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Abstract

In many published studies involving discrete choice a large class of mod-
els have been utilised without apparent consideration of both the statistical
and behavioural relationships that exist between different model struc-
tures. In the case of multinomial models a commonly used behavioural
interepretation is that the observed joint decision is made on the basis
of utility maximisation over the choice set. We demonstrate that a more
common model of discrete choice behaviour, the bivariate model, is a spe-
cial case of the multinomial with rather restrictive implications for utility
maximisation. We utilise the joint labour force participation and fertility
decision problem as an example and subject a number of models to a series
of nested and nonnested tests.
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1 Introduction

Although microeconometric studies of discrete choice behaviour are now com-
monplace the majority of applications specify a single choice equation. In this
respect any specification testing of an estimated model tends to focus on the
adequacy of mean and distributional assumptions, with the implicit assumption
that the decision process is independent of any other choices. The use of a joint
estimation approach to modelling systems of discrete random variables has a rich
history in both the econometrics and statistics literature. Zellner and Lee (1965)
propose the use of generalised least squares as an extension of the seemingly un-
related regression model. However, although it is obvious that the rationale for
such an approach follows from the use of estimators which are asymptotically
more efficient than single equation methods, there are a number of additional is-
sues which, we believe, are far more important than simply exploiting covariance
across stochastic errors. Hensher and Johnson (1981) address this issue noting
that “many choice structures cannot be adequately represented by a single choice
equation either because the set of decisions are too complex ..., there is a hierar-
chical relationship between a set of interdependent choices, or a decision entails
the simultaneous choice of a complex alternative” (p.65).

In this paper we consider a number of alternative models for modelling sys-
tems of discrete choice. We focus on the outcome of two decisions: the decision
to have children and the labour force participation decision, which incorporates
non-work, part-time and full-time options. In this context the work of Naka-
mura and Nakamura (1992) is instructive. In conducting an extensive overview
of econometric models of labour supply and children, the authors propose a clas-
sification of approaches based upon whether, within a set of family decisions,
variables can be categorised as either outcomes of a decision process or exoge-
nous. Within this framework predetermined choice variables may be identified if
they represent decisions made prior to the current time period. For example, if
we assume that the labour supply decisions within a household are made jointly
then the current earnings of the male would be treated as endogenous to female
labour supply. Alternately, male earnings are exogenous in a household where
labour supply decisions are made independently.

The concept of endogeneity is also important in terms of the manner in which

we define the choice set. For example, in the context of modelling the partic-



ipation decision and whether or not to have children, the discussion generally
focusses upon the issue of how best to instrument for the endogenity of child
status variables in a participation equation. However, this discussion implicitly
assumes that the appropriate choice set is define over the binary (or multino-
mial) participation decision. As such the issue of whether the choice set should
be constructed over the joint distribution of the two decisions, and how these
approaches differ, has been ignored.

Unlike the majority of empirical studies in this area we subject a class of dis-
crete choice models to a range of diagnostic (incomplete) and hypothesis tests.
Despite a number of excellent texts by Greene (1993), Maddala (1983), edited
series by Manski and McFadden (1981), there still seems to be some confusion
amongst practitioners as to the precise nature of the underlying behavioural as-
sumptions. In certain cases there exists a direct and transparent correspondence
between the statistical and behavioural assumptions which underly competing
models. This is demonstrated by the choice between the multinomial logit (MNL)
and multinomial probit (MNP) models of discrete choice. In this instance the
behavioural implications of the logistic versus multivariate normality assump-
tion are manifest in a trade-off between a flexible error structure and one which
imposes the independence of irrelevant alternative (IIA) assumption.

In other situations the behavioural implications of model choice are less well
known. For example, although the bivariate probit model has been used exten-
sively in discrete choice modelling, the behavioural assumptions that underly the
model are, in general, not well known. Weeks and Orme (1999) demonstrated
that the two binary decisions generating four mutually exclusive outcomes repre-
sent a nested and highly restrictive form of the more general multinomial probit
model. In terms of the behaviorial implications, the authors have shown that
the bivariate model implies a form of additive separability across the decisions,
a restriction which is not shared by the more general multinomial model. Our
approach is similar to the work of Hensher and Johnson (1981) who examine a
number of alternative decision structures and analyse the structural relationship
between decisions.

In Section 2 we present a brief overview of the different approaches taken in
the economic literature to model the decision of women regarding participation

and fertility. Section 3 examines the nature of the choice set for fertility and



labour supply decisions and in doing so motivates a number of economic models
of multiple decision making, examining the implications for the underlying utility
calculus. The data is discussed in Section 4 and Section 5 presents our findings.

Appendix I and II outline the structure of the econometric models.

2 Review of Literature

The application of economic reasoning to fertility or to fertility and participation
has already a long tradition and has reached a high level of sophistication, with
the estimation of complex dynamic models (see for example, Moffitt (1984) and
Holtz and Miller (1988)). One of the predominant stylised facts that has emerged
from the empirical literature is the existence of a strong negative correlation
between the presence of young children in the household and female labour supply.
Typically any measure of female labour supply (i.e. participation status or hours
of work) is negatively correlated with any measure of young children. Influential
early studies of labour supply which document this correlation include Mincer
(1962), Cain (1966) and Bowen and Finegan (1969).

In the literature there are two broad approaches to estimating labour supply
functions, taking account of fertility. The first is to estimate a reduced form model
(hereafter RF) (see Browning (1992)). In this approach we do not include children
as variables in the labour supply equation, although we may include variables that
determine fertility. Given that one of the costs of having a child is the foregone
earnings of the person caring for the child in the home, the wage rate was assigned
a central role. This approach draws its inspiration from demand theory and
the extension due to Becker (1960). Children are treated as a commodity and
should not be included in other demand functions (for example the demand for
leisure) anymore that we should put purchases of tea on the right hand side of
a demand for coffee equation ( Schultz (1978), Moffitt (1984), Rosenzweig and
Wolpin (1980), Carliner, Robinson, and Tomes (1980).

An alternative approach is to include measures of fertility as conditioning
variables with some allowance for endogeneity by instrumenting. A large num-
ber of investigators have followed this approach, usually without instrumenting.
Moffitt (1984) notes that simple static models of labour supply which utilise the
current stock of children as independent explanatory variables are suspect.The

principal problems with this modelling strategy have been noted by Rosenzweig
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and Wolpin (1980). First, it is asserted that the only valid instrument for fertil-
ity variables in a labour supply equation is ”the cost of increasing the number of
children” (for example, birth and contraceptive costs). If this cost is not observed
we cannot obtain consistent estimates of labour supply conditional on fertility. If,
on the other hand, we do observe the cost of increasing family size, then labour
supply equations conditional on this cost give all the information necessary to
infer anything we want to know about the conditional labour supply equation.
As such the standard approach is held to be either inconsistent or redundant.!
An excellent survey of applied econometric research on the effects of chil-
dren on female labour supply is provided by Nakamura and Nakamura (1992).
The principal focus of their review is the appropriate modelling framework with
which to analyse child status effects. Whereas a number of other surveys have
emphasised the impact of economic variables such as wage rates, the authors
examine alternative approaches to incorporating children in models of labour
supply. A unifying theme in their study is the question of whether fertility and
labour supply represent joint decisions and related, the possible endogeneity of
child status variables. In general, one would expect that within the context of a
life cycle model of labour supply and fertility the decision to have children (and
how many), and how many hours of work to supply are part of a joint decision
problem and depend on the whole lifetime sequence of price and wages and on a
variety of characteristics reflecting preferences. This approach would not justify
the hypothesis of causation of one decision upon the other or of mutual causa-
tion; the two type of decisions are simultaneous, not only in the way of their
timing but in the sense that they are the solution to a common constrained max-
imisation problem.? In static models the concept of endogeneity is also relevant
when child status variables are included to reflect current demands on household
resources, such as the level of child care. Mincer (1962) using data from the
Bureau of Labour Statistics Survey of Consumer Expenditure provided evidence

to support this argument and in particular demonstrated that labour supply and

! An additional problem with this approach is that even if we could obtain consistent esti-
mates of the parameters of the labour supply equation conditional on fertility these would not
be of any interest. The appropriate experiment for policy evaluation is held to be the effects on
labour supply of changes in exogenous variables such as contraceptive costs, child care costs,
or the price of ”child intensive” goods.

2Note that it is still possible to speak of an exogenous effect of realised fertility upon par-
ticipation or vice versa in the sense of deviations of the realised values from the planned ones
which induce spill-over effects.



fertility choices are determined by the same set of economic variables. In this
respect simultaneity is not a problem when fertility and labour supply decisions
are viewed as joint consumer-demand choices.

Heckman and Willis (1976) note that much of the empirical literature on
fertility has focussed upon single cross sections and as such has sought to explain
the variation in the stock of children. The authors also point out that most
static models of fertility have abstracted from the fact that the fertility decision
and realisations adds to and interacts with uncertainty surrounding other jointly
determined household decisions. Willis (1973) has also criticised the use of single
equation labour supply and fertility models and advocated modelling the joint

fertility-labour supply decision.

3 Systems of Discrete Choice

If we let y; = (yi1, ..., ¥is) denote a J x 1 vector representing discrete outcomes
of J decisions for the ith individual, then if we abstract from the effect of any
covariates, we may enumerate a number of possible approaches to model speci-
fication: (i) we could impose independence and model the marginal distribution
of each binary response as a set of covariates i.e. estimate a single binary choice
participation equation; (ii) specify a system of equations allowing for covariance
across the set of discrete outcome, i.e. a seemingly unrelated regression model
i.e. a bivariate choice model over participation and fertility decisions; (ii) allow
for simultaneity amongst the elements of y; i.e. estimate a simultaneous discrete
choice model with possible instruments for child status variables in the partic-
ipation equation; (iv) create a new variable based upon cartesian products of
individual elements of y; i.e. let y;y2 denote the combination of the two discrete
binary random variables representing labour supply and fertility.

One approach which has been adopted in the statistics literature is the use
of a log-linear model. [cite Cox (1972) on different approaches] In this setting,
parameters are interpreted in terms of the conditional distribution of a subset of
variables given the other. Note that this approach is in contrast to the binary
or multiple choice modelling where the focus is on the marginal distribution of
each element of y;. Glonek and McCullagh (1986) in presenting a framework for
examining a class of multivariate logistic models, compare the bivariate extension

of the familiar logit model with the log-linear model. The authors emphasise that
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the principal disadvantage of the log-linear relative to the logistic model is that
it lacks ‘upward compatibility’ (see McCullagh 1989)). However, in the bivariate
extension of the univariate logistic representation, the marginal distribution of
each variable has a univariate logistic representation®. [restricted correlation in
bivariate logistic] In the class of log-linear models, the impact of any covariate on
Y, depends upon the dimension of J. (See McCullagh and Nelder (1989)).

An approach suggested by Ashford and Sowden (1970), models correlated
binary data by extending the binary probit model and modelling a system of
binary equations or decisions. The authors, following Mantel (1966), are careful
to point out the distinction between a model which recognises dependence over
two distinct decisions which determine 4 mutually exclusive outcomes (iii in the
above), and a single system providing four outcomes with an arbitrary depen-
dence structure (iv in the above). (The multivariate and multinomial models
extend this to consider dependence over h decisions and the 2" mutually exclu-
sive outcomes, respectively.) Apart from the comments by McFadden (1981), it
appears that the precise nature of this distinction is not widely appreciated in
economics. In the case of two equations the bivariate probit model has been used
in many applications from voting behaviour (see Greene (1993)), to child-care
and labour force participation (see Ribar (1992)). The extension of this model
to higher dimensions encounters the curse of dimensionality as a result of flexible
yet intractable multivariate normal distribution.

Below we consider a number of alternate representations of systems of discrete

choice as applied to labour force and fertility choices.

3.1 Labour Force and Fertility Decisions

A decision is defined as the choice between a finite set of mutually exclusive
outcomes. In developing notation we focus on two decisions y and ¢, and let
2 and © denote the respective choice sets. Within each choice set decisions
are made on the basis of unobserved random variables. Letting y} (g;) denote
the value (or utility) for the jth (pth) choice in ©Q (©), the mapping from the
unobserved to revealed preference is generated according to the following decision

rules:

3Note that the bivariate logistic model is restrictive in the sense that the correlation coeffi-
cient is bounded by the interval |p| < 0.304. SeeGumbel (1961).



y = 1(y; = max(y;, Vj € Q2)) (1)

¢ = 1(g; = max(qy,Vp € ©)), (2)
where y and ¢ are discrete random variables and 1(-) is the indicator function.
Dependent upon the covariance structure both within and across €2 and © a
number of alternative specifications are possible. For example, if both €2 and ©
contain just two elements, then dependent upon the distribution of the stochastic
component of choice and the correlation across choice sets, we might choose
between a bivariate logistic and bivariate probit specification.

Given (1) and (2) we may also enumerate four mutually exclusive outcomes
for the pair (y,q). This is illustrated in Table 1 where j = 1,...,4 labels the
outcomes, and v* represents a value measure (or utility level) over the four states

indexed by s.

Table 1
y q s v
1 1 1 of
1 0 2 v
0 1 3 v
0 0 4 v

Although the above table represents an abstract system, there exist many
examples from economics and bioassay where the relationship between two (or
more) Bernoulli random variables and the associated states is important. For
example, Cragg and Uhler (1970) consider a number of alternative frameworks for
modelling systems of discrete choice behaviour. By focussing upon the demand
for automobiles, the authors identify four options available to individuals who
own at least one car: make no change, sell the car(s), sell and replace the car,
purchase an additional car. A multinomial logit model, considering the joint
decision over these alternatives is preferred to separate binary logit models.

In this paper we consider a class of discrete choice models based upon two
decisions: labour force participation (P) and fertility (£'). The choice set for each

decision are given by

Q = {NW, PT, FT}
e = {C7T},
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where NW, PT and F'T are identifiers representing, respectively, individuals
who do not work, part-time and full-time workers. C' (C) denote women with
(without) children. If we take the Cartesian product of the elements in €2 and ©
and denote the resulting choice set by ¢, then the set of elements in ¢ may be

written as
¢={NW_C, NW_C_*, PT C, PT_C’, FT C, FT_C_*},

where for example, the element P71 C denotes the joint decision of part-time
work and children.

For issues related both to the economics of decision making and the tractabil-
ity of econometric models, the way in which we analyse the decision process over
the sets 2 and © is critical. If we consider the modelling of joint fertility and
labour supply decisions there are a number of interesting research issues related
to the manner in which we construct the choice set. Indeed, this component
of model specification, namely how should the choice set be defined in such a
way to reflect the mechanism of choice, has, with few exceptions, been neglected
in the literature. In instances where we observe a time series of labour supply
activity for each individual, then questions such as do labour supply decisions
exhibit temporal dependence, and whether it is possible to distinguish this effect
from the impact of any unobserved heterogeneity are of interest. However, if the
analyst is confronted with the revealed preferences of a sample of individuals over
a set of labour supply and fertility options for a single period, then an important
but yet relatively unexplored issue is whether the utility from the two decisions is
additively separable. As we will demonstrate below, the nature of the separabil-
ity assumption is a direct consequence of how the choice set is defined. Browning
(1992) considers the role of separability in the intertemporal decisions of house-
holds. In the case of intertemporal (weak) separability, demands are written as a
function of current prices and current total expenditures. In the case of the con-
sumption function and labour supply, the stronger assumption of intertemporal
additivity of the utility function is made. In Browning’s study based upon ag-
gregate UK consumption data for the period 1972-1991, his results demonstrate
that imposing additive intertemporal preferences results in considerable bias in
the estimates of elasticities.

In this study we examine a number of alternative specifications which will

enable us to determine whether additive separability of utility over labour supply
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and fertility behaviour is consistent with the data. Since our model is static we
do not describe the inherently sequential nature of both the fertility and labour
supply decisions but simply focus on constructing a completed fertility /labour
supply econometric model* (see Moffitt (1984)). To focus attention we first de-
scribe the process which generates discrete observations on labour supply and
fertility outcomes. We let yf*lt be a t* x 1, 0,1 vector of discrete labour supply
decisions observed at time ¢. (We initially focus on the two labour market states
but lose nothing in generality). Similarly we define T{*“ as a t* x 1, 0,1 vector of
fertility decisions such that 7/ = 1 indicates an addition to the stock of children
at time ¢.

In this study we have access to a single cross section of data. Letting s;
denote the age of the youngest child at time ¢, a binary fertility indicator qut =
1(0 < s; < €) simply records whether the woman has at least one child less than
a threshold age, (. In this respect, a woman whose youngest child exceeds ( is
treated in the same way as a woman who does not have children. We choose
to treat the fertility measure in this way given that our primary focus is the
relationship between fertility and labour supply decisions. Thus our maintained
hypothesis is that when s; > ( the stock of children for most women can be
considered fixed, and any subsequent labour supply decisions are assumed to be
independent of fertility.

Faced with data on a single cross-section of revealed preferences at time ¢, it

is possible to explain average behaviour based upon the following joint sample

frequencies
mo= S 1uhnd), =Y 104N 01 -4q)), (3)
=1 i=1
ny = Y. 11—y Ndgl), n=> 11—yl N1 —qg)),
i=1 i=1

where, for example 1(yf, N qut), indicates that the ith individual works and has
at least one child less than the threshold age. Note that since we only observe
data for a single period we simply observe a stock of children. Although we will
still refer to the fertility decision, the modelling framework does not allow us to

model the decision of whether to have a child in a particular period, but rather

see Heckman and Willis (1976) and Namboordi (1972) [not in refs] for a critique of econo-
metric models of completed fertility.
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to explain the variation over both completed fertility outcomes and participation
decisions at a particular point in time.

Given the two binary variables y? and ¢, the issue of separability is related to
how we choose to model choice over the multinomial frequencies n,,7 =1, ..., 4.
For example, we could decide to focus upon separately modelling the marginal
frequencies for labour force participation, using the aggregate frequencies 7, =
M+ ny and 13y = 0y + 14, and fertility using 9,3 = 7, + 13 and 9y, = Ny +
n,. A variant of this approach is to model the marginal frequencies and allow
for correlation across unobservables. In the case where the joint distribution of
unobservables is distributed bivariate normal we have the bivariate probit model.
Alternately we could model the labour supply decision conditional upon fertility,
thereby treating the fertility variable analogously to other covariates.

Depending upon how we treat the two decisions - labour force participation
and fertility - we may motivate a number of competing models of utility max-
imisation. Consider again Table 1 and assume that y denotes the outcome of
the participation decision and ¢ the fertility decision. We first examine the case
where the joint decision, s, is made on the basis of utility maximisation, but by
considering the separate utilities obtained from y over choice set {2 and g over
choice set ©, rather than over the set (. To do this first write the unobserved
utilities for the participation and fertility decision as a linear function of a set of

covariates, x. Specifically, write

*

yy = Xoytu, p=NW,W
q = x'B;+v;, f=c,C (4)

where v}, (vi) is the utility derived from not working (working), ¢* (¢}) is the
utility from having (not having) children, ay, and B, are vectors of unknown
parameters and v and v are disturbance terms. Under the assumption of utility
maximising behaviour on individual decisions, p =NW is observed if and only if
Yaw — Yy > 0 and f=C iff ¢t —qZ > 0.

If we assume that the utilities derived from the joint outcome (y,q) denoted

vi, j=1,...,4, are formed as y; + ¢}, then we may write
U= Y TG ()
Vs = Y TG
vs = Yy T4
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vy = Yyt &

This is a strong assumption; it says that the utilities, v}, are additively separable
over the sets 2 and ©. Note that, given (4), additive separability is not only
sufficient, but it is also necessary for this representation of v}‘.5

Alternately, if we consider utility maximisation over ¢, we might parameterise
the utilities v} as

v; = X'y, +€j; j=1..,4 (6)

in which the ~; are vectors of unknown parameters. If € = (e1,e2,€3,€4)" is
distributed multivariate normal with zero mean vector and covariance matrix
Y ={o;}; ie, € ~ MVN(0,X), then we have the multinomial probit model
(MNP). The probabilities for each outcome may be written as

p= Pr(ny>—-x'62Nn3>—-x63Nn, >—x04),

pa= Pr(ny < —x'd3MN (03 —my) > —x'(d3 — d2) N (ny — np) > =X (64 — 62)),

p3= Pr(ng <—x'63MN(n3 —ny) < —x' (83— d2) N (ny —n3) > —x' (64 — 83))

pr= Pr(ng < —x'd,0(ny—my) < —x(84—382) N (ny—m3) < =% (64 — 53)() a)
7

where ; = v, —,; and n; = &1 — ¢; will be determined by the joint distribution
of 7 = (ny,m3,m,) ~ MVN(0,).

3.2 The Relationship between MNP and BVP

The way in which the multinomial probit model formally nests the BVP model
is described by the following proposition:

Proposition 1 Let (i) 2 ) ~ BVN 0 ; Lr 3 (44) My = 0y + m3;
UE! 0 p 1

(“U 02 = Oy — Oy, 03 = Bc - ﬂé; 04 = (aNW - a\\')+ﬁc - ﬂé' Then T = Pj,
g=1,...,4.

The result is readily established and we demonstrate it only for p;. Upon
substitution of (i) — (¢i¢), in the expression for p;, we can write the restricted

probability p] as

P = Pr(n,>—Xann,>-x'BN(n,+n3) >—x(a+0)), (8)

5Of course, any linear combination of y, and g7 will generate linear v}, but arbitrary scale
and location parameters in any such linear combination will not be identifiable from the bivari-

ate data.
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= Pr(n,>—xann >-xp),
= Oy (X', X' B;p) = m1.

where @ = oy —ay and B = B, — ;. It is clear that the conditions identified in
the above proposition lead to a constrained MNP model; i.e., the MNP model is
algebraically equivalent to the BVP model if (6) is subject to parametric restric-
tions. Note that p; and 7; denote, respectively, the probability of not working and
having children based upon the multinomial probit and bivariate probit model.
From (7) we see that given that ¢ has 4 states, p; is based upon the 3 pairwise
differences generated by comparing the NW C with all other states. However,
if we allow individuals to maximise utility separately over the participation set,
2, and the fertility set, ®, then the relevant probability expression is given by
71 in (8). In this instance x'a (x'3) represents the index function argument for
participation (fertility) decision and p is the correlation coefficient. Comparing
p1 in (7) with p; in (8) we see the nature of the restrictions for the multinomial
and bivariate model to coincide. Note that given additive utility, the 3 arguments

of p} in (7) are based upon the following comparisons

vi—vy> 0= (Y + @) - Ww @)= @ —q:>0 (9)
vi—v3> 0= (R +¢0) — (Wh +a0) = Yaw —Yw >0 (10)
vy — v > 0=y +4¢) — (v +¢) > (11)

= (viw —us) + (@& —q2) > 0. (12)

where (9) represents the fertility decision, (10) the participation decision, and

since (11) represents the sum of (9) and (10), this condition is redundant.

4 A Behavioural Interpretation

Below we provide a brief overview of the random utility model. Let U;; denote
the utility of the jth alternative for the ¢th individual. In addition we follow the
standard approach and decompose utility into a deterministic (V;;) and stochastic
component® (g;;), giving

Uiy = Vij + €4 (13)

6Note: the concept of random utility has two interpretations. First, the stochastic com-
ponent of utility can be interpreted as those determinants of choice which are unobserved by
the analyst. In this respect individuals maximise utility in a deterministic fashion. Alternately
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where ¢;; reflects individual specific variation in tastes. Further we let V;; depend

on both attribute specific and individual invariant characteristics, such that
Vij = o + 20, + v (14)

where x = {x;} is a J x K matrix of non-stochastic components of utility, whose
rows contain the K alternative specific attributes of alternative j;v = {v;} is a
T x 1 vector of alternative invariant individual characteristics; a = {«a;}, 0 =
{6.},0 = {6;:} are respectively J x 1, K x 1, and J x T arrays of unknown
parameters.

We assume that individuals choose the alternative that generates the largest

utility. Alternative [ is chosen iff
Up>Uy Vj#1€eC, (15)

where ¢ denotes the choice set. Moving from (15) to a statement about the
probability that [ is chosen involves the imposition of a distributional assumption
on the pairwise error differences of the stochastic components. For example, given

(13) an alternative way of writing (15) is
Vie—=Vij > eij — €a Vi #le(

or

Py = Pl"(c”z'j <eq) < (Vi —Vy)

4.1 A Comparison of Models

The empirical analysis evaluates the extent to which a class of discrete choice
models are consistent with the observed data on labour force participation (Ds)

and fertility (D;) decisions. We consider two broad approaches:

[. Utility maximisation is performed separately over the two choice sets €2
and ©. Weeks and Orme (1999) demonstrated that if we allow a non-zero
parameter, p, to allow for correlation across the two decisions D; and Ds,

then the set of utilities given by (5) are consistent with the specification of

we could postulate that even if all attributes of alternatives and characteristics of individuals
were fully observed, that utility maximisation is random. We follow the literature and interpret
random utility according to the former explanation.
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a bivariate discrete choice model. Dependent upon the assumed joint distri-
bution of the stochastic components, possible models include the bivariate

probit and bivariate logistic discrete choice models.

IT. Utility maximisation is over the set ¢ and utility is not additively separable
over {2 and ®. Under this scenario we have the multinomial response

model.

Although we believe that in many situations the distinction between models I
and II is not appreciated, considerable use has been made of the concept of sepa-
rability in demand structures. For example, a hierarchical choice structure would
facilitate a reduction in the dimensionality of the calculus required by optimising
agents. Thus, a consumer faced with the decision to choose a bundle of goods
from a large number of possibilities, say «, might partition a into distinct cat-
egories and perform separate maximisation on each category. Related problems
occur within the context of lifetime decision problems, with the decision maker
separating decisions on current from future choices.

In Figure 1 we depict two different decision structures which characterise the
labour force (Ds) and fertility decision (D;). Figure 1(a) presents the bivariate
model with p denoting the correlation coefficient of the bivariate normal distri-
bution. Note that here we let the labour force participation decision have three
outcomes by differentiating between part-time and full-time work. Figure 1(b)
presents the same two decisions but is based on the assumption that individuals
maximise utility over a single choice set which is the Cartesian product of the
choice set in D; and D,. In this context the appropriate statistical model is
multinomial.

In this paper we utilise a series of nested and nonnested hypothesis tests to
evaluate the empirical adequacy of a number of discrete choice models. The

models we examine are:

i. bivariate probit (2 x 2), (3 x 2)

—e

i. bivariate logit (2 x 2), (3 x 2)
iii. multinomial logit 4 state, 6 state

iv. multinomial probit 4 state.
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5 Data

The data set used in this study is the British Household Panel Survey (BHPS).
This survey is carried out by the ESRC Research Centre on Micro-social change
at the University of Essex. The BHPS was designed as an annual survey of each
adult (164+) member of a nationally representative sample of more than 5,000
households, making a total of approximately 10,000 individual interviews. The
same individuals were re-interviewed in successive waves and, if they split off
from original households, all adult members of their new households were also
interviewed. At the moment there are 7 available waves from 1990 to 1996.

The individual questionnaire covers the following topics: neighbourhood, indi-
vidual demographics, residential mobility, health and caring, current employment
and earnings, employment changes over the past year, lifetime childbirth, mari-
tal and relationship history (Wave Two only), employment status history (Wave
Two only), values and opinions, household finances and organization.” In this
application we use the 5th wave of the BHPS where individuals were asked to
report information about their situation in September 1994. Given that the pur-
pose of the paper is to study participation and decision choices of women, we
selected all the households with a married and cohabiting women, aged between
18 and 60. We assume that this life span covers the period in which women
make their choices about working and about fertility. In other words we assume
that women younger than 18 and older than 60 do not have to decide whether to
work or whether to have children. Based upon these criteria the resulting sample
contains 2502 observations. We choose to exclude women under 18 because we
assume that their decision process about having children and participate to the
labout market is characterised by different variables respect to the women over
18. 18 years old is the age where most individuals have completed their high
school education.

Table 1 presents a description of the variables used in the analysis and Table
2 presents summary statistics. In this sample 34.53% of the women do not work,
31.10 % work part time (less than 30 hours per week) and 34.37 work full time.
Fertility is a binary variable equal to 1 if the woman has at least one child between

0 and 15 years old, it is equal to 0 othewise. Among the variables related to the

"For a full description of the survey see BHPS User Manual: volume A.
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budget set, we assign a prominent role to the wage of the woman. This choice
is due to the fact that woman’s wage enter both the opportunity cost of children
and the net value of participation. However, the use of the wife’s wage as an
explanatory variable poses two problems. First, the wage is observed only for
working women. Second the wage is likely to be correlated with unobserved
variables affecting both fertility and participation decisions.

Here we adopt the standard solution to these problems (see for instance Moffitt
(1984)), which consists in estimating a wage equation on the working subsample
and correcting for selection bias using a procedure suggested by Heckman (1976).
In this way the simultaneity problem (2) is solved with a 2SLS technique, and
the unobservability problem (1) is solved by imputing the predicted wage to every
woman both working and not working.

The woman’s gross wage rate (dependent variable in the wage equation) is
calculated using the usual gross pay per month, the number of hours normally
worked per week and the number of overtime hours normally worked per week.
The explanatory variables used in this equation are the dummies for education,
experience and experience squared. The results are presented in table 3.

The predicted net hourly wage is calculated from the predicted gross wage
rate applying the rates and bands for the 1993/94 and the National Insurance
Contributions.® In order to be able to calculate the net hourly wage from the
predicted gross hourly wage, it is necessary to calculate the gross annual labour
income of the women in the sample. Since we do not observe hours of work for
women who do not work, we estimated a regression for women’s hours of work.
The estimated parameters are then used to calculate predicted hours of work for
all the women in the sample. The equation for hours of work is presented in table
4 and the explanatory variables used are the dummies for education, experience,

experience squared and the children dummies.

8The tax rates used to calculate the predicted net wage are the following: 20% until £
2,500, 25% for the next £21,200, and 40% for income above 23,700. The personal allowance
used is equal £3,445 while the married allowance is equal to £ 1,720. The National insurance
contributions used are as follow: 2% until £56 per week, 9% for the next £363 per week, 0
thereafter.
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6 Results

In tables 5 and 6 we present results for the (2 x 2) and (3 x 2) bivariate models.
In table 5 the dependent variables are the binary indicators for fertility and the
binary indicator of labour force participation. Note that for the fertility equation
parameter estimators are based upon the effects of covariates relative to the non
fertility state C; in the participation equation the reference group is non-workers
(NW). For both models the bivariate logit and probit equation parameter esti-
mates have the correct signs and are consistent with previous studies. In table 6
we extend the bivariate model by differentiating between part-time and full-time
workers. Here we focus upon the effect of the predicted net wage of the woman.
As expected this variable enters the fertility decision with a negative sign given
the change in the opportunity cost of having children. However, the effect of
an increase in the wage has quite a different order of magnitude effect in the
part-time and full-time participation equations.

In all discrete choice models, and particularly in the case of multinomial mod-
els, parameter estimates are often difficult to interpret. Although this is also true
in this study, the results in table 7 present the parameter estimates by using
a multinomial logit model to estimate a 4 state labour supply /fertility decision
based upon the convolution of the two choice sets which underly the results in
table 5. In this case we use the NW _C state - non-working/no children as the
referent alternative. Notable results include the fact that, as expected, an in-
crease in the predicted wage results in an increase in labour supply but that this
effect is more pronounced for women with children than those without (compare
0.309 with 0.196). Similar differences for these two groups are observed when
we examine the impact of age. Compare the parameter estimator for women
with children (W _¢) with women without children (W _C), again relative for the
NW _C state.

In Table 7 we present the multinomial logit counterpart of the results in table
5. Again we use the NW_C as the referent alternative. Despite an obvious
proliferation of parameter estimates, the results are consistent with expectations,
and allow a more disaggregate perspective on joint decision making.

Table 8 reports the elasticties of the probabilities of participation and having
children with respect to the female wage for the (2 x 2) models. The elasticity of

the probability of participation to the labour market are, as expected, positive,
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while the elasticities of fertility are negative. One interpretation is that the wage
represents an estimate of the opportunity cost of children. An increase in the
female wage decreases the probability of having children. However, this effect is
much smaller (in absolute terms) than the positive effect on participation: this
result is consistent with estimates on other data sets.

We have also estimated the models presented for different age-selected sam-
ples: we have estimated the (2x2) bivariate logit and probit and the four states
multinomial logit on samples of women under 50 years old and under 40 years
old.Table 8 reports elasticities for these samples as well. The results show that
the elasticities of participation with respect to female wage are decreasing if we
exclude older women in the sample (the only exception.is the multinomial logit
for the sample under 40). As far as the elasticities of having children are con-
cerned, their absolute values increase when we exclude older women in the sample
(as we would expect)

In the models that differentiate between full and part time work (table10), an
interesting result comes out. The elasticities of full time participation are smaller
in absolute value than the part time, and negative. This result is consistent
with other estimates and other data for the UK (see, for example, Duncan and
Weeks (1997)). One possible interpretation of the relative rigidity of full time
female labour supply with respect to part time is that women who work full
time might possibly be both more educated and motivated. At the margin,
we have a backward bending labour supply function where the income effect is
predominant. Part time workers, on the contrary, have higher elasticity given

that their participation is highly sensitive to changes in wages.

6.1 Non-Nested Tests

Table 11 presents the results of an application of a two-sided version of Cox’s non-
nested test (see Cox (1961) and Cox (1962)) to the choice between a number of
discrete choice models of labour supply and fertility.” Given the large sample size
we utilise White (1982) estimator for the pseudo-true value in the construction of
the numerator of the test statistic. Weeks (1996) showed that in large samples the

size properties of this computationally convenient method for constructing the

9For an extensive overview of the use of nonnested testing to evaluate empirical adequacy
see Pesaran and Weeks (1999).
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numerator is comparable to the simulation estimator. We utilise three variants
of the denominator based upon using the observed Hessian (H), an outer product
of the gradient (OPG) estimator (O), and an estimator which ignores variation
due to parameter estimation under the null (X) (see Pesaran and Pesaran (1995).
Therefore, the test statistic Cy y is the Cox test statistic using White’s method
for the numerator and the observed Hessian (under the null) for the denominator.
C? denotes the Cox test.

In interpreting the results we first note that in the case of nonnested models
there is no natural null model. As such in testing two models, say H; and H,,,
we need to conduct two tests based upon interchanging the null and alternative
hypothesis. The first row of Table 11 presents the three null models: multinomial
logit (MNL), bivariate logit (Biv-L) and bivariate probit (Biv-P). In the second
row H, denotes the alternative models. For example, we test H;: MNL against
Hy:Biv-L and Hj, :Biv-P. The first block of results (I) presents test statistics for
the (2 x 2)/4 choice models and in (II) we present results for the (3 x 2)/6 choice
models.!’  Although we emphasise that our findings are preliminary, we report
an internal consistent set of results. Namely, in all cases the bivariate models are

rejected and we fail to reject the multinomial counterparts.

6.2 A Score Test

Since the parametric restrictions, described in Section 3.1, imply a singular co-
variance matrix in the MINP model, the most natural likelihood ratio procedure is
not strictly available due to the problem of testing on the boundary of the param-
eter space. A score test procedure is therefore outlined, whose asymptotic validity
is unaffected by such a problem. First we define an appropriate (m x 1) vector of
unrestricted parameters 8’ = (§’, 6”’) for the MNP model, which accommodates

the BVP model as a special case:

& = ( I27 éadil)a o' = (023,014,024,0347044),

where ¥ ={0;},j,l =1,...,4, and m = 543k. Conditional on x, let the relevant
four probabilities, (7), be expressed as functions of 0; i.e., pg(@|x). Then based

on NN independent realisations of the indicator c;, denoted ¢;;, 7 = 1,..., N, the

Under Hy the suitably standardised Cox test statistic is asymptotically distributed as
N(0,1). Given a 5% significance level the rejection region is therefore > |1.96
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log-likelihood is £(0) =Y, 35, ¢;; In(p;(0]x;)). From this the (m x 1) score

vector and (m x m) Hessian matrix are

_ 0L(0) _ -, Oln(p;(0]x,))
80) = g~ gg
82E(0 Y& 9 In(p;(0)x,))

HO) = Ze0p _;;% 9606’

Now let (6:' BI ,b) denote (restricted) maximum likelihood estimates of the
BVP model, (?7), and define accordingly the restricted MNP maximum likelihood

estimates as

9
|

~ . (d/, B,, &/+B,)
& = (/3, 0,%+b,§+b,1+2p).

An asymptotically valid test of the implied ¢ = 4+k parameter restrictions can
be based on the score test statistic given by S = N~1g(8)’ {V (é) }71 g(0), where
\% (é) is any consistent estimator for the average information matrix, under the
assumption that the restrictions under test are valid; e.g., V (é) = —%H (é) .In
large samples, S is distributed as a chi-square random variable with ¢ (number
of restrictions) degrees of freedom when the parametric restriction imposed on
the MNP model are correct. Significantly large values of S would be provide
evidence against the BVP model and, as a consequence, it would also suggest
that the BVP specification is inconsistent with utility maximisation over the
implied four possible outcomes.

In the application of this test to the data we reject the restricted BVP model

in favour of the more general multinomial probit model.

7 Conclusion

In much of the literature on discrete choice modelling of labour supply and fer-
tility, there has been a tendency to ignore a fundamental component of model
specification: namely, for a set of decisions, what is the appropriate form of the
choice set, and related, what are the implications of different choice sets. In this
paper we have examined this issue and demonstrated that the behaviourial conse-

quences which follow from the use of different models. Based upon the application
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of a number of tests, our findings suggest that the more general multinomial mod-
els, which follow from the combination of decisions, are a better representation of
the data. Although we believe that this finding is important, we offer a word of
caution. As we extend this approach, by defining choice sets over an increasing
number of decisions, there follow dimensionality problems, both in terms for nu-
merical analysis and the implied calculus of decision makers faced with the choice

over a large number of alternatives.
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Appendix I: Econometric Models

Below we set out the structure of the bivariate and multinomial choice models.

Bivariate Probit

We begin by examining the structure of the model underlying the two state
participation equation and a two state fertility equation. We refer to this as the
2 x 2 bivariate model. As in Section 3 we let y; and ¢} represent the latent
variables which underly the participation and fertility decisions. We assume that

y, and g} are generated according to the parametric specification given by

*

yy = Xap+u’ p=0,1
Q;; = Z/ﬁf_l_vf? f:0717 (16)

where y = yi, — ¥y and ¢} = ¢ — ¢i. o and 3 are unknown parameter vectors,

x is a k x 1 vector of regressors and the joint distribution of v and v/ is bivariate

normal. If we denote the vector of stochastic components by &* = (uf, uf, vg ,

v{ ), where uf,u} denotes the disturbance term for the non-participation and

participation working equation, and vg , v{ denotes the disturbance term for the
no children and children states, then the lower diagonal of the covariance matrix

may be written as

2= o fp 2f ’ (17)
Uog Uof Og

fo Ifr f 2f
01p 011 010 01

L C B i
where submatrices A =cov(uf, u?), and B = cov(v],v]) respectively denote co-
variance matrices for the participation and fertility decisions. The matrix C, with
elements a;-c,f Vi, k = 0,1, denotes the covariance between the j and kth stochastic
terms for, respectively, the fertility and participation decision. As such we can
think of A and B as representing the contemporaneous covariance across states
within the participation and fertility decision. C represents the contemporaneous
covariance across the two decisions.

For both the participation and fertility decision we introduce a normalisation.

For the participation decision we evaluate choice relative to the not working state,
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and for the fertility decision we evaluate choice relative to the no children state.
We write the subsequent vector of differenced disturbance terms as % = (uf,, v{o),
where, for example, u}, = u} — uf. Note that € includes other non-participant
differences as exact linear combinations.!! The covariance matrix of €} may be

written as

Q:“}H, (18)

where p is the correlation coefficient.

If we now extend the participation equation to three states then we have
e* = (uh, u¥, ub, v}, v])’, where in this instance «% and u} denote the disturbance
terms for the part-time and full-time states. The covariance matrix for €* may

then be written as

_ 9 -
o
p 2p
0190 01

p p 2p
O 021 02

p i p 2f
Oo0 Oo1 Oop2 Op

Ifr fp Ip f 2f
O1p 011 012 010 01

L C B

where the submatrices A = cov(uf, v, u4) and B = cov(v], v]). C is defined as

before, and denotes the covariance terms across the 3 state participation decision
and the 2 state fertility decision. By introducing the same normalisation as above
we may write the vector of differenced disturbance terms as e¥ = (u}, ub, v{o)' ,

where

0 o?r
10
eg~TVN| 0, J]230,10 Ugg (20)

2
0 0{5,10 0{5,20 ‘715
If we let x'cvp;, j = 1,2, denote the index function for the participation equa-
tion and 2’3, denote the index function for the fertility equation, the marginal

probabilities for each of the two decisions are given by

11; P _ P P
le. uy; = ujy — Uyg.
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P = PI’(P = l) = x'alj > €41 Vj 7él
F, = Pr(F=k)=x'B, > Vs#Ek, (21)

where, for example, the probability of non-participation, Pr(P = 0), is given
by

x' a1 X' g2

2
P (X1, X' e, p) = ¢” (uho, ubo, p)duby, dufy,

—o0 —00

where ®?(.) and ¢?(.) respectively denote the bivariate normal cumulative distri-
bution and bivariate normal probability density function with correlation p.
We write the joint probabilities for the six outcomes defined over the combined

participation and fertility choice space as

RFy = Pr(P=0NF =0)=®Xag, Xau, 28,0 P P3) (22)
RF = Pr(P=0NF=1)=®a, Xag, p)— PF

PFy, = Pr(P=1NF =0)=®Xay, Xan, 28, PP —ps)

PF = Pr )
PFy, = Pr(P=2NF=0)=&ZBy) - PoFy — P.Fy

P,Fy, = Pr(P=2NF=1)=1- RF,— PBF, — PFy— P F, — RF,

- 1—F0—POF1—P1F1

2 /
= ®* (X' a0, X' a1z, —py) — P Fy

where ®3(a, b, c; pq, ps, p3) denotes the trivariate normal distribution evaluated
at the point (a, b, ¢), ®*(a, b; p) denotes a similarly defined bivariate normal
distribution, and ®(a) is the standard normal distribution evaluated at a. p; =
corr (ufo, Ugo)a py = corr (ub, U{O)’ ps = corr (ufy, U{O)'

The MNP Model

For the MNP model, and focussing on the six state model, and using the same

notation as in (6) we write the vector of latent variables v* as
vi =x'v;,+¢; j=1,...,6
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where v, are vectors of unknown parameters and € = (€1,€9,€3,€4,€5,86) 18
distributed multivariate normal with zero mean and covariance matrix ¥ = {o,}.
Letting j = 1 index the non-work/no children state, this probability may be

written as

PyFy = Pr(vi, >0N0oiy >0Nvj, >0Nuvj5Novjg > 0) (23)
= Pr(eg < Xy Negp < X3 Negg <Xy Nesy < Xy Negt < X Yig)
where €1 = €; — &1 and 7,5 = 7y, — 7, Notice that (23) is given by a five-fold
integral whereas the same probability underlying the BVP is given by a trivariate
integral. For the BVP model the probability of no children and not working is
given by
P()FO = PI‘(P:O,F:O)

_ 3 (< / /
= @ (X01aa X2 & z' Bo1, P15 P2, P3)
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Figure 1 (a)
Bivariate Model
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Figure 1 (b)
Multinomial Model
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Table 1: Variable Descriptions

Participation =

Fertility =

Household Income

Gross hourly wage
of women and men

Age

Age squared
Children 0-2
Children 3-4
Children 5-11
Children 12-15

First degree
A’ level
O’ level

Working hours
Experience

Experience squared
Marital status =

0 if the woman does not work
1 if the woman works < 30 hours
2 if the woman works > 30 hours

1 if the woman has at least one child between 0 and 15 years old
0 otherwise

All receipts from non state pension sources plus all receipts from

state benefits plus other transfer (education grants, sickness insurance, maintenance
foster allowance) plus income from savings and investment!. Plus the husbands
usual net annual pay.

Usual gross pay per month divided by the sum of the number of hours normally
worked per week including overtime (adjusted on a yearly base)

Age of the woman in 1994
Age squared divided by 100.
1 (0 < age of children < 2)
1 (3 < age of children < 4)
1 (5 < age of children < 11)
1 (12< age of children < 15

1 if first degree or equivalent
1if A’ level or equivalent; else 0
1if O’ level; else 0

Number of hours normally worked per week

Sum of months of previous experience in part time, full time and self employed
jobs. The part time months were weighted for 50%

Experience squared divided by 1,000

1 if the woman is married, 2 if is cohabiting.

1 All the receipts refer to the 12 months before the interview (Sep 94).




Table 2: Descriptive Statistics

Mean  Std Dev. Min. Max.  No. of obs.

Participation Decision 0.998 0.830 0 2 2502
Fertility Decision 0.478 0.410 0 1 2502

2502
Joint Decision 2502
PyFy 0.155 0.362 0 1 2502
P Fy 0.119 0.324 0 1 2502
P Fy 0.248 0.432 0 1 2502
PyFy 0.191 0.393 0 1 2502
P Fy 0.198 0.394 0 1 2502
PyFy 0.096 0.295 0 1 2502
Household annual income (£'s) 11314 9255 0 151820 2502
Marital status 1.165 0.3713 1 2 2502
Age 39.404 10.650 18 60 2502
Age squared 16.661 8.577 3.240 36 2502
Women’s predicted gross hourly wage  6.172 1.502 5.48 11.63 2502
Women’s observed gross hourly wage 6.139 3.653 0.289 47.402 1615
Women’s predicted net hourly wage 5.34 1.11 3.97 17.55 2502
Women’s observed net hourly wage 4.785 2.388 0.283 37.471 1615
Predicted working hours 28.497 9.890 1 99 2502
Observed working hours 28.615 11.688 1 99 1615
Children 0-2 0.119 0.324 0 1 2502
Children 3-4 0.096 0.294 0 1 2502
Children 5-11 0.274 0.446 0 1 2502
Children 12-15 0.166 0.372 0 1 2502
First degree 0.094 0.292 0 1 2502
A level 0.182 0.386 0 1 2502
O level 0.284 0.451 0 1 2502
Experience 106.436  99.061 0 542 2502
Experience squared divided by 100 21.138 32.446 0 293.76 2502
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Table 3: Wage equation

Dependent variable: female gross hourly wage.

Variables OLS estimates
Constant 5.481%
(0.263)
First degree 4.9931
(0.282)
A’ level 2.3381
(0.231)
O’ level 0.6741
(0.198)
Experience 0.000
(0.007)
Experience squared 0.006
(0.006)
A —1.3761
(0.385)

No. of observations: 1615

R? squared 0.199
t denotes coefficient is significant at the 5% level of significance.
A is the coefficient on the inverse of the Mills Ratio
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Table 4: Hours equation

Dependent variable: number of hours usually worked per week

Variables OLS estimates
Constant 32.6961
(0.648)
First degree 4.5971
(0.973)
A level 3.0517
(0.793)
0 level 1.993t
(0.684)
Experience —0.0451
(0.008)
Experience squared 0.1261
(0.024)
Children 0-2 —4.1461
(1.021)
Children 3-4 —6.2151
1.078
Children 5-11 —6.4331
(0.670)

No. of observation: 1638
R? =0.130
t denotes coefficient is significant at the 5% level of significance.
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Table 5: Bivariate Models (2 x 2)

Bivariate Logit Bivariate Probit

Variables Compare Estimates’ Estimates
Fertility Eqn. c/C
Constant —12.8111 —7.5057
(0.719) (0.415)
Predicted net wage —0.017 —0.018
(0.031) (0.025)
Household Income 0.0097 0.008T
(0.004) (0.003)
Age 0.7457 0.4647
(0.041) (0.022)
Age squared —1.0671 —0.6607
(0.056) (0.029)
Participation Equation W/NW
Constant —1.3501 —1.872%
(0.652) (0.396)
Predicted net wage 0.214F 0.210f
(0.043) (0.027)
Household Income —0.007 —0.005
(0.005) (0.003)
Age 0.0867 0.081F
(0.031) (0.019)
Age squared —0.1441 —0.118fF
(0.039) (0.024)
Alfa —2.081f —0.3807
(0.185) (0.034)
Log Likelihood —2818.0 —2813.0

Score test: Unrestricted vs. Restricted MNP model
P(x7g) > Xae) = 0.001
T denotes coefficient is significant at the 5% level of significance.
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Table 6: Bivariate Models (3 x 2)

Bivariate Logit

Bivariate Probit

Variables Compare Estimates Estimates
Fertility Equation
Constant c/C —12.304% —7.6157
(0.781) (0.431)
Predicted net wage —0.065 —0.073"
(0.042) (0.025)
Household Income 0.0151 0.010%
(0.006) (0.003)
Age 0.775 0.4867
(0.043) (0.024)
Age squared —1.1107 —0.692"
(0.058) (0.033)
Part-time Equation PT/NW
Constant —0.399 —0.032
(0.598) (0.681)
Predicted net wage 0.0807 0.1097
(0.042) (0.041)
Household Income —0.0071 —0.002
(0.004) (0.004)
Age 0.0717 —0.026
(0.030) (0.039)
Age squared —0.1071 0.009
(0.037) (0.054)
Full Time Equation FT/NW
Constant —11.262f —4.7881
(1.131) (0.765)
Predicted net wage 0.8691 0.2317
(0.004) (0.040)
Household Income —0.0171 —0.007
(0.007) (0.004)
Age 0.3597 0.1757
(0.055) (0.041)
Age squared —0.455 —0.210f
(0.068) (0.055)
Alfa —0.872f —0.3271
(0.039) (0.018)
Log Likelihood —3779.4 —4003.1
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Table 7: Multinomial Logit: 4 State

Variables Compare Estimate
Constant W_C/NW_C —1.111
(0.968)
Predicted net wage 0.1967
(0.071)
Household income —0.011
(0.008)
Age 0.1587
(0.047)
Age squared —0.2811
(0.056)
Constant NW_C/NW_C —10.551F
(1.367)
Predicted net wage —0.2241
(0.090)
Household income 0.004
(0.009)
Age 0.8457
(0.073)
Age squared —1.282f
(0.096)
Constant W _C/NW _C —17.948"
(1.411)
Predicted net wage 0.3097
(0.077)
Household income 0.003
(0.008)
Age 1.0861
(0.073)
Age squared —1.555T
(0.095)
Log Likelihood —2753.8

T denotes coefficient is significant at the 5% level of significant
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Table 8: Multinomial Logit 6 State

Variable Compare Estimate
Coustant pPr C/NW C  —6.557F
(1.307)
Predicted net wage 0.436%
(0.077)
Household Income —0.023%
(0.009)
Age 0.249%
(0.061)
Age squared —0.312%
(0.072)
Constant FT _C/NW_C —-0.975
(1.036)
Predicted net wage 0.005
(0.074)
Houschold income —0.004
(0.008)
Age 0.211f
(0.052)
Age squared —0.382f
(0.064)
Constant NW_C/NW_C -104511
(1.376)
Predicted net wage —0.292F
(0.089)
Household income 0.007
(0.009)
Age 0.860%
(0.073)
Age squared —1.304%
(0.098)
Constant PT_C/NW_C —19.714%
(1.599)
Predicted net wage 0.378t
(0.077)
Houschold income —0.001
(0.009)
Age 1.147%
(0.084)
Age squared —1.644F
(0.111)
Coustant FT _C/NW _C  —16.397%
(1.852)
Predicted net wage —0.044
(0.095)
Houschold income 0.016
(0.010)
Age 1.027%
(0.097)
Age squared —1.467f
(0.127)
Log Likelihood —3672.6
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Table 9: Elasticities of the probability of participation and of having children
with respect to the female wage

Participation Fertility

Biv. Logit (2 x 2)

under 60 0.327 -0.127
under 50 0.223 -0.154
under 40 0.095 -0.217

Biv. Probit (2 x 2)

under 60 0.540 0.001
under 50 0.519 -0.024
under 40 0.502 -0.175

Multinomial Logit(4 states)

under 60 0.569 -0.030
under 50 0.554 -0.054
under 40 0.578 -0.218

Table 10: Elasticities of the probability of participation and of having children
with respect to the female wage

Participation Fertility —Full-time Part-time

Biv. Logit
(3x2) 0.476 -0.063 -0.293 1.537
Biv. Probit
(3x2) 0.583 -0.176 0.444 0.852

Multinomial Logit
(6 states) 0.559 -0.040 -0.384 1.595
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Table 11: Cox Non-Nested Test Statistics

H;: MNLZ Hy: Biv-L Hy: Biv-P
H,: Biv-L  H,: Biv-P H,: MNL H,: Biv-P Hy: Biv-L  Hy: MNL

I: (2 x 2) 4 Choice Models

Cwn  —0.6T7[NA NA —11.933[-13.83]  —3.924[N A NA NA
Cwo —0566[-4.562] —1.133  —11.768[—9.744] —3.924[-8.018] —2.552 —10.814
Cwx —0223]-1.308] —0.360  —11.408]-8.570] —3.924[-6.125] —2.551 ~9.613

II: (3 x 2) 6 Choice Models

Cwa —1.430 1.918 —16.418 6.274 NA NA
Cwo —0.828 1.559 —16.382 5.861 —17.250 —11.394
Cwx —0.491 0.949 —13.823 3.703 —7.183 —11.246
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