Structural Empirical Analysis of Dutch
Flower Auctions

*

Gerard J. van den Berg
Bas van der Klaauw |

April 2000
PRELIMINARY

Abstract

This paper analyzes Dutch auctions of houseplants at the flower auction
in Aalsmeer, The Netherlands. We perform a structural empirical anal-
ysis of the independent private values model. Our dataset is unique for
Dutch auctions in the sense that it includes observations of all losing bids
in a time interval next to the winning bid. The length of this interval is
determined by the speed of reaction of the auction participants. To in-
vestigate the amount of information in the observations of the losing bids,
a simulation study is performed. The model is analyzed using the Gibbs
sampler with data-augmentation. The results of the structural empirical
analysis are used to investigate whether the actual reservation prices set
by the auctioneer are optimal.
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1 Introduction

At Dutch auctions, the price falls from an initial high price until a bidder stops
the auction. This bidder then obtains the object against the price at which he
stopped the auction. An advantage of the Dutch auction mechanism is that it
works relatively fast. It is therefore often used to sell large amounts of perishable
goods, such as flowers, vegetables and fruits. In this paper we study the Aalsmeer
Flower Auction (AFA), at which almost 1200 transaction per auctioning clock can
take place within one hour.

In The Netherlands the flower industry is an important sector of economic ac-
tivity. The Dutch flower auction in Aalsmeer is the largest auction of ornamental
plant products (henceforth called ‘houseplants’) in the world. Approximately
45% of the international export of flowers and plants takes place at the AFA.
Daily, 18 million flowers and 2 million plants are auctioned, resulting in around
50,000 transactions. There are 13 auctioning clocks in 5 separate halls. The
largest of these halls contains 650 seats for bidders. The products are auctioned
in lots, which are defined as the total supply of a given homogeneous article of
a given grower on a given day. A lot consists of a number of units, which are a
fixed number of plants. The lots are auctioned sequentially, implying that the
winner decides how many units he wants to buy. If the number of units in the
lot exceeds the number of units bought by the winner, the remaining units are
auctioned in the same way. Again starting at the initial high price. This process
stops if either the complete lot is sold or the price decreases the fixed reservation
price. In the latter case all remaining units are destroyed. In The Netherlands,
reservation prices for agricultural product already exist since 1933 (see Broens
and Meulenberg, 1999). At the beginning of the year, AFA announces the reser-
vation price for each plant type. In 1996, only two levels were used (25 cents and
50 cents).

In this paper we perform a full structural analysis of the independent private
values (IPV) model of Dutch auctions of houseplants. The data used in this
paper are from an administrative database of the AFA. This database covers all
auctions of houseplants during 14 days at the end of August and the beginning
of September 1996. From this database we extracted all auctions in which the
minimum quantity to buy equals the total number of units in the lot. We im-
pose this requirement to avoid that bidders anticipate on a sequence of auctions
necessary to sell the complete lot.

By now, there is a substantial literature on the structural estimation of IPV
models. For example Elyakime, Laffont, Loisel and Vuong (1994) choose this



approach to investigate the auctions of timber, Laffont, Ossard and Vuong (1995)
to study a market of agricultural goods and Paarsch (1997), who also uses data
from timber sales. Laffont (1997) gives for a survey on structural estimation of
such models and Wolfstetter (1996) provides a recent survey on the theory of
auction models.

The structural empirical analysis of Dutch auctions suffers from a number
of potential problems. First and most important, in general only a single bid
is observed. Intuitively, it may be clear that it is difficult to identify the whole
distribution of private values from only the winning bid. Moreover, in most
specifications of first-price auction models the support of the distribution of bids
depends on all structural parameters. This implies that in the classical structural
empirical analysis not all standard regularity conditions are fulfilled to be able to
use the standard asymptotic properties of Maximum Likelihood estimation (e.g.
Donald and Paarsch, 1993a, and Laffont, Ossard and Vuong, 1995).!

From an efficiency point of view, it is generally unattractive to ignore such
information (see Donald and Paarsch, 1993a, 1993b, Hong, 1998, and Paarsch
1994). Within the classical framework, it is most straightforward to optimize the
loglikelihood function subject to the constraints on the support of the parame-
ter space as is proposed by Donald and Paarsch (1993b). However, this implies
maximizing a nonlinear function subject to nonlinear constraints, which generally
raises computational difficulties. The asymptotical properties require the evalua-
tion of the loglikelihood function at all possible cross-points of the constraints in
the parameter space. In general, when the number of parameters is not very low,
for example because some explanatory variables are observed, the computational
requirements rise very fast with the number of observations.

In this paper, we deal with these problems. First, the database is unique in
a sense that it does not only register the price at which the auctioning clock is
stopped, but also all bids of bidders who pushed the button to stop the clock in a
short time interval after the winner of the auction. All bids made in a time interval

1To overcome this difficulty, a number of alternative estimation schemes are available. For
example, Laffont, Ossard and Vuong (1995) use simulated nonlinear least squares estimation
and Paarsch (1992) uses ordinary nonlinear regression. An alternative approach is to introduce
measurement errors to avoid the support problems. Also estimation methods specific to auctions
and related models have been derived. Elyakime, Laffont, Loisel and Vuong (1994) use a two
step procedure. They first estimate the bid density function, which is used to construct a
set of pseudo valuations. The underlying valuation function is estimated using the set of
pseudo valuations. Also based on this principle is the nonparametric estimation method of
Guerre, Perrigne and Vuong (1998). However, these methods can only be applied if all bids are
observed, this makes nonparametric estimation nonfeasible in the context of Dutch auctions.



until one second after the winning bid are registered. To distinguish between
actual losing bids and ‘fake’ losing bids, we use in the empirical analysis only the
losing bids made within the first 0.2 seconds after the winning bid, which seems
to be a reasonable approximation of the speed of reaction of bidders. Compared
to other studies of Dutch auctions our data contain additional information on a
small part of the distribution function of the bids. Second, we use a sampling
Bayes approach. In particular, we use the Gibbs sampler to generate the posterior
distribution of the parameters (see Casella and George, 1992, and Gelfand and
Smith, 1990). Because inference on auctions is simple and straightforward in case
we observe the private values of all bidders, we use data-augmentation methods to
construct these (latent) private values (see Tanner and Wong, 1987). Lancaster
(1997) shows that this method of empirical analysis performs well in case of the
structural evaluation of job search models. Bontemps, Robin and Van den Berg
(2000) show a strong similarity between job search models and IPV models of
first-price auctions, and their empirical inference.

Finally, we use the results from the structural analysis to investigate the effect
of the reservation prices on bids and the expected revenue of the seller. At the
AFA, it is commonly felt that the reservation prices are still too low and that
more differentiation can increase profits. In particular, the prices of the larger
and more expensive plants are still far above the reservation price. It is therefore
not very likely that the reservation price affects the bids.

The outline of this paper is as follows. In Section 2 we give a description of
the AFA. Section 3 discusses first-price auctions and method for the structural
empirical analysis. In Section 4 we give an overview of the data. We present some
summary statistics and perform reduced-form analyses on the price at which the
flowers are sold. Section 5 shows the results of a simulation study performed
to clarify the issue of identification of the model. The results of the structural
analysis are presented in Section 6. Section 7 concludes.

2 The Aalsmeer Flower Auction

2.1 General statistics

In this section we give some general statistics concerning the AFA, and we pro-
vide details on the actual auctioning process. Most of the information on the
general statistics is from the Annual Reports of the AFA recent years (see e.g.
Bloemenveiling Aalsmeer (1994)).

The AFA is located in Aalsmeer, close to Amsterdam, The Netherlands. It



is the largest auction of ornamental plant products (cut flowers, houseplants,
gardenplants, etcetera) in the world. The current annual turnover exceeds 3
billion Dutch guilders (approximately 1.5 billion US Dollars). The AFA is a
cooperative owned by about 4000 Dutch growers of the auctioned products. The
magnitude of the AFA reflects the importance of the market for ornamental plant
products for the Dutch economy. Indeed, The Netherlands is the world’s leading
producer and distributer of cut flowers, and they are The Netherlands’ most
important export product. The AFA itself employs around 1800 workers, but on
a given day almost 10,000 individuals do their work in the auction buildings (the
latter number includes suppliers and buyers).

To give some further indication of the size of the AFA, the current total
annual supply consists of approximately 4.3 billion single flowers, 330 million
houseplants and 150 million gardenplants. The current annual import includes
1.8 billion single flowers. Of these, the largest shares are supplied by Israel, Kenya
and Spain. The value of the current annual export of flowers and houseplants
equals 4.4 and 1.8 billion guilders, respectively. For flowers, Germany, France
and the United Kingdom are the most important markets, while for houseplants
these are Germany, France and Italy.

Of the total number of 7100 growers participating in the auctions, almost 1500
are from abroad. The total number of buyers equals 1700. The dispersion of their
shares in total turnover is enormous. On the one hand, about 50 buyers each buy
for more than 10 million guilders a year; together this amounts to around 50% of
total turnover. On the other hand, about 725 buyers each buy for less than 0.1
million guilders a year; together this is less than 1% of total turnover. These two
extremes basically correspond to big exporting companies and small domestic
retail shops, respectively.

2.2 Institutional features of the auctioning process

The AFA uses the Dutch auction to sell lots. The wall in front of the auctioning
room contains a large board with a clock and an electronic display of properties of
the product to be auctioned (identity of the grower, name of the product, various
quality indicators, length of the stem in case of flowers and size of the flower
pot in case of plants) as well as properties of the setup of the auction (monetary
unit, minimum price, possibly a minimum purchase quantity). The flowers or
plants are transported through the room, and an employee takes a few items
from the carriage to show them to the buyers (buyers also have the opportunity
to closely examine the flowers some time before the actual auctioning). The



auctioneer decides on a starting position for the clock hand which corresponds
to an unreasonably high price for the product. He then sets the clock in motion.
The value pointed at by the clock hand? drops continuously until a buyer stops
the clock by pushing the button in front of him. The value pointed at by the clock
hand at that moment is the price to be paid by that buyer for a single item. The
buyer then announces how many “units” he wants to buy. A “unit” is defined
as a fixed amount of single items (e.g., for a particular type of houseplant, the
definition of a unit is fixed). The identity of the buyer is shown on the electronic
display in front of the room. If the number of units he buys falls short of the
supplied number of units then the clock is reset to a very high value, and the
process restarts for the left-over units. The auctioneer may decide to stipulate a
different minimum purchase quantity than before. This goes on until the whole
lot is sold. If the hand of the clock passes the minimum price then the remaining
lot is destroyed. Every lot is auctioned in this manner.

The minimum price for a given product is fixed throughout the year (at least,
for the time periods from which our data are). For example, for houseplants, the
minimum price in 1996 was 25 cents per single plant. The minimum prices are
published in the annual codebook which is distributed among buyers and growers
(see e.g. Bloemenveiling Aalsmeer, 1996).

Now let us go back one step and consider how the AFA chooses the order
of the auctioning of different lots. The AFA uses the term “auction group” to
denote a group of products with similar features. The sequence in which auction
groups appear at the auction is the same on every day. However, the sequence in
which different lots within an auction group appear at the auction is randomized.

The AFA buildings contain four auction rooms. The total number of clocks
equals 13. These clocks are often used at the same time, so that simultaneous
auctions take place within a room. A given individual can only participate at
one auction, but a given buyer may of course delegate more than one individual
to an auction room. The number of seats in an auction room is about 500. The
average duration of a single auction (i.e., one transaction) equals just a couple
of seconds. The average number of transactions per day at the Aalsmeer Flower
Auction equals about 30,000.

2Actually, the clock is designed as a circle of small lamps each corresponding to a given
monetary value, such that a clockwise movement corresponds to a decrease of this value. If the
clock is set in motion then consecutive lamps light up sequentially.



3 First-price auctions

3.1 The theoretical model

In this section we discuss both the economic theory of first-price or so-called
Dutch auctions and the Bayesian approach we use to analyze the structural model.
We start with a brief overview of the IPV first-price auction model. After that
we discuss the Gibbs sampler with data-augmentation, which we use to evaluate
the posterior density of the parameter in the model. We end this section with
the parameterization of the model.

In a non-experimental setting the Dutch auction is usually the less informative
of the four standard auction types. The second-price sealed-bid (or Vickrey)
auction is the most informative, i.e. optimal behavior implies bidding the private
valuation. Each bidder reveals his private value to the auctioneer. In the English
auction the optimal strategy of a bidder is to continue bidding until his private
value is reached. In this type of auction the private value of each bidder, except
for the winner, is revealed. In both the Dutch and the first-price sealed-bid
auction, the equilibrium strategy of a bidder is less easy. To form an optimal bid
bidders have to shade their valuations. It is important to stress that the Dutch
auction and the first-price sealed-bid auction are strategically equivalent. The
amount at which they shade their valuation depends on the behavior of all other
bidders. If a bidder shades his valuation with a large amount it decreases the
probability to win the auction. However, if he wins the auction, he pays a low
price. The equilibrium in these two types of auctions is a symmetric Bayesian-
Nash equilibrium. While in a first-price sealed-bid auction the bids of all bidders
are revealed to the auctioneer, in a Dutch auction usually only the highest bid is
observed.

Consider the case in which a single indivisible object is auctioned. The rules
of first-price auctions are simple, the highest bidder obtains the object and pays
his bid. To establish the optimal behavior of bidders we use the standard IPV
model in which both the seller and the potential buyers are risk neutral. Van den
Berg, Van Ours and Pradhan (1999) find no evidence that bidders at the AFA are
not risk neutral when studying sequences of auctions of roses.? In the remainder,
we only limit the discussion to the main results. More extensive discussions of
the model can for example be found in surveys by McAfee and McMillan (1987a)

3The main argument for risk neutrality is that most bidders do not face strong binding
financial constraints, as the prices paid in single auctions are an extremely small fraction of the
budget of a bidder. Furthermore, because other lots auctioned on the same day may be close
substitutes, there is some kind of insurance against losing an auction.



and Wolfstetter (1996).

The IPV model suggests that each bidder exactly knows his valuation of the
object to auction and that his valuation is strictly private. Moreover, each bidder
knows that the valuations of the other bidders are random draws from a common
known distribution function. It seems that the IPV framework is a reasonably
accurate description of the valuations of bidders at AFA, as bidders do not buy
plants for other than commercial purposes. Many bidders are retailers with flower
shops serving a local neighborhood. These act as monopolistic competitors on
the consumption market for flowers and plants in their neighborhood. From
experience, they have an excellent knowledge of the demand functions of the
products they sell to the consumers, and these functions differ across different
neighborhoods. In addition to these buyers, there are also large buyers who export
flowers. These are typically active in a particular geographical region, where they
have some market power. Plants are highly perishable goods, so there is no scope
for extensive re-trading after the auction is held.

The alternative to the IPV model is the common value (CV) model. According
to this model, the object to auction has a unique true value similar for all bidders
and each bidder gets a private signal, which is used to make an estimate of the
true value. More general is the affiliated values (AF) model which nests both the
IPV and the CV model (see Milgrom and Weber, 1982). However, as shown by
Laffont and Vuong (1996), a structural model based on the AF model is generally
unidentified. Milgrom and Weber (1982) suggest that for nondurable consumer
goods, like plants, the IPV model suites better than the CV model, which in turn
is more convenient if (government) contracts are auctioned.

A seller valuates the object to auction as r (for simplicity we assume 7 = 0).
The seller organizes an auctions to maximize the price paid for the object and
decides only to sell the object if the price is above some critical value or reservation
price vg. This reservation price is known beforehand to all bidders. In case the
highest bid does not exceed vy, the object is not sold and is not auctioned again.
In fact, at the AFA, these plants are destroyed.

Suppose there are n > 2 potential buyers, denoted by ¢+ = 1,...,n, who are
identical ex-ante. Buyer ¢ valuates the object as v;, which is only privately ob-
served. As the seller does not observe any of the buyers’ valuations, the seller
considers v;, ¢ = 1,...,n as independent draws from the same continuous dis-
tribution function F' : [u,v] — [0, 1], where v can be 0 and ¥ can be oo. The
buyers consider the valuations of the other buyers as random realizations from
the distribution function F'(-).

A bidder only participates in the auction if his valuation of the object is above



the reservation price of the seller. This is denoted by the participation function
&(v), which takes the value 1 if v > vy and 0 otherwise. In case the bidder does
not participate in the auction we consider his bid as being equal to 0. Conditional
on the number of potential bidders in the auction and the reservation price, the
optimal bid of a buyer with valuation v equals

B(vlvo, n) = &(v) (v = /0 l?g‘z;r—ldx) (1)

Each bidder participating in the auction thus shades his valuation with the

n—1
?Eg] dz. This decreases if the number of bidder n increases or

the reservation prices increases. However, increasing the reservation price also

amount [’ [

increases the probability that none of the bidders has a private valuation above
the reservation price, which implies that the object is not sold.
It is easy to show that the expected revenue of the seller is given by

m(vo|n) = n/ (vf(v) — (1 — F(v))) F(v)" 'dv

v
vo

(see Wolfstetter, 1996). Once the seller decides on the type of auction to use,
the only remaining ‘policy’ instrument of the seller is the reservation price vy.*
The expected revenue of the seller is optimal if the reservation price satisfies the

first-order condition

vof(vo) =1 — F(wo) (2)
and the second-order condition
of(v
2f (vo) + o J;SJO‘)) >0

It should be stressed that the expressions for the optimal reservation price are in-
dependent of the number of potential buyers. The reservation price can therefore
be determined before the number of bidders is known, i.e. before the auctioning
starts. In case there does not exist any vy satisfying these conditions, the optimal
reservation price equals the lower bound of the support of the private valuations,
vgp = v. The uniqueness of a reservation price in the support of v depends on the
shape of the distribution function F'(+).

“If all bidders are risk neutral and behave optimally, the revenue equivalence theorem
proves that the four most often used auction mechanisms (Dutch, English, first-price sealed-bid
and second-price sealed-bid) generate the same expected revenue (see for surveys McAfee and
McMillan, 1987a, and Wolfstetter, 1996).



3.2 The empirical model

We start this subsection with a brief outline of the type of data we have. Our
database contains information about auctions of houseplants at the AFA. For a
single auction we observe the usual information revealed in Dutch auctions, the
winning bid, the reservation price and the actual number of bidders. In addition,
we observe all losing bids slightly below the winning bid. If the winning bid equals
b1y, we observe this bid and all bids made in the interval (b) — §, b(y), for some
known value 6 > 0. All remaining (unobserved) bids are smaller than by — 6.
We deal with the length of the interval § in Subsection 4.2. The reservation
prices are very low at the AFA. In general, we never observe that complete lots
are destroyed. Therefore, we assume that the lower bound of the support of the
distribution function of private values v equals the reservation price vy. Hence,
the potential number of buyers is similar to the observed number of participants
in an auction.

It is important to stress that the structural analysis is straightforward in case
we would observe all private values. However, the private values are latent as
we observe bids. But, as shown in the previous subsection there is a one-to-one
relation between the buyer’s private value and his actual bid. The relation is
given in equation (1), b = 3(v), implying that given the bid and the shape of
the distribution function of private values we can compute the corresponding
private value. For many specifications of the distribution function of private
values, the support of the distribution function of bids is bounded, and the upper
bound depends on the structural parameters (see e.g. Laffont, Ossard and Vuong,
1995). Because bounds are very informative, from an efficiency point of view it
is attractive to use inference that uses the information captured in the upper
bound. In general, parameter estimates based on bounds are super-consistent,
as the rate of convergence equals N (instead of the usual v/N, where N is the
number of observed auctions).

We use a sampling Bayes approach. Inference reduces to evaluating the pos-
terior density of the vector of parameters, p(8|(b,z,n);,i =1,...,N), where N is
the number of auctions observed in the data set and (b, z,n); represent the bids
observed in the *® auction, the observed covariates and the number of bidders,
respectively. Since we compute the exact posterior distributions of the parame-
ters, we do not have to rely on asymptotics. It is common knowledge that the
results (i.e. the shape of the posterior distribution) are not very robust as they
are extremely sensitive to outliers in the data. Outliers can be caused by mea-
surement errors or extreme behavior. In our setting, observing extreme outliers is
not very likely. Our data are from an administrative database. Furthermore, all



bidders are very experienced in the auctioning process, which most likely excludes
unusual high bids.

We assume that all auctions are independent. This implies that before each
new auction each bidder draws a new private value independent of private values
drawn at earlier auctions. Not every auction of houseplants in the data is iden-
tical ex-ante. Typically the distribution of private values F'(-) is unknown and
differs between auctions. Suppose that all heterogeneity between auctions can be
captured by a set of (exogenous) characteristics = of the houseplant and the auc-
tion. We assume that F'(-) can be uniquely characterized by a vector of unknown
parameters f and the set of known covariates z, F(-) = F(-|z,0). To achieve
nonparametric identification it is necessary to observe the bids of all bidders in
every auction (see Guerre, Perrigne and Vuong, 1999). Our data do not meet
this requirement, which requires us to make some parametric assumptions, like in
Donald and Paarsch (1996) and Laffont, Ossard and Vuong (1995). Under this as-
sumption and some regularity conditions concerning continuity of the distribution
of valuations, Donald and Paarsch (1996) establish (parametric) identification in
case only the winning bid is observed. We also observe some losing bid and thus
the data reveal a part of the distribution function of private values. Consequently,
we observe more information than necessary to achieve parametric identification,
but our data are not sufficient informative for nonparametric identification. We
return to this issue in Section 5, when we investigate the identifying power of
observing the losing bids within a simulation study.

We only observe bids in an interval close to the winning bid. For the unob-
served bids we know that these are below the lower bound of the interval, b,) —d.
We use data augmentation methods to sample the latent private values from the
distribution function F(v|v < 87'(bn) — ¢)) (see Tanner and Wong, 1987). Hav-
ing sampled a set of private values for all bidders in each, we can simply evaluate
the distribution function F'(v|6, ). Using the Gibbs sampler we sample a new set
of values for the parameter vector §. To do so we need to specify a prior distri-
bution of the set of parameters. We use a noninformative prior, which we return
to in the next subsection. When sampling the new vector of 6, we have to ensure
that this lies within the feasible parameter space bounded by the observed bids.
In particular, after sampling a new set of values for #, the observed bids must be
within the support of the bid distribution function. Using the method of Gibbs
sampling with data augmentation we can construct a Gibbs sequence of values
for the vector of parameters #, which we use to evaluate the (marginal) posterior
distribution (see Casella and George, 1992, and Gelfand and Smith, 1990).

Now consider the support problem that arises because the support of bid

10



distribution function is bounded (even if the support of the distribution function
of the private valuations is not bounded). The lower bound of the support is vy,
which is known. The upper bound equals 3(v) in the limit v to oo,

n—1 n— v n—
tim o) = Jimo- [[[ 0] o=t + BRI

= wF(v)" + / °° of (@) F(z)"2dz
= E[maX(Vn_l,’Uo)]

where V},_; is the largest order statistic of n—1 draws from F(-) (see also Laffont,
Ossard and Vuong, 1995). This expectation depends on all structural model
parameters. The constraint is slightly simplified because the lowerbound of the
support of the distribution function of private values is assumed to equal vy.
Thus by definition V,,_; exceeds vy. Because the bids are ordered, it is sufficient
to impose the restriction

by < E Vi)

When sampling parameters we have to take into account that a bid can never
exceed E[V,_q].

3.3 Parameterization

In the IPV first-price auction model with risk-neutral bidders as described above,
the only unknown component of the model is the distribution function of private
values. We assumed that this (parametric) distribution function has the follow-
ing properties: (7) all heterogeneity between auctions is covered by a vector of
observed characteristics z, (i¢) the density function is continuous and (4ii) the
lower bound of the support equals to the reservation price vy. We take the dis-
tribution function of private values to be a transformed beta distribution, with
density function

(y/0)* V(1 —y/e)V
cB(a, )

where a,  and ¢ are unknown parameters and B(c, 3) is the beta function which

fyla,b,c) = 0<y<c (3)

ensures that the density integrates to 1. The density function is transformed
such that it has support from vy up till an unknown finite upper bound (the
length of the support equals ¢). We rewrite y as y = v — vg. We allow for
heterogeneity between auctions of different plants by allowing the upper bound
of the support to depend on the observed characteristics of the auction. We

11



specify ¢ as ¢ = exp(z'y) — vg. Under these assumptions the valuations v have
support on (vy, exp(z'y)).®

The beta distribution is relatively flexible. The density is symmetric if « = .
The uniform distribution is a special case (¢ = @ = 1). The shape at the
lowerbound of the support of the density function is determined by « and at
the upperbound by 3. Close to the lowerbound the density increases (decreases)
if a > 1 (o < 1). Similar 8 < 1 (§ > 1) implies that the density increases
(decreases) close to the upperbound. Subsequently, if both « and 3 are smaller
than 1 the density is U-shaped, and hump-shaped if these both parameters exceed
1. The density is strictly increasing (decreasing) if « > 1 and < 1 (e < 1 and
B > 1). The expectation equals ca/(a+ ) and the variance 2af/((a+ 8)*(a+
B+1)).

Not only the uniform distribution is a special case of the beta distribution.
Other special cases are for example the gamma distribution (§ — oo and ¢ =
c*(a+0)) and the exponential distribution (8 — oo, @ = 1 and ¢ = ¢*(a+b)) (see
McDonald, 1984). McDonald (1984) also specifies a generalized beta distribution
by adding an additional parameter. Obvious this allows for more flexibility. As
an alternative one could also consider flexible densities based on polynomials (e.g.
Gallant and Nychka, 1987). An application of the beta distribution is given by
Heckman and Willis (1977) who use this distribution to estimate female labor
force participation probabilities

The noninformative prior of the vector of parameters is

1
af

Specifying the private values distribution function to be a beta distribution func-

p(e, B,7) =

tion and choosing a noninformative prior, we use the Gibbs sampler to sample a
sequence of values from «, # and . So given some values 3, and ; and a set of
simulated private values v;, we can sample a new value a1 from the conditional
density function

flowyr|Be, ve) (H H O‘t+1 + By) (vjiz — vp) 2+~ ) 1

im1 =1 [(cq1)(exp(ziyy) — vo)2+1 71 | quyy

where C' is some constant ensuring that the density integrates to one, and where

5This specification does not guarantee the existence of an optimal reservation price within
the support of the distribution function of private values, which satisfies equation (2). To
illustrate, let exp(z'y) < 2vp and @ = 8 = 1. This implies that v§f(v§) = 1 — F(v}) is solved
for vy = exp(z'v)/2 < vy, and thus lies below the lower bound of the support.

12



I'(+) is the gamma function. We do the same for 5 and =

I b Tt  \Bep1—1
I'og1 + exp(zi7) — )Pt 1
(Bl ve) = (I [ 11 t+1 + Bi1) (exp(2i7") — vjir) )

=1 j=1 I'(Ber1) (exp (i) — vo)Prr—t Be1
and
i — s, )Pt
(exp(}Ve+1) — vjit)
frerlawst, Bean) = (ZI_II]I_II (exp(@yp41) — vg) et Hheri—1
By sampling from these densities we can sample Gibbs sequences «y, 8o, Y0, - - - , o1, 81, VY75

which we can use to evaluate the marginal posterior densities (see Gelfand and
Smith, 1990).

Having determined the full specification of the model, we can focus on the
importance of imposing reservation prices. We investigate this by comparing the
expected revenue in case the reservation price is optimal and the expected revenue
if there is no reservation price, i.e. we focus on the percentage increase in expected
revenue when moving from an auction without reservation price to an auction
with an optimal reservation price. In fact is suffices to examine a simple numerical
example Because the expected revenue depends on the (potential) number of
bidders participating in the auction in a nonlinear way, the percentage increase
in revenue is a function of the number of bidders as well.

The setup we choose is as follows. We consider a beta distribution function
with support on 25 cent to 100 cents. Given the values of o and # we can compute
for a given number of bidders the percentage increase in expected revenue when
increasing the reservation price from 25 cents to the optimal reservation price.
Figures 1 to 3 show for « equals to 0.5, 1 and 2, respectively, what the maximum
percentage increase in expected revenue is if  is also 0.5, 1 and 2. The effect of
imposing a reservation price depends very much on the value of the parameters
(shape of the density). Note that if @« = 0.5 and 3 equals 1 or 2, the optimal
reservation price is equal to 25 cents and thus increasing the reservation price has
a negative effect on the expected revenue. The percentage increase in expected
revenue never exceeds 10%. In general, the effect of imposing a reservation price
is higher if 3 is small, which implies that the density function is increasing close
to the upper bound of the support. Reservation prices are particularly effective
if the density is U-shaped (both « and (3 are smaller than 1). Reservation prices
are only important if the number of bidders is low. Only in case of extreme values
of the parameters of o and 3 imposing a reservation price when the number of
bidders is above 5 generates (small) extra expected revenue. In general, when
the number of bidders is higher than 5 reservation prices are not a very efficient
instrument for generating additional expected revenue. In general, the impact of
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the reservation price on the expected revenue of the seller converges very fast to
0 as the number of bidders goes to infinity.

4 Description of the data

4.1 The data set

In this section we give an overview of the data we use in the empirical analysis.
We start this section with an outline of the database. In Subsection 4.2 we discuss
the observed losing bids. Finally, the results of some reduced-form analyses on
the winning prices are presented in Subsection 4.3.

The results on optimal bidding behavior and the optimal reservation price
presented in Subsection 3.1 largely depend on the assumption that the object
to auction is unique and indivisible. However, for the estimation of the model
a sequence of observations in necessary. More precise, for statistical inference
repeated realizations from the same data generating process are required. There-
fore, we modify the data such that we obtain a series of auctions of indivisible
goods, which are as homogenous as possible. In the ideal case, we observe a par-
ticular type of houseplant which always has the same quality and is only supplied
by a single grower.

Our database describes auctions taking place in one of the auctioning halls
of the AFA. In this particular hall, there are four auctioning clocks on which
the auctions of houseplants take place. Just before the auctioning starts, which
is half past 6 a.m., bidders enter the hall and register as being a participant in
the auctions taking place on one of the auctioning clocks in this hall. At any
moment, a bidder can switch between the auctioning clocks. When the bidder
stops participating in auctions, he has to sign off as being a participant. However,
some bidders do not sign off and remain registered as being participants. The
registered number of bidders than exceeds the actual number of bidders. Note
that this difference can only increase over the day, and that imperfect monitoring
of the number of participants may cause biases in the empirical analyses. To
have a reliable measure of the number of participants in the auction, we restrict
the database to auctions taking place during the first hour after the auctioning
starts.

In the reduced database around 2000 lots are auctioned consisting of 332
different types of houseplants. We observe 826 lots which have the minimum
purchase quantity equal to the size of the lot. This implies that the lots are thus
indivisible and that the first winner has to buy all units. By considering only
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these lots, we avoid that bidders can not anticipate on a sequence of auctions to
sell the complete lot and there is no buyer’s option. In this restricted database
only 25 types of houseplants appear more than 10 times.

From this restricted database we create three different subsamples. These
consist of the types of houseplants which are auctioned the most often, which
are: a single type of Begonia supplied in a mixture of three different colors
and two particular types of Dieffenbachias, the ‘Camilla’ and the ‘Compacta’.
Furthermore, we only focus on the supply of the ‘large’ growers of these types.
We consider a grower to be a large grower of a given type of houseplant if he
supplied this type more than 5 times during the observation period.

Some characteristics of the three subsamples are presented in Table 1. The
prices are measured in price per unit. All lots of houseplants in all three subsam-
ples are of the highest quality code. The subsample of Begonias is the largest with
64 observations. The Begonias are also auctioned on the most days, 11 days of
the 14 days on which we have data. The Begonias and Compactas are both sup-
plied by 3 growers. Opposite to the subsample Begonias, the name of the grower
seems to have a large impact on the price per unit in both other subsamples.
The standard deviation of the prices is large and the there is a large difference
between the maximum and the minimum price observed. For both the Camillas
and the Compactas we observe that the lots with the highest price per unit are
all supplied by one grower. This implies that the grower is very important for the
price even is the quality codes are similar. Because both suppliers of Compactas
are also suppliers of Camillas, we can see whether growers have a general reputa-
tion or a reputation with respect to a particular type of houseplant. The average
number of bidders lies around 50 for all subsamples and within each subsample
we only observe auctions taking place on Monday until Thursday.

4.2 The losing bids

The database does not only contain information on the winner of the auction, but
also some of the losing bids are registered. This is unusual for Dutch auctions.
The AFA registers bids made up till one second after the winner stopped the
auctioning clock. In this short time period all bids made by the losers of the
auction are registered. It is important to stress that the auctioning clock stops
at the moment the highest bidder pushes the button to reveal his bid. Once the
other bidders note this, they know that bidding is useless. However, there is no
penalty for pushing the button after the clock stopped. Hence, losing bidders
may just push out of frustration or for fun. The is confirmed by the data, which
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show some losing bid far after the clock would have reached the reservation price.
On the other hand, it takes some time before a bidder realizes that the auction
actually stopped. The losing bids made in a very short time interval after the
winning bid are thus most likely real bids.

In the full database, 94% of the auctions contain information on losing bids.
The average number of losing bids per auction equals 4.3, while the maximum
number of observed losing bids in a single auction is 26.

In Figure 4 we have plotted a histogram of the time between the winning
bid in an auction and all of the observed losing bids in the auction. In Figure
5 we have plotted univariate kernel estimates of the density of observed losing
bids for some different values of the bandwidth (k). The observations are time
intervals between two events and can therefore only take positive values. We use
a reflection method to impose a boundary condition on the kernel density close
to 0.5 Note that both in the histogram and the kernel densities we observe a
relatively large drop around 0.2 seconds.

There exists some psychological literature on the speed at which individuals
are capable to stop performing some (planned) actions (see for example Logan
and Cowan, 1984). Although none of the experiments we found has the exact
design of Dutch auctions, most experiments indicate that the speed of reaction
(the time necessary to stop a planned task) lies between 0.25 and 0.3 seconds.
Because, the bidders at the AFA are very well trained we choose the cut-off point
at 0.2 seconds, which is a arbitrary choice. This means that we consider bids
made within 0.2 seconds after the winner as actual losing bids. We ignore all
other losing bids.

From now on we only consider losing bids within the 0.2 seconds time interval
after the winning bid has been made. In the subsamples of Begonias, Camillas
and Compactas 100%, 93% and 97% of the auctions contain information about
losing bids. For the Begonias in total we observe 11% of all losing bids and
the maximum number of losing bids observed in a single auction equals 13. For
Camillas and Compactas these number are 8% and 11, and 7% and 9, respectively.

6The reflection methods implies that for every observation z; an extra observation —z; is
added. Standard methods can be used to compute the kernel density of the doubled sample.
We use a normal density function. The resulting kernel density is truncated at 0 and multiplied
by 2 for the positive values to ensure that the density integrates to 1. The implicit boundary
condition imposed is that the right-derivative at 0 is equal to 0 (due to symmetry caused by
the reflection). Other methods, like for example transformation to logarithms or truncation at
0 make similar type of arbitrary assumptions (see for an overview Silverman, 1986 p. 30-31).
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4.3 Some preliminary analyses

In this subsection we perform some reduced-form analyses to get preliminary
insight in the covariates that determine the winning bid at an auction. We
regress the number of bidders participating, the grower and the day of the week
at which the auction takes place on the logarithm of the price. We use a linear
specification and ordinary least squares as the estimation method.

The estimation results are presented in Table 2. The estimated covariate ef-
fect of the number of bidders is positive for the Begonias and the Camillas and
negative for the Compactas, but in all cases insignificant. The economic theory
predicts that a higher number of bidders increases bids due to increasing compe-
tition. The grower seems to be the most important covariate on the price paid
at the auction. The difference in prices are particularly striking for the Camillas
and Compactas. Both growers supplying Camillas also supply Compactas. It is
clear that grower 4 has a better reputation than grower 5. Even though the type
of houseplants are very strict defined there seem to be differences between similar
houseplants supplied by different growers. Finally, the effect of the day of the
week at which the auction takes place on the price is unambiguous. Whereas,
prices for Begonias are lowest on Wednesday, they are highest on this day for
Compactas.

5 Simulation study

In Subsection 3.2 we addressed the issue of identification of first-price auctions.
On the one hand, Donald and Paarsch (1996) show that parametric identification
can be achieved if only the winning bid is observed. On the other hand, Guerre,
Perrigne and Vuong (1999) prove that first-price auctions are only nonparametri-
cally identified if the bids of all bidders in the auction are observed. Both Donald
and Paarsch (1996) and Guerre, Perrigne and Vuong (1999) assume that also the
number of bidders and the reservation price are known.

As described in the previous section, our data are not only informative on the
winning bid. Also bids close to the winning bid are observed. This implies that
our data are more informative than necessary to achieve parametric identification.
However, for nonparametric identification it is not sufficient to observe only part
of the losing bids. To investigate the identifying power of these losing bids we
perform a simulation study. In the simulation study we do not consider the
distribution of private values, instead we focus on the distribution of bids. It
may be clear that if the distribution of bids is known, it is possible to derive from
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this the distribution of private values (this has formally been proven by Guerre,
Perrigne and Vuong, 1999).

In the simulation study we set the number of auctions in a sample equal to
50. Furthermore, we take the distribution of bidders in the simulation study
approximately the same as in our data sets. We draw the bids from a given
distribution function. Thus, we neglect the economic model. After drawing the
bids of all bidders we construct three different samples. The first sample only
contains the winning bid, the second sample is also informative on the losing bids
close to the winning bid and the third sample includes the bids of all bidders. We
choose the threshold point for observing losing bids (the length of the interval
just below the winning bid) such that we observe approximately 5.5% of the bids
of all losing bidders. Using these samples we estimate the distribution function of
bids. We repeat this 100 times. To be as close as possible to the economic model,
we take the distribution function of bids to be truncated on the right-tail. We
consider three distribution functions from which we draw the bids, (i) a uniform
distribution function, (i) a truncated exponential distribution function and (#i7)
a truncated lognormal distribution function.

To estimate from the observed data the distribution of bids, we take the beta
distribution function (see equation (3)). In Figure 6, 7 and 8 we show the average
estimated densities of the simulation studies. Each figures presents four lines, the
true density and the estimated densities based on (7) all bids, (i¢) the winning bid
and some losing bids and (#47) only the winning bid. As expected the true density
is best estimated by the sample containing all bids. The estimated density based
on the winning bid and some of the losing bids lies close to the estimated density
based on the sample with all bids. It is important to note that the fit improves
enormously if we observe only a small part of the losing bids. According to these
results it seems hard to approximate an underlying density if one only observes
a sequence with highest observations.

6 Structural analysis

In this section we discuss the results of our structural empirical analysis. We
start by focusing on the marginal posterior distributions of the parameters in the
distribution function of private values. We have computed the posterior distribu-
tion both using the information on the losing bids and ignoring this information.
After that we consider the reservation prices and the impact of the reservation
prices on the expected revenue.

We have sampled a Gibbs sequence consisting of 2600 iterations, i.e. values
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for the parameter «, § and v. Two Gibbs sequences are sampled, one using
information on the losing bids and one ignoring this information. The first 100
iteration were used as an initial period to reach the equilibrium of the Gibbs
sequence. After that we used only every 25 iteration.” To evaluate the marginal
posterior distribution functions of the parameters, we have used the marginal
densities given in Subsection 3.3. As is shown in Casella and George (1992), the
marginal posterior densities can be approximated by

fla) = t;f(awt,%)

and similarly for # and . The marginal posterior densities of the parameters
for the auctions of Cammilas are given in Figures 9-15. Each figure shows a
graph obtained when using the information on the losing bid and not using this
information.

Before discussing the covariate effects, we first focus on the shape of the
density function of private values, f(v). The shape is determined by the values
of the parameters o and (3. In general, in the posterior distribution function
the support of « is between 0 and 1 and of 8 above 2. This implies that the
The density function of bids f(v) is downward sloping on the support of v. Many
bidders have a private value close to the reservation price. This suggests that only
a small proportion of the bidders has actual interest in buying the houseplants.

By comparing Figure 11 with Figure 12, it can easily be seen that the repu-
tation of Grower 4 is better than the reputation of Grower 5. Even though both
growers supply plants with the same quality codes, the prices paid for plants sup-
plied by Grower 4 are higher. Obviously, reputation of the grower is important
at the flower auction.

On Tuesday higher prices are paid for the Camillas than on the other days
of the week. The modes of the marginal posterior distributions for the covaraite
effects of auctioning on Wednesday and Thursday are both almost 0. On these
days the prices are on average almost the same as on Monday.

6.1 Optimal reservation prices

In this subsection we focus on the reservation prices used at the flower auction.
At the moment the data were collected, there was almost no differentiation of
reservation prices between different types of plants. The AFA beliefs that the

"This is based on analyzing the correlations within the sequence. The correlation between
ay and a;_ is close to 0 for s > 20. This is also the case for 8 and ~.
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reservation prices are low. This is confirmed by the data, which do not show
any winning bids close to the reservation price. Since, we assumed that the
distribution function of private values does not have support below the current
reservation price, we can only study the consequences of increasing in the reser-
vation prices.® But as argued above, the reservation prices are most likely too
low to be optimal.

For each of the parameter values obtained in the Gibbs sequence, we can
compute the optimal reservation prices. We compare the current situation in
which there is only a single reservation prices with a situation where there is
full differentiation of reservation prices. This means that we allow for different
reservation prices for each grower on each day of the week. As is also stressed in
Subsection 3.3 reservation prices are not very effective if « < 1 and F > 1.

Although the reservation price is too low to be optimal, the expected revenue
increases with less than 0.1% if the reservation prices are set optimally as com-
pared to the current situation. The main reason for this small increase is that
there is a relatively large number of buyers active at AFA. The expected revenue
is computed under the assumption that the same number of bidders participate
in the auction after an increase in reservation prices.

7 Conclusions

In this paper we have used a Bayesian approach to structurally analyze Dutch
flowers auctions. In particular, we focused on the IPV model for the flower
auction. This model is analyzed with Gibbs sampling methods using data aug-
mentation to sample the (latent) private values of all participants in the auction.
This method appeared to perform well.

In most cases the Dutch auction reveals only the highest bid, as the auction
stops when this bid has been made. However, at the AFA also all losing bids
in a time interval next to the winning bid are observed. The length of the time
interval is determined by the speed of reaction of the auction participants.

The empirical results show that reputation is very important at the AFA.
Growers, may get different prices for their plants, even if these plants have the
same quality code. Although the current reservation prices at the AFA are too
low to optimize the expected revenue, increasing the reservation prices hardly

8Because the data are collected using auctions with reservation prices, it is impossible to
identify the shape of the distribution function of valuation below the reservation price. Without
making arbitrary assumptions it is not possible to investigate the consequences of a decrease
in reservation prices.
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generates any additional revenue. This is mainly caused by the large number of
auction participants.
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Begonia | Camilla | Compacta

Number of observation 64 29 30
Number of days 11 8 9
Number of growers 3 2 3
Average price (in cents) 206 172 157

(1) | (99) (92)
Minimum price 150 99 593
Maximum price 250 320 320
Average number of bidders 53 53 49

(13) (8.2) (12)

Explanation: Standard deviations are given in parentheses.

Table 1: Some characteristics of the datasets.

Begonia ‘ Camilla ‘ Compacta ‘
Number of bidders | 0.0017 (0.0012) 0.0068 (0.0047) | —0.0064 (0.0038)
Grower 1 5.25 (0.065)
Grower 2 5.33 (0.082)
Grower 3 5.28 (0.067)
Grower 4 504 (0.27 592 (0.22)
Grower 5 3.84 (0.24) 4.36 (0.16)
Grower 6 5.48 (0.21)
Monday 0 0 0
Tuesday —0.048  (0.029) 0.14 (0.088) | —0.039 (0.11)
Wednesday —0.15 (0.061) 0.0086 (0.086) 0.095  (0.092)
Thursday —0.12 (0.036) | —0.12 (0.099) | —0.022  (0.088)

Explanation: Estimated standard errors are given in parentheses.

Table 2: OLS regression results on the logarithm of the winning price.
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Figure 1: The percentage increase in expected revenue if the auction sets an

optimal reservation price instead of no reservation price as a function of the
number of bidders (a = 1/2).
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Figure 2: The percentage increase in expected revenue if the auction sets an
optimal reservation price instead of no reservation price as a function of the
number of bidders (o = 1).
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Figure 3: The percentage increase in expected revenue if the auction sets an
optimal reservation price instead of no reservation price as a function of the
number of bidders (o = 2).
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Figure 4: Scaled histogram of the time (in seconds) between the moment that
the highest bidder bids and potential other bidders are observed to bid.
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Figure 5: Kernel estimates of the time (in seconds) between the moment that the
highest bidder bids and potential other bidders are observed to bid (for different
values of the bandwidth (h)).
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Figure 6: The true density and estimated densities of the simulation study with
an uniform distribution.
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Figure 7: The true density and estimated densities of the simulation study with
a truncated exponential distribution.
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Figure 8: The true density and estimated densities of the simulation study with
a truncated lognormal distribution.
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Figure 9: Marginal posterior density for the parameter « in the model of auctions
of Camillas.
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Figure 10: Marginal posterior density for the parameter 3 in the model of auctions
of Camillas.
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Figure 11: Marginal posterior density for the covariate effect of supply by Grower
4 in the model of auctions of Camillas.
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Figure 12: Marginal posterior density for the covariate effect of supply by Grower
5 in the model of auctions of Camillas.

31



I With losing bids
I | — — Without losing bids

-0.25 0.00 0.25 0.50 0.75

Figure 13: Marginal posterior density for the covariate effect of supply on Tuesday
in the model of auctions of Camillas.
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Figure 14: Marginal posterior density for the covariate effect of supply on Wednes-
day in the model of auctions of Camillas.
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Figure 15: Marginal posterior density for the covariate effect of supply on Thurs-
day in the model of auctions of Camillas.
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