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Abstract

It is shown that the maximum likelihood estimator of a local to unity pa-
rameter can be consistently estimated with panel data when the cross section
observations are independent. Consistency applies when there are no determinis-
tic trends or when there is a homogeneous deterministic trend in the panel model.
When there are heterogeneous deterministic trends the panel MLE of the local
to unity parameter is inconsistent. This outcome provides a new instance of
inconsistent ML estimation in dynamic panels, and, unlike earlier results of this
type, applies when both T" — oo and N — oc.
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1 Introduction

In recent nonstationary time series applications, it has been extremely common to
model time series with roots near unity using the device of an autoregressive root
that is local to unity. Some early studies of near unit root nonstationary time se-
ries include developments of local alternatives to unit root specifications (Bobkoski,
1983; Phillips, 1987), derivations of power functions and power envelopes of unit root
tests (e.g., Cavanagh, 1985, Phillips, 1987, Johansen, 1991), and the construction of
confidence intervals for the long run autoregressive coefficient (Stock, 1991). More
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recent research on near unit root nonstationary time series investigates the efficient
extraction of deterministic trends (Phillips and Lee, 1996, and Canjels and Watson,
1997), and the construction of point optimal invariant tests for a unit root (Elliot
et al, 1996) and cointegrating rank (Xiao and Phillips, 1999). For further examples,
readers can refer to recent surveys on unit root processes (e.g., Stock, 1994, and
Phillips and Xiao, 1998).

Like other parameters in econometric models, localizing parameters in near inte-
grated processes are not usually observable. But, implementation of some methods
in the forementioned studies requires knowledge of the localizing parameter or a
consistent estimate of it. For example, it is well known that efficiency gains in the
estimation of deterministic trends can be obtained by quasi-differencing the data us-
ing the unknown localizing parameter (e.g. Phillips and Lee, 1996, and Canjels and
Watson, 1997). However, if we implement this procedure using inconsistent esti-
mates of the localizing parameter, then the limit distribution of the resulting trend
coefficient estimator is highly nonstandard, which introduces new difficulties, e.g, in
constructing confidence intervals for the trend coefficient. Largely because of this
problem, Cavanagh et al (1995) and Canjels and Watson (1997) suggested the use of
Bonferroni-type confidence intervals, which are often very conservative.

Finding a consistent estimate of the localizing parameter is not straightforward.
Obvious procedures like the use of least squares are well known to be inconsistent
(Phillips, 1987); and, even in the simplest framework, consistent estimation inevitably
involves the introduction of additional information. In view of its potential applica-
tions in both estimation and inference, the problem of consistent estimation of the
localizing parameter in local to unity models poses an interesting problem with im-
portant implications. Two recent studies that consider the subject are Moon and
Phillips (1998) and Phillips et al (1998).

The main purpose of this paper is to investigate the asymptotic properties of the
Gaussian maximum likelihood estimators (MLE) of the localizing parameter in local
to unity dynamic panel regression models. The model we consider here allows for
the panel to be generated with deterministic and stochastic trends, and a common
localizing parameter is assumed to apply across individuals. Commonality of the
localizing parameter is restrictive, but is no more restrictive than the conventional
assumption of common AR parameters in stationary dynamic panels (e.g., Nickell,
1981). Two different models are considered: a homogeneous trend model in which
the deterministic trends are homogenous across the individuals in the panel; and a
heterogeneous trend model where the deterministic trends may vary across individu-
als, much like fixed individual effects. In the homogeneous trend model we show that
the Gaussian MLE of the common localizing parameter is v/N— consistent and has
a limiting normal distribution that is the same as that in the case where the trends
are known. In the heterogeneous trends model it is shown that the Gaussian MLE
of the localizing parameter is inconsistent.

The inconsistency of the MLE of the localizing parameter in the heterogeneous
trend model is an instance of the so-called incidental parameter problem originally
explored by Neyman and Scott (1948). In this model, the heterogenous trend coeffi-



cients correspond to incidental parameters whose number goes to infinity as the cross
section dimension N — oco. Such problems frequently appear in panel data models
with fixed effects, a well known example being the dynamic panel regression model
with fixed effects. In this case, the MLE of the lagged dependent variable coefficient
that is common over individuals is inconsistent if N — oo while the sample size
dimension, T, is fixed (Nickell, 1981). In most panel data situations this inciden-
tal parameter problem disappears when T' passes to infinity also (e.g., Alvarez and
Arellano, 1998, and Hahn, 1998). A particularly interesting aspect of the incidental
parameter problem discovered in this paper is that the inconsistency of the MLE of
the localizing parameter does not disappear even when both N and T tend to infinity.

The paper is organized as follows. Section 2 lays out the model and assumptions,
and shows that when the deterministic components are known, the Gaussian MLE
of the localizing parameter is consistent. Section 3 studies asymptotic properties of
the Gaussian MLE of the panel regression model with unknown deterministic trends.
Section 4 reports some Monte-Carlo simulations that investigate the magnitude of
the inconsistency. Section 5 concludes and offers some suggestions for dealing with
the inconsistency. Proofs and technical derivations are collected in the Appendix in
Section 6.

Our notation is mostly standard. We use “—, 7 and “= " to denote conver-
gence in probability and convergence in distribution, respectively. The notation
(N,T — oo) implies that N and T tend to infinity together, while (N,T — 00),.,
means that the indices pass to infinity sequentially (first 7" and then N). Standard
Browian Motion is denoted by W (7).

b

2 Near Integrated Panels - Preliminary Theory

We start by introducing a panel regression model where data z;; are generated by
deterministic trends G; (t) and near integrated stochastic trends y; ; as follows:

Zit = G; (t)“‘yz’,t; t=1,..,T;2=1,...,N, (1)
+ ()~ (1+7)
; = ay; +_ ; a = ex — )~ — .
Yit Yit—1 T Eit, p T T

The parameter ¢ in (1) is a local to unity parameter that is common to all individuals
in the panel. The main purpose of this paper is to investigate asymptotic properties
of the MLE of the localizing parameter c.

To provide some intuition, we first consider the simple case where y; ; = 2; ¢ —G; (1)
is observable, abstracting from the problem of fitting the deterministic component
in (1). Assume that the errors ;¢ are iid N (0,02), and, for simplicity in this
section, that o2 is known and that the initial observations y; o = 0 for all 4. Under
these assumptions the standardized log-likelihood function of the panel data y™! =

(Y11, ynr) is

T
1 c 2
Lyt (yN’T; ) = “5oIN Z (Ayiyt - fyz-,t,l) + constant. (2)
i=1 t=1
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Let ¢y denote the true localizing parameter, and assume that cg is an element of the
interior of a convex set of R. Define €;; (co) = Ayi,y — F¥yit—1. Then, the MLE of ¢ is
obtained by maximizing the standardized log-likelihood

Lng (yN"5¢) — Lvr (y™75 o)

1 N T ¢ 9 1 N T
2
= e o (B = i)+ oo DD i (o)
20°N i=1 t=1 T 20°N i=1t=1
1 1 N 1 T 1 N 1 T
= - ap 2 2 v~ - ) g 2 D v (@),
i=1 t=1 i=1 t=1

which is quadratic in c.
According to Lemma 6 (c) and (d) in the Appendix, as (N,T — o0), we have

1 N 1 T 1 r
- - 2 ZCO(r—s)d d
v Y gE v = [ e asar
o<N i=1 T t=1 0 Jo
and
S
5 Z — Y Yit-1€i¢(co) —p 0.
oEN i=1 T t=1

It follows that
1 1 pr
Lyr (N T5e)—Lyr (™75 c0) —p -3 (c—co)? (/ / 6200(Ts)dsdr) =l(c,cp), say
Jo Jo

for each ¢, as (N, T — oo) . Note that the objective function Ly, (™7 ¢) =Ly, (yN7T; co)
is concave in ¢ over R and the limit function I(c, cp) has a unique maximum at ¢
and is continuous and concave in ¢ over R. Thus, the MLE ¢ is consistent for cg by
standard theory for extremum estimator (e.g., Theorem 2.7 in Newey and McFadden,
1994).

In this particular case, the MLE has the closed form

¢c=T(a-1),
where

(50 ()

i=1 t=1 i=1 t=1

Using Lemma 6(a) and Lemma 7(c) in the Appendix, we can show that as (N, T — o)

0.2

(_fol o €20 (T*S)dsdr>

Therefore, when y;; is observable (i.e., when G;(t) in model (1) is known), the
Gaussian MLE ¢ of the common localizing parameter c is v/ N —consistent and weakly
convergent to the normal distribution (3).

VN (é—c) = N [0,

(3)



The question to be explored in the present paper is whether these asymptotic
properties (particularly, the consistency and asymptotic normality, of the Gaussian
MLE of ¢) continue to hold in panel models with unknown deterministic trends. It
is known from Moon and Phillips (1998) that the OLS estimator of ¢ is inconsistent
under these circumstances, viz. when the deterministic trends are estimated and
eliminated by prior regression.

Before proceeding further, we introduce the following three assumptions which
will be maintained throughout the paper.

Assumption 1 (Error Normality) Thee;; are iid N (0,0(2)) across ¢ and over t.

Assumption 2 (Parameter Set)

(a) The localizing parameter ¢ and the variance parameter o2 of €it take values
in a compact subset C x V of R

(b) The true localizing parameter co and the true variance parameter o3 are in
interior of the parameter subsets C and V, respectively.

Assumption 3 (Initial Conditions) y;o =0 for all i.

Assumption 3 on the initial condition is made mainly to simplify the arguments
that follow. When the initial errors y; o are random, the corresponding log-likelihood
is obtained by conditioning on the initial errors. Some changes in the limit theory are
to be expected in the case of distant initial conditions, as in Phillips and Lee (1986)
and Canjels and Watson (1997), but otherwise this assumption has little bearing on
the main results.

3 Estimation when the Trends are Unknown

This section studies the realistic situation of the panel model (1) when the trend
functions are unknown. The following two subsections investigate the two cases of
homogeneous deterministic trends and heterogeneous deterministic trends.

3.1 Homogeneous Trends

Suppose G (t) in (1) is linear and homogeneous across i. Specifically, let us impose
the following condition.

Assumption 4 (Homogeneous Trends) G; (t) = 6t.

The linear trend assumption is relevant for much empirical work and it simplifies
formulae and derivations. However, the main thrust of the theory in this section
continues to hold for general polynomial trends.

Let 6y denote the true value of . Then the data z;; are generated by

Zig = Oot+Yir
Co
Yit = (1 + ?) Yit—1 + Eit.
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Let 2M7 = (211, .. 7ZN,T)/ , and define y; ((6) = z; s — 6t, and €; (6, ¢) = yi (6) — (1 +
7)Yit—1(6). Let A be the quasi-differencing operator, A, = 1 — aL, where L is the
lag operator and a = 1 + 7.

Under the Gaussian assumption, the log-likelihood function of the panel data z™¥>T

18

2
LN,T(C 57U€’ZNT)_—¥IQg0' % 222( cZit — (1_Ct;1>) .

i=1 t=1
Since the parameter cis our main interest, we focus on the concentrated log-likelihood.
For fixed ¢ and o2, the log-likelihood Ly r(c, 8, 0%; 2¥'T) is maximized by ¢(c), where
%ZzJLZtTJ —clzd )(Azzt T2t 1)
2
e (=7
i,t—1(0
N Zz 1 Zt 1 (1 - C—l) <5i,t (50, CO) - (C - Co) yfl(o))

-t Zt:l (1 - C%f -

Substituting (¢)in Ly (e, 6, o2 2N ’T) gives the following concentrated log-likelihood
function;

6(c) =

Ly (c, 5 () 02 zN’T)
N T 2
NT ., 1 t—1
= _TIOgU —2—5 g < Cz”—é )<1—c T >> .
Maximizing Ly (c, 6(c), 022N 7T> , we find the MLE of 02 as
N T 2
1 1 - t—1
S92\ o _
57 (c) = N E T E (Aczzyt 0 (c) (1 e )) .

Plugging 6 (c) into Ly 1 (c, 6 (c), 022 T) leads to the following concentrated log-
likelihood,

N T 2
NT 1 1 5 t—1 NT
= _710g<]_\7§ TE (Acziyt—6(0)<1—c T >>>_T
i=1" t=1
N 2
NT 1 - t—1 NT NT
= —Tlog (N g g <Aczi,t—6(c) <1—c T >) )—T—l-—logT
i=1 t=1

The MLE ¢is obtained by maximizing the concentrated log-likelihood Ly 1 (c, B (c),62(c); 2N ’T) ,
so that



which is equivalent to maximizing'

max [y 7 (c, §(c),62(c); zN’T) ,

ceC
where
1 L& t—1\)\2
In.r (c,a(c),ag (©) ,ZMT) = —WX;; (Aczn —é(c) (1 —c >>
+LZXT:<ACZM—3(CO)(1—c0t_1)>2 (6)
ON Lo 2o\ T T

_ _%ii (w (80, o) — (c—co)yi’t%(éo) ~ (5000 <1 —ct;1>>2
tox éi {% (80, ¢0) — (3 (co0) — ) (1 ~ ot ;1> }2. (7)

It then follows that as (N, T — o)

1 e
v (60,62 8T) = g =) [ ["0Sasar )

uniformly in ¢. The proof of (8) is given in the Appendix. Note that the limit func-
tion —3 (¢ — )? (['01 o €*0(r=#)dsdr, is continuous and concave over R and is uniquely

maximized at the true parameter ¢ = c¢g. Therefore, the MLE ¢ that maximizes the
objective function Iy 7 (c, §(c),52(c); 2N ’T) is consistent for the localizing parame-

ter co as (N,T — oo) by standard asymptotic theory (e.g., Theorem 2.1 in Newey
and McFadden, 1994). Summarizing, we have the following result.

Theorem 1 Under Assumptions 1-4, ¢ —p co as (N, T — 00).

Next, we derive the limit distribution of ¢. Since the log-likelihood function
Ly (c, 8 (¢),62(c); 2N ’T) is differentiable with respect to ¢ and since ¢é is consistent
for ¢cg, a point in an interior of the parameter set C, the MLE ¢ solves the following
first order condition with probability one;

dLnr (2,6(0),62(0);2NT)  OLnr (2,6(),62(0)52M7T)
0= de - dc

. 2
'Notice that the second term, + Sy (Aco zip—0(c”) (1— cOt;T1)> , in (6) below is not
a function of c.



where the second equality holds by the Envelope Function Theorem.

Theorem 2 Under Assumptions 14, VN (¢ — co) = N <O, L ) as

o2 01 Jo e2c0(r=s)dsdr
(N, T — ).
In view of (4), the MLE of the homogeneous trend coefficient § is found to be
& ity Yy (1= 85 (Azie — F2ia1)
S (1 -7’
and as (N, T — o0), it is possible to show that

VNT (3 (@) — 50) = N (o % ) . (11)

’ .]'01 (1- cor)zdr

5(&)= ; (10)

The proof of (11) is straightforward using the results in Lemmas 6 and 7 and the
consistency of ¢ and is therefore omitted. Summarizing, we have:

Theorem 3 Under Assumptions 1-4, vV NT (3 (¢) — 60> = N <0’f1(10—%)2d> as
o (1—cor)“dr
(N, T — ).

Remarks

(a) When the trends in the panel regression model (1) are homogeneous, the Gaussian
MLE ¢é is v/N —consistent and has an asymptotic normal limit distribution that
is equivalent to the normal limit distribution in (3), a result that continues to
hold in a model with general polynomial deterministic trends.

(b) Since & (¢) is a nonlinear function of ¢ in general, it is not easy to find a closed
form solution of the first order condition (9). In this case, to solve the first
order condition (9), it would be common to employ an iteration involving the
use of a preliminary +/N-consistent estimator, ¢, say, which leads to a second
stage estimator via suitable numerical optimization, such as Newton-Raphson.
In the model (1), a natural candidate for the preliminary estimator would be

N T ‘ . N2 LN R Zit . —
(L3 -i0F) ) (D3 (ente) (20

i=1 t=1 =1 t=1

(12)

)



3.2

where c¢ is arbitrarily chosen. Then, using the first step estimator ¢, we may
construct the following second step estimator;

L (i’;i <z2~,tT_1 e %>2> - (gi (Azz-,t —3(6)) (Zz’%—l —5(9) %))
(13)

An important feature of the first step estimator ¢ is that it is asymptotically as
efficient as the MLE ¢, because

VN (é—¢)) = N <0, ! ) , (14)

o3 .[01 o €20r=s)dsdr
the proof of which is provided in the Appendix.

From Theorem 2 we see that the asymptotic variance of v/N (¢ — ¢y) depends
on the true parameter c¢y. Figure 2 below graphs the asymptotic variance of
VN (¢ — cp) . As is apparent in the graph, the asymptotic variance of v/ N (¢ — ¢p)
decreases rather rapidly to zero as cy increases.

-4 -2 00 2 4
Figure 1. Graph of the Asymptotic Variance of the MLE ¢

Heterogeneous Trends

Here we study the asymptotic properties of the MLE of the panel regression model
(1) with heterogeneous deterministic trends specified as follows.

Assumption 5 (Heterogeneous Trends) G;(t) = 6;t.

Suppose that the true trend coefficients are {6o; : ¢ = 1,..., N}. Then, the data
z; are generated by the following parametric model:

zit = 004t + Vit
C
Yig = (1 + ?0) Yit—1+ Eit. (15)
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Let 6V0 = (60,1,-..,00n)" and 2N = (211,...,2n,7)". Define y; +(6;) = 21 — 6;t and

€it(6i,¢) = yi,e(6:) — (1 + F)yie—1(63).
Under Gaussianity, the standardized log-likelihood function is

2
LNyT(c,(SN,UQ;zN’T):—gloga 5 222( cZit — <1—ct;1>> .

i=1 t=1

Given ¢, the MLE for §; is

-(E0-55) (Ean 45

leading to the concentrated log-likelihood function
N T 2
. NT 1 t—1
Ly (0,6 (C)N,O'Q;ZN’T) = logUQ——2 E_ Eﬁ ( eZit — 0i(c) (1 e )) ,

where 6 (¢)Y = (6 (¢), ..., 0w (¢)).

We seck to show that ¢ the MLE of ¢ maximizing Ly r(c,d (¢)™ ,0%; 2V7T), is
inconsistent. To do so, it is simplest to assume that the variance of ¢;, o2, is known.
By definition

Acziy = 0600t + Acyit (00:) = 600t + Aco¥it (00,4) + (Ac — Aey) Yit (60,)

t—1 it—1 (004
= b0, <1—C T >+5i,t(60,1760)_(0_00)y7t1#(0,);

SO we can write

+ [2GM78 (@),0) - DT (eo) o)
QUQN ;;{ﬂt 60,i,C0) — (3 (co) —50,1) (1—Cot;1>}2. (17)

Lemma 4 Suppose Assumptions 1-3, and 5 hold and that the variance of €, a2 is
known. Then, as (N,T — o),

i N,T. N _ N,T. cO,N
= [LENT38% (0),0) = LT 60N )

(c— 00)2 .]'01 (['01 (1—cr)(1—cs) .]'OMS e (r+5-2) dpd sdr
2 .[01 (1— cr)2 dr
2(c—¢p) .]'01 [OT eco(r—s) (1 —cr) (1 —ecs)dsdr
2 .[01 (1-— cr)2 dr

A
1 (¢ —cp)? / / 20 (r=5) d sy
2 Jo Jo

= G(¢c), say, uniformly in c.

—

p
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According to this lemma, the standardized concentrated log-likelihood function,

1 {L(ZMT; 5" (c),c) — L(zNT; 69N, co)} , has the uniform limit G (¢; ¢p) , a function

that is continuous on the parameter set C. Hence, the MLE ¢ that maximizes
% {L(zN’T; SN (¢),c) — L(NT, (50’N,co) converges in probability to the point that
maximizes the limit function G (¢;¢g) . For the MLE ¢ to be consistent, the true pa-
rameter ¢p must maximize G (¢; ¢g) ; and, conversely, if some point ¢ # ¢y maximizes
G (¢; o), then the MLE ¢ is not consistent.

We proceed to differentiate G (¢; ¢g) with respect to ¢ and evaluate the derivative
at ¢ = ¢g. Since the true parameter cg is in an interior of the parameter set C and the
limit function G (¢;cp) is differentiable, if ¢y maximizes G (¢;¢p) , its first derivative
at ¢ = ¢gp must necessarily be zero. However, direct calculation shows that

dG (c; cp)

dc le=co

{_ ./61 Jo er=s) (1 —¢r) (1 — cs) dsdr} {.['01 (1—cr)? d’r‘}
(= erar)’
-3+ 2¢

= 6(1 — o+ %(00)2) 7& 0 (18)

‘C:CO

if g # % Therefore, for all ¢y # % the limit function G (c¢;cp) cannot attain a
maximum at ¢ = ¢g. For ¢y = %, we graph of the function G(c; %) in Figure 1. As
the figure shows, the limit function G(c; %) has a local minimum at ¢ = %, and so
G (¢; ¢p) does not attain a maximum at ¢ = ¢y for any value of ¢q.

0.12

01 1
0.08
0.06
0.04 1

0.02

Figure 2. Graph of G (c, %)
In summary, we have the following result.

Theorem 5 (Inconsistency) Suppose Assumptions 1-3 and 5 hold. Then, the
MLE ¢ is inconsistent when (N, T — 00).

Remarks
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(a) From (18), it is apparent that % lc—c, tends to zero as |cp| increases to

infinity. So when the absolute value of ¢g is large, we may expect the limit
function to be maximized at a value close to ¢g. In such cases, the probability
limit of the MLE can be expected to be close to the true parameter cg, even
though the MLE is inconsistent. To investigate, we present graphs of the limit
functions G (¢,4) and G (¢, —8) in Figure 3 and Figure 4, respectively. When the
true parameter cg = 4, the limit of the standardized concentrated log-likelihood
G (¢,4) is maximized around ¢ = 4.057, which is close to the true parameter
value, involving only a 1% bias. On the other hand when the true parameter
co = =8, G (¢, —8) is maximized around ¢ = —10.27, giving a 28% asymptotic
bias. These results indicate that we can expect the inconsistency of the MLE
to be greater when cg is negative.

3.6 37 3.8 39 C 4 4.1 4.2 4.3

-01 1
-02 1
-03 1
-04 1
-05 1

-06 1

-0.7

Figure 3. Graph of G (c,4)

16 -14 -12 10 8 6 -4 -2 0

1-0.5

1-1.5

Figure 4. Graph of G (¢, —8)

(b) The inconsistency of the MLE ¢ in the above theorem is an instance of the
so-called incidental parameter problem (Neyman and Scott, 1948). Incidental
parameter problems are known to arise in other panel data regression models,
the celebrated example being the dynamic panel regression model with fixed
effects. In that case, the panel data z;; are generated by the autoregression

zit = 0; +azjt—1 + €ig,

12



where |a| < 1 and the €t are iid N (0,02). The individual intercept terms 6;
enter the model to account for individual effects in the panel data z; ;. The main
focus of interest in this model is the estimation of the common parameter a,
and the individual effects ¢; are incidental parameters. For simplicity, assume
that z; o = 0 for all 7. Then, the MLE of a is equivalent to the within estimator,
defined as:

4 = Zf\; 2;1 (Zig—1— %) (zig — 2 ) (19)
it Yot (Figm1 — Fi-)?

N T _ _
Doim1 D i1 (Zip1 — %) (€ — &)
N T > \2
Doic1 2o (Zig-1— Zi-)

where z; _ = %Zthl Zit—1, %, = %Zthl Zit, and & = %Zthl git. In this
case, when N — oo for fixed T, we know that a -, a, due to the correlation
between z; ;1 — 2, — and €;; — &; .. So, in this case with N — oo and T fixed,
the MLE a is inconsistent (Nickell, 1981).

= CL+

7

(¢) An especially interesting aspect of the model (15) is that the incidental parame-
ter problem leading to the inconsistency of the MLE ¢ continues to be present
even though T' — oo as well as N — oo. In contrast, the incidental parameter
problem that gives rise to the inconsistency of @ in (19) disappears if T — oo
fast enough when N — ooc.

4 Monte-Carlo Simulations

This section reports some simulations designed to explore the finite sample proper-
ties the maximum likelihood estimators studied in the previous section. First, to
investigate the homogeneous trend model, data z;; was generated by the system

zit = Oot + Vi, 0o = 3,

v = (Lt +e o€ {~4,-2,0,2,4}, (20)
where the ¢; ; are iid N (0, 1) across ¢ and over ¢, and the initial values of y; ¢ are zeros.
Following the notation used in the previous section, we let ¢ denote the MLE of the
localizing parameter and & (¢) to be the MLE of the homogeneous trend coefficient in
(10). Also, let ¢ denote the first step estimator in (12), and ¢ denote the second step
estimator in (13).

The main goals of the simulation experiment with model (20) are as follows:
(1) to examine the finite sample properties of the MLE’s S(é) and ¢ by comparing
their mean squared errors for various parameter configurations; and (ii) to compare
the asymptotic efficiencies of the three estimators considered in Section 3.1 — the
MLE ¢, the first step estimator ¢, and the second step estimator ¢. From the DGP
(20), we generate panels of 16 different sizes, with N € {25,50,75,100} and T €
{25,50,75,100} . The estimates 6 (¢), ¢, ¢ and ¢ are computed and 1000 replications

13



used to calculate their mean squared errors. Table 1 reports the mean squared errors
of § (¢) and ¢é. The first column of the table contains the sample size, the top element of
each column contains the true parameter value, and the first and the second elements
in the table are the MSE of § (¢) and the MSE of ¢, respectively.

Table 1. MSE of § (¢) and ¢

(60760)
(N,T) 3,-4) | ,=2 | (3,0) (3,2) | (3,4)
(25,25) 0.010, 8.486 | 0.010, 2.084 | 0.011, 0.125 | 0.012, 2.583 | 0.014, 9.411
(25,50) 0.009, 3.779 | 0.009, 0.968 | 0.010, 0.117 | 0.012, 1.160 | 0.012, 4.042
(25,75) 0.009, 1.064 | 0.009, 0.344 | 0.010, 0.114 | 0.011, 0.318 | 0.010, 1.032
(25,100) || 0.009, 0.421 | 0.009, 0.249 | 0.009, 0.106 | 0.010, 0.020 | 0.010, 0.019
(50, 25) 0.009, 8.803 | 0.010, 2.189 | 0.010, 0.052 | 0.010, 2.380 | 0.012, 9.146
(50, 50) 0.009, 3.887 | 0.009, 0.971 | 0.009, 0.046 | 0.010, 1.079 | 0.010, 4.038
(50,75) 0.009, 1.034 | 0.009, 0.290 | 0.009, 0.049 | 0.010, 0.282 | 0.009, 1.019
(50,100) || 0.009, 0.204 | 0.009, 0.116 | 0.009, 0.047 | 0.010, 0.012 | 0.009, 0.017
(75,25) 0.009, 8.817 | 0.009, 2.184 | 0.010, 0.036 | 0.010, 2.361 | 0.011, 9.142
(75,50) 0.009, 3.911 | 0.009, 0.974 | 0.009, 0.034 | 0.010, 1.061 | 0.010, 4.034
(75,75) 0.009, 1.021 | 0.009, 0.273 | 0.009, 0.030 | 0.010, 0.273 | 0.009, 1.017
(75,100) || 0.009, 0.145 | 0.009, 0.081 | 0.009, 0.032 | 0.009, 0.009 | 0.009, 0.016
(100,25) || 0.009, 8.920 | 0.009, 2.224 | 0.009, 0.023 | 0.010, 2.312 | 0.010, 9.078
(100,50) || 0.009, 3.981 | 0.009, 0.999 | 0.009, 0.022 | 0.010, 1.033 | 0.010, 4.014
(100,75) || 0.009, 1.047 | 0.009, 0.280 | 0.009, 0.023 | 0.010, 0.264 | 0.009, 1.013
(100,100) | 0.009, 0.107 | 0.009, 0.059 | 0.009, 0.022 | 0.009, 0.008 | 0.009, 0.016

Several features of the results are notable. First, the MSE of ¢ is much more
sensitive to the sample size than the MSE of § (¢). Second, the MSE of ¢ decreases
more as T increases than when N increases. For example, when (6g,co) = (3, —4)
and the sample size changes from (N,T') = (50,75) to (N,T) = (50, 100), the MSE
of ¢ decreases from 1.034 to 0.204. On the other hand, when the sample size changes
from (N,T) = (50,75) to (N,T) = (75,75), the MSE of ¢ decreases from 1.034 to
1.021. A more interesting feature is that when the sample size is small, increases in
N sometimes lead to a deterioration in the finite sample properties of ¢. For example,
when (6o, co) = (3, —4) again, and the sample size changes from (N,T) = (50, 50) to
(N,T) = (75,50) , the MSE of ¢ increases from 3.887 to 3.911. Third, when ¢y = 0,
the finite sample performance of ¢ is apparently far better than it is for ¢g < 0. Also,
as implied by the form of the asymptotic variance (see Theorem 2 and Remark(c)
following Theorem 3), the MSE of ¢ decreases as ¢y increases.
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Table 2. MSE of ¢ and ¢

(607 CO)
(N,T) 3,-4) | ,=2 | (3,0) | (3,2) (3,4)
(25,25) 8.505, 8.486 | 2.086, 2.084 | 0.125, 0.125 | 2.585, 2.583 | 9.449, 9.412
(25,50) 3.825, 3.780 | 0.972, 0.968 | 0.117, 0.117 | 1.173, 1.161 | 4.157, 4.042
(25,75) 1.098, 1.064 | 0.346, 0.344 | 0.113, 0.114 | 0.336, 0.318 | 1.124, 1.034
(25,100) || 0.398, 0.412 | 0.242, 0.249 | 0.105, 0.106 | 0.022, 0.020 | 0.056, 0.012
(50, 25) 8.812, 8.803 | 2.190, 2.189 | 0.052, 0.052 | 2.381, 2.380 | 9.169, 9.147
(50, 50) 3.906, 3.887 | 0.973, 0.971 | 0.046, 0.046 | 1.085, 1.079 | 4.090, 4.038
(50,75) 1.054, 1.034 | 0.292, 0.290 | 0.049, 0.049 | 0.291, 0.282 | 1.062, 1.019
(50,100) || 0.200, 0.204 | 0.115, 0.116 | 0.047, 0.047 | 0.012, 0.012 | 0.025, 0.017
(75,25) 8.822, 8.817 | 2.184, 2.184 | 0.036, 0.036 | 2.362, 2.361 | 9.156, 9.142
(75,50) 3.926, 3.911 | 0.975, 0.974 | 0.034, 0.034 | 1.065, 1.061 | 4.068, 4.034
(75,75) 1.034, 1.021 | 0.274, 0.273 | 0.030, 0.030 | 0.279, 0.273 | 1.046, 1.017
(75,100) || 0.143, 0.145 | 0.080, 0.081 | 0.032, 0.032 | 0.010, 0.009 | 0.020, 0.016
(100,25) || 8.924, 8.920 | 2.224, 2.224 | 0.023, 0.023 | 2.313, 2.312 | 9.087, 9.078
(100,50) || 3.991, 3.981 | 1.000, 0.999 | 0.022, 0.022 | 1.036, 1.033 | 4.039, 4.014
(100,75) || 1.057, 1.047 | 0.281, 0.280 | 0.023, 0.023 | 0.268, 0.264 | 1.034, 1.013
(100,100) || 0.106, 0.107 | 0.058, 0.059 | 0.022, 0.022 | 0.008, 0.008 | 0.018, 0.016

*¢ =0 is used in estimating ¢.

Table 2 reports the mean squared errors of the first step estimator ¢ and the
second step estimator ¢. The simulations cover the samel6 panel data sizes and use
the same number of replications as before. The layout of the table is the same as
Table 1. To calculate ¢ we use ¢ = 0 for quasi-differencing the data. This experiment
focuses on comparing the finite sample properties of three asymptotically equivalent
estimators, the MLE ¢, the first step estimator ¢, and the second step estimator ¢.
As is apparent from comparison of Table 1 and Table 2, there are apparently no
major differences in the mean squared errors of the three asymptotically equivalent
estimators. So, finite sample effects are not important in this case.
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Figure. 5: Density of ¢ when the true ¢ = —4

The next simulation experiment involves the heterogeneous trend model, for which
the generating process is taken to be

zig = 004t +Yit, b0,i ~ iid Uni form|0,4],

yie = (1+ C—Jf)yi,t_l Ve, oo €{—4,0,4}, (21)
where ¢; ; are iid N (0, 1) across 7 and over ¢, and y; o = 0 for all 7. The main purpose
of this simulation is to explore the finite sample manifestation of the inconsistency
of the MLE ¢. For this, we generated a panel data set with size dimensions N = 300,
T = 300, and found the Gaussian MLE ¢ by a grid search method. The grid used
in the simulation is 0.075. 1,000 replications were employed. Estimated densities
functions of the Gaussian MLE ¢ of the panel models with ¢y € {—4,0,4} are shown
in Figures 5-7.

16
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Figure 6. Density of ¢ when the true ¢g =0

As is apparent in Figures 5 and 6, the density of ¢ is concentrated in a region
substantially removed from the true parameter value when ¢ = —4 and ¢ = 0. On the
other hand, in Figure 7, when ¢y = 4, the density of the ¢ appears to be concentrated
around 4.16, a value that is quite near the true value. This outcome corroborates the
asymptotic analysis of the previous section, where it was shown that when ¢y = 4,
the standardized Gaussian log-likelihood converges in probability to the limit function
G (¢,4) whose maximum is close to the true value ¢y = 4.

5 Conclusion

This paper explores the asymptotic properties of the Gaussian maximum likelihood
estimator of the localizing parameter in a panel model with deterministic and sto-
chastic trends. Several new findings emerge. First, when the trends are homogenous
across individuals in the panel, the Gaussian MLE of the common localizing parame-
ter is v/ N— consistent and has a limiting normal distribution that is equivalent to the
asymptotic distribution of the Gaussian MLE of the model in which the deterministic
trends are known. So, in this case, trend elimination carries no cost in the limit, just
as in the case of a stationary autoregression with trend. However, when the trends
are heterogenous across individuals, the Gaussian MLE of the localizing parameter
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is shown to be inconsistent. The inconsistency is due to the presence of an infinite
number of incidental parameters for the individual trends. Procedures for resolving
this manifestation of the incidental parameter problem in panel regression are now
being explored by the authors and will be reported in later work.

4.04  4.06 4.08 4.10 4.12 414 416 418 4.20

0.100188 0.100192 0.100196 0.100200 0.100204 0.100208
T T T T

Figure 7. Density of ¢ when the true cg = 4

6 Appendix

Lemma 6 Suppose that C be a compact subset of R. Assume that, fork =1,... K,
hi (¢, €) is a real-valued continuous function on C x C with hy (c,c) = 0, and l; (x,y)
is a real-valued continuous function on [0,1] x [0,1]. Also, assume that f(x,c)
and g(x,c) are continuous functions from [0,1] x C to R such that f (z,c)g(y,c) —
f(z,8)g(y,¢) = Zle b, (¢, )l (x,y) . Suppose that yis = exp (5) yi,i—1+¢€it, where
it are iid (0,(7(2]) across i and over t and y;0 = 0. Then, as (N,T — o0), the fol-
lowing hold.
(a) & Y1 77 i Vi1~ 0% .[01 Jo ¥t dsdr.

(b) % Zf\il (% ZtT:I gitf (:imc)> (T_\l/f ZtT:1 Yit—19 (:imc)> —p o5 .[01 Ofeco(r—s)g(r, c) f(s,c)dsdr

uniformly in c.

(©) % X (77 S f (4:9)) (77 S viag (5.0))
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—p 0f fol .[01 f(r,e)g(s,c) foms e "= dpdsdr uniformly in c.
(@)% S0 (G Xl eaf (3:)) (Fr olrciag ($:¢)) = a8 fy fy F(r,c)g(s,c)dsdr

uniformly in c.

Proof

Part (a) This holds by Lemma 9(a) in Moon and Phillips (1998). B

Part (b) First, using Corollary 1 in Phillips and Moon (1999), we establish Part (b)
for fixed ¢ (pointwise convergence). Note that

5 (e (1) (i (1)
L 1
= NZ / (s,c)dW; ( )) (/0 g(r,c) Jei (r)dr) as T — oo for fixed N and ¢

— p(fo/ / eco(r= 5) r,c)f(s,c)dsdr as N — oo for fixed c.

According to Corollary 1 in Phillips and Moon (1998), this sequential limit becomes

the joint limit if Q; r (c) = (ﬁ erzl gitf (%,c)) (TL\/T Zthl Yit—19 (%,c)) is uni-
formly integrable in T for fixed ¢, which holds if

o= (e (o))
ouro sy v n(3)

2
are uniformly integrable in T for fixed c. Notice that Q1 ;7 (¢) = Q1 (¢) = 03 (_[01 f(r,c)dw; (r)) ,

and EQ1,r (c) = 03+ ST f (%, ) — o} fol f(r,e)*dr = EQ1,(c) as T — oo for
all 4. Then, by Theorem 5.4 in Billingsley (1968), Q1 ;7 (c) are uniformly integrable
in T for fixed c. By similar fashion, Q2,1 (c) is also uniformly integrable in T for
fixed c. Therefore, Part (b) is just established for fixed c.

Next, define Ry7 (c) = & SN Qi (¢). To complete the proof, we need to show
that Ry 1 (c) is stochastically equicontinuous, that is, for given ¢ > 0 and n > 0,
there exists 6 > 0 such that

and

limsup P sup  |Rnr1(c)—RnT(E) >ep <nm.
(N, T—o0) |c—¢|<é,c,ecC

Then, since the index set C is hypothesized to be compact, the pointwise convergence
of Ry 1 (c) and the stochastic equicontinuity of Ry 1 (c) imply uniform convergence.
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To show the stochastic equicontinuity of Ry 7 (c), first observe that

sup ‘RN,T (C) — RN,T (5)‘

lc—¢|<é,c,ceC
N T T
1 1 { <t ) s . .
= sup ~ ) 7 gitlis—13f | =.¢)9 (_’C> (), (_’C>
le—gl<sceec | NV ; T2 ;; i,tYi,s 7 = ! >
1 N 1 T T K .
= sup N 2 €i,tYi,s—1 hi (c, €) Ui <_’ _> ‘
|c—¢|<6,c,eeC N; ;; {; =
1 N 1 T T K o
< sup sup  |he (6,8 = |= . . ( | >
1<k<K |c—é|<8,c,e€C N 221: 2 ;; itYis ; .

Since hy (¢, ¢) is continuous on a compact set with hg (¢,c) = 0 for all k = 1,.., K,
we can make Sup; << i SUP|e_g|<s,c.ccC |k (¢, €)| arbitrarily small by choosing a small
6 > 0. Also, under the assumptions in the lemma, it is not difficult to show that

% ZZI\LI ‘% Zthl 25:1 €itYi,s—1 {Zszl g (%, %) H = O, (1) . Therefore, Ry (c) is

stochastically equicontinuous. W
Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part
(b) and they are omitted.

Lemma 7 Suppose that f (x,c) and g(x,c) are continuous functions from [0,1] x C
to R. Assume that y; s = exp (%0) Yit—1 + €it, where ;¢ are 1id (0,0(2)) across © and
overt and y; o = 0.

Then, as (N, T — o0), the following hold.

(a) ﬁ2£1ﬁ2;15i,tf(:r’ ) :>N(O a3 o f dr)
(0) e S i a1 (£0¢) = N (0,08 Jy Jo Jg™ e+ =2dpf(r) f(s)drds)
(c) ﬁ S T S Yir1gie = N (07(70 fo Jo e* Tﬁs)der)
Proof The proofs verify the conditions of Theorem 3 in Phillips and Moon (1999).
Part (a) Following the notation in Phillips and Moon (1999), we let Q; 7 = % Zthl gitf (%) .
Then, QzT are iid (0,X7) across ¢ with Xp = O'OT Zt (R ) Since QzT = Q; =
(70]0 dW()andE(z.,T) ZT—>Z—E(Q2)—00]O )2dr > 0 as

T — oo for fixed i, it follows that Q? p are uniformly integrable in T. Then, by
Theorem 3 in Phillips and Moon (1999), we have the desired result. W

Part (b) By similar fashion, we let Q; 7 = T\/T thl Yii—1f () and Qi = 0¢ fo Jeo,i (1) dr.
Then, we know that Q; 7 = @); and

E(QPr) = < Zyzt (7 ))l%iimy@“y@ﬁ1>f<%>f(§)
— o /0 /0 /0 MSeco<T+S—2P>dpf(r)f(s)dsdr:E( ),
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as T — oo for all ¢. Therefore, QZT are uniformly integrable in 7', and by Theorem
3 in Phillips and Moon (1999), we have the desired result. B
Part (c) holds by the similar fashion, and we omit the proof. B

Lemma 8 NvT <3 (c) — (50) = 0, (1) uniformly in ¢ as (N, T — oo), where 6 (c)
is defined in (4).

Proof. By definition,

VNVT (5 (c) = &)

7x X T iy (1-ctg) (51'15 (60, c0) — (¢ — o) %%(50))
R0 (1=t '

Then, we have

sup)\/]_\f\/f (3 (c) —6()))

ceC

Supce(C)\/_Zz 1\/—215 (1= Tl ( 60,00 c—co)yi’t%l(éo)ﬂ

infeec 7 T Zt 1 ( )

First, note that

> 1-

LNZ%Z(LJ;l) (62.715(50,60)—(6—00)%%@@)'




1L 1 E
+sup|c — | |—= —— Yit—1 do
d ’m;TﬁtZ =1 (%o)

1 X t—1 6
+sup|( )|\/NZZ;T\/_Z 7 Yit-1(80).

ceC

Recall that sup.cc || is finite. In view of Lemma 7(a) and (b), each term in the above
display is O, (1) as (N, T — oo) . Therefore, we have sup,cc ( (c) (50) )
Op(1) as (N, T — o0).
Derivation of (8)

Recall that

— —%ii(&,t (50760)—(0—00)%#%(60)_ <8(C)_60> <1_Ct;1>>2
+%éi{gt (80, co) — (5(00) —50) (1 _Cot:—r1>}2.

_% ZN:ZT:{Ei,t (60,c0) — (¢ — o) %;T((SO) B (3(6) B 60) (1 et ;1>}2

i=1 t=1
1 N T 21 -1 2
A (0 a) A3 (12
2N;Z€t 0> €0 ( 0) T; T

z:l

1 1 s 1= i1 (80)° 1 L1 &
_5(0_00 Z Z = + (¢ — ) ]—V;T;yi,t—l(60)5z’,t(60;C0)

and

i=1 t=1
1 LI . 21 t—1)\2
= —= &4, (676) - 3T 6(6)_6 2l <1_C >’
e St -3 (=) 135 (1- 07

which yields

InT (C; 8(c),6% (c); ZN’T>

+
—
o
|
o
N
~/
=]~
[]=
S|~
M~
s
(‘h
>—\
—~~
>
N
o
(‘h
—~~
>
e
o
N
N~
|
DO | =
~—
[«%%
=
NS
|
>
S
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M= =
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—
|
o
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Note by Lemma 8 that /T (6 (A( c) — (50) = 0p (1) uniformly in ¢, and by Lemma

6(a) and Lemma 7(c) that + ZZ 1 th | B=r (60)” » 08 01 o e20(r=9)dsdr and
i SN % S yii1 (80) €iy (60, co) =op (1), respectlvely. Also recall that parame-
ter set C is compact. Therefore, as (N,T — o0),

lNT(66 )
N T 2
= (c —co) ( 2?;@)4—%(1)

— = (702 / / 2¢0(r=$) dsdr uniformly in c.

Proof of Theorem 2
By the first order Taylor expansion of the first order condition (9) around the
true parameter ¢y, we have

o= (b () LG {d?L(a*, b (©).0 () ") } ).

where c* lies between ¢y and ¢. From this, we write

VR (o) — - <d2L<c*,8<c*> Y <c*>;zN7T>>1 (mdL<cO,6< 0.7 () NT)) |

dc?
(22)
Define
N T 2
1 1 t—1
QNT(C(S ):N; ;( ccit — )<1_CT>> .
Then, (22) is written as
VN (¢ - cp)
2 c* b(c* c*.8(c* 2\ ! co0,8(c
(S melpie N (o)
Qur (¢(e)) @ (e (e) Qu.r (0,8 (co) )
Note that

dQn T (co, P (Co))
dc

L N T
- /_Z_Zyi,t—l (00) €i,¢ (60, co)
N i=1 T t=1
T

—V/NVT (3(00) —50> %XN:T—\l/szi,t1 <1 —Cot;1>

i=1

VN
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where the last line holds because

VNVT (3 (co) — 60) = Op(1) by Lemma 8,

1 1 t—1
NZﬂzyi,t—l (1—60 T ) = o0p (1) by Lemma 7(b),

N T
1 1 t—1
g E Sit—p = O (1) by Lemma 7(a),

¥
T
1 t—1 t—1 1
d—>S " —=(1- = 0—).
a mT;T( "“T) (m)
T

>From Lemma 7(c), as (N,

— 00) we have

T

N 1o
1 1
—= = Yi.t—1 (00) €4t (60, co :>N<0,(72/ / eQCO(T_s)dsdr>,
/_N¢§:1Tt§1 t—1(00) €t ( ) o)/

and so

dQN,T Co, 8 (Co) 1 pr
VN (d ) =N (0,0'(2)/ / ezc"(r—s)dsdr> . (24)
c 0 Jo

Also, since ¢ (¢g) is consistent for 6g, we have

Qnr (¢,6()) = ]ivé%i (Aczm ~5(0) <1 - ct;l»z 02 (25)

Combining (24) and (25), as (N,T — o0), we have

dQN,T(Cm;s(CO)) 1 .

N/ r

dc = N (0, i / / cho(Ts)deT> ' (26)
Q 2

QN1 <Co,6(co)) 05 .Jo Jo

Next, by the envelope function theorem and the chain rule, it follows that

d2QN7T <c, ) (C))

d?c
O*Qnr (c, 6 (c)) QN (Ca 6 (C)> db (¢)
= o2 T Bs0c dc (27)
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A short calculation yields

0°Qn 1 (c*, 5 (c*))
B oc?

Since /T <5 (c) — 6()) = 0p (1) uniformly in ¢ by Lemma 8 and ¢* —, ¢, it follows

thaty/T (5 (c*) — (50) =0, (1) as (N,T — o) . Also, we know + SV %ﬁ ST yie1 (80) =
op (1) as (N,T — o0). From these and Lemma 6(a), we have

1 1 1 pr
= ¥ 27z D Va1 (00) +0p (1) 03/ / 20 =3 dsdr.  (28)
i 0 JO

By similar fashion, using the facts thaty/T <(§ (¢*) — (50) =0, (1) and ¢* — ¢o, and
the results in Lemmas 6 and 7, it is not difficult to show that

| Qur (c*,S(c*)) 8 ()
VT 060c VT dc P (1) (29)

Since X
C?ALT'(C*,é(C*)> —p T,
the first term in the numerator of (23)

d? QNT 5(0

< - / / 20 (r=3) dsdr. (30)
Qn,r (06 (c*)

For limit of the second term in the numerator of (23), notice that

dQn,T (c*, B (c*)) QN T (c*, 5 (c*))
dc - Jdc

—>p0
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oQnN,T (c,&(c))

5 =0, (\/Lﬁ) uniformly in c¢. There-

as (N,T — o0) since ¢* —, ¢y and

fore,
dQN,T (C* ,3(6*))
dc

Qur (.8(e)
>From (30) and (31) we have

2 N, T
. <d L( d(z ) / / 200(1' S)deT
C

and combining this with (24), we have the desired result,

—p 0. (31)

\/N(é—co):»N<o, : ! ).I

78 I 7 *e D dsdr

Proof of (14)
By definition, we have

VN (&~ o)
v o L {<AZ” ~5(0) (B -8 ) — e (342 -4 () %)2}
FELTL (B b0 ) |

First, note that

N T _
FE3 (Bt i)
11 Z . 1L 1 & t—1
= ]—Vz::T—; Yi,t—1 (60) —Zﬁ(5(6)—50>]—\[;ﬂ;yztl(50) T
+T($(C)—50)2%§Tj<%>2

t=1

1 X1 &
= N Z Ts Zyz’,t—l (60)* + 0p (1)
i=1 t=1

1 pr
— 00 / / 20 (r=3) dsdr.
0 Jo

where the last equality holds because /T <5 (c) — 6()) = 0p (1) and + SN ﬁ ST yii1 (80) ==
op(1).
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Next, for the numerator, we write

%ii{(mfs@) ESRCE=ENE —5@)%)2}
1
N

3 Zit— t—1 Zi g t—1)\2
B _;tl{(Azm 60)< Tl_(SO T >_ 0( Tl_(SO T >}
VT (3 L$n 1y
VT (é(c) =bo) —= e it—1 (0
< (c) 0)\/]_\[;71 T;y 1 (60)
N T
_ T(é(c)—(so)\/—lﬁzg%gx%yz,}( )+e”(60,c0)>t;1
. 2] Gt —1
+VNT (5 () ~ o) :T; -
2e0VT (6 5. L S 1 ¢ i1
+2¢ ( (c) — O)WZE;T T;yz,t—l(o)T
T
_ComT<8(C)_6O)2% lt;].

= I+II+III+1V+V +VI, say.

Recall that v/ Nv/T <3 (c) — (50) = Op (1) by Lemma8. Then, in view of Lemmas 6
and 7, it is not difficult to find that I1,111,1V,V,VI =0, (1). For I, we have
N T

Zit—1 t—1 Zit—1 t—1\?
ZZ{(AZ“—(S())< T —50 T )—Co( T —50 T )}

i=1 t=1

T 2
yi,t—l (60) Yi t—1 (60)
z{Ayn 100) _ piamt

t=1

o~
I
—-

I
I
)=

= \/_Z Zyn 1 (60) €4t (60, co)

i=1

(O Uo/ / eolr= S)dsdr>

as (N,T — oo). Then we have the desired result. H
Proof of Lemma 4

=

=

=

In view of
T -1 .7 ' y
ﬁ(‘?i (c) —5i,0) = (%; <1—ct;1>2> {; <1—ct;1> Eiyt (%7 0)
S - it i
_(c—co)%;(l_ctTl> Vi, \1/%50,)}, (32



we write (17) as

L( NT Y (0),¢) = (N6 (o) o)

- 2N ZT( 60’) %XT: <1_Ct;1>2 _%(6_60)2 (%Z%Zy_i’t_lT(%ﬁ)

1 L1 &

+ (¢ — ¢o) (]_\7 Z T Zyz’,t—l (60,:) €1t (00,4 Co))
3 t=1

1 <& t—1

g 257 (e =) 23 (1)

2

= I—l—II—i—III—l—IV, say.

Now we find limits of I,I1,I11, and IV. In view of (32) and by Lemma 6, and
Assumption 2, we have

1 N T t—1 5it6iac 1 t-1 o 62 2
xﬁZ(Z(l—c = > 7(\/077 0)_(C_CO)TZ<1_C — )y, \1/(70,)>

1
2
[01 1—cr)? dr -2 (c —¢p) [ Jo e (1 —cr) (1 — cs) drds (33)
+(c—co) ]0 [0 (1—cr) (1 —ecs) [;"* eotr+s-Pdpdsdr

uniformly in ¢ as (N, T — o00). Similarly, using Lemma 6(a) and Lemma 7(c), we can
show that, as (N, T — c0)

N T 2
1 2 (1 1 Yit—1 (0,:)
I = —Z(c— — — Jut—1170%)
3 (cm ) (N ; T ; T
1 o (YT, . .
— —=(c—¢p) / / 2%0("=8) dsdr umiformly in c, (34)
p 2 0 0
and

11T = (¢ — cp) (NZ Zy” 1 (501)5”((501,%)) — 0 uniformly in c¢.  (35)

i=1 t=1

Also, it is not difficult to derive that as (N, T — o)

AT (B -w) 13 (1m0 ) g o

Combining (33) — (36) , we finally have the desired result.
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