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Abstract

Nonlinear Persistence

and Copersistence

In a nonlinear framework� the temporal dependence of time series is sensitive to trans�
formations� The aim of this paper is to examine in detail the relationship between
various forms of persistence and the corresponding transformations� We introduce
the concept of persistence space and use it to de�ne the degrees of persistence of
univariate or multivariate processes� This approach is illustrated by examples of pro�
cesses featuring long memory� In particular we indicate the di�erence between the
persistence of a fractionally integrated process and a beta mixture of AR��	 processes�
The persistence analysis of multivariate series reveals nonlinear comovements between
the components� called the copersistence directions �or cointegration directions in the
nonstationary case	� We �nd that� in general� there exists a multiplicity of such di�
rections� causing an identi�cation problem� This result puts in a broader perspective
some recent contributions to the literature�

Keywords
 Nonlinear Autocorrelogram� Canonical Analysis� Persistence� Chaos� Unit
Root� Cointegration�
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R�esum�e

Dans un contexte non lin�eaire� limportance de la d�ependence temporelle peut
d�ependre de la transformation consid�er�ee de la s�erie� Le but de ce papier est de
d�ecrire soigneusement les divers degr�es de persistence et les transformations qui leur
sont associ�ees� Pour des s�eries multivari�ees� lanalyse de persistence peut �etre utilis�ee
pour mettre en �evidence des comouvements non lin�eaires entre les composantes� cest
�a dire le ph�enom�ene de copersistence �ou de coint�egration non lin�eaire dans le cas non
stationnaire	� G�en�eralement il y a une multiplicit�e de directions de copersistence� ce
qui induit un probl�eme didenti�cation�

Mots cl�es
 Autocorr�elogramme non lin�eaire� analyse canonique� persistence� chaos�
racine unitaire� coint�egration�

JEL 
 C��
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� Introduction

Although structural econometrics does not ignore nonlinear dynamics in relations between macroe�

conomic or �nancial variables� the models are often built in practice using standard instruments

of time series analysis	 These instruments� such as the autocorrelation and partial autocorrela�

tion functions� spectral densities� unit root tests� techniques of �nding cointegrating vectors and

an E	C	M	 representation 
Granger ������ Engle� Granger ������� 			�� as well as long memory

analysis 
Hosking ������� have been designed however for linear dynamics	 Despite this� many

researchers apply some of these instruments to various nonlinear transformations of time series	 A

typical example is the autocorrelogram� occasionally rede�ned as the autocorrelation function of

a nonlinear transform of the series 
Lepnik ������� Granger� Newbold ������ Granger� Hallman

������� Ding� Granger� Engle �������	 It has been observed that the pattern of autocorrelations

may heavily depend on the applied nonlinear transformation	 For instance� the autocorrelogram

of �nancial returns often shows an absence of �linear� dependence whereas the autocorrelogram of

squares or absolute values of these returns features long memory 
Engle ������� Ding� Granger�

Engle �������	 Similarly there may exist nonlinear transformations yielding stationary transformed

processes whereas some others may induce various nonstationary features �	 This leads to spurious

results when� for instance� a standard Dickey�Fuller test is applied to transformed series 
Granger�

Hallman ������� Corradi �������	

Rather than to study properties of linear techniques applied to speci�c nonlinear dynamics� we

prefer in this paper to come back on the notion of persistence in a nonlinear framework	 Broadly

speaking the persistence measures how temporal dependence evolves with the prediction horizon

and depends on the nonlinear transformations of interest	 Such persistence analysis is relevant

for both �stationary and nonstationary� processes� and concerns both short and long memory

phenomena	

The �rst �ve sections address strongly stationary processes	 We introduce in section � the

transformed autocorrelogram� which measures the dependence between a transformed future value

g�Xt�h� and the information contained in the current observation Xt	 We compare this measure

with the autocorrelogram of g�Xt� usually considered in the literature	 The transformed autocorrel�

ogram is used in section � to de�ne the persistence decomposition of a given time series into various

degrees of persistence and the associated persistence spaces	 We also discuss the dependence of the

persistence decomposition on the selected universe	 In section � we show the persistence decompo�

sitions of various processes including processes generated from gaussian time series or discretized

��i�If ��t� is a gaussian white noise and Zt �
Pt

���
�� the associated random walk� the process de�ned by

Xt � sgn ��t�Z�
t is such that� sgn �Xt� � sgn ��t� is stationary whereas jXtj � Z�

t is nonstationary�
�ii� A convex transformation of a zero mean random walk �Zt� will include a deterministic trend 	Corradi�
�����
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di�usions	 The de�nition of copersistence is introduced in section �	 The notion of persistence

is extended in section  to processes featuring nonstationarities	 In particular� we introduce the

concept of persistence by trajectory for both stationary and nonstationary dynamics� and discuss

nonlinear cointegration	 Section � covers the statistical inference and presents a simulation study	

Section � concludes the paper	

� Transformed Autocorrelograms

��� De�nition of the Autocorrelogram

A common approach to study the e�ect of a nonlinear scalar transformation g on a strongly

stationary time series is to examine the autocorrelation function�

rh�g� � Corr
g�Xt�h�� g�Xt��� h � �� ��	��


see� e	g Ding� Engle� Granger ������� Ding� Granger ������ Granger� Terasvirta ������� He�

Terasvirta ������� Gourieroux� Jasiak �������	 This method may not be precise enough to de�ne

appropriately the degree of persistence	 The dependence between g�Xt�h� and the information

contained in Xt appears to be better measured by�

�h�g� � max
g�

Corr
g�Xt�h�� g��Xt��� h � �� ��	��

Note that this autocorrelation function is similar to the traditional one in that it represents the

dependence between a pair of variables� i	e	 Xt and Xt�h
�	 We can easily verify that it admits

the optimum for g��Xt� � E
g�Xt�h�jXt� 
see Appendix ��� and that�

�h�g� � Corr
g�Xt�h�� E�g�Xt�h�jXt�� �

s
VarE�g�Xt�h�jXt�

Var g�Xt�
� ��	��

From this formula we deduce that�

�� ��h�g� �
E Var 
g�Xt�h�jXt�

Var g�Xt�
�

measures the accuracy of the nonlinear prediction of the transformed series at horizon h �	

By construction� the transformed autocorrelogram ��h�g�� h varying� 
T�autocorrelogram hence�

forth� takes nonnegative values� and we have �h�g� � jrh�g�j� � h� g �	

�An alternative is to measure instead the dependence between g�Xt�h� and the past of the process� i�e� Xt �
	Xt� Xt���Xt��� ���� Then the transformed autocorrelogram would be� ��

h
�g� � maxg� Corr	g�Xt�h�� g��Xt��

Even if the autocorrelogram ��
h
�g� is more informative than the autocorrrelogram �h�g�� it is also more di�cult to

implement in practice� Of course the two types of autocorrelograms coincide for a Markov process of order one�
�When E	g�Xt�h�jXt is constant� the correlation �h�g� is conventionally set equal to zero�
�If we de�ned �h�g� for all h� the resulting autocorrelogram would not be an even function� i�e� we would have

�h�g� �� ��h�g�� violating the condition of the traditional autocorrelation function�
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In practice we can estimate the T�autocorrelogram in the following way	 Let us denote by K a

kernel function� and by �g��h the associated regressogram of g�Xt�h� on Xt�

�g��h�x� �

PT�h
��� K 
�X� � x���� g�X��h�PT�h

��� K 
�X� � x����
� ��	��

where � denotes the bandwidth	 The T�autocorrelogram is approximated by the empirical corre�

lation between g�Xt�h� and �g��h�Xt��

��h�g� � Corre
g�Xt�h�� �g��h�Xt���

The asymptotic properties of this estimator are derived in Appendix �	

��� Nonlinear Canonical Analysis

Let us consider a stationary process with a continuous distribution� and denote by fh the joint

density of �Xt� Xt�h�� and by f the marginal density of Xt	 Under weak conditions �� the joint

density can be decomposed as 
Dunford� Schwartz ������ Lancaster�������

fh�xt� xt�h� � f�xt�f�xt�h�f� �
�X
j��

�j�haj�h�xt�h�bj�h�xt�g� ��	��

where the canonical correlations �j�h� j varying� are decreasing ���h � ���h � ��� � �� �h� the
canonical directions satisfy the orthogonality conditions�

E
aj�h�Xt�ak�h�Xt�� � �� �k �� j� �h�
E
bj�h�Xt�bk�h�Xt�� � �� �k �� j� �h�
Eaj�h�Xt� � Ebj�h�Xt� � �� �j� h�
and the normalization conditions�

Varaj�h�Xt� � Var bj�h�Xt� � �� �j� h�

Therefore in nonlinear framework� the canonical analysis involves the joint density function instead

of linear regression coe�cients� which are used in the standard linear setup 
see e	g	 Tiao� Tsay

������� Johansen �������	

The transformed autocorrelogram is easily written in terms of the components of the canonical

decomposition	

Property ���� We have�

��h�g� �

P�
j�� �

�
j�h � g� aj�h 	

�P�
j�� � g� aj�h 	�

�

�For instance� if
R R

	f�
h
�xt� xt�h� � 	f�xt�f�xt�h�dxtdxt�h � ��� �h�
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where � g� aj�h 	� E
g�Xt�aj�h�Xt�� � Cov
g�Xt�� aj�h�Xt��	

Proof� For any nonlinear function g� we get�

E
g�Xt�h�jXt� � Eg�Xt�h� �
�X
j��

�j�hE
g�Xt�h�aj�h�Xt�h��bj�h�Xt��

Since bj�h� h varying� and aj�h� j varying� form an orthonormal basis� we directly deduce that�

�h�g� �

s
VarE
g�Xt�h�jXt�

Var
g�Xt�h��
�

�P�
j�� �

�
j�h � g� aj�h 	

�P�
j�� � g� aj�h 	�

�� � �
�

Q	E	D	

� Persistence Decomposition

In this section we de�ne the degrees of persistence and the associated persistence spaces	 The

results are derived for a strictly stationary univariate or multivariate process �Xt�	

��� Persistence Spaces

Let 
 � �
h� h � �� denote a positively valued sequence converging to zero at in�nity	 Henceforth

the sequence 
 will be a priori called the degree of persistence and will be used to measure how the

temporal dependence of the transformed series evolves with the prediction horizon �	 For example�

we may consider� 
h � rh or 
h � h�d�� where r� r � �� and d� d � ���� are predetermined to

describe geometric or hyperbolic decay patterns	

De�nition ���� The persistence space of order 
 is de�ned by 	�

E� � fg � �h�g� � ��
h�g� ��	��

where the symbol � means that there exists a constant c such that j�h�g�j � c 
h	

Property ���� E� is a vector space	

Proof� Let us consider a linear combination of two elements g and g� in E�	 We have�

Corr 
�ag � a�g���Xt�h�� g��Xt�� �
Cov 
�ag � a�g���Xt�h�� g��Xt��p
Var �ag � a�g���Xt�

p
Var g��Xt�

�
aCov 
g�Xt�h�� g��Xt��p

Var �ag � a�g���Xt�
p
Var g��Xt�

�
a�Cov 
g��Xt�h�� g��Xt��p

Var �ag � a�g���Xt�
p
Var g��Xt�

�More precisely a degree of persistence is a class of equivalence of scalar sequences with the same asymptotic
behaviour for large h� � and � provide the same degree of persistence� if �h � �h for large h�

	Since Corr�a� g��Xt�h�� � �� �a � R� this space contains at least the constants�
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� a

p
Var gp

Var �ag � a�g��
Corr
g�Xt�h�� g��Xt��

�a�
p
Var g�p

Var �ag � a�g��
Corr 
g��Xt�h�� g��Xt���

This implies that�

�h�ag � a�g�� � a

p
Var gp

Var �ag � a�g��
�h�g� � a�

p
Var g�p

Var �ag � a�g��
�h�g

�� � ��
h��

Q	E	D	

Next� we set 
h � �	

Corollary� E
 � fg � Corr 
g�Xt�h�� g��Xt�� � �� �g�� hg is a vector space	

It forms the space of nonlinear independence directions	

From ��	��� g � E
 if and only if E
g�Xt�h�jXt� � Eg�Xt�h�� �h � �	 In particular for

a Markov process� g � E
 if and only if the process g�Xt� � Eg�Xt� is a martingale di�erence

sequence with respect to the �ltration Xt
�	

At this point� it is interesting to note that the set of functions E
 � fg � rh�g� � �� �hg
does not de�ne a vector space	 Indeed� even if 
g�Xt�� and 
g��Xt�� are two weak white noises�


g�Xt� � g��X�
t �� may feature temporal dependence due to cross�correlations between the two

processes	 This di�culty does not arise with our de�nition of the nonlinear autocorrelogram� since

the past information �g��Xt�� g� varying� is independent of the transformation g �	

��� Properties of the Persistence Spaces

Various properties of the persistence space can easily be derived	

monotony

If �
h� and ��h� are two sequences such that �h � ��
h�� then E� � E�	

invariance by one�to�one transformation

Let us consider a one�to�one transformation Yt � a�Xt�� �say� of the initial process	 The persistence

spaces of X and Y can be easily compared	 Indeed we have�

EY
� � fg � max

g�
Corr 
g�Yt�h�� g��Yt�� � ��
h�g


If we modify the de�nition of � by considering that �h�g� � ���h� i� there exists a constant c such that
limh�� sup j�h�g�j � c�h� the space E� becomes� E� � fg � �q with E	g�Xt�h�jXt � Eg�Xt�h� �h 	 q �

g� Therefore E� de�nes the �nonlinear� moving average directions called codependence directions in the linear
framework 	Gourieroux� Peaucelle �
����� Vahid� Engle �
�����

�The same type of remark applies to the analysis by Corradi �
����� where the markovian properties of the
transformed process g�Xt� are considered with respect to the �ltration generated by the transformation� not by the
initial process Xt itself�
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� fg � max
g�

Corr 
g � a�Xt�h�� g��Xt�� � ��
h�g�

We deduce that�

g � EY
� 	 g � a � EX

� �

��� Degree of Persistence

In this section we proceed to de�ne the set of degrees of persistence	 This task is not easy due to

the absence of complete ordering of the set of sequences �
h�	 Indeed� there can exist sequences

�
h� and ��h� which are not comparable� i	e	 such that neither the condition 
h � ���h�� nor

�h � ��
h� are satis�ed	 There are two possible ways of solving this problem	

i� We can select from the set of sequences a restricted subset which can be ordered without

ambiguity	 For example� we could consider only either the geometric sequences�


h � rh� with r � ��

or the hyperbolic ones	

Let us suppose� for example� such a family 
h��� depending continuously on a parameter

� � R�� and such that if �� 	 ��� 
h���� � o

h�����	 In this case� the persistence spaces

can be introduced for various values of � and� according to the monotony property� we have

E���� � E����	 This allows us to de�ne the limiting parameter values�

�� � f� � E��� �� 
����E����g� ��	��

The set of sequences 

h���� � � ��� is the set of constrained degrees of persistence for the process	

This set can be quite complex and contain an in�nite number of basic sequences	 It can however

be de�ned for any process	

ii� We can alternatively impose some constraints on the dynamics in order to de�ne the implied

degrees of persistence without ambiguity	

De�nition ���� The process �Xt� admits a decomposition of persistence i� there exists a

countable set of sequences �
n�h�� n � N � such that�

�i� �n 
n�h � o�
n���h��

and

�ii� �g in the supplement of E�n in E�n�� � we have�

�h�g� � 
n���h� for h large�
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For such a process� the sequences �
n�h�� n varying� de�ne the succession of persistence degrees�

whereas E�n are the corresponding persistence spaces	 In general a process does not admit a

persistence decomposition	 In section � we describe classes of processes for which a persistence

decomposition exists	

��� Change of Universe

The de�nitions of the transformed autocorrelogram and of the associated persistence decomposition

can be extended to a universe Zt �say�� possibly di�erent from Xt	 More precisely� if the process

�Xt� Zt� is jointly stationary� we can introduce the transformed autocorrelogram of X with respect

to the universe �

�h�g� Z� � max
g�

Corr 
g�Xt�h�� g��Zt��� ��	��

The concept of universe is of particular importance in the multivariate framework	 Let us consider

a bivariate stationary process Xt � �X��t� X��t�
�� and analyze the persistence properties of the �rst

component	 We can naturally consider two types of transformed autocorrelograms	

� The marginal transformed autocorrelogram corresponds to the universe Z � X� and is de�ned

by�

���mh �g� � max
g�

Corr 
g�X��t�h�� g��X��t��� ��	��

� The global transformed autocorrelogram corresponds to the universe Z � X and is de�ned by�

��h�g� � max
g�

Corr 
g�X��t�h�� g��Xt��� ��	��

We denote by E��m
� and E�

� the associated persistence spaces	 The property below relates the

marginal and global persistence decompositions	

Property ���� We have�

�i� ���mh �g� � ��h�g�� � h� g�
�ii� E��m

� � E�
�� �
�

� Examples of Persistence Decomposition

��� Processes with Stable Canonical Decompositions

Let us consider a stationary process� with canonical variates independent of the horizon h�

fh�xt� xt�h� � f�xt�f�xt�h�f� �
�X
j��

j�haj�xt�h�bj�xt�g� ��	��
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where j��hj � j��hj���� � � and the functions aj � bj � j varying� satisfy the orthogonality and

normalization conditions described in subsection �	�	

Property 	��� Any process with a stable canonical decomposition ��	��� where j�h � o�j���h��

�j� admits a persistence decomposition	 The degrees of persistence are the sequences �jj�hj�� j
varying� whereas the associated persistence spaces are�

Ej	j j � fg � � g� ak 	� �� � k � j � �g�

Proof� This is a direct consequence of the property �	�	

Q	E	D	

Therefore the degrees of persistence coincide with the sequences of canonical correlations of var�

ious orders	 These correlations� jointly displayed� form the nonlinear autocorrelogram 
Gourieroux�

Jasiak �������	

Example �� Gaussian processes

Let us consider a gaussian process with zero mean� unitary variance and autocorrelation function

��h�	 The canonical decomposition is given by 
Cramer ������ Barrett� Lampard ��������

fh�xt� xt�h� � ��xt���xt�h�f� �
�X
j��

��h�
jHj�xt�h�Hj�xt�g�

where � denotes the p	d	f	 of the standard normal distribution and Hj is the Hermite polynomial

of order j	 The persistence degrees are� �
j�h� � �j�hjj�� j varying� and the persistence spaces E�j

are generated by the Hermite polynomials of degrees larger or equal to j	 In particular� we can

consider an AR��� gaussian process with �h � �h� and a fractional gaussian process ���L�dXt �

�t� d � ���� with �h � Ah�d��	 Since ��h�j � ��j�h in the autoregressive case and

��h�j � Ah�d���j � Ah�dj�
��j
�

����

we directly deduce the patterns of the persistence degrees	

Table �	�� Persistence degrees for gaussian processes

Process pattern parametrization

AR��� gaussian geometric� 
j�h � rhj rj � j�jj

I�d� gaussian hyperbolic� 
j�h � Ajh
�dj�� Aj � A� dj � dj � ��j

�

In the hyperbolic case the fractional degrees dj decrease arithmetically at rate d � ���	 They

become equal in the limiting case d � ��� of nonstationarity	
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Example �� Mixture of gaussian processes

This example illustrates non gaussian long memory processes derived from a mixture of AR���

gaussian processes	 More precisely� let us consider an AR��� gaussian process� with a stochastic

autoregressive parameter following a distribution �	 The joint distribution of �Xt� Xt�h� becomes�

fh�xt� xt�h� �

Z
��xt���xt�h�f� �

�X
j��

�jhHj�xt�h�Hj�xt�gd����

� ��xt���xt�h�f� �
�X
j��

E
��
jh�Hj�xt�h�Hj�xt�g�

In general E
��
jh� �� �E
�

h�j 	 This implies that this process is not gaussian� even if it is marginally

gaussian and admits the same canonical directions as a gaussian process	

We can easily �nd the long memory persistence degrees when the heterogeneity distribution is

a beta distribution B��� �� ��� � � � � � 
Granger� Joyeux ��������

���� �
������� ����

�������� ��
��
�������

In this case E
�
k � ���k�

���
�

���k� 	 We deduce�


j�h � E
�
jh �

��� � jh�

����

�

��� � jh�
� �

����

�

j���

�

h���
�

and the patterns of the persistence degrees	

Table �	�� Persistence degrees of a mixture of gaussian processes

Process pattern parametrization

beta mixture hyperbolic 
j�h � Ajh
�dj�� Aj �

�
���j��� � dj � � � �

It is interesting to note the striking di�erence between the nonlinear dynamics of this beta mix�

ture and the I�d� gaussian process� despite their common feature of long memory in all directions	

We observe that the fractional order dj � � � � is independent of j in the mixture case	

��� Deterministic Autoregression

It is di�cult to discuss nonlinear dynamics without mentioning the chaos	 Let us consider a

deterministic stationary autoregression�

Xt�� � c�Xt�� ��	��

where the function c is not constant	
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Property 	��� The stationary process �Xt� is a deterministic autoregression if and only if

�h�g� � �� �h� �g not constant	

Proof�

Necessary condition�

Without loss of generality we can choose h � �	 We get�

���g� � max
g�

Corr 
g�Xt���� g��Xt��

� max
g�

Corr 
g�c�Xt��� g��Xt��

� Corr 
g�c�Xt��� g�c�Xt��� � ��

Su�cient condition�

If we consider the identity function g� there exists g�� such that� Corr 
Xt��� g
�
��Xt�� � �	 We

deduce that  a� b � Xt�� � ag���Xt� � b� a	s	

Q	E	D	

The above property gives a characterization of the deterministic autoregressions in terms of

persistence decomposition	 It is interesting to note that this characterization follows from the

appropriate de�nition of the transformed autocorrelogram	 Indeed� if we study the well�known

quadratic map� Xt�� � �Xt���Xt��
�
 
Tong ������� section �	�	�� and the identity transformation

g � Id� we get�

�h�g� � �� �h�

whereas rh�g� � Corr�Xt�h� Xt� � �� �h	 The quadratic map represents a weak white noise

process featuring strong nonlinear dependence	

Finally note that stationary deterministic autoregressions feature a �unit root� property �since

limh�� �h�g� � ��	 Therefore the relationship between unit roots and nonstationarity needs to be

precisely characterized in a nonlinear framework	

��� Discretized Unidimensional Di�usion Process

Let us now consider a stationary unidimensional di�usion process de�ned by�

dXt � �Xt�dt� ��Xt�dWt� ��	��

where �Wt� is a brownian motion and  and � denote the drift and volatility respectively	 Under

compactness conditions ��� this process admits the canonical decomposition�

��The marginal distribution is uniform on the interval 	�� 
�
��see Hansen� Scheinkman� Touzi �
���� for discussion
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fh�xt� xt�h� � f�xt�f�xt�h�f� �
�X
j��

�j�
haj�xt�aj�xt�h�g� ��	��

where the canonical elements are derived from the spectral analysis of the in�nitesimal generator�

A �  d
dx � �

��
� d�

dx� 	 More precisely� they satisfy�

�x�
daj�x�

dx
�

�

�
���x�

d�aj�x�

dx�
� logj aj�x�� ��	��

We deduce geometric patterns of the persistence degrees�


j�h � jj jh� j varying�

It is interesting to note that Sturm�Liouville theorem 
			� provides information on the canonical

variates	 The canonical variate aj admits exactly j zeros� and its derivative is equal to zero at

a single point between two successive zeros of aj 	 In particular the �rst canonical variate is a

monotone function	

��� Discretized Re�ected Brownian Motion

The brownian motion re�ected on the interval 
�� l� is another example of a stationary Markov

continuous time process� which is not a di�usion process and admits a persistence decomposition	

The canonical decomposition is�

fh�xt� xt�h� � f�xt�f�xt�h�

��
�� �

�X
j��

exp

�
�h

�

�
j�

l

��
�
cos

�
j�

l
xt�h

�
cos

�
j�

l
xt

�	

� � ��	�

� Copersistence

	�� De�nition

The concept of linear comovements between time series and their aanalysis has been developped for

both stationary series 
the so�called codependence� see e	g	 Kugler� Neusser ������� Engle� Kozicki

������� Gourieroux� Peaucelle ������� and nonstationary series 
the so�called cointegration� see

e	g	 Granger ������ Engle� Granger �������	 Broadly speaking there exists a linear comovement

between the �stationary� series �X�t�� �X�t� with equivalent patterns of time dependence� if and

only if there exists a non degenerate combination Yt � a�X�t � a�X�t� say� whose autocorrelation

pattern is negligible with respect to the autocorrelation patterns of the initial series �X�t�� �X�t�	

Such linear combinations are unique� up to some multiplicative factor� and both coe�cients

a�� a� are di�erent from zero	 Then it is common to write the relation�
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a�X�t � a�X�t � �t� ��	��

where ��t� features less persistence than the initial series	 This relation is often interpreted in

structural terms either as a stable relationship �e	g	 less sensitive to shocks�� or a long run rela�

tionship	

A similar approach can be followed in the nonlinear framework to derive nonlinear relationships

between the initial series	 Let us consider a bivariate stationary series Xt � �X�t� X�t�� and

introduce the �maximal� degree of persistence of the univariate series X� say� as�

��h�X�� � max
g

�h
g�X�t�� � max
g��g�

Corr
g�X��t�h�� g��Xt��� ��	��

Note that this �maximal� degree of persistence is computed with respect to the whole universe	

De�nition 
��� �X�t� and �X�t� are copersistent if and only if there exists a transformation

Yt � a�X�t� X�t�� which depends both on X� and X� � non degeneracy condition�� is one to one

with respect to one of the arguments� and such that�

��h�Y � � o
��h�X��� � o
��h�X����

It is important to impose the non degeneracy condition in the nonlinear framework	 Indeed�

we know that some nonlinear transformations of �X�t� � for example� may feature less persistence

that �X�t� itself� but they clearly do not generate a relationship between X� and X�	

Moreover� if the transformation a is one to one with respect to X� �say�� we can write�

a�X�t� X�t� � �t�

or

X�t � a��
� ��t� X�t�� ��	��

where a��
� denotes the inverse with respect to the �rst argument	 Therefore it is possible to express

X�t as a nonlinear function of X�t and �t with di�erent persistence	

Finally note that the de�nition of copersistence is invariant with respect to one�to�one nonlinear

transformations of either �X�t� or �X�t�	

By allowing for nonlinear transformations� we have a better chance to �nd nonlinear comove�

ments besides the linear ones	 There may exist however series without copersistence	
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	�� The Multiplicity of Copersistence Directions

The aim of this subsection is to show that there may exist a very large number of copersistence

directions� which renders di�cult the identi�cation of a nonlinear relationship with structural

interpretation	

We consider a bivariate Markov model with �nite dimensional dependence 
Gourieroux� Jasiak

�������	 The joint distribution of �Xt� Xt�h� � 
�X�t� X�t�� �X��t�h� X��t�h�� is�

fh�xt� xt�h� � � � �h

p
���x��t�h � x��t�h � ���


p
���x�t � ������

wher � � 
�� �����	 The marginal distribution of Xt is such that X�t and X�t are independent� with

a marginal uniform distribution on 
�� ��	 The canonical decomposition involves a single term 
one

dimensional time dependence�� with the canonical directions a��x� �
p
���x� � x� � ��� b��x� �

p
���x� � ����	 The parameter � is bounded to ensure the positivity of the joint p	d	f		

For any nonlinear transformation a�x�� we have�

�h�a�x�� �

s
VarE�a�Xt�h�jXt�

Var a�Xt�

�
�hjE


p
���X�t �X�t � ��a�Xt��j

Var a�Xt����
�

Therefore we have two di�erent patterns for the transformed autocorrelogram�

� If E

p
���X�t �X�t � ��a�Xt�� �� �� it features a geometric decay �h�

� If E

p
���X�t �X�t � ��a�Xt�� � �� it is equal to zero	

We easily verify that the initial series X�t and X�t admit transformed autocorrelograms �and

also maximal degree of persistence� with the same geometric decay �h	

Let us now consider a nonlinear transformation of the type�

a�X� � X� � 
c�X���

where c is a given function such that Cov 
X�� c�X��� �� �	 We get�

E

p
���X�t �X�t � ��a�Xt�� � Cov

hp
���X�t �X�t � ��� X�t � 
c�X�t�

i
�

p
�� �VarX�t � 
Cov 
X�t� c�X�t��� �

We deduce that� for any function c such that Cov 
X�� c�X��� �� �� the transformation�

a�X� � X� � VarX�t

Cov 
X�t� c�X�t��
c�X�� ��	��
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is a copersistence direction	 Therefore we get an in�nite number of relations of the type�

X�t � d�X�t� � �t�

with an interpretation in terms of copersistence	

� Persistence by Trajectories and Nonlinear Cointegration

The persistence degrees have been de�ned in section �	� for stationary processes as measures of

the e�ect of declining memory in terms of both correlation and prediction 
see equation ��	���	

The aim of this section is to extend this notion to homogenous processes� which may feature non

stationarities	 We �rst discuss the case of the gaussian random walk to show that persistence

assessment in terms of correlations and predictions may di�er signi�cantly in the presence of

nonstationarities	 This leads to the notion of persistence by trajectory� which is de�ned in the

second subsection	 Finally we discuss nonlinear cointegration	


�� Gaussian Random Walk

Let us consider a gaussian random walk�

Xt �

tX
���

�� � �	��

where the components of the noise are i	i	d	� with N����� distribution	 This is a homogenousMarkov

process	 It has been proved in Ermini� Granger ������ that the exponential transformations of the

random walk are such that�

E
expXt�hjXt� � exp
h�

�
expXt� �	��

and

�t�h � max
g�

Corr 
expXt�h� g��Xt��

� Corr �expXt�h� expXt�

�

s
exp�t� �

exp��t� h�� �
� �	��

The exponential random walk clearly features an explosive behaviour� implied by the autoregressive

representation �	��� where the autoregressive coe�cient exp h	�

� is larger than one	 However when

we consider the behaviour of the autocorrelation function for large t� we get�
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��h � lim
t��

�t�h � exp��h

�
�

�
exp��

�

�h

�

which resembles the autocorrelation of a stationary AR��� process	 This implies that� in general�

an assessment of persistence based on the asymptotic properties of the prediction is preferable	


�� Persistence by Trajectory �b�t��

We consider a process �Xt� and a possibly extended universe �Zt�	 We assume that the process

is homogenous with respect to the universe� i	e	 that the conditional distributions of Xt given

Zt�� do not depend on the date t	 Then� the conditional expectations E
g�Xt�h�jZt� are also time

independent	

Let us now introduce a positively valued sequence 
 � �
h� h � �� converging to zero at

in�nity	

De�nition ���� The by trajectory �b	t	� persistence space of order 
 is de�ned by�

Eb�t�
� � fg such that there exists a scalar c�g� with� E�g�Xt�h�jZt�� c�g� � ��
h� a	s	 g	

Therefore we have jE�g�Xt�h�jZt�� c�g�j � 
�Zt�
h a	s		 It is easily veri�ed that Eb�t�
� is a vector

space� has the monotony property� and b	t	 persistence degrees can be de�ned along the lines of

subsection �	�	 However we also have to separate the stationary and nonstationary components of

the process �Xt�	 For this purpose� we can consider the vector space�

Eb�t���� � 
�Eb�t
� � �	��

where the union is taken over all possible 
 sequences	 A transformation g belongs to the space

Eb�t���� if and only if the prediction E
g�Xt�h�jZt� becomes independent of Zt when the horizon

h tends to in�nity	 This condition is satis�ed for stationary regular processes� usually called I���

in the literature	 It is not satis�ed when g�Xt� features nonstationarities or nonregularities	

De�nition ���� If g belongs to Eb�t����� the transformed process is NLI��� �nonlinearly inte�

grated of order ��	

If g does not belong to Eb�t����� the transformed process is NLI �nonlinearly integrated�	


�� Nonlinear Cointegration

Let us consider a bivariate process Xt � �X�t� X�t�
� homogenous with respect to the information

�Zt� � �Xt�	

De�nition ���� The components X� and X� are nonlinearly cointegrated i��

�i� �X�t� and �X�t� are NLI with respect to the universe �Zt� � �Xt��
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�ii� There exists a transformation Yt � a�X�t� X�t�� which depends both on X� and X�� is one to

one with respect to one of the arguments and such that �Yt� is NLI��� with respect to the universe

�Xt�	

As for copersistence directions� there may exist a large multiplicity of cointegration directions�

causing an identi�cation problem	

Example ����

Let us consider three independent gaussian white noises ����t�� ����t�� ����t�� and de�ne�

Z��t � ��Z��t�� � ���t �AR��� process��

Z��t � ��Z��t�� � ���t �AR��� process��

Z��t �
Pt

��� ���� �random walk��

X��t � sgn����t�jZ��tj jZ��tj�
X��t � sgn����t�jZ��tj jZ��tj	

The components �X��t� and �X��t� are NLI due to the presence of the random walk jZ��tj	 More�

over any transformation of X��t�X��t� sgn�X��t�� sgn�X��t� is NLI���	 For instance the directions

X��t�X��t � a sgn�X��t� are cointegration directions for any scalar a	

There exist various ways to handle the multiplicity problem	

�i� We can try to �nd the set of all nonlinear cointegration directions in a nonparametric approach	

Such an approach� however is likely unfeasible except for cases where either the associated space�

or its supplement are included in a vector space of a small dimension	

�ii� Alternatively we can consider the problem under constraints	 We can restrict the set of admis�

sible distributions of the process �Xt� and or of the admissible forms of cointegration directions	

This approach is generally followed in the literature as illustrated by the examples below	

Example ���

For a bivariate process we know that linear cointegration directions are included in a space of

dimension equal or less than one	 Therefore the linearity of the cointegration direction is a kind

of identifying constraint	 However there may exist strictly nonlinear cointegration directions in

the absence of linear cointegration directions� and some nonlinear directions may coexist with the

linear ones	

Example ���

In a series of papers Park� Phillips ������a�b�� Karlsen� Myklebust� Tjostheim ������ considered the

estimation of nonlinear relations of the type X��t � f�X��t��u��t� where X��t features nonstation�

arities� and they introduced various assumptions on the error term u��t	 In Park� Phillips ������a��

Karlsen� Myklebust� Tjostheim ������ the assumption imposes the independence between the pro�
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cesses X� and u�	 It is easily seen that this is an identi�cation condition of the regression function

f 	 Indeed� if we consider two admissible decompositions X��t � f�X��t� � u��t � !f�X��t� � !u��t�

we deduce u��t � !f�X��t� � f�X��t� � !u��t� and �u��t� is independent of �X��t� if and only if

f � !f 	 In Park� Phillips ������b�� the error term is assumed to be a martingale di�erence

sequence with respect to the information �Xt�	 If we consider two admissible decompositions

X��t � f�X��t� � u��t � !f�X��t� � !u��t� we get u��t � !u��t � !f�X��t� � f�X��t�	 We �nd that f is

identi�able if and only if the only martingale di�erence sequence deterministic function of �X��t�

is zero	


�� Markov Process with Finite Dimensional Dependence

Let us consider a homogenous Markov process with the transition function�

p�xt��jxt� �
JX

j��

bj�xt���aj�xt�

� b��xt���a�xt�� say� �	��

It is equivalent to assume the previous decomposition or a �nite dimensional predictor space


Gourieroux� Jasiak �������	 The predictors� such as E
g�Xt�h�jXt�� g� h varying� belong to the ��

nite dimensional space generated by aj�Xt�� j � �� ���� J 	 The elements a and b of the decomposition

�	�� are de�ned up to an inversible linear transformation	

The transition function h�step ahead is given by�

ph��xt�hjxt� � b��xt�h�C
h��a�xt�� �	�

where the elements of the C matrix are ci�j �
R
ai�x�bj�x�dx	 The predictors are easily derived

from�

E
g�Xt�h�jXt� �

Z
g�xt�h�p

h��xt�hjXt�dxt�h

�

Z
g�x�b��x�dxCh��a�Xt�� �	��

To simplify the discussion we assume that the matrix C can be diagonalized with real eigenvalues

�j � j � �� ���� J 	 We denote by C �
PJ

j�� �jujv
�
j a spectral decomposition of C	 We get�

E
g�Xt�h�jXt� �
JX

j��

�h��
j

Z
g�x�
b��x�uj �dx v

�
ja�Xt�� �	��
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We can search now for the NLI��� directions	 Two cases have to be distinguished� depending

on the eigenspace associated to the unitary eigenvalues ��	

Case �� The eigenspace associated to the unitary eigenvalue does not contain the constant

function	

The space Eb�t���� is�

Eb�t���� � fg �

Z
g�x�
b��x�uj �dx � �� for any j with j�j j � �g�

Case �� The eigenspace associated to the unitary eigenvalue contains the constant function	

Up to a change of basis we can always assume that �� � � is associated with v��a�xt� � �	 We

get�

Eb�t���� � fg �

Z
g�x�
b��x�uj �dx � �� for any j � �� with j�j j � �g�

The spaces Eb�t���� have an in�nite dimension and for a bivariate process Xt � �X�t� X�t� there is

in general a multiplicity of cointegration directions	

We can note that there exist NLI��� transformations which are linear combinations of the bj

functions	 Therefore� after an appropriate change of the factor a and b� we can write �in case ���

p�xt��jxt� �
J�X
j��

bj�xt���aj�xt� �

JX
j�J���

bj�xt���aj�xt�� �	��

where bj � j � J� � �� ���� J 
resp	 j � �� ���� J�� are NLI��� transformations 
resp	 NLI transfor�

mations�	 Then we can separate the stationary and �nonstationary� components of the transition

function	

� Statistical Inference

�� Empirical Nonlinear Canonical Analysis

In practice the analysis of persistence and research on copersistence directions can be based on the

empirical nonlinear canonical analysis of a univariate or bivariate time series� respectively	

More precisely� let us consider the covariance operator at lag h�

� ��Xt�� ��Xt�h� 	h�

Z Z
��xt���xt�h�fh�xt� xt�h�dxtdxt�h� ��	��

��Markov processes with �nite dimensional dependence are direct extensions of Markov chains with a �nite state
space� Let us denote by j � 
� ���� J the admissible states and by P � �pi�j� the transition matrix� The transition
function can be written�

p�xt��jxt� � a��xt���Pa�xt��

where aj�xt� � 
� if xt � j� � otherwise� In this particular case b � P �a� C � P � and ph��xt��jxt� �
a�xt����Pha�xt�� The persistence analysis is based on the analysis of the eigenvalues of P �
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It can be approximated by replacing the unknown joint p	d	f	 fh by a kernel estimator	 The

approximated operator is�

� ��Xt�� ��Xt�h� 	h�T�

Z Z
��xt���xt�h� �fh�T �xt� xt�h�dxtdxt�h� ��	��

where �fh�T �x� y� �
�
T

PT
t��

�
h�d

K
�
Xt�x
h


K
�
Xt�h�y

h

�
� K is a kernel� and h is the bandwidth	

Then we can perform the nonlinear canonical analysis of the approximated kernel to get esti�

mated canonical correlations and canonical variates� i	e	�

�fh�T �xt� xt�h� � �fh�T �xt� �fh�T �xt�h�f� �
�X
j��

�j�h�aj�h�xt�h��bj�h�xt�g� ��	��

The consistency and asymptotic distributional properties of the estimated correlations and of

the functional approximations of the canonical directions have been derived in Darolles� Florens�

Gourieroux ������� for stationary� geometrically mixing processes	 In particular these results can

be used to check if the canonical directions become stable for large lag h ��	 When this condition

is satis�ed it is possible to de�ne the persistence decomposition as shown in subsection �	�	

�� Simulations of Fractional Gaussian Processes

The theoretical properties of the kernel based canonical analysis have not been derived yet in

the long memory framework	 To provide some insights on the performance of this method� we

examine simulated realizations of a gaussian� fractionally integrated process with parameter d	

From Example � of section � we know that the expressions of canonical directions are Hermite

polynomials� and that the limiting behaviour of the canonical correlations is a hyperbolic decay	

We can compare the properties of various estimators of the correlations�

�i� �
��
j�h � �Corr�Hj�xt�� Hj�xt�h��� i	e	 the autocorrelogram computed for the Hermite poly�

nomial of degree j�

�ii� �
��
j�h � ��h�Hj�xt�h��� i	e	 the transformed autocorrelogram for the Hermite polynomial of

degree j�

�iii� �
��
j�h the kernel based canonical correlation of order j	

These estimators require a diminishing amount of information on the canonical directions	

Indeed ��� requires the knowledge of the current and lagged canonical directions� whereas ���

only requires the current directions� and ��� none of them� i	e	 no information about the canonical

directions at all	 For real series ��� is the only implementable method	 We found it interesting to

compare crude estimators of the fractional order derived from these estimators	 The comparative

study is based on the following simulation experiment	

��It is interesting to note that this stability has been observed in intertrade duration data� from �nancial markets
	Gourieroux� Jasiak �
�����
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We simulated a trajectory of a fractionally integrated process �� � L�dXt � �t� �t � N��� ��

of length T � ����	 We display in Figures �	�� �	�� �	� the three types of autocorrelograms� for

J���			��� h ���			����� and d��	��	


Insert Figure �	�� Autocorrelogram of Hj�x��


Insert Figure �	�� Transformed Autocorrelogram of Hj�x��


Insert Figure �	�� Nonlinear Autocorrelogram�

The formulas of estimators imply that in general �
��
j�h � �

��
j�h � �

��
j�h� and graphically this is

observed in the Figures	 In the next step we use the estimated autocorrelograms to derive various

estimators of the fractional degree d	 For a given autocorrelogram �
k�
j�h � k � �� ���� �� j � �� ���� � we

regress log j�k�j�h j on � and logh for large h	 The regression coe�cient of logh provides an estimator

of �dj � �� and of d using the formulas of Table �	�	 We have performed such regressions for

h���			��� and two simulated series of length ���� corresonding to d��	��� and d��	� respectively	

Table �	�� Estimation of d �true value d � �����

j acf T�acf nonlinear acf

� �	�� �	��� �	���
���	�
 �����
 ���	


� �	�� �	�� �	���
�����
 ����
 ����


� �	�� �	��� �	��
�����
 �����
 ���	�


� �	�� �	�� �	��
����
 �����
 ���	�


Table �	�� Estimation of d �true value d � ����

j acf T�acf nonlinear acf

� �	�� �	�� �	��
����	
 �����
 �����


� �	�� �	�� �	��
�����
 ���	�
 �����


� �	�� �	�� �	��
���	�
 �����
 ����


� �	�� �	�� �	��
�����
 ���	�
 ����
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The crude estimator of the fractional order is known for its lack of precision	 Indeed� we �nd

estimates signi�cantly di�erent from true d"s in a column showing the results based on standard

a	c	f	 of Hermite polynomials in both Tables	 Especially this di�erence is more pronounced in Table

�	� for d � ��� which lies further from the region of nonstationarity� and for polynomials of higher

degrees	 In fact� for large values of the �Xt� process� the polynomials display an explosive behavior�

resulting in more extreme values� with a stronger serial correlation in polynomials of higher orders	

The large number of extremes reduces the precision of the autocorrelation estimators whereas their

serial correlation induces a �nite sample positive bias in the estimated persistence coe�cient 
see�

Deo� Hurvich ������ for a similar analysis�	

In Figure �	� we display the extreme values of Hermite polynomials for a simulated long memory

process with d � ���	 The extremes are de�ned as observations di�ering from the mean by more

than three standard deviations	


Insert Figure �	�� Extremes of Hermite Polynomials� j � ���������

The behaviour of polynomials may even produce estimated values of d out of the stationarity

region �see Table �	��	 This e�ect may be weaker for the nonlinear a	c	f	� where the �unknown�

canonical directions are kernel smoothed� and hence extreme values of the transformed series are

less frequent	

� Conclusions

In this paper we investigated various aspects of persistence in nonlinear time series	 We introduced

the T�autocorrelogram as a new instrument of analysis and de�ned the degrees of persistence of

nonlinear processes	 Some examples of persistence decomposition were discussed	 In particular

we examined the persistence decomposition of long memory processes highlighting the di�erence

between a fractionally integrated process and a beta mixture of AR��� processes	

In the multivariate framework we indicated the problem of multiplicity of copersistence or

cointegration directions	 We provided some insights on the choice of constraints as a remedy� and

commented on some results already existing in the literature	
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Appendix �

The Analytical Expression of the T�autocorrelogram

The de�nition of correlation implies that�

Corr
g�Xt�h�� g��Xt�� �
Cov 
E�g�Xt�h�jXt�� g��Xt��p

Var g�Xt�h�
p
Var g��Xt�

�

s
VarE�g�Xt�h�jXt�

Var g�Xt�h�
Corr
E�g�Xt�h�jXt�� g��Xt���

It admits the maximum for g��Xt� � E�g�Xt�h�jXt�	 At this point Corr
g�Xt�h�� g��Xt�� � ��

and the expression of �h�g� is easily found	
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Figure 7.1: Autocorrelogram of H_j(x)
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Figure 7.2: Transformed Autocorrelogram of H_j(x)
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Figure 7.3: Nonlinear Autocorrelogram of H_j(x)

j=1
j=2
j=3
j=4



THIS VERSION� November �� ���� �

j = 1

0 1000 2000 3000 4000

-4
-2

0
2

4

j=2

0 1000 2000 3000 4000

0
5

10
15

j = 3

0 1000 2000 3000 4000

-6
0

-2
0

0
20

40

j = 4

0 1000 2000 3000 4000

0
50

15
0

25
0

Figure 7.4: Extremes of Hermite Polynomials, j=1,2,3,4
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