1. Law of Large numbers for real-valued random variables.

Let X1, X5,... be i.i.d. copies of a random variable X with values in X and with
distribution P. Consider the case & = R. As n — o,

lX:X,; —-u=FEX, as.
n
(Proof sketch: using Chebychev inequality.)
Let the empirical distribution of X be Fj,(t) = %#{Xi <t,1<i<n}teRand
let F(t) = P(X <t). We also have:
Fo(t) = F(t), a.s. forallt

Theorem 1.1: Glivenko-Cantelli Uniform Law of Large Numbers. [t says
the emipirical distribution converges to the theoretical distribution uniformly:

sup |Fr(t) — F(t)] = 0, a.s.
t
Applications: Kolmogorov’s goodness-of-fit test. We want to test whether the
theoretical distribution is the same as some specified distribution. Hy @ F' = Fj.

The test statistic is:
D, = stlp |Fn(t) — Fo(t)]

Reject Hy for large values of D,,.

Extensions: What il we want to extend the half-intervals (~o0,?] in R to sets of
higher dimensions? Among what type of sets does Glivenko-Cantelli theorem hold?

The followings are all examples of extensions of half intervals to higher dimensions:
quadr-angles in R?, half spaces in R™, and monotone sets.

Let us first extend the cmpirical distribution of one real-valued random variable
to the empirical measure based on N random variables. For any measurable sct
A C X, the empirical measure based on Xi,..., X, is:

Po(A) = %#{X,. ceA1<i<n}

The theoretical distribution of {X),..., X,,...} is denoted by
P=Px..xPx...

Definition: Glivenko-Cantelli (GC) class of sets. Let D be a collection of
subscts of X. The collection D is called a GC class if

sup |Pp (D) — P(D)] -0, a.s.
DeD
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Example. Let X = R. The class of half-intervals

D= {1(—oo.t] cte R}
is GC for all distributions. As a counter example, let P be a uniform distribution
(or any continuous distribution) on [0, 1]. The class

B = {all Borel subscts of {0,1]}

is not GC, ie., uniform law of large numbers does not hold on this collection of
sets.
(Proof sketch: Take aset to be the collection of all sample points B = {X...... Xt

Then

sup |Pp(B) - P(B)| =1)
BeB

2. What types of sets are of Glivenko-Cantelli class?

Definition: Cardinality of Sets. Let D be a collection of subsets of X', and let
{&1,..., &} be n points in & (they do not have to be the sample points). Two sets
Dy and Dy are equal if the intersection of their symmetric difference with the n
points {£1,..., .} are an empty sct:
DiAD N {Er,... .} =10

where DyADy = (D) N DS) U (DS N Ds) is the symmetric difference between D,
and Dg. Write the cardinality of sets as
AP, . &) = card({DN{&,...,&) D € D))

= the number of subsets of {£;,....£,} that D can distinguish

i.e., we count the number of sets up to equivalent classes.

Example. a). Let us first look at half intervals in the real line R. Let X = R and
D= {l(ey: t€ R} Then for all {&,.. ., &} CR,

AP, &) S+l

with “=" when the points {£,,..., £, } are distinct.

b) As another example, let D be the collection of all finite subsets of X. Then if
the points {&1,..., &} arc distinct,

(Proof sketch: the collection of sets D contains the 2" possible combinations of the

n points {fl}:-~~:{£n}r {‘51752}:'"7{§l="‘v£71}>{@}‘)

Compared to the previous example, the cardinality of this set is much higher. In
fact, it grows exponentially versus polynomially.

Theorem 2.1 (Vapnik and Chervonenkis (1971)). We have
sup |P,.(D) - P(D)| — 0 a.s.
Dep

if and only if
1
;logAD(Xl.‘ ..... X,) —F 0.
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Note that AP(Xy,...,X,) is random since it depends on the sample. It also de-
pends on the specific probability measure P. What we want is a quantity that is
independent of any distribution.

Definition: Vapnik-Chervonenkis (VC) Class. Let

mP(n) = sup{AP (&, .., &) &1, & € X}
We say that D is a VC class if for certain constants ¢ and r, and for all n,
P

m”~(n) <cen”

Le., if mP(n) does not grow faster than a polynomial in 7.
Conclusion: For any collection of sets, VC = GC.

Examples. a) ¥ = R, D = {1(_a,qy : t € R}. Since mP(n) <n +1, Dis VC.
b) X =R4D = {1y : t € R} Since mP(n) < (n+1)¢, Dis VC.
) X =R4D={{z:0Tx>1, (?) € R4}, Since mP(n) < 24(73), D is VC.

Lemma 2.2 (Closeness of VC Under Complement, Union and Intersec-
tions). Let D, Dy and Dy be VC. Then the following classes are also VC:

()D¢ = {D°:D € D},
(ZZ)Dl NDy = {Dl NDy: Dy €Dy, Dy € DQ},
(LZZ)‘D; UDy = {D1 UDy:D, €Dy, Dy € DQ}.

Examples of VC Sets: a) the class of intersections of two half-spaces,
b)all ellipsoids,
(Hint: ellipsoids can be expressed as:

cla—z)+db-y)? <r?  (a,b,cd,7) are parameters.
Replace 22 with @1, 2 with ¥, the ellipsoids can also be written as:
coa?—2-a-z+cm+d-b¥—2b-dy+d oy <r?

which is a special half space in R%.)
c¢)all half-ellipsoids (intersection of half spaces and cllipsoids),

d)in R, the class {{z: 6z + -+ 02" <t}: <§) € R

Examples of GC sets which are not VC sets: Let X =[0,1]?, and let D be
the collection of all convex subsets of X. Then D is not VC, but when P is uniform
(or any continuous distribution function defined on {0, 1)2), D is GC.

(Hint: D is GC is very hard to prove. See Pollard (1984).)

3. Convergence of Means to Expectations.



Notation. For a function g: X — R, we write the expectation of g(x) as

[ 9ap = g0

and the empirical average as

n

/gdPn = %Zg(Xi)

i=1

3.1 Uniform Law of Large Numbers for Classes of Functions.

Definition: Glivenko-Cantelli (GC) Class for a class of functions. Let
be a collection of real-valued functions on X. The class G is GC if

sup| [ gdP, — /gdP| -0, as.
g€g .

In cmpirical estimations, the choice of g typically depends on the random observa-

tions, so the uniform convergence on the space of functions is convenient.

Recall that for scts, we uses the number of cardinality of sets to prove GC:
1
ZlogAP(Xy, ..., X,) =F 0 & sup |Py(D) — P(D)| — 0 as.
7 DeD

We now introduce a similar notion *entropy” on metric spaces which will help us
verify the conditions under which a collection of functions is GC.

Definition: Entropy for a General Metric Space. Let (T, 7) be a metric space.
Fix 6 > 0, let N(6,T,7) = minimum number of balls with radius ¢ necessary to
cover T. The J-cntropy of set 7 is defined as:

H(.T,7)=1ogN (3, T,7)

Examples. Let us first consider a bounded space in R?. For example, a squarc
box with length 2. With a slight abuse of definitions, let us consider small square
boxes with length 8. Then the number of small boxes neccessary to cover the big
box is:
R
NGT) = (3

The d-entropy is:

R
5
Similarly, in a d-dimensional space, the d-entropy of d-dimensional cubes with
length R is approximatcly d log(%). Since our focus is classes of functions, let
us now define entropy for function classcs.

H(8,T)=10gN(4,T) = 2log(

Definition: Entropy for Classes of Functions. Supposc |g] € 1¥g € G, and
g is defined on X. For any A C X, let |gloc.a = Sup.eqs |9(z)| and |glee,p, =
Sup <<, 19(X5)[. In other words, [gloc.a is the sup-norm defined on scts A and



o

|9|0e. p,, 18 the sup-norm for functions of random variables with the empirical distri-
bution P,. Let N, (4,G, P,) be the smallest value of N for which a covering of G
by balls with radius § (using the sup-norm metric) and centers at gi,..., gn exists.
That is, for each g € G. there is a j € {1,..., N}, such that

|9 — 95loc.p,. <0
Then the d-entropy for G is denoted as H..(8,G, ,) and
Hyo(6,G. Pn) = logN(6,G, Pn)

Theorem 3.1: Suppose |g| < 1,Vg € G, then:

1
—H(8.G,Py) SPovE>0e sup[/gd(Pn — P)] =% 0.
n 9€G

Example. Let G be a class of indicator functions of sets: G = {1p :D € D}. Then
the é-entropy of this set is:

Hoo(6.{1p :D € D}, Pn) = logAP(X1,..., Xn)

From the argument above, we know that if D is VC, then G is GC.

In the theorem above, we have assumed that the absolute value of any function g in
the class G is no larger than one. What if we relax the assumption that functions
are bounded? For this we need to introduce a new concept: cnvelope of a class of
functions.

Definition: Envelope of a Class of Functions. The envelope of a class of
functions G is:

G(z) =suplg(z),,z € X
geg

Theorem 3.2. Let L;(P) denote the set of functions whose absolute valucs is
P-integrable:

Li(P)={g :/ lgldP < c}
Suppose G is a subset of Ly(P). Then

JGdP < }

LH(5,G,.P,) -»F 0,¥6 >0 < sup | /Qd(Pn — P)] =250

9€G

where Hy(8,G, Py) is the d-entropy with respect to |- |, p,, and

9lp, = / \gldP,

Sometimes the entropy condition is hard to verify because it depends on the cm-
pirical distribution P, and is random. As what we have done to the measurable
sets, we will introduce VC classes of functions and explain under what conditions
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the class is also GC.

Definition: Subgraph of a function. The subgraph of a function g :& — R is
subgraph(g) = {(z,t) € X x R g (z) > ¢}.

Definition: VC Classes of Functions. A collection of functions G is called a
VC class if the subgraphs {subgraph(g) : g € G} form a VC class.

Theorem 3.3: Suppose G is VC and that [ GdP < oc. Then G is GC.
Time for some exercise to cheer up spirits!

Exercise. Arc the following classes of sets (functions) VC? Why or why not?

a) The class of all rectangles in R.

(Proof sketch: Yes. Rectangles arc intersections of two quadr-angles.)

b) The classes of all monotone functions on R.

(Proof sketeh: No. A VC class can not separate all combinations of the sample
points, i.e., there exist(s) some combination(s) of the sample points that can not
be distinguished by a VC class. Choose a configuration of the sample points such
that they lic on one increasing line. Then it is easy to find increasing functions that
separate ANY combination of the sample points.)

What if we restrict our attention to the class of increasing functions on [0,1] : G =

{g R — [0,1], g increasing}? Is G GC?

(Proof sketch: let us try to find the entropy of G. First fix § > 0. Approximate the

function ¢ with a step function § that is within § distance of ¢ |g(z) — g(z)] < 6.

As g varies, the number of function § needed to cover G is roughly ("Ji_“l'), which is
&

less than (;—l— n)/%, Therefore, the cntropy is less than a constant times log(n):

H,(6,6.P.) < glog(n+ 3)
¢) The class of all sections in R2.

(Proof sketch: Yes. Sections are intorsections of half spaces and circles.)

d) The class of all star-shaped sets in R2.

(Proof sketch: No. Similar to the argument of convex sets. You can pick up any
collection of the sample points using a star-shaped set.)

Exercise 2. Let G be the class of all fumctions g on [0,1] with derivative g satisfying
lg| < 1. Check that G is not VC. Show that G is GC by using partial integration
and the Glivenko-Cantelli Theorem.

(Proof sketch:

/gd(Pn - P)

Il

1
/0 0(2)d(Py (z) - P())
o1

= g(1)(Pa(1) = P(1)) — g(0)(P,(0) — P(0)) —/O (Pn(z) = P(x)gdz

Without loss of generality, assume ¢ is bounded. Then all the terms on the right
hand side converges to zero uniformly. Therefore the class is GC. To use the
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Glivenko-Cantelli theorem, we want to show that the entropy of the class G divided
by n converges to 0. Without loss of generality, let G = {g:{0,1] — [0,1],|g] < 1}.
Fix § > 0. At the first interval [0,13], depending on the value of g, the possible
number of § is %. At the sccond interval, the possible number of § reduces to 3,
since |g] < 1. Altogether, the number of § to cover G is less than (%)331"1. )

As we mentioned earlier. the entropy condition we have introduced is random and
can be hard to verify. If every element of G is also encapsulated by an upper func-
tion and a lower function, then there exists a non-random entropy condition that
directly implies GC. For this end,we introduce the notion of “entropy with brack-
cting”.

Definition: Entropy with Bracketing. Let G denote a class of functions. The
$-covering number with bracketing of G (using L, (P) norm) is:
Ng(6,G,P) = minN s.t.
U _ L
LN e [ S le7 —grldP <6 ,
{9597 }i=1 samsi)mg{ Vg e 0.3, st g]]-“ <g< g]l-"
The d-entropy with bracketing covering G is defined as:

Hp(6,G. P) = logN5(6,G, P)

Theorem 3.4: Hg(6,G,P) <o Vé > 0= G is GC.
(Proof sketch:

JoatP-p) = /gdpn—/gdp

S /g_g‘jdpn - /gfdp
= /gfd(Pn - P)+ /(g,@' - g;)dpP
<

/g]@’d(pn P46
Sirnilarly, we can show that
Joae =)= [ fap. - p)-s

Since there arc only finite pairs of the upper and lower functions {g]L , gg»"'}(j =
1, , N <o), as P, — P, we will eventually have:

tes
max | [ofap =P < 6 as

L _ < 5
ji{l?f(.zv[/ng(P“ P) £ 4, as.

So eventually,

sup| [ gd(Pn — P)| £20, as.
9€g
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Next we present a lemma that shows the conditions under which the entropy with
bracketing is finite.

Lemma 3.5: Suppose (0, 7) is a compact metric space. Let the class of functions
G be indexed by elements of ©, i.e. G = {gp: # € ©}. Suppose the map § — go(z)
is continuous in @ for P-almost all z. Moreover, let us assume that the envelope of
G is P-integrable: G € L1(P) (ie. [ GdP < co). Then

H1p(6,G,P) < oo, ¥6>0
(Proof sketch: Write

w(f,p)(z) = sup [ge(z) — g5(z)},0 €0,p>0
(0,8)<p

Then w(0, p)(xz) — 0 as p — 0, for P-almost all z. By dominated convergence,
/'w(ﬂ,p)dP -0 asp—0

Fix an arbitrary 6 > 0. V0,3 pg,such that [ w(, pg)dP < 6.. To show that the
entropy with bracketing is finite, we want to construct a set of bracketing functions.
Let By ={6:7(6,6) < pp} and let By,, ..., By, be a finite cover of ©. Define

g]l." = ng — 'w(()j‘p(}j),j = l, ..... N
g5 g0; + w(®j,p0;),7 =1,... . N

where N is the number of coverings for set ©. Then

0< /(gj-’ —gh)dP <25

i
<

and for 6 € By,,
gF <go <oy
It follows that
HI,B (2(5, g7 P) ﬁ lOg]V

Theorem 3.6: Supposc G is VC. Let D = {subgraph of g: g € G}. By propertics
of a VC class, mP(n) € en”,V n. Let us restrict our attention to bounded functions
to simplify proof. The results are essentially the same for unbonnded functions.
Assume 0 < g < 1,Yg € G. Then

1

Nl(fs,g;P)SA((s

)Qr
(Proof: exercise.)
4. Uniform Central Limit Theorem

Central Limit Theorem in R. Suppose £(X) = p1, and var(X) = o exists.

Then .

X -

Pr(yn(=— M) < z) > B(2), for all z,
o

where O is the standard normal distribution function.




The first step is to extend central limit theorem to higher dimensions. Later on we
will extend it to infinite dimensions.

Central Limit Theorem in R% Let Xi,..., X, be iid. R%valued random

variables copies of X, (X € X = RY, with expectation p = EX, and covariance
matrix & = EXXT — pu”.) We have

V(X — 1) =5 N(0.2),

ValaT (X, — )] =% N(0,a"Za), for all a € RY

Central Limit Theorem in Infinite Dimensions. A central limit theorem that
holds uniformly in g € G is one of the main topics in empirical process theory.
Here we briefly discuss the weak convergence of the empirical process. The main
concepts are Donsker classes and asymptotic continuity. Let us first give a formal
definition of the empirical process.

Definition: Empirical Process. The empirical process indexed by G is
vn(g) = x/ﬁ/gd(Pn -P), geg
For a given function g, central limit theorem for one random variable (here it is
g(X)) implies that the empirical process converges to a normal distribution:
valg) = N(0,0%(9))

where 62(g) is the variance of g(X ). The central limit theorem also holds for finitely
many g simultaneously. Let grand g; be two functions and denote the covariance
between gi(X) and ¢ (X) by

(k. 1) = cov(ge(X), 9i(X)) = Ege(X)9:(X) — Egi(X)Egi(X)
Whenever 02 (gx) < oc for k=1,...,r, we will have

va(g1)
: —F N(0, Zg1mge)s
Vn(gr)
where X, 4, is the variance-covariance matrix
o*(g1) .- olgi. gr)
Eggr = S
o(91.9:) .- 0% (gr)

Before we discuss the uniform central limit theorem, we need to find the limiting
process of v, for ANY finite collection of g.

Definition: P-Brownian bridge. Let v be a Gaussian process indexed by G.
Assume that for each 7 € N and for cach finite collection {g1,...,9-} C G. the
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r-dimensional vector
v(g1)

v(gr)
has a N(0,Z,,, . g, )-distribution, with g, o defined as above. We then call v
the P-Browmian bridge indexed by G.

Not all classes of functions can have uniform central limit theorem. The “P-Donsker
Class” is named for such classes upon which uniform central limit theorem holds.

Definition: P-Donsker Class. Consider v, and v as bounded functions on G.
We call G a P-Donsker class if

Vn —)L v,

that is, if for all continuous and bounded functions f, we have
Ef(v,) = Ef(v).

To check that a class of functions is a P-Donsker class, we can use the “asymptotic
continuity” condition. In fact, “asymptotic continuity” is equivalent to “P-Donsker
class” for “totally bounded” class of functions.

Definition: Asymptotically Continuous. The process v, on G is called asymp-
totically continuous if for all go € G, and all (possible random) sequences {g,} C G
with o(g, — go) —=F 0, we have

{n(gn) — I/n(go)l —Fq.

Definition: Totally Bounded. The class G C Lq(P) is called totally bounded if
for all § > 0 the number of balls with radius § necessary to cover G is finite (using
the Lo(P) norm.)

Theorem 4.1. Suppose that G is totally bounded. Then G is a P-Donsker class if
and only if v, (as a process on G) is asymptotically continuous.

Theorem 4.1 says that asymptotical continuity implies uniform central limit the-
orem for totally bounded class. The next theorem shows that for VC-graph class
functions with P-square integrable envelopes, uniform central limit theorem also
applics.

Theorem 4.2. Suppose that G is a VC-graph class with envelope

G = sup|g]
g€eg

satisfying [ G2dP < oc. Then G is P-Donsker.
(Proof: sec Van de Geer (2000).)



5. M-estimators.
In this section, we focus on finite-dimension models. We show that consistency and
asymptotic normality hold for M-estimators. Later we will extend to modcls with
infinite dimensions.

Let X1,....Xa,... be iid. copies of a random variable X with values in & and
with distribution P. Let © be a parameter space (a subset of some metric space)
and let vy : X — R be some loss function. We estimate the unknown parameter

fg = ar rnin/ﬁ dP
0 g g Yo
by the M-cstimator
tn = arg géig / ~od Py,
Here we assume that 6y cxists and is unique and that én exists.

Examples.

(i) Location Estimators. Let X =R, © = R.
(i.a) vo(x) = (x — 0)* (estimating the mean).
(1.b) vo(z) = |z — 0] (estimating the median).

(i) Maximum Likelihood. Let {py : 6 € ©} be a family of densities w.r.t. o-finite
dominating measure . The loss function is:
pe = —logpg
If dP/du = pg,, o € ©, then p is indeed the minimizer of [ pgdP, 0 € ©.
As an exercise, let us find the M-estimator for the logistic distribution:
Cxpe—-a:

I(—l—m, PeR,zeR.

pe(x)
The loss function is:
po =z — 0+ 2log(1 + exp? %)
Take derivative of the loss function w.r.t. 4:

d 2exp?~®
Ly = =1 4
a6 + 1+ expf—=

Then 6, is the solution to:

Notation. For all # € O, denote the theoretical integrated loss function and the
ernpirical average by
/’j«‘gdp

(@) = [wdp,

=
—
)
=
Il
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We first present an easy proposition on consistency of M-estimators with a very
stringent condition.

Proposition 5.1 Suppose that 0 — I'(0) is continuous. Assume moreover that

sup |F(6) = T(0)| — 0, a.s.
9€0

ie., that {yg: 6 € O} is a GC class. Then 0, — 0y a.s.

(Proof: Since g is the minimizer of T'(0) and 8, is the minimizer of T',,(f), we have:

In(fn) < Ta(fh)
F(QO) < F(én)
It follows that

0 L(6,) — T(60)

<
< —{[Ta(n) = T(0n)] — [Tn(f0) — T(6o)] }
— 0 a.s.

by the sup condition. The continuity assumption implies that 6, — fa.s.

The following example illustrates why this proposition is not very useful by im-
plicitly assuming something close to the compactness of the parameter space. In
empirical cstimations, we do not want to impose compactness a priori. Following
the example, we will give a lemma that relax the compactness assumption.

Example. Let the loss function be ~g(z) = (z — 8)?. The theoretical integration
and the empirical average of the loss function are:
L(0) = B(X —00)"—2(0 - 00)E(X — ) + (6 — 0p)?
1 ¢ 1<
Ta(0) = =3 (Xim 60)° =26~ 00)= D> (Xi= o) + (6~ 0)”
i=1 i=1

Since © is unbounded, the term 2(6—f) is also unbounded. By assuming supgeq |In(0)—
(@) — 0, a.s., it is close to requiring the compactness of ©. The next lemma re-
places the sup condition with a convexity assumption, which works well when © is
of finite dimension.

Lemma 5.2 Consistency of M-Estimators. Suppose that © is a subset of an
open convex sct of R™, and that 0 — ~y, 0 € © is convex. Then 8, — By, a.s.
(Proof sketch: By convexity, for any o > 0,

Tn(ob, +(1—a)ly) < aln(@,) + (1 — a)Tp(6)
< Tu(bo)
Take &, = m (where || - || denotes the norm of a vector), and 6, =
bnbn + (1 = &,)0. Then
16 — 6ol

10 = 0all = 5 ;<
1+ [[6n — Bo]



which leads to:
0 S L‘(én) - F(e(l) S "{[Fn(én) - 11((571)] - [FH(QO) - F(GO)]} = 0as.
using the argument that point-wise convergence implies uniform convergence for
convex functions. It follows then
16, — 60|l — 0 a.s.
and simple calculation shows that

6 — ol — 0 a.s.

Having discussed about consistency of the M-estimators, we next show the condi-
tions under which the M-estimators are asymptotically normal. We prove normal-
ity via asymptotic lincarity condition. Throughout the discussion of asymptotical
normality, we assume that § is consistent, and that 8 is an interior point of § C R”.

Definition: Asymptotically linear. The (sequence) of estimator(s) 8 of 6y is
agymptotically linear if we have

Vil — 6o) = \/_?;/ 1dP, + op(1),
where
!
l=|:]|:X=R"
-
satisfies [[dP =0and [I2dP <o, k=1,..., R. The function ! is called the in-

fluence function. For the case r = 1, we call ¢ = [ [2dP the asymptotic variance.

Conditions a, b, ¢ for Asymptotic Normality. We start with conditions a,
b, and ¢, which are easier to check but more stringent. Later we relax them to
conditions A, B, and C.

Condition a. Therc exists an € > 0 such that 6 +— 74 is differentiable for all
|8 — 8o|< € and all z, with derivative
3]
holz) = — . e X,
vo(x) = m5ve(x), 2 €
Condition b. As 0 — 0y, we have

[ 0= 0)aP = V(0 — 00) + (1) - 8

where V' is a positive definite matrix.
Condition c. There exists an € > 0 such that the class

{1g : |0 — 0| < €}
has envelope ¥ € Lo(P) and is Donsker. Morcover,

lim ||1bg — 49, } = 0
el-%t”ue Vo, }
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Lemma 5.3 Suppose conditions a, b, and ¢ hold. Then 0, is asumptotically linear
with influence function

I= —V g,

and
Vb, — 0p) = N0, VTIIVTY),
where J = [ ¢y, 04, dP.

(Proof sketch:
condition (a) :7»/ Y, AP =0
condition (a) and (c) i/ g, dP =0
We now have: |
0 = /w@ndpn— /wgodp
[ va,4Pu = P)+ [ (05, — w0 )aP

= /z,r‘;én d(P, — P) + V(0 — 65) + 0p(1)|6,, — 00| (by condition b)

. 1 A .
= / Yoo d(Pr — P) + oP(ﬁ) + V(0, — 09) + 0p(1)|6n — B[ (by condition ¢)
which leads to:

(V+o0p(1))(0n — b0)

—/wgod(Pn—P)-l-oP( )

L
N

Vb, — 6) = \/ﬁ/ld(Pn — P) +o0p(1)
where I = —V_l’(bgo.

In the following discussion, we relax the differentiability assumption of the loss
functions.

Conditions A, B, C for Asymptotic Normality.
Condition A: Differentiability in Quadratic Mean. There exists a function
wp :X — R7, with components in Lo (P), such that

e —ve, — (0= 00) Tl
o, 10— 0| =0

Condition B. As # — g, we have

D(6) — ['(680) = 5 (6 — 00)7V (8 — t) +o(DIf - Bo",

with V' a positive definite matrix.



Condition C. For @ # 6, define
T8 T 6o
g = ————
97700
Suppose that for some ¢ > 0, the class {gs : 0 < |6 — 0pg| < €} has envelope
G € Ly(P) and that it is a Donsker class.

Lemma 5.4 Suppose conditions A, B, and C hold. Then 0., has influence function
I= -V 'y
and R
Vb, — 8o) —=F N0, VLIV,
where J = [ ol dP.
(Proof: sce Van de Geer (2000).)
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