Standard Testing Procedures for White Noise and Heteroskedasticity

Violetta Dalla\(^1\), Liudas Giraitis\(^2\) and Peter C.B. Phillips\(^3\)

\(^1\)National and Kapodistrian University of Athens, \(^2\)Queen Mary, University of London,
\(^3\)Yale University, University of Auckland, University of Southampton, Singapore Management University

Abstract

Commonly used tests to assess evidence for the absence of serial correlation between time series in applied work rely on procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the size of correlogram and cumulative Ljung-Box tests can be significantly distorted. This paper adapts standard correlogram tests to accommodate hidden dependence and non-stationarities involving heteroskedasticity, thereby uncoupling these tests from limiting assumptions that reduce their applicability in empirical work. To enhance the Ljung-Box test for non i.i.d. data a new cumulative test is introduced. Asymptotic size of these tests is unaffected by hidden dependence and heteroskedasticity in the series. An extensive Monte Carlo study confirms good performance in both size and power for the new tests. Applications to real data reveal that standard tests frequently produce spurious evidence of serial correlation.

JEL Classification: C22, C23
Keywords: Nonparametric testing, autocorrelation, cross-autocorrelation, heteroskedasticity, martingale differences.