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1. INTRODUCTION

The aim of this paper is twofold. Our first aim is to develop nonparametric tests for nonlinear

co-trending of macroeconomic time series. Given the assumption that the components of a vector

time series are stationary about nonlinear deterministic time trends, nonlinear co-trending is the

phenomenon that one or more linear combinations of the time series are stationary about a linear

trend or a constant, hence the series have common nonlinear deterministic time trends. Second, we

want to investigate the nature of the relation between the federal funds rate and the CPI inflation rate

in the U.S., in particular whether this relation is due to a common nonlinear deterministic time trend.

Since the 1950's these two macroeconomic time series show a remarkable similarity. Moreover, in

certain vector autoregressions involving the interest and inflation rate a unit shock in the innovations

in the interest rate appears to have a positive effect on the inflation responses. This phenomenon is

known as the price puzzle. See Bernanke and Blinder (1992), Christiano and Eichenbaum (1992),

Christiano, Eichenbaum and Evans (1992, 1995), Eichenbaum (1994), Sims (1995), Balke and Emery

(1994, 1995), and Cushman and Zha (1997), among others. 

The kind of nonlinear trend stationarity we consider in this paper is z  = g(t) + u , where g(t)t    t

= $  + $ t + f(t), z  is a k-variate time series process, u  is a k-variate zero-mean stationary process,0  1    t       t

and f(t) is a deterministic k-variate nonlinear trend function representing structural change. Nonlinear

co-trending is then the phenomenon that there exists a non-zero vector 2 such that 2 f(t) = 0. WeT

shall consider two versions of nonlinear trend stationarity, namely the cases where $  is a zero vector1

or not. The first case applies to our empirical application.

The motivation for considering nonlinear co-trending is fourfold. First, there is now empirical

evidence that some long macro-economic time series such as those in the Nelson-Plosser (1982) data

set that were initially perceived as unit root processes are probably more in accordance with a

nonlinear trend stationary hypothesis. See for example Perron (1988, 1989, 1990) who tested the unit

root hypothesis for the Nelson-Plosser series against trend stationarity with a trend break (which is

a special case of nonlinear trend stationarity), and Bierens (1997a) who tested the unit root hypothesis

for the price level and interest rate series in the extended Nelson-Plosser data set (extended by

Schotman and Van Dijk (1991) to 1988) against a smooth nonlinear trend stationarity hypothesis.

However, despite the somewhat reluctant conclusion of Bierens (1997a) that the log of the annual
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CPI over the period 1860-1988 is probably a nonlinear trend stationary process rather than a unit root

process, it appears that for monthly post-war time series the log of the CPI looks more like a unit root

process with time varying drift, hence the CPI inflation rate is then a nonlinear trend stationary

process.

The second motivation is that quite a few macroeconomic time series that are not unit root

processes still behave like cointegrated processes in that the series move together over time in a

similar way. But cointegration is only possible for unit root processes, so something else is going on.

A possible explanation is that these series have common nonlinear deterministic time trends. 

The third motivation is that the (linear trend) stationarity hypothesis as well as the unit root

(with constant drift) hypothesis for macroeconomic time series imply that the structure of the

economy (i.e. the parameters of the underlying data-generating process) does not change over time.

This is quite implausible, in particular for long macro-economic time series such as the Nelson-Plosser

(1982) data spanning a century or more.

The fourth motivation is of a philosophical nature. The philosophical question is whether

policy interventions should be considered as stochastic events, deterministic events, or a mixture of

both. Take for example the federal funds rate (FFR), which is set by the Federal Open Market

Committee (FOMC) of the Federal Reserve Board, in order to control inflation. Undoubtly, the

FOMC will respond to inflationary signals, and to the extent that these signals are stochastic events,

the response of the FOMC will be stochastic as well. However, it is unlikely that the response is

completely automatic: It is hard to believe that this discussion is governed by a fixed blueprint. In

other words, the actual federal funds rate will reflect both external inflationary signals, which may be

considered as stochastic variables, and the subjective assessment of the significance of these stochastic

signals by the twelve FOMC members, which may be considered as deterministic and time-varying.

It is therefore reasonable to assume that the FFR has a time-varying unconditional expectation.

The general philosophical question is: If a policy maker, or a small body of policy makers,

determines the value of a variable Y  on the basis of information on a vector X  of variables (possiblyt         t

including lagged Y 's), is the conditional expectation of Y , given X , a time-varying or a time-invariantt       t   t

function of X ? In the latter case we can write: Y  = g(X ) + U , say, where U  has conditionalt         t  t   t    t

expectation equal to zero. But this means that our policy maker has in every situation X  a "plan" g(X )t   t
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for the action to be taken regarding Y , apart from the uncertainty represented by U , and that theset        t

plans have been the same, and will be the same forever. But policy makers don't live that long, and

their tenure will even be shorter. In other words, if, for example, X  is the federal budget surplus int

the US, and Y  is the way it will be spent, it is not too farfetched to assume that it matters for thet

outcome of Y  who the president is, and which party is in control of the Congress. Therefore, it ist

likely that the function g will change over time, and if so it is possible that the unconditional

expectation E(Y ) will change over time as well. Hamilton (1989) models the occurrence of theset

regime shifts by a discrete-time, discrete-state first-order Markov process, assuming that the

transition probabilities are constant, which eliminates the heterogeneity. However, Hamilton's

approach does not solve our philosophical problem; it only shifts it to another level: Are the transition

probabilities time-invariant, or not? If not, then E(Y ) may still be time-varying. In this paper we taket

the stand that policy interventions by a single policy maker, or a small body of policy makers, will

likely have a deterministic component, which may cause heterogeneity of the target variables.

A similar argument applies to the CPI inflation rate as well. In the early seventies and around

1980 the OPEC cartel boosted the producers price of oil . As we will show later, the inflation rate1

of the producers price index of fuel and related products, and the CPI inflation rate in the US in the

period 1968-1994, have strikingly similar camel-back shape patterns (after rescaling), which suggests

that the US inflation in this period was to a large extent driven by the oil price shocks. The same

applies to the inflation rates in Canada, Japan, Germany, the U.K., and France in this period, although

this will not be shown in this paper. In our view the actions of the OPEC were (at least in part)

deterministic shocks, in timing as well as in magnitude, since they were undertaken by a relatively

small body of policy makers, the OPEC cartel. Therefore, the unconditional expectation of the CPI

inflation rate is likely time-dependent, via the oil price shocks. The two oil price shocks, however,

had also structural effects. The high oil price made it possible to develop oil fields outside the OPEC

areas, such as the North Sea oil fields. Also, they triggered energy conservation in the US and

elsewhere. An example is the import, and later the domestic production, of more fuel efficient smaller

cars. Thus, the actions of the OPEC also caused structural change in the US economy, and elsewhere.
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Nonlinear co-trending is of course a special case of a common feature, see Engle and Kozicki

(1993). However, the Engle-Kozicki approach requires that the feature involved has to be

parametrized. In our case we do not parametrize the nonlinear trend function f(t). Our test is more

akin to the KPSS test (Kwiatkowski et al. 1992) for testing the null hypothesis of (trend) stationarity

of a univariate time series against the unit root hypothesis.

The plan of the paper is as follows: In Section 2 we discuss the properties of the nonlinear

function g(t). In Section 3 we summarize the procedure for testing the number of co-trending vectors

and the ideas behind it. In particular, we show how to construct nonparametrically two matrices 

and  such that their generalized eigenvalues can be used to test for nonlinear co-trending. In

Section 4 we derive the asymptotic properties of the matrices  and . In Section 5 we derive

the actual tests for the number of co-trending vectors on the basis of the generalized eigenvalues of

the matrices  and , and the asymptotic null distributions of the tests. Also, we propose a test

of linear restrictions on the co-trending vectors. In Section 6 we propose consistent estimators of the

co-trending vectors. In Section 7 we show what happens if our tests are applied to a cointegrated unit

root process rather than a nonlinear trend stationary process. In Section 8 we apply our approach to

monthly time series of the federal funds rate and the CPI inflation rate in the U.S. In Section 9 we

analyze the consequence of our empirical findings for the price puzzle. In Section 10 we determine

the source of the common trend in the CPI inflation rate and the federal funds rate. 

The empirical applications involved have been conducted, and can be replicated, by using the

author's software package EasyReg . The details of the proofs of the technical results in this paper2

are given in the a separate appendix.3
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2. NONLINEAR DETERMINISTIC TRENDS AND THEIR PARTIAL SUMS

2.1 Level shifts

Our first example of a nonlinear time trend is the case where g(t) is constant, except for a

single jump at time t : g(t) = a if , g(t) = b if t > t , where a and b are vectors. If t  is constant,1             1         1

it is impossible to asymptotically distinguish g(t) from b, because then g(t) = a only for a finite number

of observations. Therefore, in order to make asymptotics work, one has to assume that t  is1

proportional to the number of observations n: t  = , where  (0,1) is fixed. This assumption is1

common in the literature on testing for a unit root against stationarity around a breaking trend (see

for example Perron 1988, 1989, 1990), and the literature on testing for structural change.

We can write g(t) = c  + f (t) for t = 1,..,n, where c  = b + (a-b)[Jn]/n is the average of then  n       n

g(t)'s for t = 1,..n, and f (t) = (a-b)(1-[Jn]/n) if t # [Jn], f (t) = -(a-b)[Jn]/n if t > [Jn]. Here and inn        n

the sequel, [Jn] denotes the largest integer # Jn. The function f (t) has a number of properties thatn

are fundamental to our approach. Denote for non-negative numbers p,

(1)

and let . The role of the

number p will become clear in the next subsections. In the case under review, the value p = 0 applies.

Then

(2)

where the integrals here and in the sequel are taken over the unit interval, unless otherwise indicated.

Hence, for p = 0,

(3)

Next, let m be a subsequence of the natural numbers such that m . Denote for p $

0, 
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(4)

and let  Then for p = 0,

(5)

and consequently,

(6)

Note that the matrix M  can also be written as:2,p,n

In the case of co-trending, there exists a vector 2 such that  is

constant, hence  for t = 1,..,n. The latter follows from the fact that c  is the average ofn

the g(t)'s, and that therefore the average of the f (t)'s is zero. Therefore, this co-trending vector 2 isn

an eigenvector of both matrices M  and M , corresponding to a zero eigenvalue, and due to the1,p,n  2,p,n

convergence results (3) and (6), the same applies to the limit matrices M  and M .1  2

Along the same lines it is easy to show that these results carry over to level shift trend

functions g(t) with any finite number of jumps.

2.2 Kinked linear trends

The next example is the case where g(t) is piecewise linear in t, with connected adjacent

pieces. Again we assume that the kinks occur at times proportional to n. 

For t = 1,....,n we can always write g(t) = $  + $ t + f (t), where f (t) is such that 0,n  1,n   n   n

(7)

Now assume for convenience that $  = $ , $  = $ . In order for (7) to hold, there should be at least0,n  0  1,n  1

two kinks in f (t), say:n
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where ,  and a  are fixed, and a  and a  are such that the two conditions1    2,n  3,n

in (7) hold. The latter implies that a  and a  are proportional to a : a  = a , i = 2,3, where the2,n  3,n    1  i,n  1

's are functions of , and converge to limits , respectively. It follows now easily that,

uniformly on 

Consequently, defining  the results (2), (3), (5), and (6) go

through for p = 1. Moreover, due to the second part of (7), we now also have that

(8)

It is easy to verify that these results carry over to piecewise linear trends with more than two

kinks, and to broken linear trends where the pieces are no longer connected. Moreover, the

assumption $  = $ , $  = $  is not essential for our argument.0,n  0  1,n  1

The essential difference between this case and the previous one is the value of p: p = 1 versus

p = 0. The reason for introducing this variable p in the definitions (1) and (4) is therefore to

accommodate various types of nonlinear trends. 

2.3 Smooth nonlinear trends

The last example is the case where f (t) is piecewise quadratic and differentiable. First, let f (t)n         n

be piecewise quadratic with three pieces:
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where  are as before, and a  and b  are constant vectors. The differentiability condition,1  1

together with condition (7), impose four linear restrictions on the parameters. Therefore, a , a , b ,2,n  3,n  2,n

and b  are linear combinations of a  and b , with coefficients depending on , and n. These3,n     1  1

coefficients converge. Similar to the piecewise linear trend case it follows now that there exist two

differentiable piecewise quadratic functions  and  on [0,1] such that

, uniformly on [0,1].

The case with q quadratic pieces is similar. The differentiability condition then imposes q-1

linear restrictions on the corresponding components of the 2q parameter vectors. Since condition (7)

imposes two additional restrictions, q+1 parameter vectors are linear combinations of the remaining

q-1 free parameter vectors. Thus, there exist vectors a  and piecewise quadratic differentiablej

functions  on [0,1] such that

uniformly on [0,1]. Defining

the results (2), (3), (5), and (6) go through again, for p = 1.

Note that, with A = (a ,..,a ), , and ,1 q-1

Thus in this case we have nonlinear co-trending if the rows of A are linear dependent.
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2.4 Assumptions about the nonlinear trend

In view of the arguments in the previous subsections, it is now reasonable to assume that in

general:

Assumption 1: There exists a non-negative number p such that, with F (x) and  defined byp,n

(1) and (4), respectively, the conditions (2) and (5) hold, hence so do (3) and (6). Moreover, the

matrices M , M , M , and M  in (3) and (6), respectively, have the same rank.1  1,p,n  2   2,p,n

In general the number p is unknown, but as will appear, our main results are invariant for p (the only

exception is Theorem 5). The last part of Assumption 1 implies that the convergence results (3) and

(6) preserve the rank of the matrices involved, and that the eigenvectors corresponding to the zero

eigenvalues of these four matrices are the same, in the sense that these eigenvectors span the same

subspace of .

3. INTRODUCTION TO NONLINEAR CO-TRENDING ANALYSIS

Consider a k-variate time series process z  = g(t) + u , where g(t) = E(z ) is a nonlinear trendt     t     t

function and u  is a zero mean stationary process. In this paper we shall design a test of the nullt

hypothesis that there exists a nonzero k-vector 2 such that 2 g(t) is linear in t (case 1), or a constantT

(case 2). In other words, we test the null hypothesis that the time series z  is nonlinear co-trended.t

Although only case 2 applies to our empirical application, for the sake of generality we shall treat case

1 first, and then show how the results change if case 2 applies. 

First, we shall design a test of the null hypothesis (1) that the space of all such co-trending

vectors 2 has dimension 1, against the alternative (0) that this dimension is zero, i.e., we test (1)

against the alternative hypothesis that the only vector 2 for which 2 g(t) is linear in t is the zeroT

vector. Subsequently, we shall extend our approach to testing (r) against (s) with 0 # s < r, for

r = 1,..,k.

If 2 g(t) is linear in t, then so is 2 f (t), where f (t) is the OLS residual of the regression of g(t)T         T
n   n

on an intercept and time t, for t = 1,...,n. As we have seen, the two conditions in (7) imply that 2 f (t)T
n

= 0 for t = 1,..,n. This argument, of course, goes both ways: if 2 f (t) = 0 for t = 1,..,n, then 2 g(t)T         T
n
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is linear in t, for t # n. In either case, 2 is the common eigenvector of the matrices M  and M1  2

corresponding to a zero eigenvalue. However, it is possible that for such a common eigenvector,

2 g(t) is not exactly linear in t. An obvious example is where 2 g(t) is linear in all but a finite numberT             T

of t's. It is even possible that for a subsequence t , 2 g(t ) is nonlinear, whereas 2 is the commonj  j
T

eigenvector of the matrices M  and M  corresponding to a zero eigenvalue, namely if the number of1  2

t 's which are less or equal to n is of order o(n). In any case, however, the exceptional t's are thinlyj

spread over the set of natural numbers. Therefore, the co-trending vectors we are interested in are

the common eigenvectors of the matrices M  and M  corresponding to the zero eigenvalues.1  2

Let

where

with  and  the OLS estimates of the vectors of intercepts and slope parameters in the regression

of z  on time t for t = 1,...,n. Note that, since  is a step function,  = 0 because of the firstt

condition in (7), and   = 0 by definition, we can write

It will be shown that under Assumption 1, the nonlinear co-trending hypothesis (1), and

the assumption that u  is a linear process:t

(9)

 in probability, and in particular that  converges in distribution to a functional

of a standard Wiener process, times 2 C(1)C(1) 2. T T

The factor 2 C(1)C(1) 2 is a nuisance parameter which we want to get rid of. This can beT T

done by using a Newey-West (1987) type estimator for 2 C(1)C(1) 2, along the lines in BierensT T

(1994, p.197), as follows. Let m be a sequence of natural numbers converging to infinity with n at

rate o(n), say
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(10)

and consider the matrix

Note that this matrix can also be written as an integral:

where

It will be shown that  6 M , and under (1),  6 2 C(1)C(1) 2 in probability. A test2
T T

of (1) against (0) can now be based on the minimum solution , say, of the generalized

eigenvalue problem det(  ! ) = 0; i.e., the test statistic involved is . The reason for using

this generalized eigenvalue approach is that then asymptotically 2 C(1)C(1) 2 will cancel out. WeT T

shall extend this test to the case of multiple nonlinear co-trending, and to testing linear restrictions

on the co-trending vectors 2. 

The asymptotic power of these tests depends on the choice of : the smaller , the higher

the asymptotic power. However, the value  appears to be optimal for the convergence of 

to M , hence too small an  may cause size distortion. In the empirical application we shall therefore2

choose  .

Also, we show that under the hypothesis (r) with r $ 1 the eigenvectors of the matrix ,

and the generalized eigenvectors of  w.r.t. , corresponding to the r smallest eigenvalues, are

-consistent estimators of the co-trending vectors 2.

4. THE ASYMPTOTIC PROPERTIES OF THE MATRICES  AND 

Given the linear representation (9), we can always write
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Y
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(11)

say, where D(L) = [C(L)-C(1)]/(1-L) and v  = D(L)g . A sufficient condition for the stationarity of ut  t         t

and v  is that:t

Assumption 2: The process u  has the linear representation (9), where the g 's are i.i.d. N (0,I), andt        t    k

C(L) = C (L) C (L), where C (L) and C (L) are matrix-valued finite-order lag polynomials, such1 2   1   2
-1

that all the roots of det(C (L)) lie outside the unit circle. 1

Cf. Engle (1987). This assumption is more restrictive than necessary, but it will keep the argument

below transparent, and focussed on the main issues. See Phillips and Solo (1992) for weaker

conditions in the case of linear processes. Also, we could assume instead of Assumption 2 that u  ist

stationary and ergodic, so that we still can write u  = C(1)g  + v  - v , where now g  is a martingalet  t  t  t-1    t

difference process with unit variance matrix and v  is a stationary process. Cf. Hall and Heyde (1980,t

p.136). Note that Assumption 2 does not restrict the lag polynomial C (L). However, we do need the2

additional condition that

Assumption 3: The matrix C(1) is nonsingular.

This separation of conditions will prove convenient when we compare nonlinear co-trending with

cointegration, in Section 7.

It is a standard exercise in Wiener measure calculus to verify from Assumptions 1-2, the

decomposition (11), and the functional central limit theorem, that

(12)

say, where W  is a k-variate standard Wiener process, and " " denotes weak convergence. Cf.k

Billingsley (1968). The random function  is known as a k-variate detrended standard Wiener

process. Moreover, it is not hard to verify, using the decomposition (11), that under Assumptions 1-2,
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Ŝ2 '
m 0T

0 n &pIk&1

Q TM̂2Q
m 0T

0 n &pIk&1

' S2 % Op( m/n) % Op(1/ m),

where S2 '
2TC(1)C(1)T2 0T

0 Q T
( M2Q(

.

n "

n &pM̂1 n &pM̂2
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(13)

for t = m-1,..,n-1, where the O  term is uniform in t. The results (12) and (13) imply: p

Lemma 1: Let Assumptions 1-2 and the hypothesis (1) be true, let  be the normalized

eigenvector of the matrix M  corresponding to the eigenvalue  = 0, and let , where1

Q  is the matrix of orthonormal eigenvectors corresponding to the positive eigenvalues 8 #...#8  of*            2 k

M . Denote 7  = diag(8 ,..,8 ). Then:1   *  2 k

(14)

in distribution, and for m  at rate o(n),

(15)

Note that the rate of convergence to zero of the O  terms in (15) are optimal for m proportional top

. For this reason we have chosen this m in our empirical application as in (10), with  = 1/2.

Clearly, the matrices  and  converge to singular matrices M  and M ,1  2

respectively. As is well-known, the generalized eigenvalue problem det(M  - M ) = 0 is ill-defined1  2

if M  is singular. Since in our case both matrices are singular, the result of Anderson, Brons and2

Jensen (1983), which is used by Johansen (1988,1991,1994), Johansen and Juselius (1990), and

Bierens (1997b) to prove that ordered generalized eigenvalues converge in distribution, does not
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apply them. However, similarly to Bierens (1997b), it follows straightforwardly from (14) and (15)

that we can use their rescaled inverses:

Lemma 2: Let Assumptions 1-3 and the hypothesis (1) hold. For every subsequence m = o(n) of

natural numbers we have:

(16)

in distribution, where

(17)

and

(18)

5. THE TESTS

5.1 The generalized eigenvalue problem

Observe that the ordered solutions  of the generalized eigenvalue

problem

(19)

are related to the decreasingly ordered solutions  of the generalized eigenvalue

problem

(20)

by the equality  Moreover, it follows from Lemma 2 and Anderson,
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Brons and Jensen (1983) that the ordered solutions of generalized eigenvalue problem (20) converge

in distribution to the ordered solutions of the generalized eigenvalue problem

(21)

Clearly, under the hypothesis (1) all but one of the solutions of (21) are zero. The only non-zero

solution is  so that by (17),

(22)

in distribution.

Similarly, comparing the solutions of generalized eigenvalue problem  = 0

with the solutions of eigenvalue problem (19), it follows easily that under Assumptions 1-3 and the

hypothesis (1), the vector  converges in probability to the vector of ordered solutions

of the generalized eigenvalue problem , which are all positive. It is now

easy to verify that the following more general result holds:

Theorem 1: Let 7  be the diagonal matrix of the k-r largest eigenvalues of the matrix M , and letk-r             1

Q  be the matrix of corresponding orthonormal eigenvectors.  Choose m =  with .k-r

Under Assumptions 1-3 and null hypothesis (r), the solution  of increasingly ordered solutions

of the generalized eigenvalue problem (19) satisfies  in distribution, where  is the

maximum eigenvalue of the matrix

Under the alternative hypothesis (s), with s < r, we have: 

5.2 The asymptotic size of the test

A practical problem with this test is that the null distribution is case-dependent: it depends on

F. In particular, it is easy to verify that the right-hand side of (22) is equal to
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Œ
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with  the generalized inverse of M . Thus, the limiting null distribution involved is the same as the1

limiting distribution of n  times the residual sum of squares of the (spurious) regression of -1

on F(t/n) for t = 1,..,n.  This result suggests, in the case of testing the null hypothesis (1), the

following way to simulate the null distribution. Generate a version of  independently of the

data, by drawing n independent standard normal random variables e  for j = 1,..,n, regressing themj

on an intercept and j, and forming partial sums of the residuals , divided by :

  for x  

Then , where the latter has the same distribution as , but is now

independent of the data. Since by Assumption 1 and (12),  converges to F(x) in L , it follows2

now that for fixed K > 0,

By replicating this procedure N times, where N goes to infinity with n, we get consistent estimates

of the quantiles of the null distribution (22), provided that the rank of the matrix M  is indeed k-1. If1

the latter is not true, we end up with a lowerbound or an upperbound, depending on whether the

actual rank of M  is k or less than k-1. Since we are testing the null hypothesis that rank(M ) = k-11               1

against the alternative that rank(M ) = k, the simulation procedure under review will therefore have1

a negative effect on the power of the test.

A much simpler way to get around the problem that the null distribution of our test is case-

dependent, is to base the asymptotic critical values of the test of the null hypothesis (r) on the

maximum eigenvalue of the matrix

(23)

only. A motivation for this choice is that under (r), the function F(x) may be considered as an

unknown parameter in a space = , where r

Definition 1: =  is the space of k-dimensional functions F on [0,1] for which F(0) = F(1) = 0,r

F(x)dx = 0, F(x) F(x)dx < 4, and rank[ F(x)F(x) dx] = k-r, T     T
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and that therefore the null hypothesis of co-trending is a composite hypothesis, similar to the case of

testing the composite null hypothesis that a parameter (vector)  is contained in set , with 

the size of the test in a point  in . As is well-known, the classical approach in this case is to

define the actual size of this test by . The following result shows that if we base the

critical value of our test on the maximum eigenvalue of (23), we actually get the correct size, in the

classical sense:

Theorem 2: There exists a sequence F  in =  such that m  r

(24)

Consequently, under Assumptions 1-3 and the null hypothesis (r),

(25)

for every K > 0, where  is the maximum eigenvalue of the matrix (23).

Therefore, if we interpret F(x) as a nuisance parameter, with parameter space = , and K the criticalr

value, the actual asymptotic size of the test is given by (25).

The proof of (24) in the case r = 1 is based on Mercer's theorem. See Dunford and Schwartz

(1963, p.1088), and Bierens and Ploberger (1997). The details of the proof can be found in the

separate appendix. The main idea is to arrange the eigenfunctions  and corresponding non-

negative eigenvalues  of the covariance function  such that the

subsequence of positive eigenvalues forms a non-increasing sequence. Then we may choose F (x)m

= , where the 's correspond to positive eigenvalues.

The 80%, 90% and 95% quantiles of the distribution of the random variable  for r = 1,..,5

are given in Table 1. These quantiles are calculated by Monte Carlo simulation, on the basis of 10,000

replications of samples of size n = 500 from the N (0,I ) distribution.r r



Table 1: Values of K for which P(8̄(

r#K) ' p
p : 0.80 0.90 0.95

r : K

1 0.091103 0.119616 0.150989

2 0.134492 0.169183 0.202642

3 0.173114 0.214069 0.252212

4 0.205922 0.251317 0.294746

5 0.236006 0.282870 0.330943

Œ

8̃s

det[H TM̂1H & 8 H TM̂2H] ' 0 .

n 1&"8̃s 8̄(

s

mW̄s(x)W̄s(x)Tdx , 8̃s

z̄

W̄k(x)

mW o
r (x)W o

r (x)Tdx .
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5.3 Testing linear restrictions on the co-trending vectors

Once we have established the number r of linear independent co-trending vectors 2, we may

wish to test the null hypothesis that the columns of a given k × s matrix H with 1 # s # r span a

subspace of the space of co-trending vectors, similar to testing linear restrictions on the cointegrating

vectors by Johansen's (1988,1991,1994) likelihood ratio approach. It is straightforward to verify from

Lemma 1:

Theorem 3: Let Assumptions 1-3 and the hypothesis (r) hold, and let m = [n ], with 0 < " < 1."

Let H be a given k × s matrix with 1 # s # r, and let  be the maximum solution of the generalized

eigenvalue problem  If the columns of H span a subspace of the

space of co-trending vectors then  converges in distribution to the maximum eigenvalue 

of the matrix  whereas otherwise  converges in probability to a positive constant.

5.4 Detrending or not?

All our results so far are based on detrended data. But there are situations where there is no

linear trend in the data, for example when we use differenced time series. Then taking out a constant

mean, by subtracting from z  its sample mean , will suffice. It is easy to verify that all our resultst

carry over, provided that we replace the process  defined in (12) by a k-variate standard

Brownian bridge W (x) = W (x)-xW (1). Moreover, instead of the critical values in Table 1 we shouldk   k k
o

use the ones in Table 2, where 8  is the maximum eigenvalue of the matrix r
o



Table 2: Values of K for which P(8o
r#K) ' p

p : 0.80 0.90 0.95

r : K

1 0.2451126 0.3518246 0.4657737

2 0.3993106 0.5356136 0.6742039

3 0.5413243 0.7036614 0.8603746

4 0.6778114 0.8618191 1.0345377

5 0.8170006 1.0141629 1.2194813
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6. CONSISTENT ESTIMATION OF THE CO-TRENDING VECTORS

Given the hypothesis (1), there are three candidates for the estimator , say, of the co-

trending vector 2, namely the eigenvector corresponding to the minimum eigenvalue of the matrix

, the minimum eigenvalue of the matrix , or the minimum generalized eigenvalue of  w.r.t.

. 

First, consider the case where  is a normalized eigenvector of . Let Q =  be as

in Lemma 1, let  be the eigenvector of  corresponding to the minimum eigenvalue , say,

normalized such that , and let . Note that  is an eigenvector of 

corresponding to the minimum eigenvalue . Then

hence 

It follows now straightforwardly from Lemma 1 that

(26)

and consequently, using the trivial equality , and the fact that

 = 1,
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(27)

Combining (26) and (27), and denoting , now yield:

(28)

Next, let us see what happens under the hypothesis (1) if  is the normalized eigenvector

of the matrix  corresponding to the minimum eigenvalue. As in the previous case, the limiting

distribution and rate of convergence of  is crucially determined by part (15) of Lemma 1. It

can be verified from the proof of Lemma 1 in the separate appendix that the indicated rate of

convergence involved is too conservative, and that it is possible that  = O (1), providedp

that p  1/2.  If so, then under some additional regularity conditions,  converges in

distribution. However, if p < 1/2 then  converges to infinity, and so will

. Since in general p is unknown, we therefore recommend against using this estimator.

Finally, let now  be the generalized eigenvector corresponding to the minimum solution 

of the generalized eigenvalue problem (19), again normalized such that , and let  be

as before. Then

hence 

where the last equality follows from Lemma 1 and the fact that by Theorem 1,  = O (m/n).p

Therefore, the results (26), (27), and (28) carry over.

Along the same lines it can be shown that in general the following result holds:

Theorem 4: Let Assumptions 1-3 and the hypothesis (r) hold. Let  and  =

 be the k × r matrices of either the orthonormal eigenvectors of the matrices  and M1
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alone, or the orthonormal generalized eigenvectors of  w.r.t.  and M  w.r.t. M , respectively,1  2

corresponding to the r smallest eigenvalues. Let Q  be the matrix of the other k-r orthonormal*

eigenvectors of M , and let 7  be the diagonal matrix of corresponding k-r positive eigenvalues.1    *

Then jointly for i = 1,..,r,

  in distr.

7. COMPARISON WITH COINTEGRATION

The nonlinear trend stationarity hypothesis and the unit root with drift hypothesis are difficult

to distinguish. Therefore, we shall also derive the asymptotic distribution of our test under the unit

root hypothesis with possible cointegration. Thus, let the data generating process now be

 where u  obeys Assumption 2 (but not Assumption 3 of course), hencet

, where  = z . Now denote0

Then it can be shown, similarly to Bierens (1997b):

Theorem 6: Let z  = z  + $  + u  be a k-variate unit root with drift process with u  obeyingt  t-1  1  t          t

Assumption 2, and let m = [n ] for some " 0 (0,1). Suppose there are r cointegrating vectors, and"

that for each cointegrating vector 2, 2 D(1)D(1) 2 > 0. Let  be the orderedT T

solutions of the generalized eigenvalue problem (19). Then the vector   converges in

distribution to the vector of ordered eigenvalues of the matrix

and  converges in distribution to the vector of ordered solutions of the generalized

eigenvalue problem 

If $  = 0, so that z  is a k-variate unit root process without drift, and if z  is demeaned rather than1     t           t
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     Each series x(t) is standardized between 0 and 1 by applying the transformation y(t) =4
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detrended, the above results carry over, provided that  is replaced by the r-variate standard

Brownian bridge  and  by , where

  .  

This result shows that our nonlinear co-trending tests are incapable of distinguishing nonlinear co-

trending from cointegration. Therefore, before we apply the co-trending tests we should test first

whether the series involved are unit root processes.

8. NONLINEAR CO-TRENDING ANALYSIS OF INTEREST AND INFLATION 

8.1 The data

We use monthly time series of the federal funds rate (FFR) and the CPI inflation rate (CPIR)

(i.e., the annual percentage change of the consumer price index), for months 1954.07 through

1994.12. The two standardized  series are plotted in Figure 1.4

<Insert Figure 1 about here>

We see clearly that these series have a common pattern. The cross-correlation between FFR and

lagged CPIR, and CPIR and lagged FFR, is maximal 0.7747 for lag = 0. The dates 1974.11 and

1980.05 correspond to the top of the two main peaks in the CPIR, which approximately correspond

to the two peaks in the FFR as well. Moreover, it is also clear from Figure 1 that the series do not

have a linear trend, or, if they are unit root processes, do not have drift. Therefore our nonlinear co-

trending tests can be conducted without detrending.

However, since our test becomes a cointegration test if the series are unit root processes, we

have first conducted a variety of unit root and stationarity tests. The tests involved are the Phillips-

Perron (1988) unit root test (PP), Bierens' (1993) unit root tests HOAC(1,1) and HOAC(2,2) on the

basis of higher order sample autocorrelations, the Bierens-Guo (1993) tests 1 through 4, indicated

below by BG(1) through BG(4), of the stationarity hypothesis, and the KPSS test of the stationarity

hypothesis. Also, we have conducted these tests to the first difference of log(CPI), denoted by



"

M̂1 M̂2 8̂1 ' 0.009134405

8̂2 ' 0.04478581 M̂1 M̂2

     The numerical results are not reported here. They can easily be replicated by using the5

author's software package EasyReg (see footnote 2), and the default test parameter options
therein.
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)log(CPI), because CPIR is approximately proportional to the 12 months moving average of

)log(CPI). Hence if the latter time series is stationary then so is CPIR, but nevertheless CPIR will

then look like a unit root process.

The test results are mixed . Some of the unit root tests reject the unit root hypothesis, some5

don't, and some of the stationarity tests reject stationarity, while some don't. In particular, the KPSS

test rejects the stationarity hypothesis for all three series. The KPSS test, however, will also have

power against nonlinear trend stationarity (and other non-unit root alternatives as well: see for

example Lee and Schmidt 1996), because our test for nonlinear co-trending becomes the KPSS test

if applied to a single time series. 

The mixed test results indicate that these three series are neither genuine unit root processes

nor genuine stationary processes. In particular, if one concludes that )log(CPI) is not a unit root

process, then neither is CPIR, despite the test results for the latter series.

We also have conducted Bierens' (1997a) tests of the unit root hypothesis against nonlinear

trend stationarity, but the unit root hypothesis could not be rejected. The latter might be due to the

lack of smoothness of the nonlinear trends. Despite these results, the general conclusion from the

other tests is that the FFR and the CPIR are neither genuine unit root processes, nor genuine

stationary processes. In other words, our case for nonlinear trend stationarity is based on

circumstantial evidence.

8.2 Nonlinear co-trending test and estimation results

The components of the vector time series process z  are now the CPIR and the FFR, for t =t

1 (=1954.07) to 486 (=1994.12). The parameter  in Theorem 1 has been chosen equal to 1/2, for

the reasons mentioned previously. Moreover, the tests are conducted on the basis of demeaned rather

than detrended variables.

The ordered generalized eigenvalues of  w.r.t.  are  and

, and the corresponding standardized generalized eigenvectors of  w.r.t. 



1 &0.036827 7CPIR

&0.772864 1 7FFR

8̂r n ' 486

Table 3: Tests of the number r of co&trending vectors

for zt ' (CPIR t , FFR t)
T

r test statistic 10% crit. region 5% crit. region conclusion

1 0.20137 >0.35182 >0.46577 accept

2 0.98732 >0.53561 >0.67420 reject

F̂(x) F̂
)
(x)

M̂1

Nonlinear trend in CPIR ' 0.75457 × Nonlinear trend in FFR.
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are 

(30)

Multiplying  by  now yields the test of the null hypothesis that there are r co-trending

vectors against the alternative that there are less than r co-trending vectors. The test results,

presented in Table 3, indicate that there is one co-trending vector. 

In Figures 2 and 3 we display the components of the estimated functions  and ,

respectively, standardized between -1 and 1 by dividing each component by its maximum absolute

value. The common patterns in these components clearly corroborate the test result of presence of

nonlinear co-trending.

<Insert Figures 2 and 3 about here>

It follows from Theorem 4 that the first column of (30) is a consistent estimate of this co-

trending vector, and so is the normalized eigenvector of the matrix  corresponding to the smallest

eigenvalue. The latter estimation result, which we shall adopt, reads:

(31)

Note that the order in which we have written the nonlinear co-trending relation (31) should not be

interpreted as a causal ordering, as each of the nonlinear trends in FFR and CPIR may be considered

as the common nonlinear trend. 

In order to determine the error of the estimate 0.75457, we have tested the hypothesis that

the vector H = (1,!a)  is a co-trending vector, for a ranging from 0.3 to 1.2. It appears that the 95%T



Yt ' "St % $Yt&1 & "St&1 % Fet, *$* < 1, et - i.i.d. N(0,1) ,

P(St ' 1*St&1'1) ' p , P(St ' 1*St&1 ' 0) ' q .

E(Yt) ' "E(St) ' "q/(1 & p % q) .
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confidence interval of the parameter a is approximately (0.3, 1.2), and the 90% confidence interval

is approximately (0.4, 1). 

The case a = 1 is of particular interest, because it implies that the real interest rate has a

constant expected value. The assumption of a constant ex-ante real interest rate (i.e., the difference

between the nominal interest rate and the conditional expectation of the inflation rate), plays an

important role in economic theory and finance. Our test results indicate that the hypothesis a = 1 is

not rejected at the 5% significance level, and borderline (not) rejected at the 10% significance level.

At first sight this result seems to contrast with Garcia and Perron (1996) and Phillips (1998), who find

evidence of regime shifts in the real interest rate in the period 1961:1-1986:12. Garcia and Perron

model the shifts in the mean of the real interest rate by a Hamilton (1989) type Markov switching

model, with three states. Phillips tests for evidence of long memory in the same series. The interest

rate in these two studies is the US 3 months Treasury bill rate. Therefore, we have redone the

nonlinear co-trending analysis with the FFR replaced by this Treasury bill rate, and the US 4-6 months

commercial paper rate, respectively. The results are about the same as for the federal funds rate,

except that the estimate of a in both cases is now about 0.88, and the null hypothesis a = 1 is not

rejected at the 10% significance level. 

However, these results do not necessarily conflict with the findings of Garcia and Perron,

because Hamilton's (1989) Markov switching model may generate data with a constant unconditional

expectation and variance. Take for example the following AR(1) Markov switching model with two

states, S  = 0 and S  = 1: t    t

Then  Therefore, the real interest rate can have a constant

unconditional expectation, while being a AR(2) Markov switching process.

Phillips (1998) tests the fractional integration hypothesis I(d) for the real interest rate, and

finds that d is just outside the right-side of the stationary region (-0.5,0.5), but not significantly

greater than 0.5 at the 5% significance level. Thus Phillips' results do not (clearly) conflict with ours.



P0,n(t) ' 1 , Pj,n(t) ' 2cos jB (t & 0.5) /n , j ' 1 , ... ,n&1 .

(1/n)'n
t'1Pi,n(t)Pj,n(t) ' I(i…j)

g(t) ' j
n&1

j'0

(j,nPj,n(t) , t '1,..,n, where (j,n ' (1/n)j
n

t'1

g(t)Pj,n(t) .

gK(t) ' 'K
j'0(j,nPj,n(t)
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9. THE PRICE PUZZLE RECONSIDERED

Our findings suggest that the positive correlation between the inflation rate and the interest

rate is due to a common nonlinear deterministic time trend. However, does this common nonlinear

trend explain the price puzzle? We recall that the price puzzle is the phenomenon that in certain

VAR's the innovation response of inflation to a unit shock in interest is persistently positive. In Figure

4 we illustrate the price puzzle in a nonstructural VAR(36) with intercepts for the vector time series

process z  = (FFR ,CPIR )  over a horizon of 60 months. The solid curve is the innovation responset  t t
T

of the inflation rate to a unit shock in the federal funds rate, and the dotted curves are 1 and 2 times

the standard error bands. These are asymptotic standard error bands, computed according to the

approach of Baillie (1987).

<Insert Figure 4 about here>

We see that in this VAR the price puzzle is quite apparent: for the first 24 months the lower

standard error band stays above the zero level, and although the innovation response curve dips below

the zero level after 32 months, the negativity is not significant.

Next, we have re-estimated this VAR, but now including, next to the intercept, 20 Chebishev

time polynomials P (t), j = 1,..,20, in the two equations, in order to take (most of) the nonlinear trendj,n

out of the innovations. Chebishev time polynomials take the form

See Hamming(1973) and Bierens (1997a). They are orthonormal:  for

i,j = 0,...,n-1, where I() is the indicator function, and therefore any trend function g(t) can be written

as

As can be seen from the graphs in Bierens (1997a), Chebishev polynomials are very flexible:  If g(t)

is reasonably smooth, then for a relative (w.r.t. n) small number K, such as K = 20 in our case, the

approximation  will likely be close to g(t).

In both equations these Chebishev polynomials were jointly significant at the 5% level,

corroborating the previous (circumstantial) evidence that both series are nonlinear trend stationary.



     The original source is URL http://www.stls.frb.org/fred/data/ppi/ppieng of the Federal6

Reserve Bank of St. Louis.
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The effect of the inclusion of these Chebishev polynomials in the VAR on the innovation response

of the CPIR is displayed in Figure 5.

<Insert Figure 5 about here>

We see from Figure 5 that the effect of this detrending procedure on the innovation response

of the CPIR is quite astonishing. The innovation response curve starts off significantly positive only

for a few months, and then wiggles around the zero level. Comparing Figures 4 and 5 we also see that

the magnitude of the response has been substantially reduced. Therefore, the conclusion seems

justified that the price puzzle is, to a large extent, due to a common nonlinear trend in the FFR and

the CPIR. This conclusion, of course, does not mean that the price puzzle is solved! Another (price)

puzzle has now emerged: 

10. WHY IS THERE A COMMON NONLINEAR TREND 

IN THE CPI INFLATION RATE AND THE FEDERAL FUNDS RATE?

As has already been alluded to in Section 1, the shapes of the standardized CPI inflation rate

(CPIR) and the standardized inflation rate of the PPI of fuel and related products  (PPIFIR), plotted6

in Figure 6, have a remarkable resemblance. The sharp rise in the CPIR in the early seventies and

around 1980 coincide with the rise of the PPIFIR. In particular, the dates of the top of the two main

peaks in the PPIFIR are two to three months earlier than those of the CPIR. These peaks are clearly

the results of the two oil price shocks induced by the OPEC cartel.

<Insert Figure 6 about here>

In order to verify whether the PPIFIR is the source of the common nonlinear trend in the

CPIR and the FFR, we have conducted our co-trending analysis in the same way as before on the

vector time series process z  = (FFR ,CPIR ,PPIFIR ) , after having tested for a possible unit root int  t t t
T

the PPIFIR (using all available data, from 1947.01 to 1998.12). As for the latter, the results were

again mixed. The Phillips-Perron test rejects the unit root hypothesis for PPIFIR at the 5%

significance level, and so do the  HOAC(1,1) and HOAC(2,2) tests of Bierens (1993). The Bierens-

Guo (1993) stationarity tests BG(1) and BG(2) reject the stationarity hypothesis at the 5%



Table 4: Tests of the number r of cotrending vectors

for zt ' (CPIR t , FFR t ,PPIFIR t)
T

r test statistic 10% crit. region 5% crit. region conclusion

1 0.04529 >0.35183 >0.46577 accept

2 0.21503 >0.53561 >0.67420 accept

3 1.29460 >0.70366 >0.86038 reject

M̂1

Nonlinear trend in FFR ' 0.459726 × Nonlinear trend in PPIFIR

Nonlinear trend in CPIR ' 0.430217 × Nonlinear trend in PPIFIR

×
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significance level. However, the tests BG(3) and BG(4) do not reject the stationarity hypothesis at

the 10% significance level, and the same applies to the KPSS test. Therefore, also this time series is

neither a genuine unit root process, nor a genuine stationary process.

As expected, the co-trending test results in Table 4 indicate that there are two co-trending

vectors: r = 2, with estimation results (based on the eigenvalues of ):

(32)

We have tested again whether the real FFR is stationary, by testing whether the 3 1 matrix

H =  (-1,1,0)  spans a subspace of the space of co-trending vectors. Note that this is just the test ofT

the null hypothesis that the two coefficients in (32) are equal. The test result is slightly different from

before: the null hypothesis involved is still not rejected at the 5% significance level, but it is now

rejected at the 10% significance level. This result is therefore more in tune with the results of Garcia

and Perron (1996) and Phillips (1998) than before.

In view of these results, the conclusion seems justified that the non-linear trend in the CPIR

is to a large extent due to the nonlinear trend in the PPIFIR, which in its turn is to a large extent due

to the oil price shocks and their aftermath, induced by OPEC. 

As to the nonlinear trend in the FFR, it is likely that the FOMC of the Federal Reserve Board

has anticipated the inflationary effect of the actions of the OPEC, and responded by preemptive raises

of the FFR. Moreover, it should be (and probably has been) a matter of concern to the FOMC if the

real interest rate runs out of hand, because too high a real interest rate will have serious negative
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effects on the real economy, and too low a real interest rate will boost spending on credit and

therefore inflation. The FOMC will therefore likely keep the real interest rate within certain bounds,

which may (partly) explain the common nonlinear trend in the FFR and the CPIR. 
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