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Abstract

Estimation of the memory parameter (d) is considered for models of nonstationary

fractionally integrated time series with d > % It is shown that the log periodogram

regression estimator of d is inconsistent when 1 < d < 2 and is consistent when % <d<1.
For d > 1, the estimator is shown to converge in probability to unity.
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1 Introduction

Statistical inference in models of fractionally integrated time series has been an active field
of recent research. Much of the literature has focused on estimating the memory parameter

‘d’ of a fractionally integrated process X; satisfying a general model of the form
(1-L0)* Xy = w, (1)

where u; is stationary with zero mean and continuous spectral density f,(A) > 0. A va-

riety of estimation methods of ‘d’ have been suggested and asymptotic theories for them
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have recently been developed in the case of stationary long memory time series like (1) with
|d| < % A commonly used estimator in applied work is the log periodogram estimator, sug-
gested in Geweke and Porter-Hudak (1983), which is appealing because of its nonparametric
treatment of u; and the convenience of linear least squares regression. Under Gaussian as-
sumptions, Robinson (1995a) developed consistency and asymptotic normality results for a
log periodogram estimator which trims out some low frequencies periodogram ordinates in
the regression, following a suggestion of Kiinsch (1987). Hurvich, Deo, and Brodsky (1998)
derive an expression for the mean squared error of this estimator without omitting low fre-
quencies ordinates, again under Gaussianity, and obtain asymptotic normality results and an
optimal choice of the number of periodogram ordinates to include in the regression.

Most of the theory of statistical inference for log periodogram regression has been devel-
oped for the stationary long memory case with fractional parameter —% <d< %, and, as yet,
little work has been published on the statistical analysis of log periodogram regression for
nonstationary time series. In practice, however, log periodogram regression has frequently
been applied in apparently nonstationary cases (e.g. Bloomfield, 1991, Agiakloglou et al.,
1993); and the importance of nonstationarity in practical work is borne out in many recent
empirical studies including those of Cheung and Lai (1993), Phillips (1998), and Maynard
and Phillips (1998). Practically speaking, of course, there is seldom any prior information
about the range of ‘d’ before estimation, so that analysis of log periodogram regression for
d > % is important from both theoretical and practical points of view. Hurvich and Ray
(1995) study the asymptotic behavior of periodogram ordinates of a fractionally integrated
process with fractional parameter d € [0.5,1.5) and argue that log periodogram regression
can be badly biased for nonstationary processes with d > 1. These authors also illustrate that
the estimator is not invariant to first differencing, a phenomenon that was earlier reported
in Agiakloglou et al. (1993). Extending the work of Robinson (1995a), Velasco (1999a) has
most recently shown consistency of a log periodogram regression estimator that trims out
low frequency ordinates, when % < d < 1 and under Gaussianity. However, none of the
preceding results address the consistency issue for log periodogram regression when d > 1.
Some intriguing simulation results are reported in Hurvich and Ray (1995). According to
table III in their paper, the log periodogram estimates are very close to unity regardless of the
true fractional value of d in a range of values over the interval (1.0,1.4). A later simulation
in Velasco (1999b) reveals an estimated probability density for the log periodogram estimate
when d = 1.8 that is sharply peaked around unity and has a long tail to the right. These sim-
ulations indicate that, in cases where d > 1, log periodogram regression generally produces
estimates of d that are very close to unity, irrespective of the true value of d when d > 1.

The present paper provides an explanation for this pattern of simulation results. Specifically,
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we show that log periodogram regression is inconsistent when d > 1 and that the probability
limit of the estimate is unity for all values of d € [1,2). The reason for the inconsistency
is that the formulation of the log periodogram regression ‘model’, which is inspired by the
local behavior of the spectrum near the origin, omits terms that become dominant in the
nonstationary case when d > 1.

We make use of a new representation of the discrete Fourier transform (dft) of a fraction-
ally integrated time series under assumptions on the short memory component u; that are
quite weak. This representation and some related results were obtained in recent work by
Phillips (1999a) and are briefly reviewed here. Utilizing the new representation of the dft,
under a mild assumption on the number of periodogram ordinates in the regression, and with
no distributional restrictions, we provide here an inconsistency result for log periodogram
regression when d > 1, showing that the estimator converges in probability to unity, and we
give a new consistency result that applies when % <d<1.

The paper is organized as follows. The following section gives some useful alternate
representations of the dft of a fractionally integrated time series. Section 3 contains our main

results, and some concluding remarks are made in Section 4. Proofs are given in Section 5.

2 Representation of the DFT of a Fractionally Integrated process

This section briefly reviews some representations of the dft of a fractionally integrated time
series obtained recently in Phillips (1999a). These are valid in both the stationary, long
memory case and the nonstationary case, and they turn out to be particularly helpful in
analyzing regressions in the nonstationary case.

The fractionally integrated process X; is defined as in (1), with u; = 0 for all j < 0. More

explicit conditions on u; (¢t > 0) are given in the following.

2.1 Assumption (Error Condition) For all t > 0, u; has Wold representation

w=C(Lya =S ce g S ilgl<oo, CO)#0, (2)
§=0

§=0

with e, = iid (0,02) with finite fourth moment fi,.
The linear process error condition in (2) covers a wide class of short memory processes and,
as in Phillips (1999a), enables us to use a decomposition technique to develop a convenient

representation of the dft of a fractionally integrated process. First, expand the fractional

process (1) as

Xe=(1-L) Puy =Y ~Lruy g, (3)



where
I'(d+ k)

d), = ——+=

( )k T ( d)
is Pochammer’s symbol for the forward factorial function. Next, define the operator Dy, (L;d) =
> b0 (_—:!)kLk7 and expand Dy, (L;d) about L = €™ as in Phillips (1999a) as

D, (L;d) = Dy, (ei’\; d) 4 D (e_“‘L; d) (e‘”‘L - 1)

where D, (e‘“‘L;d) = ZZ;& JApe_ipALp and JAp = ZZZPH %eﬁ“\. Writing the dft of
X; as wy(A) = \/ﬁ S X¢e®™ | the result below gives an exact representation of w,()\) in

terms of the dft, w,(\), of the error process wuy.

2.2 Lemma (Phillips, 1999a)

wa (A) = wy (A) Dy (™) + (Xro(d) = €™ Xpa(d)) (4)

1
v 2t
where .

Xon(d) = Dy (e_“‘L; d) X =3 dye X, .
p=0

When u; = 0 for t < 0 as is assumed above, X; = 0 for ¢t < 0 and, hence, )N(Ao(d) = (. In this

case, expression in (4) becomes

wy (A) = wz (A) Dy, (e”‘; d) — \;%ﬁm (e_D‘L; d) X,
— we (V) Dy (d) - ﬁeim)@n(d). (5)

Equation (5) shows that the exact relation between wz(\) and w, () involves a correction
term that depends on X an(d). This term therefore needs to be considered in studying the
asymptotic behavior of w;(\), and any function of it, like the log periodogram regression
estimator. The asymptotic behavior of X an(d) at the fundamental frequencies A, is given in
lemma 3.1 of Phillips (1999a) and is shown to be sensitive to the value of s in A; = 225, Here,
our main focus of interest is to develop the behavior of X an(d) when A = Ay = QLnS — 0,
the situation we allow for in log periodogram regression. The following lemma is based on
theorem 3.2 of Phillips (1999a), extends that theorem to the case where d > 1, and shows

the asymptotic form of Xon (d) when X; is a nonstationary fractional process.

2.3 Lemma For/\z)\sz%eo as n — oo,
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(a) If X, follows (1) with 3 <d <1 and %= — 0 for some a € (3,1), or 1 <d <2 (d#
%), and uz is defined in (2), then

1Xnd _ 1 e X, 1 e X,
nt /n -l (1- eMS)l_d v P\ nd (1- eMS)l_d Vn
1 et Xn 541
- (1= eir) e +Op< nd ) (6)
(b) If X; follows (1) with d =1, then
1 Xoun(d) _ ™ Xn ()
n Jn  nJn
(c) If Xy follows (1) with d =3 and wy is defined in (2), then
1 X,,,(d 1 s X, d-1
_dAS—U:__ e' Td 41 % S_d (8)
n¢ /n n(1—ers) " pdg n

This result shows that the same formulae as those given in Phillips (1999a) for the case
d € (3,1) also apply when d > 1. The formula (7) is particularly simple for d = 1, and the
restriction on the range of s in case of % < d < 1is relaxed for d > 1. As might be expected,
the leading term in the asymptotic approximation of #X*STZ(G{) is the same as when d € (%7 1).
When d = 2, the formula (8) is the same as (6) because we assume u; = 0, ¢ < 0. As shown in
Liu (1998), if we allow for prehistorical influence in the fractional process X, then the order
of X, whend = 2 is nt=3y/nn, ie., néfd(ln n)fé n = Op (1), whereas nz4x, = O, (1) for
d € (3,3). In that case, a minor change in part (c) of the lemma 2.3 is needed to incorporate
the effect of the slowly varying factor vInn. However, if u; = 0, ¢t < 0, then we have the MA

representation

t
_ d
Xy=(1—-L) u= %Ut—k,
k=0

as in (3) above, and the order of magnitude of X} is %, as is easily determined (c.f., Gourieroux,
Maurel, and Monfort, 1987).
Lemma 2.4 below gives an asymptotic expression for the dft w, (\) in term of w, (A) and

X, Our main interest is in the case where A = Ay = 22 — (. From (5)

1
\2mn

and using lemma 2.3 and an expansion for the sinusoidal polynomial D,, (e”‘;d) given in

ws () = Do (%) e (0) + —=Fn(d)] )

lemma 3.1 of Phillips (1999a), we have the following asymptotic representation for wy (As) .



2.4 Lemma When A= A; = % — 0, as n — oo, the following hold:

If Xy follows (1) with 3 <d <1 and = — 0 for some a € (3,1) or 1 < d <2, and w
is defined in (2), then

1 a4 1 11 e X, 1
nd " (As) = (1 — e ) nd () = V2rn (1 —eirs) ,d—3 T or <5> (10)

The representation (10) facilitates the development of an asymptotic theory for frac-

tionally integrated time series. It shows that the dft of a fractionally integrated process is
composed of two separate components. The first of these involves the dft of the innovation
uy, the second involves the value of the final sample observation X,,. The limit behavior of
these two components is already known. Hence, we can develop dft asymptotics for frac-
tionally integrated processes by analyzing these two terms, rather than by attempting to
work directly with the dft of X itself. A second advantage of the new representation is that
it follows by algebraic simplification and does not depend upon distributional specifications
like Gaussianity. All that is needed to obtain (10) is the general linear process formulation
(2). A third advantage is that the representation in lemma 2.2 holds for all frequencies
As = %7 s =0,1,...,n — 1, making it helpful in the asymptotic analysis of a wide variety
of quantities that arise in the study of fractional processes. The asymptotic representations
in lemma 2.3 and 2.4 hold for the frequencies near the origin, which is enough for most
semiparametric analyses of fractionally integrated processes. We can, in fact, go further and
develop asymptotic forms for the dft of X; when s is fixed, and when s — co and Ay — ¢ # 0,
as well as when A, — 0 as n — co. These forms are given in Phillips (1999a) for d € (3,1).

However, only those where A; — 0 as n — 00, as in lemma 2.4, are needed in the present

paper.

3 Log-Periodogram Regression: the nonstationary case

(a) Inconsistency over 1 < d < 2
Start by writing the normalized dft of X; according to the lemma 2.4 as

wy (Ns) i) 41 1 1 e X, 1
- (1_6 ) W () = V2 n (1 — i) d—%+ <> (11)

nd
- [W“’“WV%( 21ms) H (%ﬂﬂp()

Then, the normalized periodogram of X; can be written as

=m0 - e [ ()] ()

(12)
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9 2
Here, the dominant term is (L) (—X”—> , which is O, (%2) , and all the other terms

27s 27md_%
are of lesser order. Therefore, (12) can be put in the form
I (\s) 1\3/1 X, \? 5
= () (3) Grp) el )
where
1 w (As
G = | —mpi—L 2B,
(—1is) ( Xn >
nd_%
= Kfns + Op (1) 9
and . o)
Wy (Asg 1—d 3_4d
fns = gd—1 X ) K - (_Z) (27T)2
ndi%

Rewriting (13) as

wea= (32) G () () et

we obtain the following representation of the logarithm of the periodogram:

nd

In(t; () =ln (- ) +21n (_> ~2m )+ 2 (|52

1
n n* 2

) +2In[1+Cl.  (14)

The log periodogram regression estimator of the memory parameter d is based on linear
least squares regression of log I, (As) on log Ay over frequencies {\s,s = 1,...,m}. It has the

explicit form

m -1 m
2d = — [Zl x?] [Zl xslog I ()\5)] , (15)

where x; = log (\s) — log (\), and log (\) = + 3™, log (\;) . From (14) we deduce that

m

m 1 rm m —1rm
e DOE I S 1) o I SRR ISR ] e

s=1 s=1

).

The following result gives the inconsistency of dwhen1l<d<2.

—Xn_
a—&

where v, = log <

n 2
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3.1 Theorem Let X; follow (1) with 1 < d < 2 and u; satisfy (2). If > — 0, then d& 1.

The conditions on the frequency band {A;, 1 < s < m} where 2 — 0 restrict the range of
the effective sample size m (the number of periodogram ordinates) in the regression (15). In
particular, the restriction requires only that m tends to infinity slower than the full sample
n. Commonly used rules like m = Op(n%), Op(n%), or the optimal choice, m = Op(n%),
suggested by Hurvich, Deo, and Brodsky (1998), both satisfy this condition. Trimming low
frequencies (Kiinsch, 1987; Robinson, 1995a) is not necessary, as shown in Hurvich, Deo, and
Brodsky (1998) for stationary fractional processes (see also Velasco, 1999a). Their results,
which also include some limit distribution theory, depend on u; being Gaussian in (1), whereas
theorem 3.1 does not. No upper bound on m is imposed.

Theorem 3.1 shows that the log periodogram regression estimator is inconsistent and has
unity as its limit in probability over the interval 1 < d < 2. The estimator can therefore
be expected to be systematically biased when the true value of d is greater than unity, and
severely biased when d is well above unity. This behavior is apparent in the simulation results
of Hurvich and Ray (1995) and Velasco (1999b).

We conclude that the estimator d has unity as its probability limit over the whole in-
terval 1 < d < 2. On the other hand, the log periodogram estimator is consistent over the

nonstationary domain % <d < 1, as the following section shows.

(b) Consistency over § < d < 1
>From lemma 2.4, the representation of sz(ixs) is the same as (11) for the 1 < d < 1 case

and, therefore, the formula for the normalized periodogram is also the same as (12). Thus,

% = HT}HS)W“ () - (—217ri3) gﬁd—%] [1 e (%ﬂ o <§>
- () () () neer
1

2d
where the same formula for ¢,,, applies. However, in (17) the dominant term is (%) lwy (As)]? =

2

(17)

27s

2d
( L ) I, (A\s) which is Oy, (52%0 , and it is the other terms that are now of lesser order. Ar-
ranging (17) gives

S - @) ) ) R o) ()




where

gns = N
Xn
Now, (18) can be written as

0= e () (25 0 ) o o)

and the log periodogram regression equation can be formulated as

2

Y

In(I; (As)) = ¢c—2dIn Ay 4+ 2v, +21n ¢,/ , (19)
where v, = In [ %{ﬂi ] , ¢ = —2dIn(27). The formulation in (19) holds strictly over fre-
n 2

quencies Ag; with s > [ and $ — 0 for some o € (%,

can relax this trimming restriction (viz. s > [) in our asymptotic development, so that the

1). However, it turns out that we

log periodogram estimator we consider has the usual definition as the linear least squares
regression of In I, (As) on A over the full set of frequencies {\s, s =1,...,m}. As we show
in the appendix, the representation of the logarithm of the periodogram is a little different
from (17) over the frequencies {\s, s =1, ...,1} . The following result gives the consistency of
d over % <d<1.

3.2 Theorem If X; follows (1) with % <d <1, if w satisfies (2) and &, fulfills a Cramér

type condition, i.e.
36 >0, p>0, such that ¥V |t| > p |Eexp (itey)| <1 -6, (20)

and
/|E exp (ite)|P dt < ocofor some integer p > 1, (21)

cmdif%—{—ﬂlnwnLZ — 0, then d 5 d.

The two additional conditions (20) and (21) on &; are needed for the proof of the con-
sistency of the estimator. Neither is very restrictive. Condition (20) is a form of Cramér
condition (see, e.g. Bhattacharya and Rao, 1976), and holds for distributions with a non
zero absolutely continuous part. Condition (21) ensures that the density of > 7 ; & exists
whenever n > p. Some further discussion is given in the appendix.

A related consistency result for log periodogram regression over % < d < 1 has recently
been established by Velasco (1999a) under stronger conditions. In that work, the regression
estimator trims out low frequency ordinates, the restrictions on the number of ordinates in the

regression are a little stronger than those of Robinson (1995a), and Gaussianity is required,
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as in earlier analysis of log periodogram regression. The results in the present paper rely,
in the main, on the representation of lemma 2.4 and are free from specific distributional

assumptions.

4 Concluding Remarks

This paper has addressed consistency issues for log periodogram regression with nonstation-
ary, fractionally integrated time series. It has been shown that there is a major difference
between the two nonstationary cases where % <d<1and d > 1. When d > 1, the log
periodogram regression estimator is inconsistent, converges to unity in probability for all
d € (1,2), and, as previous simulation experiments have shown, appears to be seriously bi-
ased in finite samples. On the other hand, when % < d < 1, the log periodogram regression
estimator is consistent under quite general conditions. The case d = 1 has been studied
recently by Phillips (1999b), and in this case the estimator is consistent and has a mixed
normal limit distribution.

In all of these cases, the time series are nonstationary. But, there is an important difference
between nonstationary series with % < d < 1 and those with d > 1. In particular, when d < 1,
the constituent innovations in the time series are not persistent, in the sense that the impact
of a unit innovation at time ¢ on the process eventually vanishes; whereas for nonstationary
processes with d > 1, the effects of the innovations do not eventually vanish.

It is from the practical standpoint of empirical research that the inconsistency for d > 1
may have the most important consequences. In practice, we rarely have any prior infor-
mation about the magnitude of the memory parameter and it is therefore desirable to have
procedures of estimation and inference that have satisfactory properties over a range of plau-
sible parameter values. For some series, like prices and monetary aggregates, the range of
plausible parameter values seem most likely to include the region d > 1. Inference about the
memory parameter for the levels of such series using log periodogram regression therefore
seems hazardous using conventional log periodogram regression.

The formulae given in Lemma 2.4 reveal the modifications to the log periodogram esti-
mator that are needed to avoid the inconsistency over d > 1. In particular, the second term
on the right side of the dft representation (10) suggests that we may replace the dft w() in

log periodogram calculations by the observable quantity

1 et X,
A - . AN N =
wg (As) + V2r (1 —es) /n’
which directly eliminates the term that is responsible for the bias. This modified log peri-
odogram regression estimator was suggested in Phillips (1999a) and its properties are explored

in a subsequent paper by the authors.
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5 Appendix

5.1 Proof of Lemma 2.3 When 3 < d < 1, and d = 1 the results for parts (a) and (b)
are given in Phillips (1999a). So we need only show the d > 1 case for the proof of part (a).

Start with part (a) when d > 1. Following the proof of theorem 3.2 of Phillips (1999a),
we write X A.n(d) as the sum of two components with p < L and p > L. The choice of L will
be discussed later. We have

n—1 n—1 n
X,n(d) = Dy, (emL ;d> Xo =) drge PN Xnp =3 ( > (_ij)kems> e PN Xy
i :

p=0 p=0 =p+1

L % (—d)y, ikds | —ipAs e S (=d)y, ikds | ,—ipAs
=Y kz ar il K O DI B Dl waalill KPR (22)

p=0 =p+1 p=L+1 \k=p+1

Then, as in the proof of theorem 3.2 in Phillips (1999a), we get

n1 d ( i (_d)keik/\s) o—PAs

k=p+1
(—d) ; L
= dz(p T <1+p_d71;p+2;eks>+0<ﬂ>
Msnl . Z p“ 2R (L p - d Lip+ 2
p= L+1

where 2 F1 denotes the hypergeometric function. Now

Oo( d)er
Fi(1+p—d1L;p+2;
I;J(Hl) o (1 tip e 2ie)
_ i( d)pis Z 1+p D W yixek
= (+1)! p+2)
_ ii pr+1_d) Fk+p+1—-d) T (p+2) oirsk
ST (=T (p+2) Tp+i-d T(k+p+2)
_ ii Fk:+p+1 d) pirsk
et «T(—d)T (k+p+2)

Note that
k+P+ 1—d) itk

L'(k+p+2)

ZZ

pOkO

< 00,

for d > 1, which is a sufficient condition for exchanging summation and convergence of double
summation w.r.t. p, k. Following the manipulation in Phillips (1999a), we have

= (=)

p+1 s _ s
Z( 1 F1(1+p d,1;p—+2;e )_
p=0

e

(1— o)t



12

which is finite for all values of Ag for d > 1. Moreover

pil((pi)pfg F1<1+p d, 1;p+2;e? ):o(l)

since it is a tail sum of a convergent series. We therefore have

d) ok | pmipAs — 1 e L 1-d
nl— dz ( Z k! ) € __nl_d (1_6’»\5)17(1 +O(E) —l—o(n ) (23)

k=p+1

Hence,

d) ok | piphs | = 11 e 1 L 1-2d
nd [nl dz (kz k! ) c N _Enld(l—ei/\S)l_d—i—O(ﬁE) —l—o(n )

=p+1
(24)
A 1L 1-2d
= 0(7)+0<nd =) o (n2).
which holds in the d > 1 case. The first term in (24) is O (sd_l / nd> , which clearly dominates

the second term when L = n!=# with 3 > % (see below) and also dominates the third term.

Therefore, the limit behavior of the first term in (22) can be written as

[ L n —d ] ) Xn—p
% Z ( Z ( k!)kezk/\s> ezp)\sw]

| p=0 \k=p+1

1 L
= |
L p:O

2
=p+

_ 1 & ~ D ikne | —ipae [ Xn

-l _nl—dpgo % € e P {nd_l+0p(1)]
2

- . I
= nl—dz
p=0 \k=p+1

1 1 eths Xn sd-1 1 eths Xn—p sd1
= Td1-d S 1-d T+ 0p N S 1-d +op d |
nd nl (1 — eirs)l 7 pd—3 n nd (1 — eirs) vn n

since h = 1 + 0p (1) uniformly over p < L with L = n'=8, 3> %7 a property that can
2

be shown to hold in the same way as in Phillips (1999a). It remains to show that the second
term in (22) is of lesser order than the first term. Observe that for d > 1,

n—1 n 00 n L n
(_d)k ks —ipAs (_d)k ikAs —ipAs (_d)k iks —ipAs
Z(ZTG e = Y| X e e = | XD et e
p=L+1 \k=p+1 ’ p=0 \k=p+1 ’ p=0 \k=p+1 ’

(25)

o i ( i (_]j)keik/\s) efip)\s' (26)
i !

p=n =p+1
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Since the difference between two terms in (25) is negligible according to (23), and so is the
tail sum in (26), it follows that the order of the second term in (22) is o, (SZ—?), and hence
it may be neglected.

To conclude part (a), we may therefore extend the result in theorem 3.2(b) in Phillips

(1999a) to the d > 1 case as follows. For A = Ay = 225 — ( as n — oo, we have
1 Xmd 1 e X, o (L et X,
¢ yn - (1- eD‘S)I_d vn P\ nd (1- eMS)l_d vn

1 ei)\s Xn Sdfl
= - S 1—d T +0p a |-
N (1 —eirs) " pd—2 n

The proof of part (¢) is the same and is omitted. B

5.2 Proof of Lemma 2.4 >From lemma 3.1 in Phillips (1999a), we have the following
relation for the sinusoidal polynomial
)
s )

D, (e’“; d) = (1 - eiks)d + Wﬁ [1 +0

for A = A; = % — 0 and s — 0o as n — oco. With this behavior of D,, (e”‘; d) and lemma
2.3(a), it is easily deduced that

1 o 1T 1 1 1
() = Dy () [ﬁwmm——xxsn(d)}
B Iy 11N\ ML 1 1 Xy(d)
_ [(1 e )+0< - Lt )+ g
_ N i>\s _di _ 1 l ei)\s Xn (l)

)
) l(—zﬁw““”_\/lsz(—zlwwmi 1o (3)] 4 (5) e

as stated in lemma 2.4 under the condition 2 — 0. When d = %7 we use lemma 2.3 (c), and

obtain the same representation as (27). W

The following simple lemma is useful as we proceed with the remaining proofs.

5.3 Lemma

lnj 1 1
— 1.
(Inm) m1 O‘Z a+0<lnm>’ @<
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Proof Write

1 ™ 1n j B 1 m ln(i>—|—logm
(lnm)ml_a;j_o‘ N (lnm)ml_o‘jz1 5
1 & 1 1
- EZ‘;(L)“O(ﬁ)

5.4 Proof of Theorem 3.1 As is well known, % S a2 — 1 since
LI, 1 1 9 -1 —112
st ~m— (5 —G-Zm ) (Inm)” + (1 — 2Dy, — m™ " Dy,) Inm + Cyy + 2Dy, — m™ " D;;,.,
s=1

where Cy, and D, are constants (e.g., equation (6) in Geweke and Porter-Hudak, 1983).
According to lemma 5.3,

1 ™ Ins 1
(Inm)m2—d 21 A1 g o(1),
and then ( ) by
Inm)m“— 1 lids 1
- () m2 len ST 0, (28)

for all d > 1. We also have

1 &1 1
m2—d > a1 5_g " o(1),
s=1

so that

(Inm) m24 1 1
m m2—d Zl -1 0.
We have
m -lrm m -1 m
2d—1) =—2 [Zxﬂ [Z xsvn] -2 [Zwﬂ [ D w1+ Cpl (29)
s=1 s=1 s=1 s=l+1

from the representation of the logarithm of the periodogram in (14) and (16). Now, observe
that the first term of (29) is identically zero, and therefore we need to show that the second
term in (29) converges to zero in order to establish the inconsistency of the log periodogram
estimator. First, we show that

1 m
— <In |1 = 1).
m ;l‘ Il‘ +Cns‘ Op( ) (30)
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Throughout the following proof we use a domination argument to establish (30). That is, we

will show
1 m
E Z xSln‘l_‘_Cns‘ = Op(1)~
s=I+1
Note that the following inequality holds for all x
|z
In|1 <
L+ <ol +

Therefore, we have

1 m
< Ezwxsumrucmu
1 _NCnsl

- —Zmucmw 3ol il (31)

+ Cps|

Now, we have to show that both terms in (31) converge to zero in probability. To prove the
convergence in the first term in (31), it suffices to show that

1 m
‘E ZmSln‘l +Cns‘
s=1

IN

1
m s=1

where €, is already defined. The proof of (32) follows and will be called Step (i) for future
reference.

Step (i).
Let
1wy (As) 1
§ns = sd—1 [ = gd—1 Uns;
ndi%

then we need to show that

1 & 1 & P
_Z’xs, Ens| = _Z’xs, =1 Yns — 0. (33)
ms:l ms:l §
Note that
m m
Lo Ze ) < 2302 W (As)
m | sd m s < Xn1>
n?=2
1 & 1
= EZ del Wy (As)]
s=1 _XHT
n“ 2

VAN
[
7N
3=
[~]s
I/~
)
SR
[ @
—
N~~~
[N}
~—
NI
Y
3=
]z
B
IS
Py
>
N
T
~_
NI
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>From (28), we deduce that
1 m

Ls
— 0
mS:Z1 si1|
since
1 | 1™ ’lns—m’ In(m)m2—¢ _1m
E; gd—1 :E; a1 =0 - , where lns:Eglns,

and hence it follows that )

v — 0.

S
gd—1

1 m
=

It is known (Akonom and Gourieroux, 1988, Phillips, 1999a) that

X, w 1 _
d—1 = Td)/o (1_5)d ldW(S)a

where w? is the long run variance of u; and W is a standard Brownian motion. Hence,

-1
)Xn/nd_% = Op (1). We now need to show that

n

LS ()P =0, 1)
s=1

a result which can be obtained by means of the spectral form of the BN decomposition used
in Phillips and Solo (1992), as we now demonstrate. In particular, we may write

m m

which is deduced as follows. As in Phillips and Solo (1992), decompose the operator C (L)
as

C(L)=C () +C(em™L) (e™L—1), C(I)= i ( i cke’*s’“) L,
=0 \k

=j+1
where 3222 )ZZ":] 41 ck‘ < oo in view of the summability condition in (2). The dft of u; can
then be written as

1
\/ﬁ (5)\50 - 5)\571) )

wy () =C (ei/\s> ws (Ns) + (34)

with

x 0.0)
exan = C (e*“\L> En = Z ( Z ckel)‘sk> eﬂ)‘sjsn_j
k

=0

x 0.0) 0.0)
= 32 a] ey = Y e,

7=0 \k=j+1 J=0



17

sk Since the variance of e, is finite by the summability condition,

1 i <

m s=1
Moreover, in view of the fact that = 37 I. (A;) = Op (1), we get =37 I, (As) = Op (1) .
Hence,

where ¢, = 375 1 cre
it follows that

— (0 —sw) =0, (1).

3l el = 0(1)0, (1) 0, (1) = 0y(1), (3)
s=1

giving (33) and completing Step (i).
Next, we need to show that the second term of (31) converges to zero in probability. It
suffices to show that

T Lol ey = (1), (30

The proof proceeds in a similar way to Step (i). We explore the asymptotic behavior of
|1+ (,,s| which can be easily deduced by the previous result. Note that

~1
L G = 1+ K (S25) g (h) +0p(1) (37

n —

where K is a constant already defined, and

1 Xn -1 d -1
() 20, and <nd—%> 4 (B, ()

-1
Therefore Sd—l,lwu (As) ( Xn ) converges to zero in probability and it follows that

nd_%
1+ (s 2 1.

We need a further step, which we call Step (ii), to show the stated result in (36).
Step (ii).

We have
|Ens| 1 1 & Ls -1
—_ Ts - — 1 u s 1 ns
Zr o T 5 [ O (L Ga) |
FEI
o\ 3 ;
1 1 & T 2 (1 112
< _— _ u/\s 1 ns
< | (mz(d)) (m;w )1+ Co) \)
n7%
Note that
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in which L™, I, (A\s) = Oy (1) as shown before by B-N decomposition. Since (,, =

O, (sd1*1> uniformly in s by the representation in (37), we have sup;<,<p, |(1+ Cps)| ™
—2

SUP < s<im, )(1 + 0O, (sd%l») = Op (1) . Therefore, it follows that

S Il =0, (39

as required, completing Step (ii).
Combining (35) and (38) from these two steps we get

— |€ns| p
Z|x8| |Cn5|+ Z| S| |1+€n5|

and hence

1 & p
_szln‘l_‘_Cns‘ -0
ms:l

by the inequality in (31), which further implies that
1 & p
—szln\1+§m\—>0. (39)
m s=1

>From (39), the stated inconsistency result follows, viz.,
2d—1) 50, (40)

whenl<d<2 N

Next, we give a lemma which enables us to calculate the moments of the logarithmic
function of the periodogram, which is needed for the proof of Theorem 3.3. The statistical
properties of non-linear functions of the periodogram of stationary processes have been ex-
plored earlier in the literature, notably by Chen and Hannan (1980), Von Sachs (1994), and
Janas and Von Sachs (1995), and their results for the moments of such non-linear functions
are not dependent upon Gaussianity assumptions. We will use the following lemma, which is
a slightly modified version of Lemma A.1 in Janas and Von Sachs (1995).

5.5 Lemma Assume that i.i.d. sequence e, satisfies the Cramér’s condition (20) and con-
dition (21) and has unit variance and finite fourth moments. Then

(i) Eln(L. (M) =E[InZ]+0 (n7') =7+ 0 (n71), uniformly in A;,
(ii) Varln(I. (\;)) =Var[InZ]+0O (n71) = ”—62 + O (n71) , uniformly in \;,

(iii) Cov [In (L (N)),In(I: (A\))] = O (n~ 1), uniformly in \; # £;,
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where Z denotes a standard exponentially distributed random variable (i.e. with parameter
1) and ~y is the Euler’s Gamma. The frequency index j can be any number such that 1 <
J <3, t.e., the lemma holds irrespective of j.

The Cramér condition is needed for the approximation of the joint density of discrete
Fourier transforms and for non-linear functions of the dft, but is not enough for the log-
arithmic function because of the singular behavior of Inxz at x = 0, as discussed in the
proof of Corollary 3.4 of Janas and Von Sachs (1995). The additional assumption (21) takes
care of this difficulty by ensuring that the distribution of I, ();) is absolutely continuous for
sufficiently large n.

To extend the results of lemma 5.5 to linear processes, we use the spectral BN decompo-
sition given in (34), viz.,

1
\/ﬁ (5)\50 - 5)\511) ,

iAs

Wy (As) = C (ei/\s> we (Ag) +

with ex.n = Z?io EjAse_"/\SJIEn,j where ¢, = Zi":jﬂ cpes*. The following lemma shows
that the second component in this decomposition is negligible uniformly over s and is needed
in our log periodogram regression application.

5.6 Lemma  If Assumption 2.1 holds, max, 2.0 for all § > 0.

1
€

Asm

Proof We have

max|eg, | = max

o0

~ —iXs]
D Ene ey,
7=0

[e') o
< max Z|Ej>\55nfj| < Z|Ej5nfj| ,
=0

=0

where ¢; = >3 ;11 |ek| . So,

o.0)
> _lejen—jl| =E

J=0

Emax
S

€5>‘Sn‘ <E

0
> [eieil| -
=0

It follows that, for any n,6 > 0

1 Emax; |e., .| E [Zo'io ]E's_-”
P(—émaxskn>n> < sésA < . 5J e
no s s m nm
o izl Eleo] _ (o lek]) E leol 0.
N me e
in view of (2), so that
max |—¢€, |, max|—¢, , £o.
s n S S n S

as required. W

The next lemma applies the Phillips and Solo (1992) device to the log periodogram
In I, (Ns).
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5.7 Lemma [If Assumption 2.1 and the assumptions in theorem 3.8 hold, then
—szlnl szlnl s)+op(1).
Proof Using (34), we have

1 m
E;wslnfu (Xs) = —stln

2

( zAs) - (s) + \/217r—n (€x:0 = Exan)

2

\/217[-_n (€>\SO - €>\sn)
C (™) we (As)

1+

= —Zmﬂn‘(ﬁ'( )

We need to show that

I (A) + — stm

\/217r_n ( EX0 — 5)\571)

C (eP«) we (As) C (&) we (As)

—Zwsln 1+ - 0.
=1 C (=) we (As)
Note that
m —2— (EA0 — Eren) —— (£2,0 — Exun)
iZwsln 1 4 Yimn < —Z!xsf In |1 4 X2
ms:l

14 \/7—” (5>\50 - 5/\571)
C(ei)‘s) we (As)

In

1 m
< R
< mZ!xs!sgp

s=1

On the other hand, from the inequality [In(1 4+ Y)| < 2|Y| for [Y| < 3, we deduce that

Pln(1+Y)| >¢ <P[|Y|>¢/2] fore<1,

which holds for nonnegative 1 + Y, from Robinson (1995a). Then, if

\/217r_n (5)\50 - 5)\511)

W ey wow | (4D
it follows that )
sup In 1 + @e(ik)(;:(?; e (42)
Observe that
ﬁ (€2:0 = €xun) = (ex,0 — Ean) sup; |5 (€x,0 — 5/\Sn)‘
SO W W) | T |30 (@h ) we ()| inf,y [n3 00 (ee)w. (A

for 0 < 6 < % From lemma 5.7, we have

2.

Sbslp ﬁ (5/\30 - 5)\571)
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Moreover, for all s < m such that 2 — 0, it follows that
nz =t il}f lwe (As)] = Op (n%_6>

for sufficiently large n, since w. (As) has a continuous distribution for large enough n and
converges to a normal distribution. Therefore, we have the desired result in (41), and (42)
follows. Since L 27 |24] = O, (1), as shown in Robinson (1995b), it follows that

1 \/ﬁ ( EX0 — 5/\sn)
Zfl?s ln 1 + (GZAS)’U}& ()\S)

=o0p(1).
Therefore, we have
1 & 1 & N
po- Zwslnfu (As) = po- szln‘C (e S) I (A
s=1

= —szlnl s)+op(1),

s) +op(1)

since |C (1)]? < oo.

5.8 Proof of Theorem 3.2 As defined in (15), the log periodogram regression estimator
employs the frequencies {\s, s =1,...,m}. From (14) in section 3 of the paper, we have
the following representation of the periodogram over frequencies {\s, s =1+ 1,...,m} where

# — 0 for some o € (%, 1),

d

in (L ) =l (57 ) + 21 (”_

n

Xn
—2In(As) +2In ( |—=| | +2In|1 + (4] -
nd_§ ns

The representation over frequencies {\s, s =1,...,1} should be slightly changed as the fol-
lowing argument shows for % < d < 1. We work from the representation of wz(As) given in
(9) and the representation of Xy_,,(d) given in (22). Proceeding as in the proof of lemma 2.3
and using the proof of theorem 3.2 in Phillips (1999a), the first term of (22) has a factor of
the form

d .
(5 G )

k=p+1
1 GZAS p+1 L
= T dsz:H LB (1+p—d 1p+2e™) +0 ().
(43)

However, unlike the proof of lemma 2.3, we will not here assume that % — 0 (for some
o € (3,1)). Hence, the first term in (43) does not necessarily dominate the second term in
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(Dpy

(43). Let C(L,d,s) = 302111 by

> L oF) (1 +p—d,1;p+2; ei/\5> for notational simplicity.

Then, we have

p=0 \k=p+1

- % nll _ Z ( 3 lj) zkAs) o—iPAs {nﬁ% +op(1)u

1 [& (& (—ay, D
v Z( 2 (/{;!)kems> e_msW]

k=p+1
1 eths 1 X, 1L
T opd | pld (1— eiAs)l—d + nlde(L’ ¢ S)] nd—% O <WE> ’ (44)
since &2 = —= + 0, (1) uniformly over p < L such that L = nt=P 3>1 , as before.
2

Moreover the second term in (22) is of lesser order than the first term, as we now show. In
particular, using lemma C(b) in Phillips (1999a), we have

1= —~ (=i i ipAs Xn—
3k ptkds | o—ipAs 217D
l—d > (kZ ooC ¢ -1

p=L+1 =p+1

1 E 1 X, 11 X1 X1 X
= O — P =0, (= —=> = | ==
_ 11 1\ 1 /n\%!
= O ) =% (5\z) )

Therefore, the order of the second term in (22) can be written as
(=D itrs | —iprs Xnp (1 1 1>
et et —— 1 =0 (—7g7 - ) (45)
nd |:n1 dp;_l ( ;1 k! nd—3 P\sLd1np

which may be neglected because the order of the first term in (44) exceeds the order of (45).
Therefore, for s = 1,...,1, we have

1 Xy,n(d) 1 eths X, 1 L
nt /n n [(1 — eies)lfd C(L,d, s) nd—3 O (nd ns) 7

which includes the additional term C(L,d,s) compared to the representation given in the
lemma 2.3. Now, the dft over frequencies {\s;, s =1, ...,{} will be

L0 = Du(ed)” [R 0+ A Fa)
= (1) L ()

nd

_% (uii—tixs) . (1 _ei/\s)dC(L,d,S)> ﬁ + 0, < 8§+1) (46)

(NI
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As shown in Phillips (1999a), we have the following representation

o Do |
pgl (p+1+) 2F1(1+p d,1;p+2 e/\>
— o [ oo (_d)p+1( —d_|_k) (2)
i Z Z p+1! (1 d) (/{7—|—2)

kOpL+1

(1 — d)keiksk
(2)

(1— d)kei)\sk
()i

< (1-d+Fk),

= 2|4 2 (k+2),

k= p=L+1

0
B > [k+2) & 1 | (1—=d)y,
B O(Z{ 1—d+k:) Z 1+d] Tkkekk)

k=0 1P

P Zem)‘ (Fi=):

= 0

That is,

1 1
C(L, d, S) ~ ﬁmc,

where c is a constant. Therefore, the dft in (46) can be rewritten as

S ) = (1) L )

1 e c o —d 1 1 X L
e eyt L n__ Lo, (—
[n (1—es) n ( © ) Ld(1— eMS)] ornd—3 O <nsd+1)

_ 1 1 ¢ nt X, S L
- [(—ZWiS)dwu ()\5) - ((—27TZS) B 81+d Ld> QWHd%] |:1 +o <7’L>:| + Op (nsd+1> )

where ¢; = ¢/ (—2mi)" ™. Then, the periodogram is

40 - - (- ) i) )
(47)

>From (47), the periodogram over frequencies {\s, s = 1,...,1} can be rearranged as

roo= ()" ()" () () e w0 () vo ()]

where

, (48)
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Next, break the estimator d in (15) down into the following two components
m -1 m
2d - [Z mQ] [Z zsIn T, (As)]
s=1 s=1
m -1 l m
= _ [Z $§‘| [Z xsIn I, (As) + Z reIn 1, ()\S)} .
s=1 s=1

s=Il+1

Using (18), (19) and (48), we have

2((?— d = - (Z x?) Z LUy, + (Z m?) Z xs1n |,
s=1 s=Il+1 s=1 s=Il+1
m -1 m -1 Ld
— (Z x?) stvn + (Z x?) sz In|&,s—
s=1 s=1 s=1 s=1
m -1 m m -1 m
= — (Z w?) Z LUy + (Z w?) Zws In ¢,
s=1 s=1 s=1 s=1
+ (Z w?) zsln — + 0, (1) (49)
s=1 s=1
As before, the first term of (49) is zero, so we need only show that
1 & P
- sl 07
el &
and ]
1 ¢ Le
— o In — .
- ; Tsln 3 — 0
Observe that
l stln‘gmy = l szlnw
m s=1 m s=1 Xn
nd_%
1 & 1 & Xn
= — Tsln |wy, (Ns)| — — Tgln |[—1,
— ; [wa (As)] = — 5:21 v

where the second term is also zero. Using lemma 5.7, we have
1 m 1 m
p- S;xs Inl, (\) = — ;ms Inl. (As) +0p(1),

and, hence, for

1 & 11 ,
g;xsln!wu(&)\=§E€;xslnuu(xs)y_>o
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to hold, we need only show that
1 & P
— sz Inl. (A\s) = 0.
m s=1

To do so, we evaluate the first two moments. By lemma 5.5, we have

1 m
E [E ;x In I, (As)] =0.

The variance term is

Var [— Zws In I, (/\s)] =— Z z*Var [In I, (As)]+2—5 Z Z 252, Cov [InI; (), In I (\)],
m s=1 m s=1 m s=1r=s+1

the first term of which is clearly o, (1) . Moreover,

1 m m
— Z Z zsxyCov [In I (Ng) ,In I (A\r)] = o(1),
m s=1r=s+1

from result (iii) of lemma 5.5 and the fact that L S°™, |z,| = O (1), which is given in
Robinson (1995b). Therefore, we have

%sz In e (As)] = op (1). (50)
s=1

It remains to show that the third term in (49) goes to zero, which clearly holds because

l l
Z]xS] = Z)lns—m) =0 (llnl)+O(llnm),
s=1 s=1

and

L d nn)?
s=1

2 ~
under the assumption ﬂlnﬁL — 0. >From (50) and (51), we have d — d = op(1), giving the
consistency of log periodogram regression for % <d<1l. 1
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