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1. INTRODUCTION

The am of this paper istwofold. Our first @am isto develop nonparametric tests for nonlinear
co-trending of macroeconomic time series. Given the assumption that the components of a vector
time series are stationary about nonlinear deterministic time trends, nonlinear co-trending is the
phenomenon that one or more linear combinations of the time series are stationary about a linear
trend or a constant, hence the series have common nonlinear deterministic time trends. Second, we
want to investigate the nature of the relation between the federal funds rate and the CPI inflation rate
inthe U.S,, in particular whether thisrelation is due to a common nonlinear deterministic time trend.
Since the 1950's these two macroeconomic time series show aremarkable similarity. Moreover, in
certain vector autoregressions involving the interest and inflation rate a unit shock in the innovations
in the interest rate appears to have a positive effect on the inflation responses. This phenomenon is
known as the price puzze. See Bernanke and Blinder (1992), Christiano and Eichenbaum (1992),
Chrigtiano, Eichenbaum and Evans (1992, 1995), Eichenbaum (1994), Sims (1995), Balke and Emery
(1994, 1995), and Cushman and Zha (1997), among others.

The kind of nonlinear trend stationarity we consider in this paper is z = g(t) + u,, where g(t)
=B, + Bt + f(t), z isak-variate time series process, U, is ak-variate zero-mean stationary process,
and f(t) isadeterminigtic k-variate nonlinear trend function representing structural change. Nonlinear
co-trending is then the phenomenon that there exists a non-zero vector 6 such that 6™f(t) = 0. We
shdl consider two versions of nonlinear trend stationarity, namely the cases where 3, is a zero vector
or not. The first case applies to our empirical application.

The motivation for considering nonlinear co-trending is fourfold. First, thereis now empirical
evidence that some long macro-economic time series such as those in the Nelson-Plosser (1982) data
set that were initially percelved as unit root processes are probably more in accordance with a
nonlinear trend stationary hypothesis. See for example Perron (1988, 1989, 1990) who tested the unit
root hypothesis for the Nelson-Plosser series against trend stationarity with atrend break (whichis
aspecid case of nonlinear trend Stationarity), and Bierens (1997a) who tested the unit root hypothesis
for the price level and interest rate series in the extended Nelson-Plosser data set (extended by
Schotman and Van Dijk (1991) to 1988) against a smooth nonlinear trend stationarity hypothesis.

However, despite the somewhat reluctant conclusion of Bierens (19974) that the log of the annual



CPI over the period 1860-1988 is probably a nonlinear trend stationary process rather than a unit root
process, it gppears that for monthly post-war time seriesthe log of the CPI looks more like a unit root
process with time varying drift, hence the CPI inflation rate is then a nonlinear trend stationary
process.

The second motivation is that quite a few macroeconomic time series that are not unit root
processes still behave like cointegrated processes in that the series move together over timein a
amilar way. But cointegration is only possible for unit root processes, so something elseis going on.
A possible explanation is that these series have common nonlinear deterministic time trends.

The third motivation is that the (linear trend) stationarity hypothesis as well as the unit root
(with constant drift) hypothesis for macroeconomic time series imply that the structure of the
economy (i.e. the parameters of the underlying data-generating process) does not change over time.
Thisis quite implausible, in particular for long macro-economic time series such as the Nelson-Plosser
(1982) data spanning a century or more.

The fourth motivation is of a philosophical nature. The philosophical question is whether
policy interventions should be considered as stochastic events, deterministic events, or a mixture of
both. Take for example the federa funds rate (FFR), which is set by the Federa Open Market
Committee (FOMC) of the Federa Reserve Board, in order to control inflation. Undoubtly, the
FOMC will respond to inflationary signals, and to the extent that these signals are stochastic events,
the response of the FOMC will be stochastic as well. However, it is unlikely that the response is
completely automatic: It is hard to believe that this discussion is governed by afixed blueprint. In
other words, the actua federa fundsrate will reflect both externa inflationary signals, which may be
consdered as stochadtic variables, and the subjective assessment of the significance of these stochastic
ggndsby the twelve FOMC members, which may be considered as deterministic and time-varying.
It is therefore reasonabl e to assume that the FFR has a time-varying unconditional expectation.

The genera philosophical question is: If a policy maker, or a small body of policy makers,
determinesthe vaue of avariable Y, on the basis of information on a vector X, of variables (possibly
including lagged Y,'s), is the conditional expectation of Y,, given X,, atime-varying or atime-invariant
function of X,? In the latter case we can write: Y, = g(X) + U,, say, where U, has conditional

expectation equal to zero. But this means that our policy maker hasin every situation X, a"plan” g(X,)



for the action to be taken regarding Y,, apart from the uncertainty represented by U,, and that these
plans have been the same, and will be the same forever. But policy makers don't live that long, and
their tenure will even be shorter. In other words, if, for example, X, is the federal budget surplusin
the US, and Y, is the way it will be spent, it is not too farfetched to assume that it matters for the
outcome of Y, who the president is, and which party is in control of the Congress. Therefore, it is
likely that the function g will change over time, and if so it is possible that the unconditional
expectation E(Y,) will change over time as well. Hamilton (1989) models the occurrence of these
regime shifts by a discrete-time, discrete-state first-order Markov process, assuming that the
trangition probabilities are constant, which eliminates the heterogeneity. However, Hamilton's
gpproach does not solve our philosophical problem; it only shiftsit to another level: Are the transition
probabilities time-invariant, or not? If not, then E(Y,) may still be time-varying. In this paper we take
the stand that policy interventions by a single policy maker, or a small body of policy makers, will
likely have a deterministic component, which may cause heterogeneity of the target variables.

A similar argument gppliesto the CPI inflation rate as well. In the early seventies and around
1980 the OPEC cartel boosted the producers price of oil*. Aswe will show later, the inflation rate
of the producers price index of fuel and related products, and the CPI inflation rate in the USin the
period 1968-1994, have gtrikingly smilar camel-back shape patterns (after rescaling), which suggests
that the US inflation in this period was to a large extent driven by the oil price shocks. The same
appliesto the inflation rates in Canada, Japan, Germany, the U K., and France in this period, although
this will not be shown in this paper. In our view the actions of the OPEC were (at least in part)
deterministic shocks, in timing as well as in magnitude, since they were undertaken by arelatively
amdl body of policy makers, the OPEC cartel. Therefore, the unconditional expectation of the CPI
inflation rate is likely time-dependent, via the oil price shocks. The two oil price shocks, however,
had dso structurd effects. The high oil price made it possible to develop ail fields outside the OPEC
areas, such as the North Sea oil fields. Also, they triggered energy conservation in the US and
elsawhere. An example is the import, and later the domestic production, of more fuel efficient smaller

cars. Thus, the actions of the OPEC aso caused structural changein the US economy, and el sewhere.

1

See URL http://www.york.ac.uk/student/su/essaybank/politics/opec_and_oil_prices.htm
for abrief history of the OPEC cartel during the 60-th through the 80-th.
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Nonlinear co-trending is of course aspecia case of acommon feature, see Engle and Kozicki
(1993). However, the Engle-Kozicki approach requires that the feature involved has to be
parametrized. In our case we do not parametrize the nonlinear trend function f(t). Our test is more
akin to the KPSS test (Kwiatkowski et a. 1992) for testing the null hypothesis of (trend) stationarity
of aunivariate time series against the unit root hypothesis.

The plan of the paper is as follows. In Section 2 we discuss the properties of the nonlinear
function g(t). In Section 3 we summarize the procedure for testing the number of co-trending vectors
and the ideas behind it. In particular, we show how to construct nonparametrically two matrices I\7Il
and I\7I2 such that their generalized eigenvalues can be used to test for nonlinear co-trending. In
Section 4 we derive the asymptotic properties of the matrices I\7Il and |\7I2. In Section 5 we derive
the actud tests for the number of co-trending vectors on the basis of the generalized eigenvalues of
the matrices M, and M, and the asymptotic null distributions of the tests. Also, we propose a test
of linear regtrictions on the co-trending vectors. In Section 6 we propose consistent estimators of the
co-trending vectors. In Section 7 we show what happens if our tests are applied to a cointegrated unit
root process rather than anonlinear trend stationary process. In Section 8 we apply our approach to
monthly time series of the federal funds rate and the CPI inflation rate in the U.S. In Section 9 we
andyze the consequence of our empirical findings for the price puzzle. In Section 10 we determine
the source of the common trend in the CPI inflation rate and the federal funds rate.

The empirica applicationsinvolved have been conducted, and can be replicated, by using the
author's software package EasyReg?. The details of the proofs of the technical results in this paper

are given in the a separate appendix.?

2

EasyReg is downloadable from web page
http://econ.la.psu.edu/~hbierenss EASY REG.HTM,
and the data involved can be retrieved from the EasyReg database.

3 This separate appendix is downloadable as an Adobe PDF file from web page
http://econ.la.psu.edu/~hbierens/ PAPERS.HTM.
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2. NONLINEAR DETERMINISTIC TRENDS AND THEIR PARTIAL SUMS
21  Levd shifts
Our first example of a nonlinear time trend is the case where g(t) is constant, except for a

snglejump atimet;: g(t) =aif t < t;, g(t) =bif t>t,, wherea and b are vectors. If t, is constant,

it isimpossible to asymptoticaly distinguish g(t) from b, because then g(t) = a only for a finite number
of observations. Therefore, in order to make asymptotics work, one has to assume that t, is

proportional to the number of observationsn: t; = tn, where t € (0,1) isfixed. Thisassumption is

common in the literature on testing for a unit root against stationarity around a breaking trend (see
for example Perron 1988, 1989, 1990), and the literature on testing for structural change.

We can write g(t) = ¢, + f(t) for t = 1,..,n, where ¢, = b + (a-b)[tn]/n is the average of the
g(t)'sfort=1,.n, and f(t) = (a-b)(1-[tn]/n) if t < [n], f,(t) =-(a-b)[tn]/nif t > [tn]. Hereand in
the sequel, [tn] denotes the largest integer < tn. The function f.(t) has a number of properties that

are fundamental to our approach. Denote for non-negative numbers p,

™ f (t
1) Foa(d = (Wn)) =

t-1 nP

if x e [n1,1], Fp’n(x) =0 ifxe [0,n),

and let F(X) = (a-b)(1-7)x if x € [0,7], F(X) = (a-b)t(1-x) if x € (v,1]. The role of the
number p will become clear in the next subsections. In the case under review, the value p = 0 applies.
Then

[IFp1Pdx = O(1),  [IFCYIZdx < =, [IF, () - FOJI%dx = o(2),

(2
F..(0 = F () =0, F0) =F@2) =0,

where the integrals here and in the sequel are taken over the unit interval, unless otherwise indicated.

Hence, for p =0,

3) Mo, = f Fon(0F,,(9Tdx -~ M, = f F(X)F(x)"dx.

Next, let m be a subsequence of the natural numbers such that m - «, m = o(n). Denote for p >

01



/ = fn +1]
(4) Fp’n(x) = iz M

if [ > m-1, Fy () =0 if [ < m-1,
Mmij-o nP '

and let F/(x) = (a-b)(1-7) if x € [0,t], F/(X) = —(a-b)t if x € (r,1]. Thenfor p=0,
(5) [IFoa(9Zdx = O),  [IF'G9I%dx < =, [IF,(x) - F'(9I%dx = o(1),

and consequently,

(6) Mapn = [Fan®Fan(¥dx = M, = [FOJF69Tdx.
Note that the matrix M, , , can also be written as:

Moy, - 023 (WX D wm s D)

In the case of co-trending, there exists a vector 6 such that 8'g(t) = 8'c, + 0'f (t) is

constant, hence eTfn(t) = 0 fort = 1,..,n. The latter follows from the fact that c, is the average of

the g(t)'s, and that therefore the average of the f,(t)'sis zero. Therefore, this co-trending vector O is
an eigenvector of both matrices M, , , and M, , ,, corresponding to a zero eigenvalue, and due to the
convergence results (3) and (6), the same applies to the limit matrices M, and M.,

Along the same lines it is easy to show that these results carry over to level shift trend

functions g(t) with any finite number of jumps.

2.2 Kinked linear trends
The next example is the case where g(t) is piecewise linear in t, with connected adjacent
pieces. Again we assume that the kinks occur at times proportional to n.

Fort=1,...,n we can aways write g(t) = B,, + B, .t + f(t), wheref.(t) is such that

(7) §njfn(t) =0, zn:tfn(t) = 0.
t=1 t=1

Now assume for convenience thet 3,,, = By, 1, = B;. In order for (7) to hold, there should be at |east

two kinksin f.(t), say:



f(t) =at fort< tn,
f() =atn-+ azln(t - rln) for t,n <t < T,N,
f() = atn +a, (r,-t)n + asln(t - rzn) for t > ©,n,
where0 < 1, <1, <1, 1, 7,, and a, aefixed, and a,,, and a;,, are such that the two conditions
in (7) hold. The latter impliesthat a,, and &, , are proportional to a,: & , = ¢, , &, i = 2,3, where the

C_1, sarefunctions of t,,t,, and converge to limits ¢

.1 respectively. It follows now easily that,
uniformly on [0,1],

X

f (n¥)/n - a,p(x) where y(x) = 173 + Cy(X-Ty)

if O0< X

IN
A

if T, <X

IN
A

1 G-ty + G(x-1) if 1, <X

IN
[

Consequently, defining F(x) = a; f Wy)dy, F(X) = a,P(x), theresults (2), (3), (5), and (6) go
0
through for p = 1. Moreover, due to the second part of (7), we now also have that

(8) f F,.(9dx = f F(x)dx = O.

It iseasy to verify that these results carry over to piecewise linear trends with more than two
kinks, and to broken linear trends where the pieces are no longer connected. Moreover, the
assumption B, = Bo, By, = B, IS NOt essential for our argument.

The essentid difference between this case and the previous one is the value of p: p = 1 versus

p = 0. The reason for introducing this variable p in the definitions (1) and (4) is therefore to
accommodate various types of nonlinear trends.
2.3  Smooth nonlinear trends

The last example is the case where f (t) is piecewise quadratic and differentiable. First, let f (1)
be piecewise quadratic with three pieces.



f(t) = at + (b/nt? for t < tn
f(t) = at,n + btn + azln(t - rln) - (bzln/n)(t - rln)2 for T,n <t < 1,n,
f.(t) = atn + bt°n + a, (1,-1)n + b2’n<1:2 - rl)zn - asyn(t - rzn)
+ (b /n)(t - TN for t > Ton,
where 1, and t, are as before, and a, and b, are constant vectors. The differentiability condition,
together with condition (7), impose four linear restrictions on the parameters. Therefore, a,,, as, b,
and b, are linear combinations of a, and b,, with coefficients depending on 1, and t,, and n. These
coefficients converge. Similar to the piecewise linear trend case it follows now that there exist two
differentiable piecewise quadratic functions ¢(x) and Y(x) on [0,1] such that
f (n)/n - a,d(x) + b,P(x), uniformly on [0,1].
The case with q quadratic pieces is similar. The differentiability condition then imposes g-1
linear restrictions on the corresponding components of the 2q parameter vectors. Since condition (7)
imposes two additiond restrictions, g+1 parameter vectors are linear combinations of the remaining
g-1 free parameter vectors. Thus, there exist vectors a and piecewise quadratic differentiable
functions d>j(x) on [0,1] such that
f ([nx]/n) 9t

uniformly on [0,1]. Defining
Fi9 = X ab, F = X af "o mdy,

the results (2), (3), (5), and (6) go through again, for p= 1.

Note that, with A= (a,,..,a,4), p(X) = (d)l(X),---,d)q,l(X))T, and ©(x) = foxd)(y)dy,

M, - A( [ CI>(x)<I>(x)2dx>AT, M, - A( [ d)(x)d>(x)2dx>AT,

Thusin this case we have nonlinear co-trending if the rows of A are linear dependent.



24  Assumptions about the nonlinear trend
Inview of the arguments in the previous subsections, it is now reasonable to assume that in

generdl:

Assumption 1: There exists a non-negative number p such that, with F, (x) and Fp/’n(x) defined by
(1) and (4), respectively, the conditions (2) and (5) hold, hence so do (3) and (6). Moreover, the

matricesM,, M, , ., M,, and M, , in (3) and (6), respectively, have the same rank.

In general the number p is unknown, but as will appear, our main results are invariant for p (the only
exception is Theorem 5). The last part of Assumption 1 implies that the convergence results (3) and
(6) preserve the rank of the matrices involved, and that the eigenvectors corresponding to the zero

eigenvalues of these four matrices are the same, in the sense that these eigenvectors span the same

subspace of R¥.

3. INTRODUCTION TO NONLINEAR CO-TRENDING ANALYSIS

Condder ak-variate time series process z, = g(t) + u,, where g(t) = E(z) isanonlinear trend
function and v, is a zero mean stationary process. In this paper we shall design atest of the null
hypothesis that there exists anonzero k-vector 6 such that 0'g(t) islinear in t (case 1), or a constant
(case 2). In other words, we test the null hypothesis that the time series z is nonlinear co-trended.
Although only case 2 applies to our empirical application, for the sake of generality we shall treat case
1 first, and then show how the results change if case 2 applies.

First, we shall design atest of the null hypothesis € (1) that the space of all such co-trending
vectors 0 has dimension 1, againg the dternative @ (0) that this dimension is zero, i.e., we test ¢ (1)
against the alternative hypothesis that the only vector 6 for which 67g(t) is linear in t is the zero
vector. Subsequently, we shal extend our approach to testing € (r) against ¢ (s) with0 < s<r, for
r=1,.k

If 07g(t) islinear int, then s0is 0'f (t), wheref () isthe OL S residual of the regression of g(t)
on anintercept and time't, for t = 1,...,n. Aswe have seen, the two conditionsin (7) imply that 67f (t)

=0 for t = 1,..,n. This argument, of course, goes both ways: if 6 (t) = 0 for t = 1,..,n, then 67g(t)
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islinear int, for t < n. In either case, 0 is the common eigenvector of the matrices M, and M ,,
corresponding to a zero eigenvalue. However, it is possible that for such a common eigenvector,
0'g(t) is not exactly linear int. An obvious example is where 07g(t) is linear in all but a finite number
of t's. It is even possible that for a subsequence t;, GTg(tj) is nonlinear, whereas 0 is the common
elgenvector of the matrices M, and M,, corresponding to a zero eigenvalue, namely if the number of
t'swhich are less or equal to n is of order o(n). In any case, however, the exceptional t's are thinly
spread over the set of natural numbers. Therefore, the co-trending vectors we are interested in are
the common eigenvectors of the matrices M, and M, corresponding to the zero eigenvalues.
Let
n
M, = (1/n)Y Ft/n)F(t/n)T,
t=1

where

- (nx] " " -
FO) = (/)Y (7 - By - Byt) ifx e [n,1], F(x) - 0if x e [O.n),
t=1
with B, and 3, the OLS estimates of the vectors of intercepts and slope parametersin the regression
of z ontimet for t = 1,...,n. Note that, since F(x) isastep function, F(1) = 0 because of the first
condition in (7), and If(O) = 0 by definition, we can write

M, = f F()F(X)Tdx.

It will be shown that under Assumption 1, the nonlinear co-trending hypothesis ¢ (1), and

the assumption that u, is alinear process:

9) u = C(L)e, = i Ce,;, Where g, ~ i.i.d. (O/1)),
n~?M, - M, in probability, andin pa‘ticulja: that n6™™, 6 convergesin distribution to a functional
of astandard Wiener process, times 6'C(1)C(1)'6.
The factor 6'C(1)C(1)'6 is a nuisance parameter which we want to get rid of. This can be
done by using a Newey-West (1987) type estimator for 6'C(1)C(1)'0, along the lines in Bierens
(1994, p.197), as follows. Let m be a sequence of natural numbers converging to infinity with n at

rate o(n), say
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(10) m = [n%, where 0 < a < 1,

and consider the matrix
- 2Y (WmYT @, - Bo - BfWmYT @, - By - Byt D)
j=m

Note that this matrix can also be written as an integral:
= fﬁ ")F '(x)Tdix,
where

%&; (Zng.1BoBoId +1-)) i [0 = m-1, F') = 0 if [} < m-1.
It will be shown that n %M, ~ M,, and under € (1), n“6™M_6 - 6'C(1)C(1)'0 in probability. A test
of ¢ (1) against ¢ (0) can now be based on the minimum solution il, say, of the generalized
eigenvaue problem det(M, - M,) =0; i.e, the test tdtistic involved is n*~A_ . The reason for using
this generalized eigenvalue approach is that then asymptotically 6'C(1)C(1)'0 will cancel out. We
shdll extend this test to the case of multiple nonlinear co-trending, and to testing linear restrictions
on the co-trending vectors 0.

The asymptotic power of these tests depends on the choice of «: the smaller «, the higher
the asymptotic power. However, thevaue o« = 1/2 appearsto be optima for the convergence of I\7I2
to M,, hencetoo smdl an « may cause size distortion. In the empirical application we shall therefore
choose a = 1/2.

Also, we show that under the hypothesis ¢ (r) with r > 1 the eigenvectors of the matrix I\7Il,
and the generalized eigenvectors of M, w.r.t. M,, corresponding to the r smallest eigenvalues, are

y/n-consistent estimators of the co-trending vectors 6.

4. THE ASYMPTOTIC PROPERTIESOF THE MATRICES |\7I1 AND I\?I2

Given the linear representation (9), we can always write

12



(11) u, = C(Q)e, + (1-L)D(L)e, = C(De, + v, - V, 4,

say, where D(L) = [C(L)-C(1)]/(1-L) and v, = D(L)e,. A sufficient condition for the stationarity of u,
and v, isthat:

Assumption 2: The process u, hasthe linear representation (9), wherethee/'sarei.i.d. N(O,I), and
C(L) = C,(L)*C,(L), where C,(L) and C,(L) are matrix-valued finite-order lag polynomials, such
that all the roots of det(C,(L)) lie outside the unit circle.

Cf. Engle (1987). This assumption is more restrictive than necessary, but it will keep the argument
below transparent, and focussed on the main issues. See Phillips and Solo (1992) for weaker
conditionsin the case of linear processes. Also, we could assume instead of Assumption 2 that u, is
stationary and ergodic, so that we still can write u, = C(1)g, + Vv, - v, ;, where now ¢, isamartingale
difference process with unit variance matrix and v, is a stationary process. Cf. Hall and Heyde (1980,
p.136). Note that Assumption 2 does not restrict the lag polynomia C,(L). However, we do need the
additional condition that

Assumption 3: The matrix C(1) is nonsingular.

This separation of conditions will prove convenient when we compare nonlinear co-trending with
cointegration, in Section 7.
It is a standard exercise in Wiener measure calculus to verify from Assumptions 1-2, the
decomposition (11), and the functional central limit theorem, that
YR(FO) - PR () = CLW() - XW (1) + 3(x? - X)[2 f W y)dy - W (DI}

(12) B
= C(YW 9,

say, where W, is a k-variate standard Wiener process, and " =" denotes weak convergence. Cf.
Billingdey (1968). The random function VT/k(x) is known as a k-variate detrended standard Wiener

process. Moreover, it isnot hard to verify, using the decomposition (11), that under Assumptions 1-2,
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- m-1 V. .-V
(13) F.(tn) - nPF, (tn) = C)WM)Y e, + % . op(l/\/ﬁ),
i=0

fort=m-1,.,n-1, where the O, term isuniform in t. The results (12) and (13) imply:

Lemma 1. Let Assumptions 1-2 and the hypothesis ¢ (1) be true, let 0 be the normalized
eigenvector of the matrix M, corresponding to the eigenvalue A, =0, andlet Q = (6,Q,), where
Q. isthe matrix of orthonormal eigenvectors corresponding to the positive eigenvalues A,<...<A, of
M,. Denote A. = diag(A,,..,A,). Then:

. n O . n O
0O n™®l_, 0O n™®l,

87C(1) f W, ()W, (x)dxC(1)T0  67C(1)T (W XF(X)TdxQ,
- Q, =

(14)

Q. [FHW,(9TekC(1)Te A

*

in distribution, and for m - « at rate o(n),

2

T T
0 [m X ]QWI fm 0 )Qz+op<m+opwm,

0O nhfl, o n"l_,
(15)
0'C(1)C(1)'0 o'
where Q, = T :
0 Q. MQ,

Note that the rate of convergence to zero of the O, termsin (15) are optimal for m proportional to
y/n. For this reason we have chosen this min our empirical application asin (10), with o« = 1/2.
Clearly, the matrices n"PM, and nPM, converge to singular matrices M, and M,
respectively. Asiswell-known, the generalized eigenvalue problem det(M, - AM,) = 0 isill-defined
if M, issingular. Since in our case both matrices are singular, the result of Anderson, Brons and
Jensen (1983), which is used by Johansen (1988,1991,1994), Johansen and Juselius (1990), and

Bierens (1997b) to prove that ordered generalized eigenvalues converge in distribution, does not

14



apply them. However, similarly to Bierens (1997b), it follows straightforwardly from (14) and (15)

that we can use their rescaled inverses:

Lemma 2: Let Assumptions 1-3 and the hypothesis ¢ (1) hold. For every subsequence m = o(n) of

ﬂ—l OT
0 0O/

natural numbers we have:

. 1/y/m 0 . 1/y/m 0
(16) A, - Q ’( T, 1) - A =
0 nfl, n 0 nfl,

in distribution, where

- 8'C(2) f W, ()W, (x)TdxC(1)T0 - 8TC(1) f W, (x)F()TdxQ,A.'Q. f F(y)W,(y) dyC(1)"0

(17) _ _ _
- BTC(C(L0 | [(Wy(9)dx - [W,09F0)TdxQ.A. Q. [Fy)Wi(y)ch).
and
(18) pIimQ; - Q'

N—-oo

5. THETESTS
5.1 Thegeneralized eigenvalue problem

Observe that the ordered solutions A, < A, < ... < A

, < of the generdized eigenvalue

k
problem

(19) detM, - AM,) = 0

~

are related to the decreasingly ordered solutions A, > A, > ... » 4, of the generalized eigenvalue

problem
(20) det(A, - QY =0
by the equality (Wm)4, = Xj*l, j =1,....,k. Moreover, it follows from Lemma 2 and Anderson,
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Brons and Jensen (1983) that the ordered solutions of generalized eigenvalue problem (20) converge

in distribution to the ordered solutions of the generalized eigenvalue problem

(21) det(A, - A QY = 0.

Clearly, under the hypothesis ¢ (1) all but one of the solutions of (21) are zero. The only non-zero

solutionis A, = (87C(1)C(1)0)fi %, so that by (17),

22) (mi, - f(Wl(x))zdx - [Wi(F0)TXQ.AQ. [FOOW, (x)ax

in distribution.

Similarly, comparing the solutions of generalized eigenvalue problem det(Q, - AQ,) =0
with the solutions of elgenvalue problem (19), it follows easily that under Assumptions 1-3 and the
hypothesis € (1), the vector (4,,..., A,) converges in probability to the vector of ordered solutions
of the generalized eigenvalue problem det(A, -2Q,'M,Q,) = 0, which areall positive.  Itisnow

easy to verify that the following more general result holds:

Theorem 1: Let A, , be the diagonal matrix of the k-r largest eigenvalues of the matrix M,, and let
Q,.; be the matrix of corresponding orthonormal eigenvectors. Choosem= [n%] with 0 < o < 1.
Under Assumptions 1-3 and null hypothesis € (r), the solution ir of increasingly ordered solutions
of the generalized eigenvalue problem (19) satisfies n*“A. -~ A_in distribution, where A_ isthe
maximum eigenval ue of the matrix

[WHW,(9Tdx - [WJF(9Tdx Q A QL [FYIW(y)'dy.
Under the alternative hypothesis € (s), with s<r, we have: pIimM)ALr > 0.

5.2  Theasymptotic size of the test
A practica problem with thistest isthat the null distribution is case-dependent: it depends on
F. In particular, it is easy to verify that the right-hand side of (22) isequa to

inf f(vT/l(x) - TR dx = fvT/l(x)zdx - F'MB, where f = M, [ FOOW, (X)X,
B
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with M, the generalized inverse of M,. Thus, the limiting null distribution involved is the same as the
limiting distribution of n™* times the residual sum of squares of the (spurious) regression of VT/l(t/n)
on F(t/n) for t = 1,..,n. This result suggests, in the case of testing the null hypothesis ¢ (1), the
following way to smulate the null distribution. Generate a version of VT/l(x) independently of the
data, by drawing n independent standard normal random variables g for j = 1,..,n, regressing them
on an intercept and j, and forming partial sums of the residuals éJ , divided by /n:
W, (9 = (UymE"e forx e [n11], W, (x) = 0 for x e[0,n ).
Then W,, = W, for n - «, where the latter has the same distribution as W,, but is now
independent of the data. Since by Assumption 1 and (12), n ’plf(x) convergesto F(x) in L?, it follows
now that for fixed K > 0,
im P( i [OW,400 - BTFO))x > K) - P( i [0 - BTFE))clx > K) .

By replicating this procedure N times, where N goes to infinity with n, we get consistent estimates
of the quantiles of the null distribution (22), provided that the rank of the matrix M, isindeed k-1. If
the latter is not true, we end up with a lowerbound or an upperbound, depending on whether the
actual rank of M, isk or lessthan k-1. Since we are testing the null hypothesis that rank(M,) = k-1
againg the dternative that rank(M,) = k, the simulation procedure under review will therefore have
a negative effect on the power of the test.

A much simpler way to get around the problem that the null distribution of our test is case-
dependent, is to base the asymptotic critical values of the test of the null hypothesis ¢ (r) on the

maximum eigenvalue of the matrix
(23) f W, (X)W, (x)Telx

only. A motivation for this choice is that under @ (r), the function F(x) may be considered as an

unknown parameter in a space =, where

Definition 1: E, is the space of k-dimensional functions F on [0,1] for which F(0) = F(1) = 0,
f F(x)dx =0, f F(X)"F(xX)dx < o, and rank| f F(X)F(X)"dX] = k-r,
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and that therefore the null hypothesis of co-trending is a composite hypothesis, similar to the case of
testing the composite null hypothesis that a parameter (vector) o is contained in set Q,, with {(w)
the size of thetest inapoint w in Q,. Asiswell-known, the classical approach in this case isto
define the actual size of this test by sup, ., C(w). The following result shows that if we base the
critical value of our test on the maximum eigenvalue of (23), we actually get the correct size, in the

classical sense:

Theorem 2: There exists a sequence F,, in E, such that
(24) plim [W,(9F,()'dQ.A.'Q." [F () W,(y)"dy - O.
m-co

Consequently, under Assumptions 1-3 and the null hypothesis € (r),
(25) sup_clim _P(n*“k > K) = P(A| > K)

for every K > 0, where X: is the maximum eigenval ue of the matrix (23).

Therefore, if we interpret F(X) as a nuisance parameter, with parameter space =,, and K the critical
value, the actual asymptotic size of the test is given by (25).

The proof of (24) inthe caser = 1is based on Mercer's theorem. See Dunford and Schwartz
(1963, p.1088), and Bierens and Ploberger (1997). The details of the proof can be found in the
separate appendix. The main idea is to arrange the eigenfunctions qrj(x) and corresponding non-
negative eigenvalues Aj of the covariance function I'(xy) = E(W,(X)W,(y)) such that the
subsequence of positive eigenvaues forms a non-increasing sequence. Then we may choose F,(X)
= QA (W, (9,0, ,(0)7, where the ,(X)'s correspond to positive eigenvalues.

The 80%, 90% and 95% quantiles of the distribution of the random variable A, forr =1,..,5
aregivenin Table 1. These quantiles are calculated by Monte Carlo smulation, on the basis of 10,000
replications of samples of size n = 500 from the N,(0,1,) distribution.
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Table 1: Values of K for which P(A <K) = g
p: 0.80 0.90 0.95

r: K

0.091103 0.119616 0.150989
0.134492 0.169183 0.202642
0.173114 0.214069 0.252212
0.205922 0.251317 0.294746
0.236006  0.282870 0.330943

a b W N P

5.3  Testinglinear restrictions on the co-trending vectors

Once we have established the number r of linear independent co-trending vectors 0, we may
wish to test the null hypothesis that the columns of a given k x smatrix H with 1 < s< r span a
subspace of the space of co-trending vectors, smilar to testing linear restrictions on the cointegrating
vectors by Johansen's (1988,1991,1994) likelihood ratio approach. It is straightforward to verify from

Lemmal:

Theorem 3: Let Assumptions 1-3 and the hypothesis € (r) hold, and let m=[n“], withO < e < 1.
Let H beagivenk x smatrixwith1 < s < r, and let XS be the maximum solution of the generalized
eigenvalue problem detfH "™M,H - A H "M,H] = 0. If the columns of H span a subspace of the
gpace of co-trending vectors then n 1""):5 converges in distribution to the maximum eigenvalue X;

of the matrix f VT/S(x)VT/S(x)de, whereas otherwise XS convergesin probability to a positive constant.

54  Detrending or not?

All our results so far are based on detrended data. But there are situations where there is no
linear trend in the data, for example when we use differenced time series. Then taking out a constant
mean, by subtracting from z its sample mean z, will suffice. It is easy to verify that al our results
carry over, provided that we replace the process VT/k(x) defined in (12) by a k-variate standard
Brownian bridge WY(X) = W|(X)-XW(1). Moreover, instead of the critical valuesin Table 1 we should

use the ones in Table 2, where A? is the maximum eigenvalue of the matrix f W, (X)W, (x) Tdlx.
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Table 2: Values of K for which P(A;/<K) = g
p: 0.80 0.90 0.95
r: K

1 0.2451126 0.3518246 0.4657737
2 03993106 0.5356136 0.6742039
3 0.5413243 0.7036614 0.8603746
4 0.6778114 0.8618191 1.0345377
5 0.8170006 1.0141629 1.2194813

6. CONSISTENT ESTIMATION OF THE CO-TRENDING VECTORS

Given the hypothesis & (1), there are three candidates for the estimator 8, say, of the co-
trending vector 0, namely the eigenvector corresponding to the minimum eigenvalue of the matrix
M, , the minimum eigenvalue of the matrix M,, or the minimum generalized eigenvalue of M, w.r.t.
M,.

First, consider the case where 0 is anormalized eigenvector of M,. Let Q= (6,Q,) beas
inLemmal, let & be the eigenvector of Q ™M, Q corresponding to the minimum eigenvalue 1., , , sy,
normalizedsuchthat &' = (1,€7),andlet § = Q€ = 6 + Q€. . Notethat § isan eigenvector of M,
corresponding to the minimum eigenvalue 5‘1,1- Then

Q*Tmlé = Q*Tmle * Q*Tle*g* = 5‘1,12*’
hence
nP/ng, = —(n »Q'M,Q, - n ’Zpilyllk{)*ln ?/nQ.'M,0.

It follows now straightforwardly from Lemma 1 that

(26) nP/n@® - 0) = Q.nP/rE,. - —Q*A;lQ*Tf FOOW,()TdxC(1)'0 in distr.,

and consequently, using the trivial equality [8] - 10] = (B+6)T(6-0)/(18] + 16]), and thefact that
16] =1,
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(27) nP/n(0] - 1) - —GTQ*A;lQ*Tf FOOW, () TdxC(1)™0 in distr.
Combining (26) and (27), and denoting 6 = 6/]8], now yield:

(28) nP/n@® - 0) - —(|k - GGT)Q*A;lQ*T fF(x)vT/k(x)dec(l)Te in distr.

Next, let us see what happens under the hypothesis @ (1) if § isthe normalized eigenvector
of the matrix I\7I2 corresponding to the minimum eigenvalue. As in the previous case, the limiting
distribution and rate of convergence of & - 0 iscrucially determined by part (15) of Lemma 1. It
can be verified from the proof of Lemma 1 in the separate appendix that the indicated rate of
convergence involved istoo conservative, and that it ispossible that n *%@TMZG* = O,(1), provided
that p > 1/2. If so, then under some additional regularity conditions, \/ﬁ(é - 0) convergesin
distribution. However, if p < 1/2 then |n *%@TMZG*; converges to infinity, and so will
||\/ﬁ(é - 0)||. Sincein generd p isunknown, we therefore recommend against using this estimator.

Findly, let now & bethe generalized eigenvector corresponding to the minimum solution 5‘1
of the generalized eigenvalue problem (19), again normalized such that &' = (1,€"), and let & be

as before. Then
QM8 - L,0'M,0 = QM, - LM, + QTM, - LM,QE. -0,
hence
nP/né. = —(n 2Q'M,Q, - n’ZleQ*TMZQ*)fl(n */nQ. M0 - /nimi,n ’R/ﬁQfl\?lﬁ)
= - #QM,Q.) n PAQIMLO + o/,

where the last equality follows from Lemma 1 and the fact that by Theorem 1, il = O,(m/n).
Therefore, the results (26), (27), and (28) carry over.

Along the same lines it can be shown that in general the following result holds:

Theorem 4: Let Assumptions 1-3 and the hypothesis ¢ (r) hold. Let 6 - (él,...,ér) and 0 =

(0,,...,0,) bethek x r matrices of either the orthonormal eigenvectors of the matrices M, and M,
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alone, or the orthonormal generalized eigenvectors of M, w.r.t. M, and M, w.r.t. M,, respectively,
corresponding to the r smallest eigenvalues. Let Q. be the matrix of the other k-r orthonormal
eigenvectors of M, and let A. be the diagonal matrix of corresponding k-r positive eigenvalues.

Thenjointly for i = 1,..,r,

n®/n@ - 6) - I, - GieiT)(Q*A;lQ*T)( fF(x)vT/k(x)Tolx)C(l)Tei in distr.

7. COMPARISON WITH COINTEGRATION
The nonlinear trend stationarity hypothesis and the unit root with drift hypothesis are difficult
to distinguish. Therefore, we shall also derive the asymptotic distribution of our test under the unit
root hypothesis with possible cointegration. Thus, let the data generating process now be
Az, = B, + u, where u, obeys Assumption 2 (but not Assumption 3 of course), hence

z = By + Byt + Xj4u, where B, =z, Now denote

W00 = W)+ (6x-4) [Wyy)dy - (12-6) (YW )dy, W, (9 = (W ().
0

Then it can be shown, smilarly to Bierens (1997b):

Theorem 6: Let z = 7, + B, + u, be a k-variate unit root with drift process with u, obeying
Assumption 2, and let m = [n*] for some « € (0,1). Suppose there are r cointegrating vectors, and
that for each cointegrating vector 6, 6'D(1)D(1)™0 > 0. Let 4, < A, <...< A, be the ordered
solutions of the generalized eigenvalue problem (19). Then the vector n' %(A

1-A,) CONVErgesin

distribution to the vector of ordered eigenvalues of the matrix
WOV 09Tax - [ vT/r(x)wk*j(x)de( [ wk*j(x)wk*j(x)olx)’l [V OV 09T,

and (4

eigenvalue problem

e ,Xk) converges in distribution to the vector of ordered solutions of the generalized

det[ [V SOk~ . (W (W r(x)de] - 0.

If B, = 0, so that z is a k-variate unit root process without drift, and if z is demeaned rather than
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detrended, the above results carry over, provided that VVr(x) isreplaced by the r-variate standard
Brownian bridge W’(X) = W,(X)-xW.(1) and W, (x) by W (X = f “W, (x)dx, where
~ ok O

kar(x) = kar(x) - ‘[kar(y)dy

This result shows that our nonlinear co-trending tests are incapable of distinguishing nonlinear co-
trending from cointegration. Therefore, before we apply the co-trending tests we should test first

whether the seriesinvolved are unit root processes.

8. NONLINEAR CO-TRENDING ANALYSISOF INTEREST AND INFLATION
8.1 Thedata

We use monthly time series of the federal funds rate (FFR) and the CPI inflation rate (CPIR)
(i.e., the annual percentage change of the consumer price index), for months 1954.07 through
1994.12. The two standardized* series are plotted in Figure 1.

<Insert Figure 1 about here>
We see clearly that these series have a common pattern. The cross-correlation between FFR and
lagged CPIR, and CPIR and lagged FFR, is maximal 0.7747 for lag = 0. The dates 1974.11 and
1980.05 correspond to the top of the two main peaks in the CPIR, which approximately correspond
to the two peaks in the FFR as well. Moreover, it is also clear from Figure 1 that the series do not
have alinear trend, or, if they are unit root processes, do not have drift. Therefore our nonlinear co-
trending tests can be conducted without detrending.

However, since our test becomes a cointegration test if the series are unit root processes, we
havefirst conducted a variety of unit root and stationarity tests. The tests involved are the Phillips-
Perron (1988) unit root test (PP), Bierens (1993) unit root tests HOAC(1,1) and HOAC(2,2) on the
basis of higher order sample autocorrelations, the Bierens-Guo (1993) tests 1 through 4, indicated
below by BG(1) through BG(4), of the stationarity hypothesis, and the KPSS test of the stationarity
hypothesis. Also, we have conducted these tests to the first difference of log(CPl), denoted by

4 Each series x(t) is standardized between 0 and 1 by applying the transformation y(t) =

x(®) - min_,_ {x(O})/(max,_, {x(®)} - min__{x(0})
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Alog(CPI), because CPIR is approximately proportional to the 12 months moving average of
Alog(CPl). Hence if the latter time series is stationary then so is CPIR, but nevertheless CPIR will
then look like aunit root process.

The test results are mixed®. Some of the unit root tests reject the unit root hypothesis, some
don't, and some of the stationarity tests reject stationarity, while some don't. In particular, the KPSS
test rgjects the stationarity hypothesis for all three series. The KPSS test, however, will also have
power against nonlinear trend stationarity (and other non-unit root alternatives as well: see for
example Lee and Schmidt 1996), because our test for nonlinear co-trending becomes the KPSS test
if applied to asingle time series.

The mixed test resultsindicate that these three series are neither genuine unit root processes
nor genuine stationary processes. In particular, if one concludes that Alog(CPl) is not a unit root
process, then neither is CPIR, despite the test results for the latter series.

We dso have conducted Bierens (1997a) tests of the unit root hypothesis against nonlinear
trend stationarity, but the unit root hypothesis could not be rejected. The latter might be due to the
lack of smoothness of the nonlinear trends. Despite these results, the genera conclusion from the
other tests is that the FFR and the CPIR are neither genuine unit root processes, nor genuine
stationary processes. In other words, our case for nonlinear trend stationarity is based on

circumstantial evidence.

8.2  Nonlinear co-trending test and estimation results

The components of the vector time series process z are now the CPIR and the FFR, for t =
1 (=1954.07) to 486 (=1994.12). The parameter « in Theorem 1 has been chosen equal to 1/2, for
the reasons mentioned previoudy. Moreover, the tests are conducted on the basis of demeaned rather
than detrended variables.

The ordered generdized eigenvalues of M, w.r.t. M, are A, = 0.009134405 and
A, = 0.04478581, and the corresponding standardized generalized eigenvectors of M, w.rt. M,

®  Thenumerical results are not reported here. They can easily be replicated by using the

author's software package EasyReg (see footnote 2), and the default test parameter options
therein.
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are

1 -0.036827 -~CPIR

(30)
-0.772864 1 -FFR

Multiplying Xr by y/n = /486 now yields the test of the null hypothesis that there are r co-trending
vectors against the aternative that there are less than r co-trending vectors. The test results,

presented in Table 3, indicate that there is one co-trending vector.

ests of the number r of co-trending vectors
for z, = (CPIRt,FFRt)T

test statistic 10% crit. region 5% crit. region conclusior]
0.20137 >0.35182 >0.46577 accept
0.98732 >0.53561 >0.67420 reject

In Figures 2 and 3 we display the components of the estimated functions If(x) and F /(x) :
respectively, standardized between -1 and 1 by dividing each component by its maximum absolute
value. The common patterns in these components clearly corroborate the test result of presence of
nonlinear co-trending.

<Insert Figures 2 and 3 about here>

It follows from Theorem 4 that the first column of (30) is a consistent estimate of this co-

trending vector, and so is the normalized eigenvector of the matrix M , corresponding to the smallest

eigenvalue. The latter estimation result, which we shall adopt, reads:

(31) Nonlinear trend in CPIR = 0.75457 x Nonlinear trend in FFR.

Note that the order in which we have written the nonlinear co-trending relation (31) should not be
interpreted as a causa ordering, as each of the nonlinear trends in FFR and CPIR may be considered
as the common nonlinear trend.

In order to determine the error of the estimate 0.75457, we have tested the hypothesis that
the vector H = (1,-a)" isaco-trending vector, for a ranging from 0.3 to 1.2. It appears that the 95%

25



confidence interval of the parameter a is approximately (0.3, 1.2), and the 90% confidence interval
is approximately (0.4, 1).

The case a = 1 is of particular interest, because it implies that the real interest rate has a
constant expected value. The assumption of a constant ex-ante real interest rate (i.e., the difference
between the nominal interest rate and the conditional expectation of the inflation rate), plays an
important role in economic theory and finance. Our test results indicate that the hypothesisa=1is
not regjected at the 5% significance level, and borderline (not) rejected at the 10% significance level.
At firgt sight thisresult ssemsto contrast with Garcia and Perron (1996) and Phillips (1998), who find
evidence of regime shiftsin the real interest rate in the period 1961:1-1986:12. Garcia and Perron
model the shiftsin the mean of the real interest rate by a Hamilton (1989) type Markov switching
model, with three states. Phillips tests for evidence of long memory in the same series. The interest
rate in these two studies is the US 3 months Treasury bill rate. Therefore, we have redone the
nonlinear co-trending analysis with the FFR replaced by this Treasury bill rate, and the US 4-6 months
commercia paper rate, respectively. The results are about the same as for the federal funds rate,
except that the estimate of a in both cases is now about 0.88, and the null hypothesisa = 1 is not
rejected at the 10% significance level.

However, these results do not necessarily conflict with the findings of Garcia and Perron,
because Hamilton's (1989) Markov switching modd may generate data with a constant unconditional
expectation and variance. Take for example the following AR(1) Markov switching model with two
states, S =0and § =1

Y, = aS + B, - a§,) + oe, [B] <1, e ~iid NQOD),

P(S = 1§, = p. P§ = 1§, -0 =q.

Then E(Y) = «E(S) = ag/(1 - p + g). Therefore, the real interest rate can have a constant
unconditional expectation, while being a AR(2) Markov switching process.

Phillips (1998) tests the fractional integration hypothesis I(d) for the real interest rate, and
finds that d is just outside the right-side of the stationary region (-0.5,0.5), but not significantly

greater than 0.5 at the 5% significance level. Thus Phillips results do not (clearly) conflict with ours.
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9. THE PRICE PUZZLE RECONSIDERED

Our findings suggest that the positive correlation between the inflation rate and the interest
rate is due to acommon nonlinear deterministic time trend. However, does this common nonlinear
trend explain the price puzzle? We recall that the price puzzle is the phenomenon that in certain
VAR's the innovation response of inflation to a unit shock ininterest is persistently positive. In Figure
4 we illugtrate the price puzzle in a nonstructural VAR(36) with intercepts for the vector time series
process z = (FFR,CPIR)" over a horizon of 60 months. The solid curve is the innovation response
of theinflation rate to a unit shock in the federal funds rate, and the dotted curves are 1 and 2 times
the standard error bands. These are asymptotic standard error bands, computed according to the
approach of Baillie (1987).

<Insert Figure 4 about here>

We seethat inthisVAR the price puzzle is quite apparent: for the first 24 months the lower
standard error band stays above the zero level, and athough the innovation response curve dips below
the zero level after 32 months, the negativity is not significant.

Next, we have re-estimated this VAR, but now including, next to the intercept, 20 Chebishev
time polynomiasP, (1), j = 1...,20, in the two equations, in order to take (most of) the nonlinear trend

out of the innovations. Chebishev time polynomials take the form

Pon = 1, P (1) = J2codjn(t - 0.5)/n], j = 1,...,n-1.

See Hamming(1973) and Bierens (1997a). They are orthonormal: (ﬂn)E[‘;lPi’n(t)Pj’n(t) = I(i#)) for
i,j =0,...,n-1, wherel() istheindicator function, and therefore any trend function g(t) can be written

as

n-1 n
g(t) = ZYj,nPj,n(t)’ t =1..n, wherey, = (Un)z; 9()P,,(1).
-0 t-

As can be seen from the graphs in Bierens (1997a), Chebishev polynomials are very flexible: If g(t)
is reasonably smooth, then for arelative (w.r.t. n) smal number K, such as K = 20 in our case, the
approximation g,(t) = EjEOYj,nPj,n(t) will likely be close to g(t).

In both equations these Chebishev polynomias were jointly significant at the 5% leve,

corroborating the previous (circumstantial) evidence that both series are nonlinear trend stationary.
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The effect of the inclusion of these Chebishev polynomialsin the VAR on the innovation response
of the CPIR isdisplayed in Figure 5.
<Insert Figure 5 about here>

We see from Figure 5 that the effect of this detrending procedure on the innovation response
of the CPIR is quite astonishing. The innovation response curve starts off significantly positive only
for afew months, and then wiggles around the zero level. Comparing Figures 4 and 5 we a so see that
the magnitude of the response has been substantially reduced. Therefore, the conclusion seems
justified that the price puzzleis, to alarge extent, due to a common nonlinear trend in the FFR and
the CPIR. This conclusion, of course, does not mean that the price puzzle is solved! Another (price)

puzzle has now emerged:

10. WHY ISTHERE A COMMON NONLINEAR TREND
IN THE CPI INFLATION RATE AND THE FEDERAL FUNDS RATE?

As has dready been dluded to in Section 1, the shapes of the standardized CPI inflation rate
(CPIR) and the standardized inflation rate of the PPI of fuel and related products® (PPIFIR), plotted
in Figure 6, have a remarkable resemblance. The sharp rise in the CPIR in the early seventies and
around 1980 coincide with the rise of the PPIFIR. In particular, the dates of the top of the two main
peaksin the PPIFIR are two to three months earlier than those of the CPIR. These peaks are clearly
the results of the two oil price shocks induced by the OPEC cartel.

<Insert Figure 6 about here>

In order to verify whether the PPIFIR is the source of the common nonlinear trend in the
CPIR and the FFR, we have conducted our co-trending analysis in the same way as before on the
vector time series process z = (FFR,,CPIR,,PPIFIR)", after having tested for a possible unit root in
the PPIFIR (using al available data, from 1947.01 to 1998.12). As for the latter, the results were
again mixed. The Phillips-Perron test rejects the unit root hypothesis for PPIFIR at the 5%
sggnificance level, and so do the HOAC(1,1) and HOAC(2,2) tests of Bierens (1993). The Bierens-
Guo (1993) dationarity tests BG(1) and BG(2) rgect the stationarity hypothesis at the 5%

®  Theorigina sourceis URL http://www.stls.frb.org/fred/data/ppi/ppieng of the Federal
Reserve Bank of St. Louis.
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significance level. However, the tests BG(3) and BG(4) do not reject the stationarity hypothesis at
the 10% significance level, and the same applies to the KPSS test. Therefore, also thistime seriesis

neither a genuine unit root process, nor a genuine stationary process.

ests of the number r of cotrending vectors
for z, = (CPIR,,FFR,,PPIFIR)"

test statistic 10% crit. region 5% crit. region conclusior]

0.04529 >0.35183 >0.46577 accept
0.21503 >(0.53561 >0.67420 accept
1.29460 >0.70366 >0.86038 reject

As expected, the co-trending test results in Table 4 indicate that there are two co-trending

vectors: r = 2, with estimation results (based on the eigenval ues of I\7Il):

Nonlinear trend in FFR 0.459726 x Nonlinear trend in PPIFIR

0.430217 x Nonlinear trend in PPIFIR

(32 . _
Nonlinear trend in CPIR

We have tested again whether the real FFR is stationary, by testing whether the 3x 1 matrix
H = (-1,1,0)" spans a subspace of the space of co-trending vectors. Note that thisis just the test of
the null hypothesisthat the two coefficientsin (32) are equal. The test result is dlightly different from
before: the null hypothesis involved is still not rejected at the 5% significance level, but it is now
rglected at the 10% sgnificance level. This result is therefore more in tune with the results of Garcia
and Perron (1996) and Phillips (1998) than before.

Inview of these results, the conclusion seems justified that the non-linear trend in the CPIR
isto alarge extent due to the nonlinear trend in the PPIFIR, which in itsturn is to alarge extent due
to the oil price shocks and their aftermath, induced by OPEC.

Asto the nonlinear trend in the FFR, it islikely that the FOMC of the Federa Reserve Board
has anticipated the inflationary effect of the actions of the OPEC, and responded by preemptive raises
of the FFR. Moreover, it should be (and probably has been) a matter of concern to the FOMC if the

real interest rate runs out of hand, because too high areal interest rate will have serious negative
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effects on the real economy, and too low a rea interest rate will boost spending on credit and
thereforeinflation. The FOMC will therefore likely keep the real interest rate within certain bounds,

which may (partly) explain the common nonlinear trend in the FFR and the CPIR.
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