m0
1;m

�
2

�
�02
��
> 1

and thus there exists m0
1 such that g1

�
m0
1;m

�
2

�
�02
��
= f (�1; �2). This implies that m�

2

�
�02
�
2

M�
2 (�2), a contradiction.
Both examples use the fact that the social choice function always selects an outcome that is

strictly Pareto-optimal and - paradoxically - it this feature which inhibits iterative implementation
in the current example.5 Borgers (1995) proves the impossibility of complete information implemen-
tation of non-dictatorial social choice functions in iteratively undominated strategies when the set

5 In this context, it is worthwhile to observe that the social choice function f in Example A satis�es robust
monotonicity. Example A
We return to Example A of Section 2 and verify that is satis�es robust monotonocity. To see why, �rst observe

that Y �i (��i) = Y for all i and ��i. So it is enough to show that for any �i 6= �0i, �j 6= �0j , b�j and 2 [0; 1], there
exists y 2 Y such that

 ui (y; (�i; �j)) + (1�)ui
�
y;
�
�i; �

0
j

��
> ui

�
f
�
�0i;b�j� ; (�i; �j)�+ (1�)ui

�
f
�
�0i;b�j� ; ��i; �0j�� .

But this is true, since if > 1
3
, we can set y = f (�i; �j), and if < 2

3
, we can set y = f

�
�i; �

0
j

�
.

Since robust monotonicity is satis�ed, Maskin monotonicity, ex post monotonicity and interim monotonicity on
every type space are also satis�ed.
Yet, as the environment is distinctly non-economic, monotonicity is only a necessary but not su¢ cient condition for

interim implementation. More precisely, in this example any attempt to create a reward allocation has to rely on the
use of the e¢ cient allocations, and this necessarily creates mutliple equilibria, not all of them implement the social
choice function f .

Robust Implementation May 4, 2004 31

of feasible preference pro�les includes such unanimous preference pro�les and the argument here is
reminiscent of Borgers�argument.

7.4 Characterization

We will use the following straightforward lemma.

Lemma 2 For each mi 2M1
i (�i), there exists �i 2 �(��i �M�i) such that:

1. �i (��i;m�i) = 0 if mj =2M1
j (�j) for some j 6= i;

2. mi 2 argmax
m0
i

P
��i;m�i

�i (��i;m�i)ui (g (m
0
i;m�i) ; (�i; ��i)).

De�nition 15 Social choice function f is uniformly implementable if there exists a mechanismM
such that for every �nite type space T , every (pure strategy) interim equilibrium s of the game
(T ;M) satis�es

g (s (t)) = f
�b� (t)� .

We then use the characterization of iterative implementation provided by Lemma 2 to relate
iterative implementation and implementation on all type spaces.

Theorem 7 There is a mechanism which implements social choice function f on all type spaces if
and only if f is iteratively implementable.

Proof. First, suppose that f is iterative implementable. Fix any type space T . Choose a
mechanismM that iterative implements f . Fix any equilibrium s of the game (T ;M) and let

cMi (�i) =
n
mi : si (ti) = mi and b�i (ti) = �i

o
:

By induction, cMi (�i) �Mk
i (�i) for all k, and thus cMi (�i) �M1

i (�i). Now g (s (t)) = f
�b� (t)�.

Now suppose that f is not iterative implementable. Then for any mechanismM, there exists m�

such that m� 2 M1 (��) but g (m�) 6= f (��). Recall from Lemma 2 that for each mi 2 M1
i (�i),

there exists �i (� jmi) 2 �(��i �M�i) such that:

1. �i (��i;m�i) = 0 if mj =2M1
j (�j) for some j 6= i;

2. mi 2 argmax
m0
i

P
��i;m�i

�i (��i;m�i)ui (g (m
0
i;m�i) ; (�i; ��i)) :

Now we construct a type space where

Ti = f(�i;mi) 2 �i �Mi : mi 2M1
i (�i)gb�i ((�i;mi)) = �ib�i ((�i;mi))

h
(�j ;mj)j 6=i

i
= �i (��i;m�ijmi) .

By construction, there is an equilibrium s of the game (T ;M) with

si ((�i;mi)) = mi.

But now g (s (��;m�)) = g (m�) 6= f (��), while b� (��;m�) = ��.

Robust Implementation May 4, 2004 32

This argument is a straightforward application of a more general game theoretic argument.
Brandenburger and Dekel (1987) showed that the following result. Fix a complete information game
and a type space. Since there is complete information, all types are identical in terms of payo¤s, but
may di¤er in their beliefs over others�types. Ask which actions may be played in a Bayesian Nash
equilibrium of this rather degenerate incomplete information game on any type space (including
those where agents�beliefs are not derived from a common prior). This is equivalent to asking which
actions may be played in a subjective correlated equilibrium of the underlying complete information
game. Brandenburger and Dekel show that the answer is the set of all actions which survive iterated
deletion of strictly dominated strategies.
This result can be extended to an incomplete information setting as follows. Let each agent i

have one of a �nite set of payo¤ types, �i. Fix an incomplete information payo¤ function, where
agents�payo¤s depend on the pro�le of actions chosen and the pro�le of payo¤ types. Take any rich
type space of the form we de�ned in Section 3.2, where an agent�s type includes a description of
his payo¤ type and his beliefs about others�types. Ask which actions might be played by a given
payo¤ type in any equilibrium of the resulting game, for any type space. The answer is the set of
actions that survive iterated deletion of strictly dominated actions, where an action is dominated for
a payo¤ type if there is a mixed strategy that gives a strictly higher payo¤ for every action/payo¤
type pro�le of the remaining players that has not yet been deleted. Proposition 7 is direct application
of this result. Battigalli and Siniscalchi (2003) have reported incomplete information generalizations
of the Brandenburger and Dekel (1987) that can incorporate the argument here as a special case.
Arguments in Lipman (1994) can be used to show the extension to in�nite actions.

8 Private Values and Dominant Strategies

We conclude this section by noting the connection between robust monotonicity and dominant
strategies.

De�nition 16 Social choice function f satis�es strict dominant strategies incentive compatibility if
for all i, �, �0 with �0i 6= �i,

ui
�
f
�
�i; �

0
�i
�
; �
�
> ui

�
f
�
�0i; �

0
�i
�
; �
�
.

De�nition 17 Social choice function f satis�es dominant strategies incentive compatibility if for
all i, �, �0,

ui
�
f
�
�i; �

0
�i
�
; �
�
� ui

�
f
�
�0i; �

0
�i
�
; �
�
.

Intermediate between these notions, we have conditions where strict inequalities are required
only at some subset of deviations.

De�nition 18 Social choice function f satis�es selective dominant strategy incentive compatibility
(SDI) if for every deception � with f 6= f � �, there exists i and � such that

ui (f (�i; ��i (��i)) ; �) > ui (f (�i (�i) ; ��i (��i)) ; �) .

De�nition 19 Social choice function f satis�es selective dominant strategies incentive compatibility
(SD2) if f satis�es dominant incentive compatibility and, for all unacceptable deceptions �, there
exists i, �i and �

0
i 2 �i (�i) such that

ui
�
f
�
�i; �

0
�i
�
; (�i; ��i)

�
> ui

�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
for all ��i with �

0
�i 2 ��i (��i).

Robust Implementation May 4, 2004 33

First, we observe that SD1 and SD2 imply ex post monotonicity and robust monotonicity, re-
spectively.

Lemma 3 If social choice function f satis�es SD1 and EPIC, then f satis�es ex post monotonic-
ity.

PROOF. Fix any deception � with f 6= f � �. By SD1, there exists i and � such that

ui (f (�i; ��i (��i)) ; �) > ui (f (�i (�i) ; ��i (��i)) ; �) .

Setting y � f (�i; ��i (��i)), we have

ui (y; �) > ui (f (�i (�i) ; ��i (��i)) ; �) .

But by EPIC,

ui
�
f
�
�0i; ��i (��i)

�
;
�
�0i; ��i (��i)

��
� ui

�
f (�i; ��i (��i)) ;

�
�0i; ��i (��i)

��
= ui

�
y;
�
�0i; ��i (��i)

��
for all �0i. So y 2 Y �i (��i (��i)).

Lemma 4 If social choice function f satis�es SD2 and EPIC, then f satis�es robust monotonicity.

PROOF. Fix any unacceptable deception �. If f satis�es SD2, there exist i, �i and �
0
i 2 �i (�i)

with
ui
�
f
�
�i; �

0
�i
�
; (�i; ��i)

�
> ui

�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
for all ��i and �

0
�i 2 ��i (��i). Setting y = f

�
�i; �

0
�i
�
, we have

ui (y; (�i; ��i)) > ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
for all ��i and �

0
�i 2 ��i (��i). Now by EPIC,

ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� � ui

�
f
�
�i; �

0
�i
�
;
�e�i; �0�i��

= ; ui

�
y;
�e�i; �0�i��

for all
�e�i; �0�i� 2 �.

We also show that under the private value assumption, SD1 and SD2 are implied by ex post
monotonicity and robust monotonicity, respectively.

De�nition 20 The social choice environment satis�es private values if

ui (y; (�i; ��i)) = bui (y; �i)
for all i, y, �i and ��i.

Lemma 5 In a private values environment, if f satis�es ex post monotonicity, then f satis�es SD1.

Proof. By ex post monotonicity, for every deception � with f 6= f � �, there exists i; � and
y 2 Y �i (��i (��i)) such that

ui (y; �i) > ui (f (� (�)) ; �i)

and
ui
�
f
�
�0i; ��i

�
; �0i
�
� ui

�
y; �0i

�

Robust Implementation May 4, 2004 34

for all �0i. Thus
ui (f (�i; ��i) ; �i) � ui (y; �i) > ui (f (� (�)) ; �i) .

Clearly, strict dominant implies selective dominant which in turn implies dominant strategies in-
centive compatibility. The relationship between selective dominant strategies incentive compatibility
and robust monotonicity is established next.

Lemma 6 In a private values environment, if f satis�es robust monotonicity, then f satis�es SDs.

Proof. By robust monotonicity condition, for every unacceptable deception �, there exist i, �i,
�0i 2 �i (�i), such that for every �0�i and i 2 �

�
��1�i

�
�0�i
��
, there exists y

�
�0�i; i

�
withX

��i

 i (��i) bui �y ��0�i; i� ; �i� >X
��i

 i (��i) bui �f ��0i; �0�i� ; �i� .
and bui �f �e�i; �0�i� ;e�i� � bui �y ��0�i; i� ;e�i�
for all e�i. Thus

bui �f ��i; �0�i� ; �i� � bui �y ��0�i; i� ; �i� > bui �f ��0i; �0�i� ; �i�
for all �0�i.

9 Discussion

To simplify the presentation and to facilitate comparisons with the existing literature, we maintained
a number of standard (perhaps unfortunately) assumptions from the literature: in�nite actions games
were allowed, type spaces were �nite, and only pure strategy equilibria were allowed. We brie�y
discussed how the results would vary if we relaxed those assumptions.

9.1 In�nite Action Games

We used "integer games" to ensure that actions we added to the direct in the augmented mechanism
were never played in equilibrium. As is standard in the literature (e.g., Jackson (1991)), it would be
straightforward to replace the integer game with �nite action "modulo games." This would change
our results in two ways. First, it would imply that our result showing the su¢ ciency of robust
monotonicity for interim implementation on all type spaces would require a di¤erent mechanism for
every �nite type space. Our existing result used a single mechanism for all type spaces. Second,
in this case the pure strategy would have bite for the interim implementation on all type spaces
problem.

9.2 Finite Type Spaces

For simplicity, we restricted attention to �nite type spaces. We use the discrete type space to have
an unambiguous notion of common support.

9.3 The Pure Strategy Restriction

For the ex post implementation question, the pure strategy restriction has bite. For interim im-
plementation on all type spaces, if pure strategy implementation was possible but mixed strategy
implmentation was not, we could always add types to purify the bad mixed strategy equilibria.

Robust Implementation May 4, 2004 35

9.4 Conclusion

This paper examined the robustness of the classical implementation problem. We formalized robust-
ness by requiring that the implementation problem remains solvable as we gradually relax common
knowledge among the agents and the designer. The weakening of common knowledge was achieved
by considering large type spaces in which the private information of the individual agents becomes
more prominent.
Motivated by the recent literature on mechanism design with interdependent valuations which

focuses on the notion of ex post equilibrium we presented initially necessary and su¢ cient conditions
for ex post implementation. We then proceeded to relate interim implementation on large type spaces
to ex post and complete information implementation. The obtained results point to the essential role
of type spaces and the representation of private information in the implementation problem. While
interim implementation on all common prior type spaces implies ex post and complete information
implementation, the implication fails to hold if we were to consider only all common prior payo¤
type spaces, wherein the canonical model of the mechanism design literature resides. Moreover, and
in contrast to our earlier results on truthful implementation (Bergemann and Morris (2003)) ex post
implementation does not imply interim implementation even when we consider only common prior
payo¤ type spaces. The analysis thus suggests that the ex post equilibrium notion may not capture
robustness and concerns about detail free solutions as well for implementation as it does for truthful
implementation problems.
The robustness results are all derived for general environment and exact implementation. It

remains an open question whether more detailed relationships between these notions arise in speci�c
environments such as single crossing or supermodular environments. Likewise it would be interesting
to purse to the robustness analysis for virtual rather than exact implementation.

Robust Implementation May 4, 2004 36

References

[1] Abreu, D. and H. Matsushima. 1992. �Virtual Implementation in Iterative Undominated Strate-
gies: Complete Information.�Econometrica 60: 993-1008.

[2] Battigalli, P. 1999. �Rationalizability in Incomplete Information Games.�

[3] Battigalli, P. and M. Siniscalchi. 2003. "Rationalization and Incomplete In-
formation", Advances in Theoretical Economics Vol. 3: No. 1, Article 3.
http://www.bepress.com/bejte/advances/vol3/iss1/art3

[4] Bergemann, D. and S. Morris. 2001. �Robust Mechanism Design." early draft at
http://www.econ.yale.edu/sm326/rmd-nov2001.pdf

[5] Bergemann, D. and S. Morris. 2003. �Robust Mechanism Design." Cowles Foundation Discus-
sion Paper No. 1421. http://ssrn.com/abstract=412497.

[6] Bergemann, D. and S. Morris. 2004. �Notes on Complete Information Implementation with
Rich Type Spaces.�

[7] Bergemann, D. and J. Valimaki. 2002. �Information Acquisition and Mechanism Design.�
Econometrica 70: 1007-1033.

[8] Bernheim, D. 1984. �Rationalizable Strategic Behavior.�Econometrica 52: 1007-1028.

[9] Borgers, T. 1995. �A Note on Implementation and Strong Dominance." Social Choice, Welfare
and Ethics, W. Barnett, H. Moulin, M. Salles, Scho�eld, eds. Cambridge University Press.

[10] Brandenburger, A. and E. Dekel. 1987. �Rationalizability and Correlated Equilibria.�Econo-
metrica 55: 1391-1402.

[11] Brandenburger, A. and E. Dekel. 1993. �Hierarchies of Beliefs and Common Knowledge.�Jour-
nal of Economic Theory 59: 189-198.

[12] Brandenburger, A. and A. Friedenberg. 2002. �Common Assumption of Rationality in Games.�

[13] Chung, K.-S. and J. Ely. 2003. �Implementation with Near-Complete Information.�Economet-
rica 71: 857-871.

[14] Cremer, J. and R. McLean. 1985. �Optimal Selling Strategies Under Uncertainty for a Discrim-
inating Monopolist when Demands are Interdependent.�Econometrica 53: 345-361.

[15] Cremer, J. and R. McLean. 1988. �Full Extraction of the Surplus in Bayesian and Dominant
Strategy Auctions.�Econometrica 56: 1247-1258.

[16] Dasgupta, P. and E. Maskin. 2000. �E¢ cient Auctions.�Quarterly Journal of Economics 115:
341-388.

[17] Harsanyi, J. 1967/68. �Games with Incomplete Information Played by Bayesian agents.�Man-
agement Science 14, 159-182, 320-334, 486-502.

[18] Heifetz, A. and Z. Neeman. 2003. �On the Generic Impossibility of Full Surplus Extraction in
Mechanism Design�

[19] Heifetz, A. and D. Samet. 1888. �Topology-Free Typology of Beliefs.� Journal of Economic
Theory 82, 324-341.

Robust Implementation May 4, 2004 37

[20] Holmstrom, B. and R. Myerson. 1983. �E¢ cient and Durable Decision Rules with Incomplete
Information.�Econometrica 51: 1799-1819.

[21] Jackson, M. 1991. �Bayesian Implementation.�Econometrica 59: 461-477.

[22] Jackson, M. 1992. �Implementation in Undominated Strategies: A Look at Bounded Mecha-
nisms." Review of Economic Studies 59, 757-775.

[23] Jehiel, P. and B. Moldovanu. 2001. �E¢ cient Design with Interdependent Valuations.�Econo-
metrica 65: 1237-1259.

[24] Kajii, A. and S. Morris. 1997. �The Robustness of Equilibria to Incomplete Information.�
Econometrica 65: 1283-1309.

[25] Kalai, E. 2002. �Large Robust Games." Northwestern University.

[26] Lipman, B. 1994. A Note on the Implications of Common Knowledge of Rationality.�Games
and Economic Behavior 6, 114-129.

[27] Maskin, E. 1999. �Nash Equilibrium and Welfare Optimality.�Review of Economic Studies 66:
23-38.

[28] Maskin, E. and T. Sjostrom. 2001. �Implementation Theory." To appear in Handbook of Social
Choice and Welfare, edited by K. Arrow, A. Sen and K. Suzumura.

[29] McLean, R. and A. Postlewaite. 2001. �E¢ cient Auction Mechanisms with Multidimensional
Signals.�

[30] Mertens, J.-F. and S. Zamir. 1985. �Formulation of Bayesian Analysis for Games of Incomplete
Information.�International Journal of Game Theory 14: 1-29.

[31] Mookerjee, D. and S. Reichelstein. 1989. �Implementation Via Augmented Revelation Mecha-
nisms." Review of Economic Studies 57: 453-475.

[32] Morris, S. 2002. �Typical Types.�Available at http://www.econ.yale.edu/~sm326/typical.pdf.

[33] Neeman, Z. 2001. �The Relevance of Private Information in Mechanism Design.�

[34] Palfrey, T. and S. Srivastava. 1989. Implementation with Incomplete Information in Exchange
Economies.�Econometrica 57: 115-134.

[35] Pearce, D. 1984. �Rationalizable Strategic Behavior.�Econometrica 52: 1007-1029.

[36] Perry, M. and P. Reny. 2002. �An Ex Post E¢ cient Auction.�Econometrica 70: 1199-1212.

[37] Postlewaite, A. and D. Schmeidler. 1986. �Implementation in Di¤erential Information
Economies.�Journal of Economic Theory 39: 14-33.

[38] Serrano, R. and R. Vohra. 2002. �A Characterization of Virtual Bayesian Implementation.�

[39] Wilson, R. 1987. �Game-Theoretic Analyses of Trading Processes.� In Advances in Economic
Theory: Fifth World Congress, ed. Truman Bewley. Cambridge: Cambridge University Press
chapter 2, pp. 33-70.

Robust Implementation May 4, 2004 38

Overview over Results

1. Positive Results Regarding Monotonicity:

Ex Post
Montonicity

% - Thm 6
?

type spaces
Interim

Monotonicity
all

type spaces
Thm 4
 !

Robust
Monotonicity

complete information
type space

Thm 5& .
Maskin

Monotonicity

2. Negative Results Regarding Monotonicity:

Ex Post
Monotonicity

C 6.6% B 6& C�

comnon prior payo¤
type spaces

Interim
Monotonicity

comnon prior payo¤
type spaces

B
9

C� 6# 6" B

Robust
Monotonicity

comnon prior payo¤
type spaces

C 6- 6% B
Maskin

Monotonicity

We refer to C� as the modi�cation of Example C suggested in that very section.

3. Open and Possible Results Regarding Monotonicity.

� Does interim monotonicity on a subset of all type spaces imply ex post monotonicity. By the
equivalence between robust and interim monotonicity on all type spaces, we know that interim
monotonicity on all type spaces implies ex post monotonicity, but a stronger implication could
be possible, but it would have to be weaker than common prior payo¤ type spaces.

� Ex Post Monotonicity should fail to imply Robust Monotonicity. The answer is yes, the only
question is whether C already violates robust monotonicity or whether only the modi�cation
C� violates robust monotonicity.

� Does interim monotonicity on all common prior payo¤ type spaces fail to imply maskin
monotonicity

4. Open and Possible Results Regarding Economic Environment.

Robust Implementation May 4, 2004 39

We could reasonably expect that the implications for economic environment are identical to the
ones derived for monotonicity. We would then start to establish su¢ cient condition for implemen-
tation for a speci�c class of environments. Yet this has still to be established. Similarly, we might
ask whether the results hold at least partially also for the more elaborate No Veto Monotonicity
Hypothesis.

Ex Post
Economic

% -
?

type spaces
Interim
Economic

all full support
type spaces !

Robust
Economic

complete information
type space

& .
Maskin
Economic

� the additional example shows that robust econonomic and robust monotonicity is only a su¢ -
cient condition for full support type spaces and thus we would hope that full suport for interim
would be necessary and su¢ cient as well

� this raises the question whether there is reasonable strengthening of robust economic so that
the equivalence holds for all type spaces, not only for full support type spaces. Do we think
that the failure lies in robust economic or robust monotonicity.

� once we have su¢ cient conditions for robust economic, we can then think whether this is
enough to bring close and how close to iterative implementation.

� to be integrated....note on robust and single mechanism...notes on compelete information....

� what can be said about the auction world of Maskin and Dasgupta, can they be implemented,
to take on the question of K�r Eliaz.

4. Implementation

We �nally can relate iterative and uniform implementation on all type spaces. We may think of
interim implementation on all type spaces as robust implementation.

Interim
Implementation

all
type spaces

all
type spaces

% -
Iterative

Implementation
Thm 7
$

Uniform
Implementation

It then remains an open question as to whether interim implementation on all type spaces in
turn implies either iterative or uniform implementation.

