
Importance Sampling and the Method of Simulated Moments

Daniel A. Ackerberg¤

First Version: August 1, 1999

This Version: April 20, 2000

Abstract

Method of Simulated Moments (MSM) estimators introduced by McFadden (1989) and Pakes and Pollard

(1989) are of great use to applied economists because of their ease of use even for estimating extremely

complicated economic models. One simply needs to generate simulated data according to the model and

choose parameters that make moments of this simulated data as close as possible to moments of the true data.

This paper uses importance sampling techniques to address two caveats regarding these MSM estimators.

First, if there are discrete parts of one's model, MSM objective functions are typically discontinuous in the

parameter vector, making them hard to miminize or mimimize correctly. McFadden (1989) brie°y suggests

the use of importance sampling to smooth simulated moments { we elucidate and expand on this technique.

Second, often one's economic model is hard to solve. Examples include complicated equilibrium models

and dynamic programming problems. We show that importance sampling can reduce the number of times

a particular model needs to be solved in an estimation procedure, signi¯cantly decreasing computational

burden.

¤Dept. of Economics, Boston University and NBER. Thanks to Steve Berry for helpful discussions. All errors are my own.

Method of Simulated Moments (MSM) estimators (MacFadden (1989), Pakes and Pollard (1989)) have great

value to applied economists estimating structural models due to their simple and intuitive nature. Regardless

of the degree of complication of the econometric model, one only needs the ability to generate simulated data

according to that model. Moments of these simulated data can then be matched to moments of the true data

in an estimation procedure. The value of the parameters that sets the moments of the simulated data "closest"

to the moments of the actual data is an MSM estimate. Such estimators typically have nice properties such as

consistency and asymptotic normality, even for a ¯nite amount of simulation draws.

This paper addresses two computational problems that can arise with such estimators. The ¯rst occurs when

there is any discreteness in one's econometric model. In this case, the above simulation process typically results

in an objective function that is not continuous in the parameter vector. This can be extremely problematic in

optimization, particular when one is searching over many parameters. Not only can this make estimation take

longer, but likely increases the probability of erroneously ¯nding local extremum or non extremum.

The second problem occurs when one's economic model is computationally time consuming to solve. Ex-

amples include dynamic programming problems with large state spaces and complicated equilibrium problems.

In the above estimation procedure, one usually needs to solve such a model numerous times, typically once for

every simulation draw, for every observation, for every parameter vector that is ever evaluated in an optimiza-

tion procedure. If one has I observations, performs NS simulation draws, and optimization requires R function

evaluations, estimation requires solving the model NS ¤ I ¤ R times. This can be unwieldly for complicated

problems.

This paper suggests using importance sampling to alleviate or remove these problems. Importance sampling

is a technique most noted for its ability to reduce levels of simulation error. McFadden (1989) brie°y notes

that importance sampling has an alternative use - that of smoothing simulated moments, i.e. addressing our

¯rst computational problem. The technique is quite simple for a simple multinomial choice model. This paper

expands and develops this technique, noting that it can be applied to much more complex models. The key

step in its application is ¯nding the right change of variables to do the importance sampling over. We exhibit

this smoothing technique with a number of examples.

We next exhibit that importance sampling can be used to alleviate our second problem. What we show

is that importance sampling can be used to dramatically reduce the number of times a complicated economic

model needs to be solved within an estimation procedure. Instead of naively solving the model NS ¤ I ¤ R

times, with importance sampling one only needs to solve the model NS ¤ I times or NS times. Since R can be

2

quite large (e.g. when the number of parameters is around 8 and the function is well behaved, at a minimum

R might = 500 | and R tends to increase exponentially in the number of parameters), this can lead to very

signi¯cant time savings. This technique is again illustrated with examples.

1. The Simple Data Generation MSM Estimator

Consider an econometric model

yi = f(xi; ²i; µ0)

where xi and ²i are predetermined variables, observed and unobserved to the econometrician respectively. yi

is a vector of dependent variables determined within the model. µ0 is a parameter vector that one is trying to

estimate.

Given data (x; y) generated at some true µ0, a simple MSM estimator of µ0 can be formed by examining the

generic moment:

E [yi ¡E [f(xi; ²i; µ)jxi] j xi]

Since yi = f(xi; ²i; µ0), this moment is identically zero at µ = µ0. So is the expectation of any function g(xi) of

the conditioning variables multiplied by the di®erence between y and its expectation, i.e.

E [(yi ¡E [f(xi; ²i; µ)jxi]) ¤ g(xi)] = 0 at µ = µ0 (1.1)

As such, the value of µ, say bµ, that sets the sample analog of this moment
GN (µ) =

1

N

X
i

[(yi ¡E [f(xi; ²i; µ)]) ¤ g(xi)]

equal to zero or as close as possible to zero is a consistent estimator of µ0. Under appropriate regularity

conditions, one obtains asymptotic normality of bµ (Hansen (1982)).1
Simulation enters the picture when the function E [f(xi; ²i; µ)] is not easily computable. The straightforward

way of simulating this expectation is by averaging f(xi; ²i; µ) over a set of NS random draws (²1; :::::::; ²NS)

from the distribution of ²i, i.e. cEf(µ) = 1

NS

X
ns

f(xi; ²ns; µ)

1Note that the vector y can contain higher order moments of the dependent variable (e.g. y, y2, etc.). As the number of moments
used increases, one can approach asymptotic e±ciency by the right choice of instruments (i.e. the g function).

3

cEf(µ) is trivially an unbiased simulator of the true expectation E [f(xi; ²i; µ)jxi]. McFadden and Pakes and
Pollard prove statistical properties of the MSM estimator that sets the simulated moment:

dGN(µ) = 1

N

X
i

h
(yi ¡ cEf(µ)) ¤ g(xi)i

as close as possible to zero. Perhaps most important of these statistical properties is the fact that these

estimators are typically consistent for ¯nite NS. The intuition behind this is that simulation error (i.e. the

di®erence between the simulated expectation and the true expectation cEf(µ)¡ E [f(xi; ²i; µ)jxi]) averages out
over observations as N ! 1.2 This consistency property gives the estimator an advantage over alternative

estimation approaches such as simulated maximum likelihood, which typically is not consistent for a ¯nite

number of simulation draws3. Both McFadden and Pakes and Pollard note that it is essential to hold the draws

²ns contant over di®erent function evaluations (i.e. di®erent µ). Otherwise the likelihood function is in¯nitely

jumpy4.

Note that this simulation procedure can be thought of as a data generating procedure. Each draw ²ns

generates a new dependent variable yns. The averages of these generated yns's are then matched to the

observed y's. This also illuminates how general this estimation procedure is. One simply needs to be able to

generate data according to the model.

1.1. Caveats and Solutions

An important caveat of this estimation procedure is when the function f(xi; ²i; µ) has some discreteness in it,

i.e. when f is not continuous in its arguments. The simplest example of such discreteness is a binary discrete

choice model. Other examples may have both continuous and discrete parts or have multiple discrete parts.

In such models, E [f(xi; ²i; µ)jxi], the true expectation, is typically continuous in the parameter vector µ.

However, the simulated expectation above, cEf(µ), will tend not to be continuous in µ, typically having both °ats
and jumps. This can be very problematic in the numeric minimization ofdGN (µ). Derivative based methods are
useless, and in our experiences, non-derivative based methods (e.g. the Nelder-Mead simplex algorithm) work

very poorly, especially as the number of parameters one is searching over increases.

2Another nice property of these estimators is that the extra variance imparted on the estimates due to the simulation is relatively

small { asymptotically it is 1/NS. This means, e.g., that if one uses just 10 simulation draws, simulation increases the variances of

the parameter estimates by just 10%.
3The di®erence between consisitency or inconsistency for ¯xed simulation draws can often be seen dramatically in degree of

small sample bias (see, e.g., Ackerberg (1999)).
4It is also usually helpful to use di®erent simulation draws for di®erent observations, as this will tend to make the simulation

error average out faster as N increases.

4

A second caveat is that f(xi; ²i; µ) may be hard to compute. Examples include dynamic optimization

problems by agents or complicated equilibrium problems. Both may require numerical methods to evaluate.

Performing such operations NS times for each observation each time the function is evaluated within an op-

timization procedure can be time consuming. Again, this gets particularly problematic when the number of

parameters to be estimated increases because the number of function evaluations needed for convergence tends

to increase exponentially in the number of parameters.

Importance sampling is most noted for its ability to reduce simulation error. We suggest using importance

sampling techniques for an alternative purpose - to overcome both non-smoothness problems and computational

problems. McFadden (1989) noted the ability to use importance sampling to smooth simulations. We illuminate

and expand this technique - the trick is to get the right change of variable to importance sampling over. We

then show how importance sampling can help our second caveat by reducing the number of times that f(xi; ²i; µ)

needs to be computed.

The way we proceed is through use of examples. We start with a simple model, the binary probit, which

actually doesn't require simulation, but makes for a simple example. We then illustrate 5 more examples of

smoothing: an ordered model, a panel data discrete choice model, a discrete duopoly game model (similar

to that in Berry (1992)), and a stochastic stopping time model (similar to that in Ackerberg, Machado, and

Riordan (1999)). We end by examining two examples of how importance sampling can reduce computational

burden. The ¯rst is a oligopolistic discrete quantity setting game (similar to that in Davis (1999)), and the

second is a dynamic programming problem.

2. Smoothing - The Probit Model

For the probit case, we have the model

yi = I(µxi + ²i > 0)

Note that in this case E [f(xi; ²i; µ)jxi] is simply prob(xi; µ), the probability that choice 1 is chosen given xi.

Straightforward application of the previous section results in a sample simulated moment5

GN (µ) =
1

N

X
i

h
(yi ¡ cEf(µ))-g(xi)i

where each ²ns is a random draw from p(²) (a normal distribution).

5Again, simulation isn't necessary here - this example is for illustrative purposes.

5

The problem here is that

cEf(µ) = 1

NS

X
ns

I(µxi + ²ns > 0)

is not continuous in µ. Essentially this simulated probability is just a count - it is the proportion of draws where

µxi + ²ns > 0. As µ changes, this proportion will either not change or jump as the number of draws crossing

the discrete threshold either doesn't change or changes discretely.

McFadden (1989) suggested that a way of smoothing GN (µ) is importance sampling. Illuminating on this

procedure, note that a change of variables gives:

E [f(xi; ²i; µ)] = E [I(¯xi + ²i > 0)] =

Z
I(µx+ ² > 0)p(²)d² =

Z
I(u > 0)p(u j x; µ)du

where u = µx+ ² and p(u j x; µ) is the distribution of u given x; µ; and p(²). This

=

Z
I(u > 0)p(u j x; µ)

g(u)
g(u)du

for arbitrary integrable functions g(u) that are non-zero over the entire support of u.

Suppose g(u) is a p.d.f., and that we can draw random variables u1; ::::; uNS from this p.d.f.. Construct

fEf(µ) = 1

NS

X
ns

I(uns > 0)p(uns j x; µ)
g(uns)

Note that

E
hfEf(µ)i = E ·I(uns > 0)p(uns j x; µ)

g(uns)

¸
=

Z
I(u > 0)p(u j x; µ)

g(u)
g(u)du = E [f(xi; ²i; µ)]

so this importance sampling simulator is also an unbiased simulator of the true expectation6.

For our purposes, what is most important is that the simulator fEf(µ) will generally be continuous in µ and
have non-zero derivative w.r.t µ. The reason is that fEf(µ) only depends on µ through p(u j x; µ), which is
continuous in µ given that p(²) is continuous and non-zero over its support.

Note the intuition here. As we change µ, rather than holding each of the ²ns and their implicit weights (
1
NS
)

constant, this procedure holds the uns constant and varies the \weights"
³
p(unsjx;µ)
NS¤g(uns)

´
on each of the draws. Put

6This unbiased property is not the case for a Kernel smoothed simulator, an alternative smooth simulator suggested by McFadden.
As such, estimators based on kernel smoothed simulators are generally not consistent unless the bandwidth approaches zero. Of

course, as the bandwidth approaches zero, one approaches the step original functions. \Close to step" functions are likely just as

hard to optimize over.

6

another way, rather than changing our simulated \people" when we change µ, we change the weight which we

put on each simulated person. As such the indicator functions do not change when µ changes and the resultant

simulator is smooth.

In enacting this simulator, one natural choice for g(u) is p(u j x; µ¤) where µ¤ is some guess or preliminary

estimate of µ. This choice results in an importance sampling simulator that is exactly the straightforward

simulator at µ = µ¤ (the di®erence arises away from µ = µ¤). In computation, the I(uns > 0)'s and g(uns)'s

should be stored as they do not vary as µ changes in the estimation procedure. Then as µ changes, one only

needs to re-compute the density p(uns j x; µ).

This is not the only method for smoothing. A commonly used method for smoothing complicated problems

is kernel smoothing. Kernel smoothing e®ectively adds some extra randomness to the model that smooths

3. More Complicated Examples of Smoothing

3.1. Ordered Model

We can express the ordered model as

y = f(xi; ²i; µ0) =

0BBBBBBBBBBBB@

I (¡1 < Xi¯ + ²i < K1)

I (K1 < Xi¯ + ²i < K2)

:

:

I (KJ¡1 < Xi¯ + ²i <1)

1CCCCCCCCCCCCA
Note that both the cuto®s K1; ::::::;KJ and ¯ are part of the parameter vector µ. By simulating Ef(xi; ²i; µ),

we can use (1.1) as an MSM estimator of µ7.

We focus on simulating one element of the dependent variable vector, E[I (K1 < Xi¯ + ²i < K2)] - the other

elements are similar. Again, straightforward simulation of Ef(xi; ²i; µ), i.e.

cEf(µ) = 1

NS

X
ns

I(K1 < Xi¯ + ²ns < K2)

will not be continous in µ, as changing either K1;K2; or ¯ will either not change or discretely change cEf(µ).
Note that the change of variables used in the previous section for the probit model will not work here {

7Again, simulation may not be necessary for this model, e.g. the ordered probit.

7

while that would smooth the problem with respect to ¯, cEf(µ) would still be discontinuous in the parameters
K1 and K2. The solution here is to use a slightly di®erent change of variables,

uns =
xi¯ + ²ns ¡K1
K2 ¡K1

resulting in the smooth importance sampling simulator

fEf(µ) = 1

NS

X
ns

I(0 < uns < 1)p(uns j x; µ)
g(uns)

Note that in this case, there is a non-unitary Jacobian in the transformation from ²ns to uns. If ²ns was N(0; 1)

for example, p(uns j x; µ) would equal (K2 ¡K1) 1

¾
p
2¼
exp

h
¡ (K2¡K1)uns¡X¯+K1

2¾2

i
. Again a natural choice of

g (uns) is p (uns j x; µ) at some preliminary µ8.

3.2. Panel Data Discrete Choice Model

As McFadden (1989), we express a panel data discrete choice model as:

y = f(xi; ²i; µ0) =

0BBBBBBBBBBBB@

I1

I2

:

:

IS

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

I (X1µ + ²1 > 0) \ I (X2µ + ²2 > 0) \ ::::: \ I (XT µ + ²T > 0)

I (X1µ + ²1 < 0) \ I (X2µ + ²2 > 0) \ ::::: \ I (XT µ + ²T > 0)

I (X1µ + ²1 < 0) \ I (X2µ + ²2 < 0) \ ::::: \ I (XT µ + ²T > 0)

:

I (X1µ + ²1 < 0) \ I (X2µ + ²2 < 0) \ ::::: \ I (XT µ + ²T < 0)

1CCCCCCCCCCCCA
so each element of y is an indicator for a particular sequence of choices through time. Note that the number of

elements of y is S = JT where J is the number of possible choices in each period and T is the number of time

periods (the above equation is where there is a binary choice in each period). The multivariate distribution

p(²1; ::::; ²T ; µ) is speci¯ed and may depend on theta, e.g. if the ²'s are serially correlated over time or if there is

a random e®ect. Note that the expectation of f, Ef(xi; ²i; µ), is a vector of the probabilities of observing each

possible choice sequence. Unlike the above two examples, these sequence probabilities are typically at least T

dimensional integrals that are generally not possible to compute analytically.

Again, straightforward simulation of Ef(xi; ²i; µ) is not continuous in µ; but importance sampling can help.

8One can easily simulate all the elements of y jointly.

8

Return to the change of variables

utns =Xtµ + ²tns 8t

and the smooth importance sampling simulator

fEf(µ) = 1

NS

X
ns

0BBBB@
I (u1ns > 0) \ I (u2ns > 0) \ ::::: \ I (uTns > 0)

:

I (u1ns < 0) \ I (u2ns < 0) \ ::::: \ I (uTns < 0)

1CCCCAp(uns j x; µ)
g(uns)

If ² is multivariate normal, p(uns j x; µ) is also multivariate normal.

This simulator has very useful properties. Of the S choice sequences, this simulator will be non-zero for at

most NS of the sequences. For these NS sequences, the simulated probabilities vary smoothly as µ changes.

The (S ¡ NS) sequences that get zero probability will have zero probability regardless of what µ is. This is

actually a very good characteristic for estimation purposes. One of the problems with panel data discrete choice

models is that when the length of the panel gets long, S gets extremely large (e.g. a binary model for 30 periods,

S = 230 = 1 billion). There do exist other smooth simulators for the panel probit model (e.g. the powerful

GHK simulator). However, these alternative simulators put positive probability on every choice sequence. As

such, the generic moment (1.1) has just too many non-zero elements to ever calculate (see Keane (1994)). Our

smooth simulator does not have this problem { a maximum of NS + 1 elements of the moment are non-zero,

for all µ.

3.3. Game Theoretic Models

This section presents a two ¯rm version of the model Berry (1994). Consider a market with two ¯rms who are

simultaneously deciding whether to enter. Pro¯ts of ¯rm i conditional on entering are given by

¼i = Xi¯ ¡ ± ln(N + 1) + "i

where Xi are some ¯rm speci¯c variables and N is the total number of ¯rms in the market (=0,1, or 2 in this

case). One reason pro¯ts might depend on N is through oligopolistic intereration between the ¯rms, e.g. a

Cournot model. We allow arbitrary correlation between the unobservables ²1 and ²2.

This is a tough model to estimate because of the possiblity of multiple equilibrium. For any parameter

9

vector µ, there are regions of ² space where either ¯rm 1 would ¯nd it pro¯tably to enter seperately or ¯rm 2

would ¯nd it pro¯table to enter seperately, but it is not pro¯table for both ¯rms to enter. What this means in

the context of our model is that there is no function mapping (X1;X2; ²1; ²2; µ) into a exact market structure.

This renders likelihood functions and moments of the exact market structure not well-de¯ned - creating serious

problems for likelihood or method of moment estimation. A popular approach to such multiple equilibrium

models (Bresnahan and Reiss (1987)) is to look at functions of the exact market structure that are unique

across the multiple equilibria. Berry shows that in his model there is a function f mapping (X1; X2; ²1; ²2; µ)

into the total number of ¯rms in the market,

y =

0BBBB@
I(no ¯rms enter)

I(one ¯rm enters)

I(both ¯rms enter)

1CCCCA = f(X1;X2; ²1; ²2; µ)

Since this is a function, it can be used for moments based estimation.

The expectation of f is not generally analytic, so simulation is necessary. For expostition we focus on

simulating the 2nd element of y. We can write this out explicitly as as:

y = I (one ¯rm enters) = I

0BBBB@
(X1¯ ¡ ± ln 2 + "1 > 0 \ X2¯ ¡ ± ln 3 + "2 < 0)

[

(X1¯ ¡ ± ln 3 + "1 < 0 \ X2¯ ¡ ± ln 2 + "2 > 0)

1CCCCA
The straightforward simulator

cEf(µ) = 1

NS

X
ns

I

0BBBB@
(X1¯ ¡ ± ln 2 + "1ns > 0 \ X2¯ ¡ ± ln 3 + "2ns < 0)

[

(X1¯ ¡ ± ln 3 + "1ns < 0 \ X2¯ ¡ ± ln 2 + "2ns > 0)

1CCCCA
is again not continuous in µ.

A change of variables to u1ns = X1¯¡ ± ln 2+ "1ns or u1ns =X1¯ ¡ ± ln 3 + "1ns will not result in a smooth

simulator (as it doesn't remove a ± from inside the indicator function). The neccesary change of variable for a

10

smooth importance sampling simulator is:

0B@ u1ns

u2ns

1CA =

0B@ X1¯¡± ln 2+"1ns
±

X2¯¡± ln 2+"2ns
±

1CA =

0B@ X1¯+"1ns
±

¡ ln 2
X2¯+"2ns

±
¡ ln 2

1CA
resulting in

fEf(µ) =
1

NS

X
ns

I

0BBBB@
(u1ns

±
> 0 \ ±(u2ns + ln 2¡ ln 3) < 0)

[

±(u1ns + ln 2¡ ln 3) < 0) \ u2ns
±
> 0)

1CCCCAp(uns j x; µ)
g(uns)

=
1

NS

X
ns

I

0BBBB@
(u1ns > 0 \ (u2ns + ln 2¡ ln 3) < 0)

[

(u1ns + ln 2¡ ln 3) < 0) \ u2ns > 0)

1CCCCAp(uns j x; µ)
g(uns)

given the assumption that ± is positive (that a ¯rm's pro¯ts fall in the number of its competitors). This simulator

is smooth in the parameter vector.

3.4. Stochastic Stopping Time

Consider the following model adapted from Ackerberg, Machado, and Riordan (1999). Patients enter a health

care treatment program at time 0 with some initial health status hi0 = Xi¯0 + ²0. This health status evolves

according to a Markov process such that health status at time t is

ht = Xi¯t + ®tht¡1 + ²t

If at any t health status reaches an upper limit hU = Xi°t the patient is deemed cured and is discharged at t.

Similarly, if health status drops below a level hL = Xi±t the patient drops out or its kicked out of the program

due to failure or non-compliance. Lastly, we will allow for a probability that a patient leaves treatment for other

exogenous, non-health related reasons - suppose that in period t, one drops out with probability p(Xi¼t), i.e.

the patient drops out if a uniform random variable ¹t is less than p(Xi¼t). One might allow correlation in the

²'s or ¹'s across time or allow the two processes to be correlated..

11

There are three possible outcomes in this model { success, failure, or exogenous dropout. These outcome

can occur in any period from 1 to T . We can think of our y vector in this model as a 3*T vector of dummies

indicating a particular outcome in a particular time period.

Straightforward simulation of Ey in this model would involve sequentially drawing ²'s and ¹'s to simulate

an outcome/time-period. We again focus on one particular element of y, e.g. success at period t.

Ey = E[success at period t]

=
1

NS

X
ns

"
t¡1Y
¿=1

I [Xi±¿ < Xi¯¿ + ®¿h¿¡1 + ²¿ns < Xi°¿] I [¹¿ns < p(Xi¼t)]

#
I [Xi¯t + ®tht¡1 + ²t ¸ Xi°t]

In words, the draws must be such that ht is between the boundaries up to t, that the patient doesn't drop

out before t, and that ht crosses over the upper boundary exactly at t. This will be discontinous in the

parameters (®;¯; °; ±; ¼) for a number of reasons. For example, as ¼ changes, particular ¹ns¿ draws will jump

I [Xi¼¿ + ¹¿ns < 0] from 1 to 0 or from 0 to 1. The indicators including the h's will also change discretely as

parameters ®;¯; °; ± change.

To make this continuous, let

z¿ =
Xi¯¿ + ®¿h¿¡1 + ²¿ns ¡Xi±¿

Xi°¿ ¡Xi±¿
w¿ = ¹ns¿ ¡©¡1(p(Xi¼t))

where ©¡1 is an arbitrary inverse CDF. Now,

Ey =

Z "
t¡1Y
¿=1

I [0 < z¿ < 1] I [w¿ > 0]

#
I [zt ¸ 1]p(zT ; wT j x; µ)dzTdwT

where p(zT ; wT j x; µ) is the joint distribution generated by p(²T ; ¹T) and the de¯nitions of z and w. Now

multiply and divide by arbitrary PDF g(zT ; wT j x) to get

Ey =

Z hQt¡1
¿=1 I [0 < z¿ < 1] I [w¿ > 0]

i
I [zt ¸ 1]p(zT ; wT j x; µ)

g(zT ; wT j x) g(zT ; wT j x) dzTdwT

and the smooth importance sampling simulator:

fEf(µ) = 1

NS

X
ns

hQt¡1
¿=1 I [0 < zns¿ < 1] I [wns¿ > 0]

i
I [znst ¸ 1] p(zTns; wTns j x; µ)

g(zTns; w
T
ns j x)

12

Note also that in drawing from g(zT ; wT j x) and in computing g(zTns; wTns j x) and p(zTns; wTns j x; µ), it is easiest

to divide these distributions into products of conditional distributions, i.e. if the ¹¿ process is independent of

the ²¿ process, we have:

p(zT ; wT j x; µ) =
TY
t=1

p(zt; wt j zt¡1; wt¡1; x; µ) =
TY
t=1

p(zt j zt¡1; x; µ)p(wt j wt¡1; x; µ)

4. Importance Sampling to Reduce Computational Burden

We next turn to the situation where the function f(xi; ²i; µ) is hard to compute. Examples include dynamic

optimization problems by agents or complicated equilibrium problems. Both may require numerical methods

to evaluate. If one has I observations, performs NS simulation draws, and optimization requires R function

evaluations, estimation requires solving f(xi; ²i; µ) NS ¤ I ¤ R times. This can be prohibitively burdensome

for realistic models one might like to estimate. This section shows how one can use importance sampling to

signi¯cantly reduce this computation burden. One can reduce the number of times f(xi; ²i; µ) needs to be

evaluated from NS ¤ I ¤ R times to NS ¤ I times or even NS times. Our procedure is again illustrated with

examples. The ¯rst is a complicated discrete game, the second is a dynamic programming problem.

4.1. Discrete Games

We consider the model in Davis (1999). Firm j chooses the number of stores sj 2 (0; :::::; S) to operate in a

given market. The cost of operating sj stores is given by

c(sj) = (¯xj + ®sj + ²j)sj

where xj are ¯rm speci¯c cost observables and uj are ¯rm speci¯c cost unobservables. Market inverse demand

in market i is a function of the total number of stores Qi =
P

j sj and equal to

P (Q) = ±0 ¡ ±1Q+ ±3zi

where zi are market speci¯c variables that shift overall demand and ²i is an unobserved market demand shifter.

As there is only actual data on equilibrium Q, and not P , a units normalization is necessary. We normalize

±1 = 1, i.e.
9

9This normalization is di®erent than that used by Davis (who normalized ¾u = 1), but is an identical model given that demand
is downward sloping. This alternative normalization makes our expostition easier.

13

P (Q) = ±0 ¡Q+ ±3zi

These imply an underlying pro¯t function of the model

¼(sj ;Q) = p(Q)sj ¡ c(sj)

= (±0 + ±3zi + ¯xj + ²j)sj + ®s
2
j ¡Qsj

While there are multiple equilibrium in this game, Davis shows conditions under which all equilibrium

consist of the same total number of stores Qi. Thus he uses an estimation strategy similar to Berry (1992) by

estimating the equation

y = Qi = f(x1; ::::::; xNi
; ²1; :::::; ²Ni

; zi; µ)

with the generic moment

E [yi ¡E [f(x1; ::::::; xNi
; ²1; :::::; ²Ni

; zi; µ)jxi; zi] j xi; zi]

In this case, not only is the expectation of f not analytic, but the function f itself is very complicated. Given all

primitives (x1; ::::::; xNi
; ²1; :::::; ²Ni

; zi; µ), an interative tatonnment procedure is required to solve for Qi. The

pure frequency simulator that Davis uses:

cEf(µ) =
1

NS

X
ns

f(x1; ::::::; xNi
; ²1ns; :::::; ²Nins; zi; µ) (4.1)

=
1

NS

X
ns

f(f±0 + ±3zi + ¯xj + ²jnsgNi

j=1
; ®)

requires computation of f NS ¤ I ¤ R times, where I is the number of observations (markets), and R is the

number of function evaluations neccesary to minimize the moment (R might be on the order of 1000 if there

are 10 parameters to estimate). Like the previous examples, cEf(µ) also will have °ats and jumps in µ.
Note the equality in the second line of equation (4.1). Equilibrium in this model is a function of just

f±0 + ±3zi + ¯xj + ²jnsgNi

j=1
and ®, not the individual components. This follows from the pro¯t function. As

14

such, consider the change of variables

ujns = ±0 + ±3zi + ¯xj + ²jns

and the importance sampling simulator

fEf(µ) = 1

NS

X
ns

f(fujnsgNi

j=1
; ®)p(uns j x; µ)

g(uns)

where the uns are draws from the some distribution g(uns) (again, p(uns j x; µ) at some initial guess of µ is a

good candidate). For the moment ignore the parameter ®. As the other parameters change, the importance

sampling holds the fujnsgNi

j=1
constant, and thus the function f need not be recomputed for each parameter

vector. As a result, f only need be computed NS ¤ I times rather than NS ¤ I ¤ R times. Note that this

importance sampling also smooths the function.

The caveat here is the parameter ®. Unfortunately, when ® changes, the equilibrium does need to be resolved.

This is not an issue, e.g. if one is willing to assume constant marginal costs (i.e. ® = 0), but there are a couple

of other alternatives. First is to do an outside search algorithm over ® and an inside search algorithm over the

rest of the parameters. Equilibria need to be re-solved only when ® changes, which will generally be about 40

times since it is a one dimensional search.

The second, perhaps more interesting, alternative is to slightly expand the model. Suppose we allow some

heterogeneity across ¯rms in their returns to scale, i.e.

c(sj) = (¯xj + ®jsj + ²j)sj = (¯xj + (®+ ´j)sj + ²j)sj

where ® is the average scale parameter and ´j is ¯rm j's deviation from that mean (one might also allow ²

and ´ be correlated). Now straightforward simulation requires drawing both a set of ²ns's and a set of ´ns's .

Consider the changes of variables

ujns = ±0 + ±3zi + ¯xj + ²jns

zjns = ®+ ´jns

15

and the simulator

fEf(µ) = 1

NS

X
ns

f(fujnsgNi

j=1
; f®jnsgNi

j=1
)p(uns; ®ns j x; µ)

g(uns; ®ns)

This simulator is both smooth in all parameters and the equilibria do not need to be recomputed as the

parameters change10. The intuition here is similar to that in the smoothing case. We start with a bunch of

simulated equilibrium outcomes, then when we change the parameter vector, we dont change these simulated

outcomes, but we do change the weight that each outcome gets.

Lastly, note that one can reduce computational burden even further by using the same g(:) function (and

same simulation draws) for di®erent observations. In other words, we use the same fujnsgNi

j=1
; f®jnsgNi

j=1
draws

for each observation. In this case, one only needs to solve the f function NS times. Since the x's vary across

observations, note that one still needs to compute p(uns; ®ns j x; µ) seperately for each observation.

There are a few caveats to this additional procedure. First, because ¯rms di®er in x, there is no obvious

choice of g. One alternative would be to use the p function (at some initial µ) with the means of x. Another

alternative would be to use I di®erent g functions, one for each observation's x. Secondly, note that the supports

of u and ® need to be the same across observations to do this. Third, this procedure creates correlation in the

simulation error across observations. This means it can take longer for simulation error to average out as the

number of observations increases. This correlation also destroys the nice (1/NS) result regarding additional

variance due to simulation. Of course, if one is able to increase the number of simulation draws because of the

computational time savings, this might be compensated for.

4.2. A Dynamic Programming Problem

Consider a dynamic model of automobile choice. Suppose that in a given year the utility consumer i obtains

from using a car with characteristics Xj and age aj is given by

Uij = ¯iXj ¡ °iaj

where ¯i is a vector of consumer i's idiosyncratic tastes for the characteristics and °i measures consumer i's

distaste for older cars. In each period the consumer has the option of keeping their old car or purchasing a new

one from some set of J cars. Therefore, the single period utility from purchasing or not purchasing, respectively

10Issue with ¾® needing to be bounded away from 0. Note - how to do this if want to restrict ®i to be positive, or restricted
between 0 and 1.

16

are

Up = max
j
f¯iXj ¡ ®ipjg

Unp = ¯iXci ¡ °iaci

where Xci are characteristics of i's current car, and aci is the age of the current car. ®i is consumer i's distaste

for price. aci does not enter the utility from purchasing a new car because new cars are age 0.

The formal state space of this problem is (ci; aci), i.e. the individual's current car type and its age
11. This

is of fairly small dimension, so it would be possible to numerically solve for i's value function Vi(ci; aci) and

optimal policy (choice) function Pi(ci; aci). Note that the value and policy functions are indexed by i because

they depend on consumer i's characteristics, i.e. the vector (¯i1; :::; ¯iK ; ®i; °i).

Econometrically, one might specify ¯i; ®i, and °i as linear functions of consumer characteristics yi plus

unobservable terms, i.e.

¯i1 = yi¯1 + ²i1

:

:

¯iK = yi¯K + ²iK

®i = yi®+ ²iK+1

°i = yi° + ²iK+2

specifying the joint distribution of ²i. Estimation could proceed by simulating from the distribution of ²i, solving

the dynamic programming problem for each simulated individual (characterized by (¯i1ns; :::; ¯iKns; ®ins; °ins))

and matching simulated choices to actual choices, i.e.

GN(µ) =
1

N

X
i

h
(Pi ¡dEP (µ))-g(X; yi)i

11This assumes prices and characteristics are not changing over time. Because of the large number of products, it would likely not

be feasible to include a complicated stochastic path of prices. On the other hand, an iid price process could likely be incorporated

using alternative speci¯c value functions similar to Rust (1988).

17

where dEP (µ) is the average of the simulated choices (policies)12,
dEP (µ) = 1

NS

X
ns

P (¯i1ns; :::; ¯iKns; ®ins; °ins; ci; aci)

and Pi is the observed choice.

The problem with the above straightforward simulation is that as µ changes (while the simulated ²'s are held

constant), the simulated (¯i1ns; :::; ¯iKns; ®ins; °ins)'s change. Thus, the dynamic programming problem needs

to be solved NS ¤ I ¤R times { once for each simulation draw for each observation for every parameter vector

evaluated. Again importance sampling can help reduce computational burden. Consider changes of variables

given by:

¯i1 = yi¯1 + ²i1

:

:

¯iK = yi¯K + ²iK

®i = yi®+ ²iK+1

°i = yi° + ²iK+2

and the importance sampling simulator

gEP (µ) = 1

NS

X
ns

P (¯i1ns; :::; ¯iKns; ®ins; °ins; ci; aci)p(¯i1ns; :::; ¯iKns; ®ins; °ins j yi; µ)
g(¯i1ns; :::; ¯iKns; ®ins; °ins)

where (¯i1ns; :::; ¯iKns; ®ins; °ins) are draws from g(). Now when the parameters µ change, the vector (¯i1ns; :::; ¯iKns; ®ins; °

does not change. As such, the dynamic programming problem Vi(ci; aci) only needs to be computed NS ¤ I

times { once for each simulation draw for each individual. This can be a big di®erence when the number of

parameters is large and the number of necessary function evaluations R is large. Again the intuition is that

instead of changing our simulated individuals when we change µ, we change the weights we put on these simu-

lated individuals. As with the previous model, one could reduce the number of computations to NS times by

using the same simulation draws for each individual.

12Perhaps a vector of 0-1 choices (i.e. which car is bought).

18

4.2.1. Comparison to Alternative Approaches

Lastly, note that an alternative strategy for this problem would be to explicitly solve for the value and policy

functions as depending on the individual speci¯c parameters, i.e.

V (¯i1; :::; ¯iK ; ®i; °i; ci; aci) and P (¯i1; :::; ¯iK ; ®i; °i; ci; aci)

If one could solve for this function (and the associated policy function), one would only need to solve it once

- when simulating a particular individual at a particular parameter vector, one can just plug the resulting

(¯i1ns; :::; ¯iKns; ®ins; °ins) into the V and P . However, the time required to solve a dynamic programming

problem typically increases exponentially in this \state" space. Thus, if the dimension of heterogeneity (i.e. K)

is large, this will generally not be feasible. Since the (¯i1ns; :::; ¯iKns; ®ins; °ins) are continuous, this would also

require some discretation, as V can only be solved for at a ¯nite number of points. Even so, if each dimension of

heterogeneity is discretized into 10 points, this procedure would implicitly require solving for V (ci; aci) 10
K+2

times, considerably more than the NS ¤ I or NS times above. The discretation also adds error to the problem

and likely destroys econometric consistency.

In recent work, Keane and Wolpin (1994) and Rust (1997) suggest using randomization to approximate

V (¯i1; :::; ¯iK ; ®i; °i; c; ac). The procedure is that instead of discretizing the state space, one randomly chooses

points at which to approximate the value function. Rust proves that such randomization breaks the curse of

dimensionality in the dimension of the state vector, though computational time still increases polynomially in

order to achieve a given degree of approximation error13.

After using such an approach to approximate V (¯i1; :::; ¯iK ; ®i; °i; c; ac) and P (¯i1; :::; ¯iK ; ®i; °i; c; ac), sim-

ulation estimation would proceed by drawing sets of (¯i1ns; :::; ¯iKns; ®ins; °ins), computing simulated choices

P (¯i1ns; :::; ¯iKns; ®ins; °ins; c; ac); and matching these simulated choices to observed choices. Since one's sim-

ulation draws will generally not equal the points at which the value function is approximated, one would need

additional interpolation or approximation to compute V (¯i1ns; :::; ¯iKns; ®ins; °ins; ci; aci).

Our methodology is related to Rust's in that the value function is also being computed at a random set of

points. However, in our procedure, the points for which we solve the value function are exactly the points that

are chosen by the simulation process in the estimation routine. As a result, there is no approximation error in

computation of value and policy functions- the functions we solve for are exact14. While there is only one source

13Does this solution to the curse of dimensionality hold even though (¯i1; :::; ¯iK ; ®i; °i) do not change over time? This implies
densities in Rust are degenerate and we end up with a computational problem that is more like multivariate function approximation.
14This relies on ci and ac being in discrete space. If they were not, we would still expect considerably less approximation error

19

of simulation error in our estimates (that in the estimation process), the Rust method has two (the estimation

process and the value function approximation).

While the Rust methodology solves the curse of dimensionality by brute force (directly going at the value

function) our methodology implicitly breaks the curse of dimensionality problem. The key is that with our

estimation method, one never needs to solve for the entire value function, one only need to solve it for the

simulation draws used in the estimation procedure. As such the standard results on breaking the curse of

dimensionality through Monte-Carlo integration apply15.

5. Additional Points and Caveats

Monte-Carlo Experiments

Application to complicated auction models

Use in ML procedures or Indirect Estimation.

Problems with discrete distributions/distributions where support changes with µ.

Necessity to bound parameter space, e.g. variance of unobserved heterogeneity being bounded away from 0.

Having multiple unobservables in the same function.

6. Conclusion

References

[1] Ackerberg, D., Machado, M.and Riordan, M. 1999 \" mimeo, Boston University

[2] Berkovec, James; Stern, Steven. 1991. \Job Exit Behavior of Older Men", Econometrica, 59(1), January

1991, pages 189-210.

[3] Berry, Steven T. 1992 "Estimation of a Model of Entry in the Airline Industry", Econometrica, 60.

[4] B}orsch Supan, A., and Hajivassiliou, V. 1993. \Smooth Unbiased Multivariate Probability Simulators for

Maximum Likelihood Estimation of Limited Dependent Variable Models", Journal of Econometrics, 58(3),

347-368.

[5] Davis, P. 1999 \" mimeo, MIT

in our procedure.
15Note that our methodology breaks the curse of dimensionality only in the dimension of the heterogeneity

(¯i1ns; :::; ¯iKns; ®ins; °ins); not in the size of the \true" state space (ci; a).

20

[6] Elrod and Keane. 1995, \A Factor-Analytic Probit Model for Representing the Market Structure in Panel

Data", Journal of Marketing Research, Feb. 1995, Vol. XXXII, 1-16.

[7] Geweke, J. 1989, \E±cient Simulation from the Multivariate Normal Distribution Subject to Linear In-

equality Constraints and the Evaluation of Constraint Probabilities"

[8] Geweke, John F.; Keane, Michael P.; Runkle, David E. 1997, \Statistical Inference in the Multinomial

Multiperiod Probit Model", Journal of Econometrics, 80(1), pages 125-65.

[9] Hajivassiliou, V. 1993, \Simulation of multivariate normal rectangle probabilities and their derivatives: the

e®ects of vectorization", International Journal of Supercomputer Applications, Fall, 231-253.

[10] Hajivassiliou, V. 1994, \A Simulation Estimation Analysis of External Repayments Problems of Developing

Countries", Journal of Applied Econometrics, 9(2), 109-132.

[11] Hajivassiliou, V. 1996. \A Monte Carlo Comparison of Leading Simulation Estimators for LDV Models",

Mimeo, Department of Economics, London School of Economics.

[12] Hajivassiliou, V. 1997, \Simulation-Based Inference and Diagnostic Tests: Some Practical Issues", Cam-

bridge University Press

[13] Hajivassiliou, V. and Ruud, P. 1994, \Classical Estimation Methods Using Simulation" Pages 2383-2441

of: Engle, R., and McFadden, D. (eds), Handbook of Econometrics, Vol. 4. North Holland.

[14] Hajivassiliou, Vassilis A.; McFadden, Daniel L. 1998, \The Method of Simulated Scores for the Estimation

of LDV Models", Econometrica, 66(4), July 1998, pages 863-96.

[15] Hajivassiliou, V., McFadden, D., and Ruud, P. 1996, \Simulation of Multivariate Normal Rectangle

Probabilities and Their Derivatives: Theoretical and Computational Results", Journal of Econom7etrics,

72(1&2), 85-134.

[16] Hansen, Lars (1982) \Large Sample Properties of Generalized Method of Moments Estimators" Economet-

rica, 50

[17] Keane, M. 1994. \A Computationally E±cient Practical Simulation Estimator for Panel Data", Economet-

rica, 62(1), 95-116.

21

[18] Keane, Michael P.; Wolpin, Kenneth I. 1994, \The Solution and Estimation of Discrete Choice Dynamic

Programming Models by Simulation and Interpolation", Review of Economics and Statistics, 76(4), Novem-

ber 1994, pages 648-72.

[19] Lee, Lung Fei. 1995, \Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice

Models", Econometric Theory, 11(3), August 1995, pages 437-83.

[20] Lee, Lung Fei. 1998, \Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical

Models: Some Monte Carlo Results", Journal of Econometrics 82(1), January 1998, pages 1-35.

[21] Lerman, S. and Manski, C. 1981. \On the Use of Simulated Frequencies to Approximate Choice Probabil-

ities", Pages 305-319 of: Manski, C., and McFadden, D. (eds), Structural Analysis of Discrete Data with

Econometric Applications. MIT Press.

[22] McCulloch, R., and Rossi, P. 1994, \An Exact Likelihood Analysis of the Multinomial Probit Model",

Journal of Econometrics, 64.

[23] McFadden, D. 1989, \A Method of Simulated Moments for Estimation of Discrete Response Models without

Numerical Integration", Econometrica, 57(5), 995-1026.

[24] McFadden, Daniel; Ruud, Paul A. 1994, \Estimation by Simulation", Review of Economics and Statistics,

76(4), November 1994, pages 591-608.

[25] Pakes, A., and Pollard, D. 1989, \Simulation and the Asymptotics of Optimization Estimators", Econo-

metrica, 57, 1027-1057.

[26] Rust, J. 1997. "Using Randomization to Break the Curse of Dimensionality", Econometrica, 66

[27] Stern, S. 1992, \A Method for Smoothing Simulated Moments of Discrete Probabilities in Mutinomial

Probit Models", Econometrica, 60, 943-952.

[28] Stern, Steven 1994,\Two Dynamic Discrete Choice Estimation Problems and Simulation Method Solution",

Review of Economics and Statistics, 76(4), November 1994, pages 695-702.

22

