

Firm Premia and Match Effects in Pay vs. Amenities

Anders Humlum, Mette Rasmussen, and Evan K. Rose*

May 30, 2025

Abstract

This paper develops a new approach to measuring non-wage amenities and compensating differentials in the labor market. Using a survey of 20,000 job movers in Denmark, we elicit workers' reservation wage to return to their previous jobs. Our sample contains a large, connected network of firms, enabling us to estimate firm-wide premia and match effects in amenity values. Overall, higher-paying firms provide slightly worse non-pay amenities. Although they provide better perks and flexibility, they also come with higher layoff risk, faster work pace, and greater stress. On average, moves to jobs offering 10% higher pay involve a 5% reduction in the value of amenities, with 0.7% attributable to firm-wide tradeoffs and the remainder attributable to match effects in pay and preferences. Using a rich search model, we quantify the role of amenities in labor market inequality while accounting for preference heterogeneity and endogenous mobility. Worse amenities at high-paying firms offset more than half of their wage advantage, and the within-worker variance in pay across firms overstates the variance in utility by 50%.

*Humlum: University of Chicago, Booth School of Business, and NBER; anders.humlum@chicagobooth.edu. Rasmussen: University of Copenhagen, Department of Economics; mette.rasmussen@econ.ku.dk. Rose: University of Chicago, Department of Economics, and NBER; ekrose@uchicago.edu. We thank Patrick Kline, Thibaut Lamadon, Derek Neal, and seminar participants at BFI, Chicago Booth, Cleveland Fed, Copenhagen, Duke, LSE, Michigan, MIT, Stanford, UVA, and Warwick for their helpful comments. Luca Adorni and Ethan Sawyer provided outstanding research assistance. This project received financial support from the Becker Friedman Institute.

A long-standing body of research documents that some firms tend to pay higher wages to equivalent workers. The most recent chapter in this literature studies two-way fixed effect models introduced by [Abowd et al. \(1999\)](#) that measure systematic differences in the average wage changes of movers between firms. These methods have now been applied to administrative datasets from around the world. A common finding in such “AKM” studies is that firm effects are important contributors to inequality, often explaining 20% or more of the cross-sectional earnings variance, as well as changes in inequality over time (see [Card et al. \(2018\)](#), [Bonhomme et al. \(2023\)](#), and [Kline \(2024\)](#) for recent reviews).

While firm effects are an established empirical phenomenon, their interpretation remains controversial. Since at least the work of Adam Smith, economists have recognized that in competitive markets some wage differences may serve as compensation for unpleasant working conditions. For example, jobs that require long hours, exposure to the elements, or heightened injury risk may need to pay a premium to attract workers. On the other hand, wage differences may also emerge due to imperfect labor market competition that allows productivity differences between firms to spill over into wages. Understanding the sources of wage differences is crucial for drawing conclusions about inequality in the labor market, the suitability of various economic models, and the attractiveness of important policies.¹

Analyzing the relationship between wages and working conditions is challenging because most datasets contain little information on anything besides pay. As a result, recent work has relied on revealed preference arguments based on firm size or worker flows to study non-pay characteristics of jobs (e.g., [Sorkin \(2018\)](#); [Taber and Vejlin \(2020\)](#); [Lamadon et al. \(2022\)](#); [Lehmann \(2023\)](#)). Amenities in these approaches are structural residuals that explain why some firms are larger or poach more workers from others, given an assumed labor supply model. As a result, their measurement rests on the underlying structural assumptions about worker preferences and search. Related work has relied on choices over interview opportunities or hypothetical offers to estimate firms’ relative appeal to prospective workers ([Roussille and Scuderi, 2023](#); [Caldwell et al., 2024](#)), capturing ex-ante perspectives that may be based on incomplete information.

This paper develops a different approach to studying pay and amenities. We fielded a survey of roughly 20,000 workers who recently changed jobs in Denmark. Our survey asked workers about specific amenities, including flexibility, job security, perks and benefits, and stress and respect. To measure the total amenity difference between jobs, we ask respondents to

¹[Katz et al. \(1989\)](#), analyzing evidence of industry-level wage differentials for equivalent workers, argued: “We believe wage differentials should be one of the factors considered in the design of sectoral policies.” If firm effects primarily reflect compensating differentials, however, then high-wage firms are not necessarily any better or worse than low-wage firms.

provide a reservation wage to return to their previous job. To distinguish between workers' personal preferences and amenities broadly recognized as valuable, respondents also provide an estimated reservation wage for a "typical" worker. By design, nearly all the firms in our survey sample are connected by movers, allowing us to estimate AKM-like specifications that recover firm and match effects in amenities. We then link responses back to the universe of employer-employee administrative data and relate amenities to firm characteristics, including AKM pay premia.

We analyze the survey using a simple framework in which utility from a job is additive in log wages and amenities, each comprising a firm-level component and a worker-specific match effect. Reservation wages measure compensating variation—that is, the minimum pay change required to make the worker indifferent between their current and previous jobs (Rosen, 1986). In our framework, this quantity reveals the difference in amenity values measured in log wages. Firm-level amenities correspond to the average worker's compensating variation, which we gauge using respondents' estimates of the reservation wage for a typical worker. Because survey responses may be infected by status-quo bias that makes workers seem unwilling to change jobs at all (Caldwell et al., 2024), our analysis incorporates switching costs that can depend on worker observables. We also allow for measurement error that is potentially correlated across questions.

We then show how, under simple assumptions, firm-level amenity values and match effects can be estimated using the combination of workers' own reservation wages and those provided for the typical worker. The results show intuitive patterns. Average firm-level amenities are highest in sectors known to be family-friendly and flexible, such as the public and education sectors, and lowest in industries such as accommodation and food services and waste and water management. Relating firm-level amenities to worker responses about specific job characteristics shows that high-amenity firms tend to offer more job flexibility and security, benefits and perks, and respect and sense of purpose on the job. Estimated amenities are also correlated—although imperfectly—with revealed preference measures of firm desirability, such as log size or PageRank (Sorkin, 2018) valuations.

Firm-level amenity values are negatively correlated with AKM firm wage effects. A simple regression of firm amenity effects on firm wage effects estimated in our survey sample yields a slope of -0.16, implying moving to a firm with a 10% higher wage policy yields 8.4% higher utility, all else equal. Because firm wage effects are imprecisely estimated, this slope may be highly attenuated. Since reservation wages were elicited relative to workers' *current* pay, sampling error in estimated firm wage and amenity effects may also be negatively

correlated.² To account for both these issues, we instrument for firm wage effects with split-sample estimates constructed using the full Danish population excluding our survey sample. Remarkably, the two-stage least squares slope is also -0.16 , suggesting the two sources of bias roughly cancel. This negative correlation is sufficiently strong that the overall variance of firm wage plus amenity effects is roughly similar to the firm wage effects alone. Notably, we find that accounting for amenity effects meaningfully attenuates the gender wage gap in pay premia.

Survey questions on specific amenities help unpack the negative correlation between firm wages and amenity effects. Workers report having more flexibility, better perks, and less physical jobs at high-wage firms, consistent with some prior evidence (Caldwell et al., 2024; Sockin, 2022). Implied willingness-to-pay for amenities such as schedule flexibility are comparable to recent estimates from hypothetical discrete choice experiments (Maestas et al., 2023). However, workers switching to higher wage firms also report higher layoff risk, more stress, and lower social impact.³ For a typical worker, the net effect of this package of amenities serves to make the non-pay characteristics of jobs at high-wage firms slightly less valuable, although not nearly enough to fully offset the benefits of higher pay.

If all workers shared the same preferences and enjoyed the same pay at each firm, simple competitive models would predict a firm-level amenity vs. pay premia slope of -1 , and all pay variation would reflect compensating differentials. Our estimated slope of -0.16 is obviously inconsistent with this benchmark. However, in models with richer heterogeneity, only each firm's *marginal* worker needs to be indifferent between their current job and their outside option (Rosen, 1986). This marginal worker's compensating variation determines the size of compensating differentials. While our estimates imply the typical worker would be strongly infra-marginal at a high-wage firm, wage gaps may be just high enough to offset the marginal worker's personal valuation of amenity differences.

Consistent with this idea, when incorporating heterogeneity in both pay and amenity valuations, we find much stronger tradeoffs for movers. Regressing workers' own reservation wage on their reported pay change and instrumenting with the pay change in the administrative data, we find a slope of -0.52 for moderate wage changes ($< 20\%$), implying that roughly half of pay changes translate into increases in utility. Voluntary job-to-job switchers show even stronger tradeoffs, with a 10% wage gain offset by a 6.1% decrease in the value of ameni-

²Intuitively, a mover who experiences a larger than usual wage change will tend to produce overestimation in the destination firm's wage effect, while also requiring a smaller additional pay differential to compensate for any amenity differences between firms.

³These findings are consistent with evidence in Mas and Pallais (2020) that some positive amenities, such as schedule flexibility, are often bundled with negative amenities, such as stress and longer hours.

ties. Interestingly, this relationship is just as strong among movers between the same pair of firms. The bulk of wage-amenity tradeoffs thus reflects correlations between match effects on both dimensions, a channel restricted in some theoretical approaches. While substantial, however, these tradeoffs remain incomplete, indicating that the typical wage-increasing move is associated with ex-post rents. These moves, of course, are the same switches that identify wage premia in AKM models.

We conclude by embedding our reservation wage elicitations in a rich model of labor market mobility, wages, and amenities. The model’s structure reflects several important features of our reduced-form results, including heterogeneity in pay and amenity valuations across workers and the possibility of endogenous mobility. To capture the ex-post nature of our amenity valuations, the model also allows the amenities that drive search (ex-ante amenities) to differ from those that affect utility on the job (ex-post amenities). The combination of these features allows us to connect our results more closely to revealed preference approaches used in the previous literature, while also accounting for the fact that whether to switch jobs—and thus which workers appear in our survey—is endogenous. We then use the results to characterize wage and amenity disparities across firms for workers with the same skills and preferences.

The results show that workers face substantial wage and ex-post amenity dispersion across firms. Accounting for worker heterogeneity, however, wages and amenities are sufficiently negatively correlated that the difference in utility between high- and low-paying firms is less than half of the difference in wages. Partly as a result, the cross-sectional variance in wages among workers with the same skill and preferences overstates the variance of utility by 51%. Importantly, this result hinges on our ex-post notion of utilities. If utility instead depended on the ex-ante amenities that drive flows into firms, wage dispersion would understate utility dispersion substantially.

This paper contributes to a long-standing literature on compensating differentials in the labor market (Rosen, 1986; Mas, 2025). Traditional approaches to this topic relied on cross-sectional “hedonic” regressions of wages on job characteristics. These estimates are frequently small or have counter-intuitive signs due to difficulties in defining choice sets, controlling for unobservables, accounting for labor market frictions, and other challenges (Thaler and Rosen, 1976; Brown, 1980; Bonhomme and Jolivet, 2009). To make progress, recent work has turned to choice experiments to measure workers’ willingness to pay for specific amenities, often using hypothetical job scenarios (Wiswall and Zafar, 2018; Drake et al., 2022; Maestas et al., 2023). While a long-standing literature debates the reliability of stated-preference elicitation (e.g., Diamond and Hausman, 1994; Hausman, 2012), some

work finds close alignment between stated- and revealed-preference experiments in the labor market (Mas and Pallais, 2017). Unlike traditional conjoint analyses where some features of options may be left unspecified (Manski et al., 2000), we use a complementary approach that elicits valuations of the complete bundle of amenities in two real-world alternatives familiar to the worker. While we apply these methods to the labor market, the same techniques could be used to study movers in other domains, including housing, healthcare, and education.

Our analysis also contributes to the growing literature on the role of firms in labor market inequality. Particularly related are a series of recent papers using revealed preference approaches and administrative data to estimate firm-level amenities and study their implications for inequality (Taber and Vejlin, 2020; Sorkin, 2018; Lamadon et al., 2022; Lehmann, 2023; Lachowska et al., 2023; Lagos, 2024; Morchio and Moser, 2024). These approaches typically find zero or weak positive correlations between firm wage effects and amenities. As noted above, our approach differs in that we estimate amenities without assumptions about how workers are allocated to firms. Although our estimated firm-level amenities are positively correlated with many revealed preference measures, we also find several puzzling correlations between job characteristics and those measures, such as a positive relationship between revealed preference amenities and job physicality and inflexibility. While we estimate amenities using survey responses from a sample of job movers, this is of course the same population that identifies AKM wage effects, allowing for direct comparisons to that literature.

Most related are several recent papers that attempt to directly estimate amenities and connect them to pay. Roussille and Scuderi (2023) use data from an online job board for software engineers to estimate heterogeneous worker preferences over job opportunities. They find positive correlations between firm pay and non-wage amenities estimated using worker interview choices. Caldwell et al. (2024) survey roughly 14,000 German workers about their perceptions of pay and amenities among 30 large publicly traded or family-owned firms. They find that workers think high-wage firms offer the same or better amenities (“e.g., home office, childcare subsidy”) as low-wage firms. Firm amenity values—estimated as residuals in a choice experiment over hypothetical offers—are found to be positively correlated with wage effects. In line with our findings, they document gaps between outsiders’ ex-ante beliefs and insiders’ ex-post evaluations of firms. Finally, Sockin (2022) uses voluntarily provided pay and employer reviews data from Glassdoor and finds that higher-paying firms are associated with higher overall job satisfaction.

A key feature of our approach is that we ask workers about specific jobs they know well rather

than their beliefs about new opportunities. As illustrated by our search model estimates, ex-ante and ex-post evaluations of amenities may differ, especially if workers have incomplete information about outside options (Jäger et al., 2024; Audoly et al., 2024). Choices over potential interviews or offers may reflect these ex-ante beliefs as well as strategic considerations. Indeed, many job attributes easily gleaned from an advertisement or interview interaction, such as workplace perks and the office environment, are positively correlated with firm wage effects in our data. Factors that may only become clear once a worker has further investigated a job, such as job security and social impact, tend to be negatively correlated with premia. While firm characteristics that explain workers' interviews and offer choices are potentially relevant for search, we seek to understand what affects realized utility on the job. Relative to past work, we also study a larger sample of more than 7,000 both public and private firms from across the size distribution rather than a specific sector or major, widely-known firms, and provide a simple framework for distinguishing between common and idiosyncratic valuations of the amenities they offer.

1 Data and institutions

Denmark offers a unique setting for measuring non-wage amenities in the labor market. Every Dane has a digital mailbox that we use to distribute our survey. We are able to link the survey to the administrative data at Statistics Denmark, which offers two important advantages. First, we can target our survey invitations to individuals who have recently moved within a large, connected set of firms. Second, we can link the survey responses back to the matched employer-employee data with recorded earnings and hours, which form the basis of much existing research.⁴

1.1 Survey outline

Our survey is organized into four blocks, summarized below. The full questionnaire is available in Appendix D.

Block 1: Facts about current and previous jobs. After confirming that they have changed jobs within the past three years, survey participants report the end date of their previous job and the start date of their current one. They are then asked to provide details about the hours and pay of both their current and previous jobs. Finally, workers specify the reason for their job move.

⁴Bertheau and Hoeck (2023) exploit the same data infrastructure to survey Danish firms about their beliefs about the wage distribution.

Block 2: Job amenities. Workers evaluate their current and previous jobs based on a range of non-wage amenities, including job flexibility, benefits, work environment, and type of work; see Box 1 for an overview of the types of questions considered. Our formulation of these non-wage amenity measures closely follows the RAND American Working Conditions Survey (Maestas et al., 2023). The specific questions asked are listed in the survey questionnaire included in Appendix D, while summary statistics for responses are reported in Table A.2. Where possible, concrete information about amenities was elicited (e.g., length of commute in minutes, days of paid holiday granted per year). Information about culture and other qualitative aspects of the job was provided on Likert scales.

Box 1: Battery of Job Amenities

Flexibility	Benefits	Work environment	Type of work
<ul style="list-style-type: none"> • Hours of work per day • Days of work per year • Job flexibility • Commute time 	<ul style="list-style-type: none"> • Pension benefits • Paid leave • Fringe benefits • Promotions/bonuses 	<ul style="list-style-type: none"> • Physical work env. • Collegial support • Relationship to boss • Respect 	<ul style="list-style-type: none"> • Interesting work • Demanding work • Responsibility • Further education

Block 3: Evaluation of jobs. Workers report their reservation wages for choosing their previous jobs over their current ones. We use two versions of this question, asking workers to either return to or remain in their prior jobs, with survey participants randomized into one of these formulations; see Box 2. Additionally, we ask workers for the wage that would make them recommend their prior job over their current one to a typical worker with their same skills (Box 3). To supplement these responses, we also ask workers to evaluate how closely their current and previous jobs align with the ideal job, both from their own perspective and from that of a typical person with similar skills.

Box 2: Own Reservation Wage

Now imagine that you [could get your previous job back as it was before you left it / were still employed in your previous job and had the opportunity to switch to your current job]. Everything else in your life was otherwise as it is today, i.e., family situation, place of residence, etc.

Try to disregard one-off costs or difficulties of changing jobs, such as changing workplaces, learning new work procedures, etc.

What is the lowest salary that would make you willing to [take your previous job back / stay in your previous job and not switch to your current job]?

I would [take back / stay in] my previous job ...

- even if the pay was more than 20% lower than my current pay
- even if the pay was 10-20% lower than my current pay
- even if the pay was 1-10% lower than my current pay
- if the pay was similar to my current pay
- if the pay was 1-10% higher than my current pay
- if the pay was 10-20% higher than my current pay
- if the pay was more than 20% higher than my current pay

Follow-up question: You stated you would be willing to [take back / stay in] your previous job (even) if the pay was $x_1 - x_2$ % higher (lower) than your current pay. What is the minimum pay increase (decrease) in that interval you would require (accept)?

%

Box 3: Reservation Wage for Typical Worker

Think of a typical person with the same skills as you. Imagine that you had to advise the person to choose between your previous and current jobs. Assume the person is qualified for both positions.

What is the lowest salary that would make you recommend your previous job?

I would recommend my previous job over my current job ...

- even if the pay was more than 20% lower than my current pay
- even if the pay was 10-20% lower than my current pay
- even if the pay was 1-10% lower than my current pay
- if the pay was similar to my current pay
- if the pay was 1-10% higher than my current pay
- if the pay was 10-20% higher than my current pay
- if the pay was more than 20% higher than my current pay

Follow-up question: You stated you would recommend your previous job (even) if the pay was $x_1 - x_2$ % higher (lower) than your current pay. What is the minimum pay increase (decrease) in that interval that would make you recommend your previous job?

%

Block 4: Plans for future job moves. Finally, workers indicate whether they are actively looking for a new job and how long they expect to stay in their current job.

1.2 Labor market institutions in Denmark

Denmark's labor market is characterized by a “flexicurity” model that combines flexible hiring and firing rules (similar to the US, cf. [Botero et al. \(2004\)](#)) with generous government support for displaced workers. Health care and education are publicly funded through progressive taxes ranging from 40% to 55%. Furthermore, Denmark has relatively generous parental leave policies and subsidized childcare ([Kreiner and Svarer, 2022](#)).

Collective bargaining agreements cover 84% of the labor market and set minimum standards across industries for wages, working hours, pension contributions, holidays and leave policies, termination rules, skill development, and workplace conditions ([Dansk Industri, 2024](#)). Employers retain significant flexibility to offer terms exceeding these minimums, especially in the private sector, where most jobs pay above stipulated rates ([Dahl et al., 2013](#)). Agreements also allow for firm-level negotiation, often involving union representatives. Union membership stands at 66%, with participation higher in the public sector and traditional industries like manufacturing and construction ([Kreiner and Svarer, 2022](#)). Finally, individual negotiations enable workers, especially in high-skilled roles, to secure personalized terms.

1.3 Survey sampling

We invited 100,044 individuals to participate in our survey from May to June 2024. Our survey population consists of wage earners who had moved jobs in the last three years; see [Appendix B.1](#) for details.

To ensure that our survey respondents moved between a connected set of firms, we used a “snowball” sampling method. This approach begins with a randomly selected firm and expands through the networks of firms and workers, randomly sampling edges of movers connected to the previously selected firm. [Appendix B.2](#) provides a detailed description of the algorithm. Importantly, because the sampling mechanism is known, we can restore the representativeness of our sample by simulating sampling probability weights and reweighting our survey data accordingly. While our results are robust to reweighting, we present our main analysis without weights, since in practice, the large firms that contribute the most to cross-sectional earnings patterns are also more likely to be present in our sample.

The survey invitation letter is in [Appendix C](#). We sent three reminders, two by e-mail and

one by text. Our survey received complete responses from 26,265 job movers. Appendix B.3 describes our response rates in detail.

1.4 Register data and linking

Our matched employer-employee data come from the *E-Income Register*, which records earnings, hours, occupation, and industry for all job spells in Denmark on a monthly basis from 2008 onward. This register is compiled by the Danish tax authorities and subsequently harmonized by Statistics Denmark into the *Employment Statistics of Employees* (BFL) dataset. The most recent data available when we drew our sample were from February 2024. We complement this with demographic data on individuals from the *Population Register* (BEF). We compute wages in this data as monthly earnings divided by monthly hours.

Because our survey was sent to workers identified in the register data by their (deidentified) social security numbers (*pnrs*), 100% of respondents can be matched to the register data. To match survey responses about specific jobs to the corresponding spells in the registers, we use the reported start and end dates. Figure A.1 shows a close alignment between these dates and the dates their primary employers change in the administrative data. Using a one-month buffer around reported start and end dates, we can identify both the new and previous jobs in the administrative data for about 80% of survey respondents. Many of the respondents for whom we cannot identify both jobs appear to have changed jobs after our register data ends.

In total, we successfully link survey responses to the relevant administrative records for 19,211 workers across 7,088 firms. These responses form our primary analysis dataset.

1.5 Sample characteristics and representativeness

Table 1 presents descriptive statistics for workers and firms included in our analysis sample, as well as for all workers, the universe of job movers, and workers invited to respond to the survey. The table presents means of key labor market and demographic outcomes at the worker-month, worker-, and firm-level. Earnings information is converted to USD at an exchange rate of 0.14 USD/DKK and inflated to 2023 equivalents using the Consumer Price Index (CPI).

The analysis sample is subject to two levels of potential selection. First, our “snowball” sampling methodology may not produce a representative sample of job movers (Columns 3-4 vs. 5-6 in Table 1 capture this difference). However, because the sampling mechanism is known, we can address this issue by simulating sampling probabilities and reweighting

the data. Second, survey respondents may comprise a selected subset of those invited to participate (Columns 5-6 vs. 7-8 capture this difference). As Table 1 shows, our analysis sample closely mirrors the survey population in terms of observable characteristics, though respondents in the analysis sample earn slightly higher incomes and are more likely to be female. Importantly, we demonstrate that the main findings remain robust when reweighting the analysis sample to account for sampling probabilities.⁵ And in our structural exercises in Section 7, we explicitly model endogenous selection into the survey sample.

The majority of job switches reflect voluntary employer-to-employer transitions by workers with stable life circumstances. Table A.3 shows that two-thirds of job movers report switching jobs voluntarily, without being influenced by external factors such as residential moves, changes in family situation, or workplace closures. In fact, fewer than 3% report moving jobs due to a residential relocation, and only 1% cite changes in their family situation. Consistent with this, our administrative records show that 91% retain their residential address or move to a location less than 30 minutes away by travel time, while only 6% have their first child, 9% change marital status, and 1% experience a mass layoff.

1.6 Validating survey responses against register data

The link to administrative registers offers an opportunity to validate the quality of our survey responses. Specifically, our survey asked workers about changes in pay and hours, quantities that are also recorded in the register data. Figure A.4 shows a strong correlation between these measures. The relationship between pay changes recorded in the registers and those reported in the survey yields a slope of 0.95, with an R^2 of 0.22 (Panel (a)). Similarly, recorded and reported hours are closely aligned, with a slope of 0.91 and an R^2 of 0.58, up to the apparent top-coding point of 37 hours per week in the registers (Panel (b)).

Moreover, the registers allow us to validate the circumstances surrounding job changes. Specifically, Figure A.5 shows that workers' self-reported reasons align closely with register-based indicators of workplace closures and residential moves. In particular, the share of movers citing "workplace closure" rises from 0 to about 70% as employment at their original firm falls to zero. Similarly, the share citing "moved residence" increases from 0 to 35% as the commuting time between old and new residential addresses exceeds two hours. In addition, job movers who had their first child are about eight times more likely to report "family

⁵ Reweighted summary statistics presented in Table A.1 show that, as expected, correcting for sampling probability is sufficient to match the survey invite population to the population of movers from which they were drawn. Even after reweighting, however, survey respondents tend to be more female, have higher income, and work at larger firms due to differential survey response.

situation” as the reason for their move (6.1% vs. 0.8%). Similarly, those who experienced a change in marital status are nearly three times more likely to cite “family situation” compared to those whose marital status remained unchanged (2.9% vs. 1.0%).

While we do not have external measures of our reservation wages, we can check the internal consistency of our preference elicitations. In particular, Figure A.6 shows that workers who report greater improvements in the ideality of their current jobs compared to their prior jobs also report higher reservation wages for returning to (or keeping) their prior jobs.

1.7 Reservation wages: a first look

Figure 1 displays the distribution of reservation wage responses. On average, workers report requiring a 27% increase in pay to make them indifferent between their current and old jobs, with a median response of 22%.⁶ Nearly 15% of workers report being willing to switch for no pay change, however, and 9% report being willing to take a pay cut to return to their prior job. Reservation wages for a typical worker are generally lower than what workers report for themselves. The mean response corresponds to a 15% increase in pay, for example, with nearly 25% of respondents reporting that a typical worker would be indifferent between the two alternatives at the current level of pay. That workers’ own reservation wages are typically higher than what they imagine for a typical worker suggests they recognize that their jobs are likely better for them than for the average person. Workers often report values that imply the opposite, however: roughly 38% report the same reservation wages for themselves and a typical worker, and 10% report they would need *less* additional compensation to change jobs than they would recommend for a typical worker.

Figure A.7 shows how reservation wages correlate with workers’ answers to survey questions about specific amenities.⁷ Because reservation wage questions are about a pair of jobs, this figure compares them to the reported change in specific amenities due to the move. Most correlations have intuitive signs for both own and typical worker reservation wages. Own reservation wages are higher for moves that involve decreases in commutes, increases in flexibility, better perks and benefits, and increases in social impact and support and respect from colleagues and supervisors. Many of these relationships persist in a multivariate

⁶We winsorize responses at $+/ - 100\%$ to account for extreme response. Roughly 9% of own reservation wage and 5% typical worker reservation wage responses are affected.

⁷Summary statistics for these questions are available in Table A.2. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore throughout the paper by cardinalizing responses (e.g., 1 = “Very good,” 2 = “Good,” etc.). An alternative approach would be to estimate ordered models that predict amenity responses as a function of reservation wages and other predictors, although doing so would require addressing measurement error in these variables.

regression of reservation wages onto all amenities simultaneously, although the partial effects of task interest, social impact, family friendliness, support and respect, and stress stand out.

We interpret our preference elicitations as ex-post valuations of two jobs that workers know well. These valuations may differ from the ex-ante beliefs that guide job switching. Consistent with this idea, a non-trivial share of workers appear to regret their job moves. Taking the raw responses at face value, 7% report reservation wages below their old level of pay.⁸ Similarly, around 12% state that their new jobs are farther from their ideal than their previous ones. Table A.3 reports “regret rates” by workers’ self-reported reasons for moving. Notably, while regret is several times more common among workers who moved due to workplace closures or residential relocations, it remains non-negligible even among voluntary movers.⁹ These patterns motivate the search model in Section 7, which distinguishes between ex-ante beliefs (that guide job search) and ex-post valuations (that reflect realized utility).

Before utilizing the reservation wage elicitations for analysis, we assess their ability to predict job search behavior. Table A.4 presents a regression of a dummy variable for whether workers are actively searching for new work on their reported pay changes and reservation wages. Both pay increases and higher reservation wages predict reductions in job search. A 100% increase in a worker’s reservation wage, for example reduces the probability of job search by 17 p.p. Reassuringly, pay and reservation wages exhibit similar and independent effects on job search. Moreover, in a “horse race” between the two reservation wages, we find that job search decisions load onto the individual reservation wage rather than the typical worker’s. These results suggest that respondents understood the distinction between the reservation wage questions and provided internally consistent responses.

2 Conceptual and measurement framework

2.1 Basic setup

We consider a simple framework where the utility worker i enjoys from working at firm j is additive in wages and amenities. Wages include a component specific to the worker’s skill, a firm-level effect, and a match effect. Amenities also include a firm-level component and a

⁸Figure A.8 shows the distribution of the sum of wage changes and reservation wages. A negative value indicates that workers either took pay cuts larger than their reservation wage, implying they would return for less pay than moving cost them, or saw pay increases but have sufficiently low reservation wages that they would willingly give up the pay bump to return to their old job.

⁹Section 2.3 adjusts the raw reservation wages for status-quo bias in the responses, revealing even higher rates of regret.

match effect.

$$U_{ij} = \underbrace{s_i + w_j + \tilde{w}_{ij}}_{\text{log wage}} + \underbrace{a_j + \tilde{a}_{ij}}_{\text{log amenities}}$$

Wages are measured in logs and amenities in log wage equivalents, so that differences in utility across jobs can be interpreted as approximate percent changes in total compensation. The firm-level components w_j and a_j capture the wages and amenities the average worker would experience if assigned to firm j . Match effects reflect worker-specific deviations from these averages.

Own reservation wage: We model workers' own reservation wage as the quantity δ_{ijk} that, for a mover from firm j to k , satisfies:

$$\underbrace{U_{ik}}_{\text{utility in new job}} = \underbrace{U_{ij}}_{\text{utility in old job}} + \underbrace{(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})}_{\text{pay change}} + \delta_{ijk}$$

This scalar is the additional log wage compensation required to make utility the same in the worker's old and new jobs, net of their pay change. That is, δ is the compensating variation for worker i between employment at firm k vs. firm j .¹⁰ Some simple algebra reveals that δ captures the total amenity difference between the two alternatives, including both firm-level components and match effects:

$$\delta_{ijk} = \underbrace{(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})}_{\text{total amenity difference}}$$

Intuitively, a worker with $\delta = 0$ is willing to go back to their old job at their current level of pay. This implies the worker is indifferent between the two jobs, holding pay fixed. A worker with $\delta > 0$ requires additional compensation to return to their old job, which implies that their old job must offer less attractive amenities than their current job. Likewise, workers with $\delta < 0$ are willing to take a pay cut to go back to their prior job, implying it must offer more attractive amenities.

Typical worker reservation wage: The typical worker's reservation wage is defined as

¹⁰Since utility is linear over log wages and amenities, compensating and equivalent variation are the same in this case—the reference level of pay is irrelevant.

the quantity δ_{jk}^c that satisfies:

$$\underbrace{U_{ik}}_{\text{utility in new job}} - \underbrace{(\tilde{a}_{ik} - \tilde{a}_{ij})}_{\text{idiosyncratic amenities}} = \underbrace{U_{ij}}_{\text{utility in old job}} + \underbrace{(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})}_{\text{pay change}} + \delta_{jk}^c$$

That is, δ^c is the quantity that equalizes utility between the two jobs after adjusting for both pay changes and the worker's amenity match effects $\{\tilde{a}_{ij}, \tilde{a}_{ik}\}$.

Rearranging this expression shows that:

$$\delta_{jk}^c = \underbrace{a_k - a_j}_{\text{firm-level amenity difference}}$$

Since the average worker values the amenities at job j as a_j , δ^c can be interpreted as compensating variation for the average worker.

Understanding compensating variation is useful because, in many models, it determines the extent of compensating differentials. If all workers shared the preferences and pay of the average worker, for example, perfect competition would require between-firm pay gaps to be equal to between-firm amenity differences because all workers would be indifferent between employment at every firm. Allowing for match effects in amenity values implies that only the *marginal* worker's compensating variation with respect to their outside option determines compensating differentials. Heterogeneity in pay allows for some price discrimination within the firm. Firms may tailor wages to workers' job title, experience, and education, for example, so that compensating differentials are determined by the marginal worker with similar characteristics. In models with frictions (e.g., due to search), however, wage differences need not reflect compensating variation for either the average or the marginal worker.

2.2 Measurement

To facilitate taking this framework to the data, we introduce several additional features that capture important aspects of measurement. First, we allow for the possibility that workers' responses bake in status-quo bias c that inflates responses to reservation wage questions. This bias measures the compensation required for a worker to change jobs regardless of the alternatives considered. Secondly, we assume that survey responses include additional noise u that reflects inattention, misunderstanding, or any other source of variation that may lead the same respondent to answer the same question differently if the survey could be re-administered. Finally, we assume that workers may not be fully informed about how the average worker would view their current and previous job alternatives or may have different

mental models of who a typical worker may be. As a result, different movers between the same firm pair may provide systematically different answers about the typical worker's reservation wage.

Specifically, we assume that workers' own reservation wage reports, Y_{ijk} , satisfy:

$$Y_{ijk} = \delta_{ijk} + c(X_i) + u_{ijk} \quad (1)$$

where $c(X)$ represents status-quo bias for a worker with observables X and u is the additional survey noise.

We assume responses to the typical worker's reservation wage question, Y_{ijk}^c , satisfy:

$$Y_{ijk}^c = \delta_{ijk}^c + c(X_i) + e_{ijk} + u_{ijk}^c \quad (2)$$

where $e_{ijk} = (\hat{a}_{ij} - \tilde{a}_{ij}) - (\hat{a}_{ik} - \tilde{a}_{ik})$ is error in the worker's guess about the idiosyncratic components of their own amenity valuations and u^c represents survey noise.

We restrict survey noise to be mean zero but leave its correlation structure unrestricted:

Assumption 1 (Survey noise) *Survey errors for reservation wage questions ($\{u_{ijk}, u_{ijk}^c\}$) are mean zero and have finite variance and unrestricted correlation.*

Although we focus on reservation wage questions in this section, we assume that other survey responses (i.e., for changes in pay) have an analogous noise component, which may also be correlated with both u_{ijk} and u_{ijk}^c .

Finally, we make one important assumption about e_{ijk} :

Assumption 2 (Unbiased and informed forecasts) *On average, workers' assessments of a typical worker's reservation wage are unbiased and informative: $E[e_{ijk}|i \text{ moves } j \rightarrow k] = 0 \forall j, k$ and $E[e_{ijk}^2|i \text{ moves } j \rightarrow k] < \infty \forall j, k$.*

The first component of Assumption 2 requires movers' estimates of how a typical worker would view jobs j and k to be unbiased. It is the analog in our context of the "exogenous mobility" assumption made in AKM analyses. The second component of Assumption 2 requires that there be some information in respondents' estimates of the typical worker's reservation wage. Both enable us to identify and consistently estimate firm amenity effects using the AKM framework described in the next subsection. In Section 3.3, we present tests assessing the validity of the components of Assumption 2.

Note that because this assumption relates to reservation wages for a typical worker, it does

not rule out sorting or mobility decisions based on workers' *own* valuation of the amenities provided by j and k . In fact, one might expect workers moving from firm j to k to be selected on the preferences for working at k relative to j and vice versa. This type of selection would make estimating firm amenity effects using workers' own reservation wages problematic. Assumption 2 circumvents these issues so long as workers can successfully abstract from their own taste for amenities relative to the typical worker's.

2.3 Estimation

The measurement assumptions laid out in the previous subsection imply that we can estimate firm-level amenity effects using data on reservation wages for the typical worker. We do so by finding the set of firm effects $\{\hat{a}_j\}_{j=1}^J$ and status-quo effects \hat{c} that solve:

$$\min_{\{\hat{a}_j\}_{j=1}^J, \hat{c}} \sum_{i=1}^N (Y_{ijk}^c - \hat{a}_k + \hat{a}_j - \hat{c}(X_i))^2 \quad (3)$$

In practice, numerically identical estimates can be obtained by estimating a simple two-way fixed effect model after converting our survey responses into a panel with two observations per worker.¹¹ This equivalence also allows us to make use of existing tools for obtaining bias-corrected estimates of the variance of firm effects (e.g., Kline et al., 2020).

Status-quo effects are allowed to depend on workers' sex, education (binary indicator for having a BA or higher), and birth year. Table A.5 presents the estimates, showing that the average \hat{c} is roughly 16% for women and 12% for men.¹²

We use the same approach to estimate firm wage effects in our survey sample. That is, we find the set of firm effects $\{\hat{w}_j\}_{j=1}^J$ that minimize Equation (3) replacing Y_{ijk}^c with the wage change (pay divided by hours) experienced by worker i when moving from firm j to firm k . We consider using the wage change reported in the survey as well as the change recorded in the administrative data. Under standard exogenous mobility conditions assumed in the AKM literature (see, e.g., Card et al. (2013)), these estimates are unbiased for firm average

¹¹Specifically, we estimate:

$$Y_{ijk}^c 1\{t = 2\} = \gamma_i + a_{m(i,t)} + c(X_i) \cdot 1\{t = 2\} + \xi_{it}$$

where each respondent i is assigned to their old firm in period one and their new firm in period two, and $m(i,t)$ indexes firm assignments. Taking the first difference shows why the two approaches produce identical estimates.

¹²After adjusting for status-quo bias in the elicitations, we estimate that 27% of workers appear to regret their job moves—that is, their reservation wages fall below their old level of pay (see Table A.3, Column (2)).

wage premia (or firm-level wage components, in our framework). We relax this assumption in our structural model in Section 7.

Estimating both firm wage and amenity effects requires sub-setting to a connected set of firms. The largest connected set in our survey sample includes 7,017 firms (99% of all firms in the analysis sample) and 19,167 workers (99% of all workers in the analysis sample). In some exercises we also use the largest leave-worker-out connected set, which prunes a large number of firms connected by a single mover and contains 2,584 firms (36%) and 19,109 workers (99%) in total.

Finally, it is possible to estimate changes in total amenity valuations and match effects by subtracting off any status-quo bias and the relevant firm-level components:

$$\begin{aligned} a_k + \widehat{\tilde{a}_{ik} - a_j} - \tilde{a}_{ij} &= Y_{ijk} - \hat{c}(X_i) \\ \widehat{\tilde{a}_{ik} - \tilde{a}_{ij}} &= Y_{ijk} - (\hat{a}_k - \hat{a}_j) - \hat{c}(X_i) \end{aligned}$$

This approach relies on the assumption that status-quo bias is the same in survey responses to questions about one's own reservation wage and a typical worker's. Without this assumption, it is difficult to separately identify the mean change in total amenity valuations from bias. As we show below, even after accounting for estimated status-quo bias, mean changes in total amenities remain substantial. For this reason, much of our analysis focuses on the correlations between changes in total amenities and changes in wages, which are unaffected by any constant shifts in reservation wage responses. In our structural estimates in Section 7, however, we allow for status-quo bias in own reservation wage responses that is not tied to their responses about the typical worker.

2.4 Out-of-sample estimates

To account for both survey noise (e.g., u_{ijk}) and estimation error (e.g., in \hat{w}_j), it is useful to have independent measurements of several objects. We use wage changes recorded in the register data as an independent measurement of wage changes reported in the survey. These wage changes are computed as the change in median log hourly wage over the last and first six months of the old and new jobs, respectively, excluding the last month of the old job and the first month of the new job. We also estimate firm effects $\{\hat{w}_j^{-s}\}_{j=1}^J$ using wage data for the full population of firms and workers in Denmark excluding the survey sample (hence the $-s$ superscript).¹³

¹³These estimates are available for all 7,088 firms in the survey sample, save one not present in the population-based connected set. We impute a firm effect for this firm using the average in its one-digit

3 Firm wage and amenity effects

We begin by estimating firm wage and amenity effects using the framework developed in Section 2. The basic results are presented in Table 2. This table reports the variance of firm effect estimates for wages and amenities in the largest connected set in the survey sample and the largest leave-worker-out connected sample. The table also reports bias-corrected variance estimates valid under homoscedasticity and under heteroscedasticity (in the leave-out samples), as well as correlations between wage effects estimated using survey responses vs. administrative data.¹⁴ For readability, the underlying outcome data (e.g., for log wages) is scaled by 100, so that variances are scaled by 100².

Firm effects in wages vary considerably regardless of whether they are estimated using the survey responses or administrative wage data. The standard deviation in effects corresponds to a roughly 7% increase in wages. This figure is comparable to but smaller than recent estimates from other developed countries, but more similar to prior estimates using Danish data.¹⁵ De-biased variances are similar regardless of whether homoscedastic or heteroscedasticity-robust correction is used, with the former also similar in the full and leave-worker-out sample. The final rows of the table report both raw and de-biased correlations between wage effects estimated using survey or administrative data and show a tight connection.¹⁶

Firm amenity effects are considerably less variable than firm wage effects. The de-biased standard deviation of effects corresponds to a 4% change in wages in the full sample and 3% change in the leave-out sample. As with wage effects, estimates are similar regardless of the correction used. We do not have an administrative analogue for our amenity measures, so Table 2 does not report correlation estimates between survey and register based measures of firm amenity effects. We examine the correlation between firm wage and amenity effects further below.

Figure 2 reports the average firm amenity effect by one-digit industry for the roughly 7,000 industry.

¹⁴In Columns 1 and 2, the outcome is wages recorded in the register data. In Columns 3 and 4, it is the wage changes recorded in the survey. As a result the variance of the outcome is not directly comparable across these sets of columns, since it is the overall variance in Columns 1 and 2 and the variance of differences in Columns 3 and 4.

¹⁵Song et al. (2018) report variances of firm earnings effects on social security data between 8 and 9%. Bagger and Lentz (2019) find a variance of 1.4% over a much longer time period. One key distinction between our firm effects and estimates using US data and some other studies is that we report effects on hourly wages, as opposed to annual or daily earnings. The variance of firm effects on earnings in the administrative data tends to be larger.

¹⁶The de-biased correlation is the sample covariance divided by the product of the square roots of the bias-corrected variance estimates.

firms in the connected set. Average amenities are highest among the 545 firms in the education sector, lower in sectors including finance and insurance, and health and social services, and lowest in accommodation and food services. The differences in means between the best and worst industries imply a roughly 9% difference in the wage value of amenities. These patterns correspond to intuitive perceptions of which industries tend to offer “good” jobs. For example, [Kleven et al. \(2019\)](#) use the public sector (which includes education in Denmark) as a proxy for the family-friendliness of workplaces.

Figure 3 regresses workers’ changes in firm amenity effects onto their changes in the specific amenities reported in response to the Box 1 questions described in Section 1.1. The figure presents simple bivariate regressions for each amenity one-by-one and the coefficients from the multivariate analogue. Amenities are standardized by their cross-sectional standard deviation to provide a comparable scale. Both sets of regressions reveal similar and intuitive patterns. In the multivariate specification, family friendliness, social impact, interesting tasks, respect, support from colleagues and managers, pension contributions, and work environment quality are all positively associated with firm amenity values. In contrast, layoff risk, fast work pace, stress, and physical demands are negatively associated. Commute length is a weaker predictor of firm amenity effects, which we view as supporting the assumption that these effects capture the value of the firm’s amenities to a “typical” worker, since commuting has a strong match component by nature.

Many amenities that appear significant in the univariate regressions lose significance in the multivariate setting. This highlights that these relationships should not be interpreted causally without strong assumptions. As with all hedonic approaches, omitted amenities not directly measured may bias the estimates. All told, the collection of specific amenities we measure captures roughly 33% of the de-biased variation in firm amenity effects.¹⁷ Enumerating all potentially valuable amenities would be difficult (and exhausting for survey respondents). The virtue of our reservation wage approach is that we are able to price the complete bundle of amenities offered by the two alternatives, regardless of what they consist of.

3.1 Relationship with revealed preference measures

While our estimated amenity effects are based on direct elicitations, we can relate them to existing revealed preference measures of firm desirability. As noted, revealed preference

¹⁷This calculation is based on the fact that the R^2 from the multivariate regression of firm amenity effects on specific amenities (estimated in levels) is 0.039. Column 5 of Table 2 implies a signal-to-noise ratio for the estimated firm amenity effects of $19.74/160.91 = 0.12$. Dividing 0.039 by 0.12 yields 0.33.

approaches infer the value of firms from their ability to attract workers given an assumed model of labor supply.

Table A.6 regresses estimated firm amenity effects on several revealed preference measures of firm desirability, including log firm size, a poaching index (share of new hires from other firms vs. unemployment), and Sorkin (2018) valuations (which whether a firm disproportionately attracts more workers). Odd columns report bivariate regressions, while even columns include a control for firm wage effects, instrumented using the independent register estimate, \hat{w}_j^{-s} . Conditional on wages, our amenity estimates are positively correlated with all three measures, though the correlation is weakest for the poaching index. Figure A.9 provides some intuition for why our amenity measures do not perfectly align with revealed preference indicators. For example, while firms with higher valuations in Sorkin (2018) offer greater pension contributions and opportunities for social impact, they also show puzzling negative correlations with specific amenities—including paid holidays, quality of perks, collegial support, and task interest. Moreover, several seemingly important job attributes—such as remote work, weekly hours, teamwork, family-friendliness, and continuing education—are uncorrelated with revealed preference measures.¹⁸

3.2 Benchmarking against prior estimates

Although our survey did not elicit willingness-to-pay for specific workplace amenities, the combination of reservation wage and specific amenity questions provides a simple opportunity to compare our results to prior estimates. Table A.7 does so by reporting regressions of own reservation wages on changes in specific amenities coded to mirror the formulations in Maestas et al. (2023) Table 2 as closely as possible. The results show, for example, that moves to jobs that allow workers to set their own schedule involve a 6.3% increase in reservation wages (and hence valuation of amenities). In their stated preference discrete choice experiment, Maestas et al. estimate that workers are willing to take an 8.9% wage cut to be able to set their own schedule. Importantly, however, while a discrete choice experiment attempts to hold all job attributes fixed besides the amenity of interest, our reservation wages capture the value of all amenities present in the two alternatives. Amenities correlated with schedule flexibility may bias the implied willingness-to-pay in either direction. Consistent with this idea, effects attenuate somewhat when controlling for all recoded amenity changes

¹⁸As the Sorkin framework identifies total firm values rather than amenities, it has limited direct comparability to our estimates. Lehmann (2025) extends Sorkin's model to explicitly decompose firm values into separate wage and amenity components. Applying the extended model to Austrian data from 1996 to 2011, Lehmann finds that the implied firm wage and amenity effects are uncorrelated on average, though the relationship shifts from negative to positive over time.

jointly, although they remain directionally comparable to those in prior work.

3.3 Validating firm amenity effects

Figure 4 presents two simple validation tests of the estimated amenity effects. In Panel (a), each worker’s typical-worker reservation wage response is plotted against the estimated change in common amenities for their current vs. prior firm. This estimate is constructed after dropping that worker from the sample, so that there is no mechanical correlation between the dependent and independent variables. As a result, only workers in the leave-worker-out connected set are included in this exercise. These estimates on the x-axis are frequently based on just a handful of movers, so one should not expect a slope of one. The fact that the slope is positive and strongly significant demonstrates that workers’ views of the amenities of particular firms are correlated, however, implying there is useful signal in the survey responses.

The framework developed in Section 2 implies a symmetry restriction that job switchers moving in opposite directions between pairs of firms, on average, agree on the typical worker’s evaluation of those firms. Panel (b) explores this symmetry restriction. For each worker, we estimate firm amenity effects, dropping that worker from the sample. We then group these estimates into deciles and classify the worker by the decile of their origin and destination firm. Panel (b) plots the average typical worker reservation wages for upwards and downwards movers for each decile pair after subtracting estimated status quo bias $\hat{c}(X_i)$.¹⁹ Our framework implies that responses for upwards and downwards movers should be equal in absolute value and oppositely signed. The bottom of Panel (b) shows that a simple bootstrap test of this null does not reject, suggesting that the dispersion in Panel (b) is plausibly attributable to sampling error. The fact that job switchers who move in opposite directions agree on the typical worker’s evaluations of firms supports our identifying Assumption 2 that these evaluations are unbiased. Apparent symmetry also supports the additive structure of the two-way fixed effect model we estimate.

3.4 Relationship between pay and amenity effects

Figure 5 shows the cross-sectional relationship between firm wage and amenity effects in our survey sample, as well as the ordinary least squares slope. This raw correlation shows a strongly significant negative relationship that implies every 10% increase in firm wage effects implies an average decrease in the value of amenities of roughly 1.6%. There are at least

¹⁹This estimate is also constructed using the same leave-out strategy.

two problems in this estimate, however. First, as the bias corrections in Table 2 illustrate, firm wage effects are very noisy. All else equal, this noise serves to attenuate the slope in Figure 5 towards zero. Second, sampling error in firm wage effects may be correlated with firm amenity effects. For example, a firm’s wage effect may be overestimated if movers to that firm in our sample experienced unusually large wage gains. Since reservation wages are elicited relative to current pay, these movers would also require smaller wage differentials to make a typical worker indifferent, mechanically inducing a negative correlation between our estimated wage and amenity effects.²⁰

We correct for both sources of measurement error by instrumenting firm wage effects with independent measurements of the same objects. These estimates are obtained by estimating the same AKM model in the full Danish population excluding our survey sample, as discussed in Section 2.4. All firms in our survey sample but one are present in the connected set in this split sample.²¹ Remarkably, the two-stage-least squares slope is very similar to the OLS slope, implying a 10% increase in firm wage effects involves an average decrease in amenity values of 1.56%. The estimate is very precise, ruling out declines beyond roughly 2%, for example. The similarity of OLS and 2SLS estimates implies that the two sources of bias—attenuation and mechanical—roughly cancel out.

The negative relationship between firm pay and amenity effects implies that, holding pay fixed, the average worker would be better off employed at a typical low-wage firm than a typical high-wage firm. But because the magnitude of the slope is far above -1 , differences in pay offered by high-wage firms are more than enough to make up for the decrease in the value of amenities. The data are thus strongly inconsistent with the simplest competitive benchmark model, where firm pay premia reflect compensating differentials determined by the preferences of the average worker.

Why do high-paying firms offer incomplete amenity trade offs? Figure 6 provides some hints. This figure repeats the exercise from Figure 3, but puts firm wage effects on the left-hand side. The results illustrate that high-wage firms tend to offer several attractive amenities, including more flexibility, more paid time off, less physical work, better perks, and fancier office environments.²² At the same time, however, high-wage firms appear to involve faster-paced work on less interesting tasks, lower pension contributions, heightened layoff risk, less support from colleagues and managers, and more stress.²³ Taken together, workers

²⁰More concretely, both e_{ijk} and u_{ijk}^c may be correlated with pay changes $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$.

²¹Figure A.10 shows that these estimates are very strong predictors of wage effects in the survey sample, with a first-stage regression slope of 0.51 (0.073).

²²See Pierce (2001) for evidence on the correlation between fringe benefits and pay in the United States.

²³At least some of these patterns are corroborated by prior work noting that job displacement is more

tend to see the bundle of amenities offered by high-wage firms as slightly less valuable, on average.

Some of these patterns likely reflect common patterns in working conditions and pay levels across industries. Figure 7 illustrates the between-industry relationship by plotting the average amenity values from Figure 2 against the industry-average firm wage effect. Some high amenity sectors, such as education and the public administration, also tend to be relatively low paying. Some low amenity sectors, such as construction or manufacturing, tend to offer worse amenities but better pay. Yet some industries appear to offer both low pay and amenities, including wholesale and retail trade and accommodation and food service. The raw between-industry slope is slightly stronger than the overall slope, implying moving to an industry with 10% higher average firm wage effects implies a decrease in amenities of roughly 2.6%. Using the same instrumental variables strategy as before, however, we find a trade off of about 2%. Standard errors are such that we cannot reject equivalence between the pooled and between-industry slopes.

Table 3 presents regression estimates of the basic relationship between firm wage and amenity effects in the full survey sample, replicating the results shown in Figure 5. The table also shows that we find a similar relationship when including worker fixed effects, so that the regression compares changes in firm wage effects to changes in firm amenity effects. Finally, the table estimates the within-industry relationship by including fixed effects for one-digit industry. The IV slope is -0.12 , comparable but slightly smaller than the pooled estimate, and not significantly different.

3.5 Inequality in firm effects

The preceding sections revealed meaningful differences in the amenities that firms offer workers and a negative correlation between wages and amenities. How do these findings affect our conclusions about between firm inequality?

First, the negative correlation between wages and firm effects is strong enough that the variance in firm utility effects (the sum of wage and amenity effects) is roughly equal to the variance in firm wage effects. Specifically, while Table 2 reports a debiased standard deviation of 7.6% for firm wage effects, the corresponding standard deviation for firm utility

common at high-wage firms (Goldschmidt and Schmieder, 2017; Lachowska et al., 2020; Bertheau et al., 2023). Stern (2004) provides evidence on how scientists trade off pay against the opportunity to pursue their own intellectual agenda. Mas and Pallais (2020) document that workers who benefit from more flexible work arrangements tend to be higher wage but also report more job stress and family interruptions.

effects is approximately 7.7%.²⁴ In Section 7, we revisit between-firm inequality, accounting for heterogeneity in pay and preferences across workers.

Second, accounting for firm amenities substantially reduces the gender gap in firm effects. Table 4 shows that the gender gap in firm wage effects (Columns 1 and 5) shrinks by 35%—from about 2.8 percentage points to approximately 1.8 percentage points—once firm amenity effects are included (Columns 3 and 6).²⁵ This reduction reflects the fact that women work at firms with significantly better amenity effects (Columns 2 and 5).²⁶

4 Tradeoffs for movers

Simple competitive models with no preference heterogeneity predict that workers should be indifferent between their current jobs and all others. The preceding results demonstrate that the average worker would typically be strongly infra-marginal at a higher-wage firm because amenities do not decline fast enough in pay. However, because workers are heterogeneous in terms of both pay and amenity valuations, it is possible that only the *marginal* worker is indifferent between their current job and their next best option. In this case, wage gaps would reflect compensating differentials determined by the marginal worker’s preferences rather than the average worker’s, and moving any worker to another job would still make them worse off.

We next use movers’ own total amenity valuations, inclusive of match effects, and realized wage changes to test these ideas. First, we ask whether high-paying firms are able to attract workers with a stronger taste for the amenities they offer. Figure 6, for example, shows that moves to higher-paying firms are associated with increases in the pace of work, but some workers may thrive in high-intensity environments. If workers recognize that their taste might not be shared by a typical worker, movers to high-paying firms may report very different reservation wages for themselves than for a typical worker. Figure 8, however, shows that this does not appear to be the case. Changes in total amenity values have approximately the same slope in changes in firm wage effects as changes in common amenities. The 2SLS estimate shows a slope of roughly -.2. It thus appears that workers moving to higher-wage

²⁴Table 2, Columns (1) and (5), report that the debiased variances of firm wage and amenity effects are about 57.29% and 19.74%, respectively. Figure 5 shows that the IV slope of firm amenity on wage effects is -0.156 . Combining these estimates implies a variance in firm utility of 59.15% ($= 57.29\% + 19.74\% - 2 \times 0.156 \times 57.29\%$), equivalent to a standard deviation of 7.7%.

²⁵Card et al. (2016) document a similar gender gap in firm wage effects of 3.5% among Portuguese workers.

²⁶In line with this finding, Morchio and Moser (2024) estimate that women in Brazil are more likely to work at firms with higher amenity valuations, as identified through a structural search model estimated on matched employer-employee data and validated using amenity proxies such as hours flexibility and parental leave generosity.

firms recognize that such moves typically involve tradeoffs, both for the average worker and for themselves.

On the other hand, not all movers experience the same wage change. Figure A.12, for example, shows that on average, a 10% increase in pay is associated with a 4% increase in firm wage effects on average. Worker-specific deviations from pay premia may contribute to (or moderate) the wage-amenity tradeoffs experienced by movers. Figure 9 explores this question by plotting total amenity changes against total wage changes. The regression fit shows a strong negative relationship that is attenuated somewhat by extreme wage changes driven by workers reporting very low hours. For moderate wage changes (i.e., below 20%), every 1% increase in pay is associated with a 0.15% decrease in amenity values. For example, Figure A.13 shows that moves to higher pay are accompanied by longer hours, greater leadership responsibility, and more stress.

The estimated relationship between pay changes and reservation wages may be affected by attenuation bias due to measurement error in reported pay changes. This measurement error may also be negatively correlated with reservation wages if, for example, movers who overstate their wage gains also underestimate the amenity difference between the firms because amenity valuations are elicited as a fraction of current pay.²⁷ We use a similar instrumental variables approach as before to correct for both issues. Here, wage changes reported in the register serve as the instrument. Unlike for firm-level effects, we find IV estimates that are significantly more negative. The IV slope for moderate wage changes implies a slope of -0.52.²⁸

While stronger than the estimated trade offs for the average worker, this estimate is far above -1. If movers are a close approximation to the marginal worker and their prior job is representative of their outside option, this finding suggests pay differences do not principally reflect compensating differentials. Instead, roughly half the average pay change (for moderate wage changes) is a compensating differential. On the other hand, if movers' preferences are not close to those of the marginal worker or their outside options have changed, the compensating variation we measure here may not inform compensating differentials. In Section 6 below, we study populations more likely to be marginal with respect to their prior job (e.g., older, voluntary switchers). Nevertheless, the results here demonstrate that

²⁷In the notation from Section 2, this amounts to a correlation between u_{ijk} and the analogous noise term for the reported change in pay.

²⁸The intercept remains substantial even after accounting for the status quo bias estimated in Section 2.3. It is possible that the bias is larger for questions about one's own reservation wage than for those about a typical worker. We focus on the slope estimates because, although the mean change in amenity valuations cannot be separately identified from any status quo bias, the slopes are unaffected by any constant shifts in reservation wage responses.

movers, including those to high-wage firms, enjoy substantial ex-post rents. These movers are the same population that identifies firm-wage effects in AKM studies, suggesting that the typical mover to a high-wage firm is significantly better off from doing so.

Figure 9 suggests some asymmetry in wage amenity tradeoffs, with moves involving wage cuts typically entailing larger increases in amenities. Figure A.14 shows that this is partly due to measurement error. When plotting reservation wages against second-stage fitted values (from a regression of survey wage changes on the instrument, wage changes in the register), there is a clear negative relationship for both negative and positive wage changes. Only extreme wage increases ($> 20\%$) tend to involve weaker decreases in amenities. These outliers likely reflect moves to jobs with very low hours and thus changes in participation as well, or significant shifts in careers, such as moves into management.

Table 5 reports several variations on the exercise from Figure 9. Remarkably, we find highly similar trade offs when we include either destination firm and origin-destination firm pair fixed effects. The estimated amenity-wage slope among movers to the same firm is -0.5, for example, while the slope within pair is -0.52. This finding suggests that match effects in wages and amenities are strongly correlated, even among movers between the same pair of firms. This correlation could reflect bargaining or price discrimination in posted wages.

Putting our estimates together, we can assess how much of workers' total trade-offs between wages and amenities reflect firm-wide trade offs vs. match effects. Our results imply that a 10% increase in wages is offset by a 5.2% decrease in the value of amenities (Table 5, Column 4). Since the elasticity of firm wage effects with respect to wage changes is 0.4 (Figure A.12), and we find that a 10% increase in firm wage effects is associated with a 1.8% decrease in firm-level amenities (Table 3, Column 4), roughly 0.72% ($10 \times 0.4 \times .18$) of the total decrease in amenities is attributable to firm-wide trade offs. The majority of wage-amenity tradeoffs (about 86%) is driven by the fact that firms tend to pay workers relatively more if they value their amenities relatively less, rather than high-wage firms systematically offering worse amenities.

5 Robustness

The appendix provides several stress tests of our results. One concern, for example, is that if the move coincides with an important change in life circumstances (e.g., due to the birth of a new child), the workers' preferences may have shifted substantially. As described in Section 1.5, most of our survey respondents have "stable" situations, with less than 10% changing marital status between jobs. Additionally, the next section shows that similar results hold

for workers without children and those who do not change their residential address between jobs.

Appendix Table A.8 also shows that the basic trade offs between wages and amenities remain similar when adjusting for sampling weights, using mean instead of median wages as the instrument, and focusing on varying bands of wage changes. If anything, compensating differentials are strongest for the most moderate wage change (e.g., $+/ - 10\%$), where point estimates suggest nearly all of wage changes are offset by changes in amenities. Finally, Figure A.15 shows that we find very similar estimates regardless of which framing of the reservation wage question (take back old job vs. keep in old job) we use.

6 Heterogeneity

How does the relationship between reservation wages and pay changes vary among job movers? Figure 10 explores this by analyzing this relationship across worker characteristics (gender, age, education, family situation), job characteristics (public vs. private sector, union membership), and the circumstances surrounding the job move (self-reported reason for the move, whether it coincided with a residential move or becoming a parent). The figure shows the estimated slope from a regression of reservation wages on wage changes using the same instrument and sample restrictions as Column 3 of Table 5 for each group of movers.

The results reveal several important differences. First, men experience significantly stronger compensating differentials than women. Specifically, while a 10% wage increase is offset by a 6.9% reduction in amenities for men, the same move for women involves reductions of only 4.1%. One interpretation of this finding is that most moves for men are made between jobs that are relatively close substitutes, perhaps because they have already made the most obvious leaps up the relevant job ladder. Women, however, may face greater constraints and be less able to optimize mobility. Women changing jobs as a result of being a “trailing spouse,” for example, may experience a variety of changes in wages and amenities that do not perfectly offset (Jayachandran et al., 2024). Figure 11 probes these gender differences further with binned scatter plots of reservation wage vs. wage changes separately for each group. The difference in slopes is driven by moves to jobs with substantially lower pay (less than 20% of prior jobs). While men only switch to these jobs if they have a strong preference for them, women do not exhibit the same patterns.

We find that workers under 40 also show weaker tradeoffs between pay and non-pay aspects of their jobs. This finding is consistent with the idea that young workers are more likely

to be making job transitions that generate sizable wage growth and lead to stable careers (Topel and Ward, 1992; Neal, 1999). In contrast, older workers may be choosing between a more comparable set of options, having already settled into a more narrow career path. Several other characteristics show limited differences, including degree of education, marital status, having children, job sector, and unionization status.

A final dimension that matters is the reason for the job transition. Workers more closely trade off pay and non-pay aspects of their jobs when the switch is voluntary employer-to-employer (EE) instead of an involuntary transition. Specifically, for voluntary switchers, every 10% increase in wages is associated with a 6.1% reduction in reservation wages.²⁹ For involuntary switchers, the same change in wages is offset by a reduction in amenities roughly half as large. This finding is consistent with voluntary switchers carefully weighing the costs and benefits of moving vs. staying. If a move occurs despite a small change in wages, it must be that the worker was motivated to do so by a relatively large increase in non-wage amenities. Because the worker could have remained at their prior job, it is also likely to be more representative of their outside option. The choices of involuntary movers, however, are not as closely tied to their previous jobs and therefore primarily reflect the distribution of offers. The next section presents a search model that is consistent with these findings.

7 Search model

We conclude by embedding our amenity elicitation into a more general model of labor market mobility, wages, and preferences. The model incorporates three features highlighted by our previous results: 1) endogenous mobility; 2) potential differences between ex-ante and ex-post valuations of firm-level amenities; and 3) heterogeneity in both wages and amenity valuations across workers within and between firms. The combination of these features allows us to connect our results more closely to revealed preference estimates of amenities studies in the previous literature, while also accounting for the fact that whether to switch jobs and where—and thus which workers appear in our survey—is endogenous. We then use the results to characterize sources of wage and amenity disparities within and across the firm distribution in the full population of workers.

7.1 Model overview

The model we use is a variation on the discrete mixture studied in Lentz et al. (2023). We assume that workers belong to one of \bar{K} discrete types indexed by $K_i \in \{1, \dots, \bar{K}\}$. Worker

²⁹Figure A.16 plots the underlying binscatters.

types are unobserved, but type membership depends on worker observables X_i . We model $Pr(K_i = k|X_i) = \pi_k(X_i; \gamma)$ using a multinomial logit structure:

$$\pi_k(X_i; \gamma) = \frac{\exp(X_i' \gamma_k)}{\sum_{z=1}^{\bar{K}} \exp(X_i' \gamma_z)},$$

where $\gamma = \{\gamma_k\}_{k=1}^K$. Importantly, X_i includes an indicator for whether worker i responded to the survey, allowing the type distribution to differ between the full population of workers and our (potentially) selected sample of survey respondents.

Firms also belong to one of \bar{L} discrete types indexed by $L_j \in \{1, \dots, \bar{L}\}$. Workers may also be unemployed, which we denote as assignment to firm type $L_j = 0$. Following [Bonhomme et al. \(2019\)](#), firm types will be assigned using first-step classification.

The model allows workers to sort across jobs based on their preferences through search. We assume that workers' utility is linear over mean log wages and amenities, as in our earlier conceptual framework. Firms of type l provide workers of type k mean log wages $\mu(k, l)$ and amenities $a^1(k, l)$. However, we allow for the possibility that $a^1(k, l)$ is partly an experience good: job seekers may not fully know their amenity value of working at a firm until after joining. Instead, the decision to join a new firm will be based on an ex-ante perception of amenities, $a^0(k, l)$. We make no restrictions on the relationship between $a^1(k, l)$ and $a^0(k, l)$, so it is possible that there is tight alignment between ex-ante and ex-post amenity valuations (or not).

When a type k worker employed at a type l firm meets a type l' firm, she moves if doing so improves expected utility, subject to transitory preference shocks:

$$\text{move } l \rightarrow l' \text{ if } \rho(k)[\mu(k, l') + \alpha^0(k, l') - \mu(k, l) - \alpha^1(k, l)] > \epsilon$$

where $1/\rho(k)$ controls the type-specific variance of the shocks. As $1/\rho(k)$ approaches zero, we recover the classic [Burdett and Mortensen \(1998\)](#) setup where all voluntary transitions improve expected utility. If the variance of shocks is non-zero, however, some employer-to-employer transitions reflect reallocations that need not improve expected utility. We call these shocks transitory because we assume they affect mobility decisions but not flow utility on the job. When a worker meets a firm of the same type as their current employer, we assume transitions happen with probability one-half.

Search occurs randomly. The probability that a type k worker meets a type l firm is governed by $\lambda_e(k, l)$. Transitions from unemployment occur with probability $\lambda_u(k, l)$. Jobs

are destroyed with probability $\delta(k, l)$. Assuming that the mobility preference shocks are logistic, the likelihood of any transition can thus be written (recalling that $l = 0$ denotes unemployment):

$$P(l'|k, l) = \begin{cases} \lambda_e(k, l)(1 + \exp(-\rho(k)[\mu(k, l') + \alpha^0(k, l') - \mu(k, l) - \alpha^1(k, l)])^{-1} & \text{if } l \neq l', l > 0, l' > 0 \\ \lambda_e(k, l)/2 & \text{if } l = l' > 0 \\ \lambda_u(k, l) & \text{if } l = 0, l' > 0 \\ \delta(k, l) & \text{if } l > 0, l' = 0 \end{cases}$$

The likelihood that a worker's employer and employment status do not change is denoted $P(-|k, l) = 1 - \sum_{l'} P(l'|k, l)$.

The data consist of a panel of employment indicators, wages, and employer assignments, as well as reservation wages for the subset of workers included in the survey. We let M_{it} be an indicator for whether worker i changes employers (including transitions in/out of unemployment) between periods t and $t + 1$. We assume that spell-mean wages are normally distributed with worker and firm type-specific means and variances, so that:

$$f(W_{it}|k, l) = \frac{1}{\sigma_w(k, l)} \phi\left(\frac{W_{it} - \mu(k, l)}{\sigma_w(k, l)}\right)$$

where ϕ is the standard normal density.

Finally, workers covered in our survey provided an assessment of their personal amenity valuations between two employers. We assume these valuations reflect the differences in ex-post valuations $a^1(k, l)$ and, as in the measurement framework used earlier in the paper, allow for status-quo bias in responses. Let $a(k) = (a(k, 1), \dots, a(k, \bar{L}))'$ denote the \bar{L} -vector of firm amenity valuations for a type- k worker. Let D_i be a \bar{L} -vector that encodes the type transition covered in the survey. A mover from firm type l to l' has the l th entry of D_i equal to -1 , the l' th entry equal to 1 , and all other entries equal to zero. Assuming the survey responses are provided with normal noise, the likelihood of each worker's response can thus be written as:

$$h(Y_i^a|D_i, k) = \frac{1}{\sigma_a(k)} \phi\left(\frac{Y_i^a - c(k) - D_i' a(k)}{\sigma_a(k)}\right)$$

where $c(k)$ captures status-quo bias and $\sigma_a(k)$ is a type-specific variance in survey responses. Finally, we let S_i be an indicator for whether worker i participated in the survey, which we assume is random conditional on type.

Collecting a worker's sequence of wage observations as $W_i = (W_{i1}, \dots, W_{iT})'$, mobility events as $M_i = (M_{i1}, \dots, M_{iT})'$, and firm type assignments (including no firm/unemployment) as $L_i = (l_{j(i,1)}, \dots, l_{j(i,T)})'$, the conditional likelihood for worker i can be written as:

$$L_i(W_i, M_i, L_i, S_i, Y_i^a, D_i | K_i = k) = \underbrace{g(k, l_{i1})}_{\text{initial conditions}} \underbrace{\prod_{t=1}^{T_i-1} f(W_{it} | k, l_{j(i,t)})}_{\text{wages}} \\ \underbrace{\prod_{t=1}^{T_i-1} P(l_{j(i,t+1)} | k, l_{j(i,t)})^{M_{it}} P(- | k, l_{j(i,t)})^{1-M_{it}}}_{\text{mobility}} \\ \underbrace{h(Y_i^a | D_i, k)^{S_i}}_{\text{survey}}$$

The marginal likelihood then averages over worker types using type probabilities $\pi_k(X_i; \gamma)$.

7.2 Identification

Identification is implied by results in [Bonhomme et al. \(2019\)](#), who show that worker-firm type specific wage distributions and transition probabilities can be recovered non-parametrically given conditions on worker flows between firm types. In addition, for ex-ante firm classification to be successful, the moments used to group firms must provide an injective mapping from the data to firm types. Technically, the model is identified without the addition of our survey reservation wage responses. However, including the survey provides direct information on $a^1(k, l)$, helping pin down parameters in estimation.

Finally, because only *differences* in amenities matter for both transition rates and reservation wages provided in the survey, their overall level is not identified. We normalize by setting $a^1(k, 0) = 0$ for each worker type.

7.3 Estimation

Our base case uses 6 worker types and 10 firm types. Firms are grouped using k -means applied to the following features: shares of workers with spell-mean wages below each vigintile of the population distribution, average size (unique workers), average spell length, share of new hires poached from other employers, share of quits to other employers, and share of exits to unemployment. Firm classification uses a five-year panel of employment data for the full population from 2019 through 2024. To speed estimation, however, we estimate the

model itself on a sample that includes all survey respondents and a random sample of 30,000 workers from the full, non-surveyed population. Only periods when workers are aged 22 to 55 are included. Individuals included in the estimation sample are excluded when computing first-step firm classes to avoid any mechanical link between firm classes and estimated wage and amenity characteristics.³⁰

As usual, maximizing the marginal likelihood in mixture models can be difficult due to local maxima. We use the EM algorithm (Dempster et al., 1977) to find solutions by exploring many random starting points and keeping the highest value of the likelihood achieved. In practice, we find that initializing mean wage parameters $\mu(k, l)$ using estimates from an additive AKM model performs well in the sense that it delivers the highest final likelihood.

7.4 Results

Figure 12 presents estimates of mean wages by worker and firm type, as well as how workers sort across firms. Panel (a) plots $\mu(k, l)$, with firms ordered by wages averaged across the population distribution of worker types. The results show substantial dispersion both within and across worker types. Although for some sets of worker and firm type combinations mean wages might be reasonably approximated by additively separable firm and worker effects, there is also clear evidence of interactions. The highest wage worker type, for example, shows little variability across firm types except at the bottom of the firm distribution, where wages drop precipitously. Worker type 1, on the other hand, shows larger wage gains than most other types from moving up the wage ladder.³¹

Panel (b) plots the initial distribution of workers over firm types $g(k, l)$. The patterns show clear evidence of assortative matching, with higher-wage worker types disproportionately employed at higher-wage firms. These sorting patterns also make clear that some of the most extreme examples of nonlinearities, such as those affecting worker type 6 in Panel (a), are relatively rare. The overall population type shares are included in the legend. These figures represent type frequencies in the full population of Danish workers. As shown in

³⁰A small number of firms are present in the estimation sample but not the full population used for classification. Workers with any employment at these firms are dropped.

³¹Some previous estimates of similar models report mean wage functions that also show important nonlinearities, although perhaps not as extreme as those found here (e.g., Bonhomme et al., 2019). There are several potential reasons why our results differ, including our inclusions of both men and women and firms in both the public and private sector, our use of hourly wages (as opposed to earnings) as the outcome, and our use of all employment spells measured at the month level over the sample period, as opposed to more conservative choices to condition on continuous employment for a year or longer in two periods. Estimating only the wage component of the model and leaving mobility unrestricted yields similar mean wage functions, indicating that the patterns in panel (a) of Figure 12 do not stem from inclusion of the survey data or how we model worker mobility.

Table A.9, the type distribution in the survey skews towards higher-wage workers.

Figure 13 illustrates how wages and amenities are correlated in the offer distribution by plotting $\mu(k, l)$ against $a^1(k, l)$ and $a^0(k, l)$. Dots are colored by the worker type k . The dashed line presents the average within-type linear fit, while the legend reports the average within-type correlation.³² Panel (a) compares ex-post amenities to wages and shows a strong negative relationship within worker type. The average correlation is roughly $-.7$, implying that firms offering higher wages typically offer substantial trade offs in terms of ex-post amenities.³³ Panel (b) compares ex-ante amenities (i.e., those that determine prospective search) to wages. These objects also show a negative relationship, although the relationship is significantly weaker.

Figure 14 illustrates the possible extent of wage and ex-post amenity tradeoffs by plotting average within-worker type relative wages, amenities, and utility across firms. This figure is constructed by, for each worker type, ranking firms by wages and computing relative wages, ex-post amenities, and their sum, and then averaging across worker types using their population distribution. The results show strong evidence of compensating differentials: less than half of the pay difference between the highest- and lowest-paying firms is preserved in utility.³⁴ Figure A.19, on the other hand, shows that using ex-ante amenities would lead to quite different conclusions—ex-ante amenities are comparable among most firm types and best at firms offering moderate levels of pay.

Of course, as Figure 12 makes clear, workers are not evenly distributed across the firm type distribution due to endogenous mobility, so some of the comparisons in Figure 14 may reflect matches that occur rarely. Table 6 instead decomposes within-worker type variances of utility using the cross-sectional employment distribution. This table reports the variances of wages, amenities, and utility (i.e., the sum of wages and amenities), computed for workers sampled from the full population and weighted by their posterior probabilities of belonging to each worker type. We then average across worker types using their population type shares to provide an estimate of the overall within-type variances.

³²Average ex-post and ex-ante amenities by worker and firm type are shown in Figure A.17.

³³One interesting question is how the ex-post amenities estimated in the model compare to the AKM-style amenity effects estimated earlier in the paper. Figure A.18 plots firm-level amenity effects against average ex-post amenities $a^1(k, l)$ for each firm in the survey sample. Ex-post amenities are averaged using the population type distribution, consistent with our notion of firm-level effects estimated earlier as capturing the preferences of the average worker. The slope is 0.16, showing a significant correlation between the model-based and reduced-form measures of firm-level amenities, despite the fact that both objects are estimated with noise and that the former relies on workers' own reservation wages while the latter exclusively uses workers' estimates of the typical worker's reservation wage.

³⁴These estimates of between-firm inequality enrich our earlier calculations from Section 3.5 by accounting for worker heterogeneity in pay and amenity valuations.

The results show that when examining ex-post utility (i.e., the sum of wages and ex-post amenities), wage variance *overstates* utility variance by 51%. The reason is that amenities themselves show substantial variation but a strong negative covariance with wages. The implied correlation is -.59. This negative correlation is strong enough to not only offset the extra dispersion in utility coming from differences in amenities across firms but also to substantially reduce the cross-sectional variation in utility. Using ex-ante amenities / utility, on the other hand, tells quite a different story, with the variance in wages *understating* the variance in utility by a significant degree. This result arises both because ex-ante amenities are more variable in the cross-section than ex-post amenities, and because the correlation between ex-ante amenities and wages is weaker.

These results help illustrate the importance of ex-post vs. ex-ante notions of utility. Because ex-ante amenities in our model are identified exclusively by worker flows, these results also help reconcile our findings with parts of the prior literature: the difference likely lies in what we measure as opposed to how we measure it.

8 Conclusion

Many aspects of a job beyond pay matter deeply to workers. This project developed a new survey-based methodology to measure non-wage amenities and relate them to pay. Our measurement relies on eliciting reservation wages from job movers between firms in a large, connected network.

We find that job switches typically involve steep trade-offs between wages and amenities: for moves with moderate wage changes, roughly half of the gains from higher pay are offset by losses in amenity value. Firms that pay systematically higher wages tend to offer some attractive amenities—such as better perks and flexibility—but also some drawbacks, including greater layoff risk, faster work pace, higher stress, and less opportunity for social impact. On average, workers view the amenity bundle at high-wage firms as slightly less valuable.

This finding—that firm wage premia and amenity values are negatively correlated—contrasts with some prior evidence, which tends to find augmenting differentials. We take several steps to reconcile these differences. First, we interpret our elicitations as ex-post valuations of two jobs that workers know well, which may differ from the ex-ante beliefs that guide job search. Second, we embed our estimates in a structural job search model that explicitly distinguishes between ex-ante beliefs and ex-post valuations, allowing us to directly connect our evidence to existing revealed-preference frameworks. Nevertheless, some of the discrepancies in prior estimates may stem from workers’ incorrect beliefs about unfamiliar jobs or from difficulties

in specifying the correct structural labor supply model—issues that our approach is designed to address.

Our study focuses on the wage and amenity offers workers receive, without modeling how these offers are generated. Future work could examine how amenities enter firms' input choices and wage-setting behavior. For example, high-wage firms may involve more stress and less social impact due to the nature of their work (e.g., consulting vs. social work), and may invest in perks to offset these negative amenities. Few existing theories offer clear predictions about the within-firm correlation between wages and amenities. While we model this correlation through a reduced-form offer distribution, future research could explore how worker bargaining, occupational structure, or other sources of within-firm heterogeneity give rise to these patterns.

Finally, although we apply our methods to the labor market, the same techniques can be extended to study movers in other domains—such as housing, healthcare, and education. We believe our methodology offers a promising framework for analyzing amenity values in these important markets as well.

Bibliography

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High wage workers and high wage firms. *Econometrica* 67(2), 251–333.

Audoly, R., M. Bhuller, and T. A. Reiremo (2024). The pay and non-pay content of job ads. *arXiv preprint arXiv:2407.13204*.

Bagger, J. and R. Lentz (2019). An empirical model of wage dispersion with sorting. *The Review of Economic Studies* 86(1), 153–190.

Bertheau, A., E. M. Acabbi, C. Barceló, A. Gulyas, S. Lombardi, and R. Saggio (2023). The unequal consequences of job loss across countries. *American Economic Review: Insights* 5(3), 393–408.

Bertheau, A. and C. P. Hoeck (2023). Firm beliefs about wage setting. *Unpublished Working Paper*.

Bonhomme, S., K. Holzheu, T. Lamadon, E. Manresa, M. Mogstad, and B. Setzler (2023). How much should we trust estimates of firm effects and worker sorting? *Journal of Labor Economics* 41(2), 291–322.

Bonhomme, S. and G. Jolivet (2009). The pervasive absence of compensating differentials. *Journal of Applied Econometrics* 24(5), 763–795.

Bonhomme, S., T. Lamadon, and E. Manresa (2019). A distributional framework for matched employer employee data. *Econometrica* 87(3), 699–739.

Botero, J. C., S. Djankov, R. L. Porta, F. Lopez-de Silanes, and A. Shleifer (2004). The Regulation of Labor. *The Quarterly Journal of Economics* 119(4), 1339–1382.

Brown, C. (1980). Equalizing differences in the labor market. *The Quarterly Journal of Economics* 94(1), 113–134.

Burdett, K. and D. T. Mortensen (1998). Wage differentials, employer size, and unemployment. *International Economic Review*, 257–273.

Caldwell, S., I. Haegele, and J. Heining (2024). Firm pay and worker search. Technical report, Working Paper.

Card, D., A. R. Cardoso, J. Heining, and P. Kline (2018). Firms and labor market inequality: Evidence and some theory. *Journal of Labor Economics* 36(S1), S13–S70.

Card, D., A. R. Cardoso, and P. Kline (2016). Bargaining, sorting, and the gender wage gap: Quantifying the impact of firms on the relative pay of women. *The Quarterly journal of economics* 131(2), 633–686.

Card, D., J. Heining, and P. Kline (2013). Workplace heterogeneity and the rise of west german wage inequality. *The Quarterly journal of economics* 128(3), 967–1015.

Dahl, C. M., D. Le Maire, and J. R. Munch (2013). Wage dispersion and decentralization of wage bargaining. *Journal of Labor Economics* 31(3), 501–533.

Dansk Industri (2024). Industriens funktionæreroverenskomst. Accessed: 2024-12-13.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society: series B (methodological)* 39(1), 1–22.

Diamond, P. A. and J. A. Hausman (1994). Contingent valuation: is some number better than no number? *Journal of economic perspectives* 8(4), 45–64.

Drake, M., F. Payró, N. Thakral, and L. T. Tô (2022). Bayesian adaptive choice experiments. Technical report, Mimeo.

Goldschmidt, D. and J. F. Schmieder (2017). The rise of domestic outsourcing and the evolution of the german wage structure. *The Quarterly Journal of Economics* 132(3), 1165–1217.

Harmon, N. A. (2015). Are Workers Better Matched in Large Labor Markets? *Working Paper*.

Hausman, J. (2012). Contingent valuation: from dubious to hopeless. *Journal of economic perspectives* 26(4), 43–56.

Jäger, S., C. Roth, N. Roussille, and B. Schoefer (2024). Worker beliefs about outside options. *The Quarterly Journal of Economics*, qjae001.

Jayachandran, S., L. Nassal, M. J. Notowidigdo, M. Paul, H. Sarsons, and E. Sundberg (2024). Moving to opportunity, together. Technical report, National Bureau of Economic Research.

Katz, L. F., L. H. Summers, R. E. Hall, C. L. Schultze, and R. H. Topel (1989). Industry rents: Evidence and implications. *Brookings Papers on Economic Activity. Microeconomics* 1989, 209–290.

Kleven, H., C. Landais, and J. E. Søgaard (2019). Children and gender inequality: Evidence from denmark. *American Economic Journal: Applied Economics* 11(4), 181–209.

Kline, P., R. Saggio, and M. Sølvsten (2020). Leave-out estimation of variance components. *Econometrica* 88(5), 1859–1898.

Kline, P. M. (2024). Firm wage effects.

Kreiner, C. T. and M. Svarer (2022). Danish flexicurity: Rights and duties. *Journal of Economic Perspectives* 36(4), 81–102.

Lachowska, M., A. Mas, R. Saggio, and S. A. Woodbury (2023). Work hours mismatch. Technical report, National Bureau of Economic Research.

Lachowska, M., A. Mas, and S. A. Woodbury (2020). Sources of displaced workers' long-term earnings losses. *American Economic Review* 110(10), 3231–3266.

Lagos, L. (2024). Union bargaining power and the amenity-wage tradeoff.

Lamadon, T., M. Mogstad, and B. Setzler (2022). Imperfect competition, compensating differentials, and rent sharing in the us labor market. *American Economic Review* 112(1), 169–212.

Lehmann, T. (2023). Non-wage job values and implications for inequality. *Available at SSRN 4373816*.

Lehmann, T. (2025). Non-wage job values and implications for inequality. Technical report, Working Paper.

Lentz, R., S. Piyapromdee, and J.-M. Robin (2023). The anatomy of sorting—evidence from danish data. *Econometrica* 91(6), 2409–2455.

Maestas, N., K. J. Mullen, D. Powell, T. von Wachter, and J. B. Wenger (2023, July). The value of working conditions in the united states and the implications for the structure of wages. *American Economic Review* 113(7), 2007–47.

Manski, C. F., K. I. Wolpin, and E. U. Weber (2000). Analysis of choice expectations in incomplete scenarios. *Elicitation of Preferences*, 49–72.

Mas, A. (2025). Non-wage amenities.

Mas, A. and A. Pallais (2017). Valuing alternative work arrangements. *American Economic Review* 107(12), 3722–3759.

Mas, A. and A. Pallais (2020). Alternative work arrangements. *Annual Review of Economics* 12(1), 631–658.

Morchio, I. and C. Moser (2024). The gender pay gap: Micro sources and macro consequences. Technical report, National Bureau of Economic Research.

Neal, D. (1999). The complexity of job mobility among young men. *Journal of labor Economics* 17(2), 237–261.

Pierce, B. (2001). Compensation inequality. *The Quarterly Journal of Economics* 116(4), 1493–1525.

Prim, R. C. (1957). Shortest connection networks and some generalizations. *The Bell System Technical Journal* 36(6), 1389–1401.

Rosen, S. (1986). The theory of equalizing differences. *Handbook of Labor Economics* 1.

Roussille, N. and B. Scuderi (2023). Bidding for talent: A test of conduct in a high-wage labor market.

Sockin, J. (2022). Show me the amenity: Are higher-paying firms better all around?

Song, J., D. J. Price, F. Guvenen, N. Bloom, and T. von Wachter (2018, 10). Firming Up Inequality. *The Quarterly Journal of Economics* 134(1), 1–50.

Sorkin, I. (2018). Ranking firms using revealed preference. *The Quarterly Journal of Economics* 133(3), 1331–1393.

Stern, S. (2004). Do scientists pay to be scientists? *Management science* 50(6), 835–853.

Taber, C. and R. Vejlin (2020). Estimation of a roy/search/compensating differential model of the labor market. *Econometrica* 88(3), 1031–1069.

Thaler, R. and S. Rosen (1976). The value of saving a life: evidence from the labor market. In *Household production and consumption*, pp. 265–302. NBER.

Topel, R. H. and M. P. Ward (1992). Job mobility and the careers of young men. *The Quarterly Journal of Economics* 107(2), 439–479.

Wiswall, M. and B. Zafar (2018). Preference for the workplace, investment in human capital, and gender. *The Quarterly Journal of Economics* 133(1), 457–507.

Table 1: Summary statistics

Jobs included	(1) All workers	(2) Movers	(3) Last two	(4) Survey invites	(5) Last two	(6) Survey respondents	(7) Last two
	All	All	Last two	All	Last two	All	Last two
Worker month-level means							
Earnings	5471.1 (7926.6)	5276.7 (4619.3)	5909.3 (4751.3)	5129.6 (4018.6)	5785.1 (3933.9)	5507.9 (3685.3)	6064.2 (3233.0)
Hours	139.8 (43.7)	138.0 (45.6)	147.7 (34.0)	135.7 (47.0)	146.6 (34.5)	139.6 (43.5)	150.1 (28.9)
Tenure (months)	90.3 (64.6)	60.6 (50.2)	73.5 (56.3)	60.4 (50.5)	73.7 (56.3)	67.4 (53.0)	82.4 (58.3)
Worker-level means							
Male	0.49	0.52	0.52	0.45	0.45	0.40	0.40
YOB	1977.5 (8.85)	1979.8 (8.97)	1979.8 (8.97)	1980.2 (8.90)	1980.2 (8.90)	1978.7 (8.94)	1978.7 (8.94)
Bachelor or higher	0.40	0.44	0.44	0.52	0.52	0.62	0.62
# firms	4.66 (3.45)	6.38 (3.51)	2 (0)	6.35 (3.46)	2 (0)	5.94 (3.17)	2 (0)
Firm-level means							
# workers	6.38 (115.9)	10.5 (156.0)	29.2 (311.8)	18.5 (222.7)	57.0 (466.2)	46.2 (394.4)	135.8 (786.7)
Construction	0.13	0.13	0.12	0.10	0.075	0.067	0.044
Knowledge services	0.098	0.080	0.089	0.076	0.092	0.089	0.10
Accommodation / food	0.089	0.11	0.067	0.12	0.052	0.11	0.023
# worker-months	286,260,111	62,148,039	28,296,091	15,386,877	7,229,056	3,147,939	1,541,424
# workers	1,831,473	400,349	400,349	100,200	100,200	19,211	19,211
# firms	342,413	188,496	46,212	92,329	20,530	29,197	7,088

Notes: This table provides summary statistics on the universe of Danish workers and our ultimate survey sample. Reported values are averages, with standard deviations in parentheses. Earnings information is converted to USD at an exchange rate of 0.14 USD/DKK and inflated to 2023 equivalents using the CPI. Column 1 includes all workers employed as wage earners as of February 1, 2024. Columns 2 and 3 include all workers from Column 1 in the leave-one-out connected set of firms who had changed jobs within the last three years. Column 2 includes all observations for workers in this sample, while Column 3 includes employment at their most recent two jobs only. Columns 4 and 5 provide the same statistics sub-setting to the sample of workers invited to take the survey. Slightly more than 100,000 invitations were sent to account for worker deaths. Columns 6 and 7 subset to the sample of survey respondents matched to jobs in the register data. See Table A.1 for statistics weighted to account for nonrandom sampling probabilities.

Table 2: Firm wage and amenity effect variance estimates

	(1) Log wage (register)		(3) Log wage (survey)		(5) Typical res. wage		(6) Leave-out
	Connected	Leave-out	Connected	Leave-out	Connected	Leave-out	
Var outcome	979.27	961.06	263.94	264.35	430.89	434.31	
Var fixed effects	125.94	76.63	140.52	74.03	160.91	71.41	
share	0.13	0.08	0.53	0.28	0.37	0.16	
De-biased var (hom)	57.29	46.72	58.80	38.99	19.74	10.27	
share	0.06	0.05	0.22	0.15	0.05	0.02	
De-biased var (het)		46.68		34.36		9.66	
share		0.05		0.13		0.02	
Correlation with register			0.49	0.61			
de-biased (hom)			1.12	1.07			
de-biased (het)				1.14			
# observations	38334	33843	38334	33843	38334	33843	
# firms	7017	2584	7017	2584	7017	2584	
# workers	19167	19109	19167	19109	19167	19109	

Notes: This table reports estimates of firm wage and amenity effect variances estimated in the connected survey sample using a two-way fixed effect (worker-firm) model. The rows show the variance of the outcome, the variance of the estimated firm fixed effects, and de-biased variances that account for sampling error under homoscedasticity and heteroscedasticity (Kline et al., 2020), with the latter computed in the leave-worker-out connected set by necessity. Outcomes are scaled by 100, implying variances are scaled by 100^2 . Each estimate is constructed using a panel with two observations for each survey worker (old job and new job). Columns 1 and 2 use the median monthly wage over the last and first 6 months recorded in the register as the outcomes for the old and new jobs, respectively. Columns 3 and 4 set the outcome to zero for the first job and use the survey-reported change in wage as the outcome in the second job. As a result, the variance of the outcome is not directly comparable between Columns 1 and 2 and Columns 3 and 4. It is the variance of log wages in the former case, and the variance of log wage changes in the latter. Columns 5 and 6 set the outcome to zero for the first job and use typical worker reservation wage responses as the outcome for the second job. *Share* is the share of outcome variance. The correlation rows report the raw correlation between firm effects estimated with survey vs. register data (i.e., Columns 1 vs. 3 and Columns 2 vs. 4), as well as de-biased correlations that divide by the raw covariance by the product of the square roots of the de-biased variance estimates.

Table 3: Relationship between firm wage and amenity effects

	(1) OLS	(2) IV	(3) OLS	(4) IV	(5) OLS	(6) IV
Firm wage effect	-0.160*** (0.0137)	-0.156*** (0.0246)	-0.151*** (0.0142)	-0.175*** (0.0293)	-0.126*** (0.0157)	-0.120** (0.0400)
# observations	38334	38334	38334	38334	38329	38329
# workers	19167	19167	19167	19167	19167	19167
# firms	7017	7017	7017	7017	7015	7015
First-stage coef		51.17		45.21		36.47
First stage SE		(7.325)		(4.928)		(6.310)
Person FE			Yes		Yes	
Industry FE					Yes	Yes

Notes: This table reports regressions of firm amenity effects on firm wage effects in the connected survey sample, stacking old and new jobs. Odd columns show OLS estimates, while even columns address measurement error by instrumenting firm wage effects with independent estimates constructed using the full Danish population, excluding the survey sample. Columns 3 and 4 add person fixed effects, effectively comparing changes in firm wage effects to changes in firm amenity effects for moves in the survey. Columns 5 and 6 remove person effects but include one-digit industry effects, capturing the cross-sectional relationship between wage and amenity effects within sector. Sectors with only a single firm are dropped. Firm-clustered standard errors are shown in parentheses.

Table 4: Gender gaps in firm wage and amenity effects

	(1) Wages	(2) Amenities	(3) Utility	(4) Wages	(5) Amenities	(6) Utility
Firm effect on:						
Male	2.699*** (0.129)	-1.101*** (0.134)	1.598*** (0.179)	2.777*** (0.130)	-0.954*** (0.134)	1.822*** (0.179)
R-squared	0.012	0.002	0.002	0.013	0.005	0.006
# observations	38334	38334	38334	38308	38308	38308
# workers	19167	19167	19167	19154	19154	19154

Notes: This table reports gender gaps in firm effects. The estimates are based on regressions of firm wage effects (Columns 1 and 4), firm amenity effects (Columns 2 and 5), and firm utility effects (Columns 3 and 6) on an indicator of being male. The estimates in Columns 1–2 and 4–5 sum to those in Columns 3 and 6, respectively, reflecting that firm utility effects are the sum of firm wage and amenity effects. Columns 1–3 present univariate regressions, while Columns 4–6 include controls for workers' age and an indicator for having a bachelor's degree or higher. The outcome variables are scaled by 100, so that estimates reflect effects in percentage points. The sample focuses on surveyed workers in their old and new jobs. Robust standard errors are reported in parentheses.

Table 5: Reservation wages vs. wage changes for movers

	(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)	
	All moves								Wage changes < 20%							
	OLS	IV	OLS	IV	OLS	IV	OLS	IV	OLS	IV	OLS	IV	OLS	IV	OLS	IV
Change in wages	-0.0759*** (0.0120)	-0.222*** (0.0242)	-0.143*** (0.0174)	-0.516*** (0.0534)	-0.120*** (0.0206)	-0.498*** (0.0683)	-0.147** (0.0477)	-0.520*** (0.130)								
# workers	19211	19211	15156	15156	12822	12822	4394	4394								
# directed moves	15601	15601	12519	12519	10185	10185	1757	1757								
First-stage coef		0.54		0.31		0.30		0.37								
First stage SE		(0.011)		(0.012)		(0.015)		(0.028)								
Dest. firm FE					Yes		Yes									
Firm pair FE									Yes		Yes					

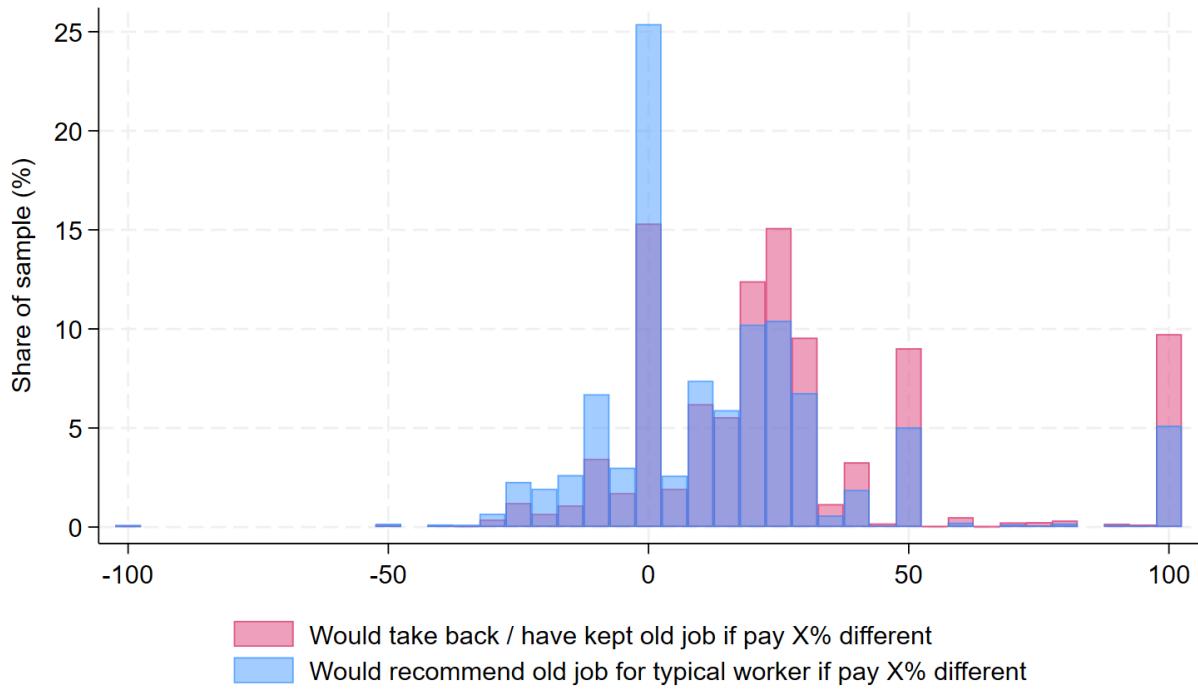

Notes: This table reports regressions of own reservation wage responses on changes in log wages. Columns 1-2 use all 19,211 movers across 15,601 directed edges. Columns 3-8 trim outliers by using all movers with wage changes below 20%. Odd columns present OLS estimates, while even columns present 2SLS estimates that instrument wage changes with changes recorded in the register. Columns 5 and 6 include fixed effects for the destination firm and drop destinations with a single mover. Columns 7 and 8 do the same for directed firm pairs. Robust standard errors are shown in parentheses.

Table 6: Search model: Wage, amenity, and utility dispersion

	Ex-post evaluations		Ex-ante evaluations	
	Within-type		Within-type	
Variance of utility	0.010		0.026	
share	100%		100%	
Variance of wages	0.015		0.015	
share	151%		57%	
Variance of amenities	0.004		0.032	
share	40%		122%	
Covariance	-0.009		-0.021	
share	-91%		-79%	

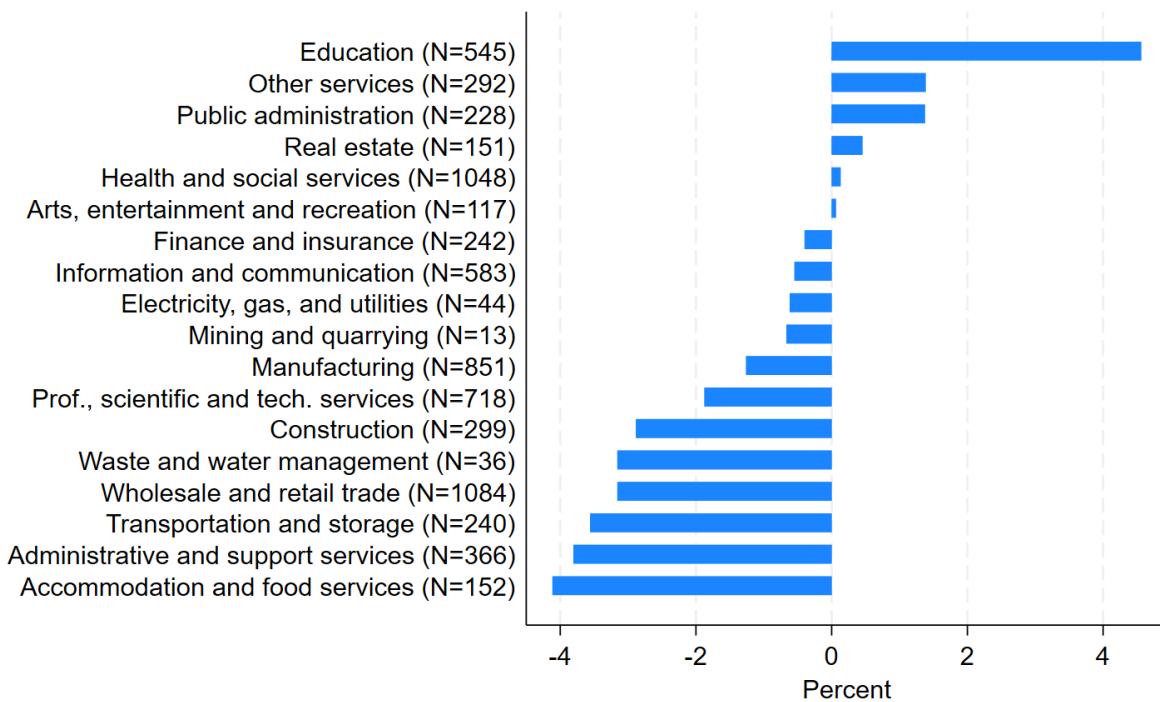

Notes: This table presents average within-type variances of wages, amenities, and utilities. The statistics are constructed by computing sample variances in the model estimation sample weighted by type-specific posteriors and then averaging using population type shares. Column (1) uses ex-post amenity valuations ($a^1(k, l)$), while column (2) uses ex-post valuations ($a^0(k, l)$). Utility is defined as the sum of wages and amenities. Covariance is defined as $2 \cdot \text{Cov}(\mu(k, l), a^p(k, l))$, so that shares sum to 100%.

Figure 1: Distribution of reservation wage responses

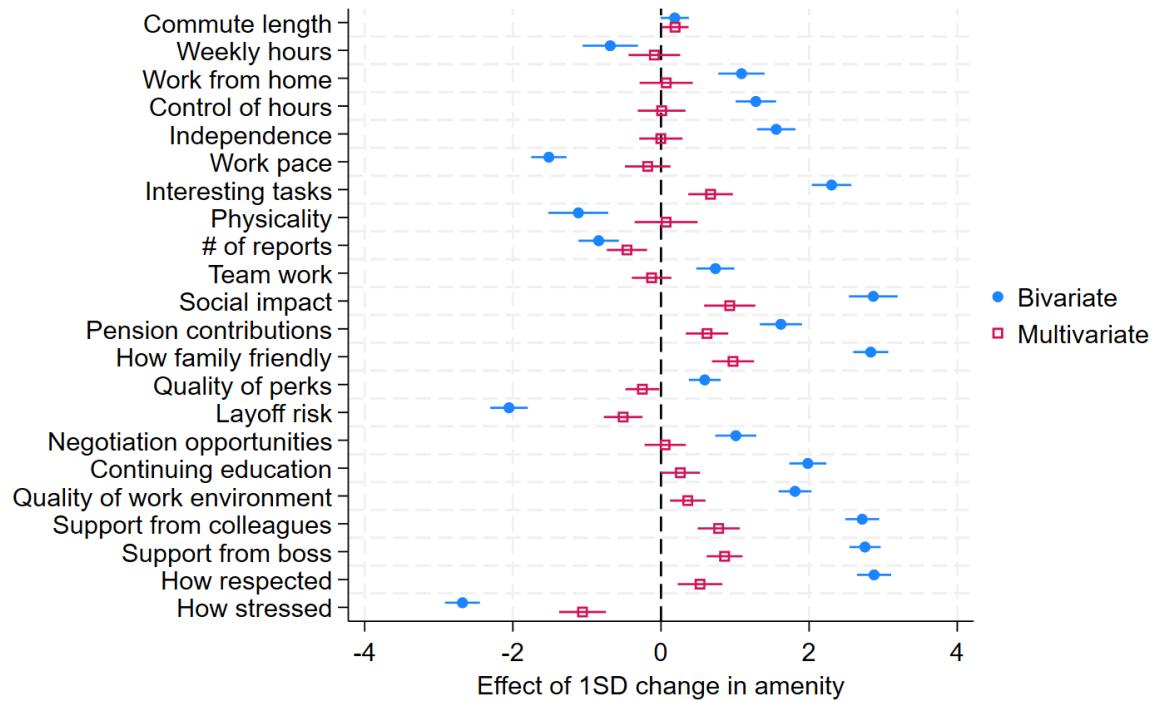
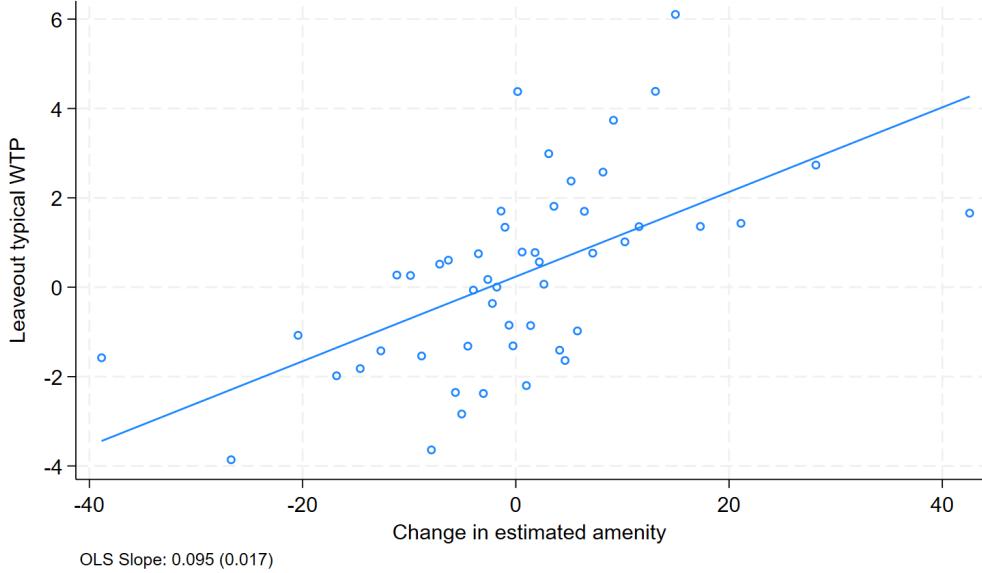

Notes: This figure shows the distribution of survey responses to the reservation wage questions. The red bars pool the two framings for workers' own required pay change to take back / remain in their prior job (Figure A.2 displays the two framings separately). The blue bars show reservation wages to recommend the prior job over the current job to a typical worker. Responses above 100% are capped at 100.

Figure 2: Average firm amenity effects by industry

Notes: This figure shows average firm amenity effects estimated by industry. The number in parentheses indicates the number of firms in each industry in the sample. Industries with 10 or fewer firms are not shown. Amenity effects are multiplied by 100 so that values can be interpreted as approximate percentage point differences. Averages are weighted by firm size in the survey sample. See Figure A.11 for a version that weights firms by their average size in the full register data and inverse sampling probabilities.


Figure 3: Predictors of firm amenity effects

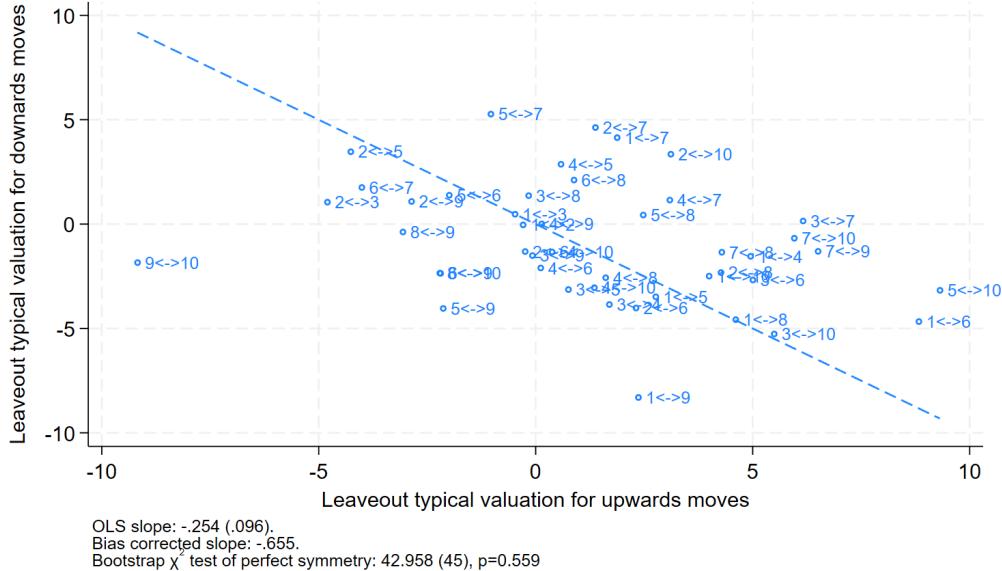
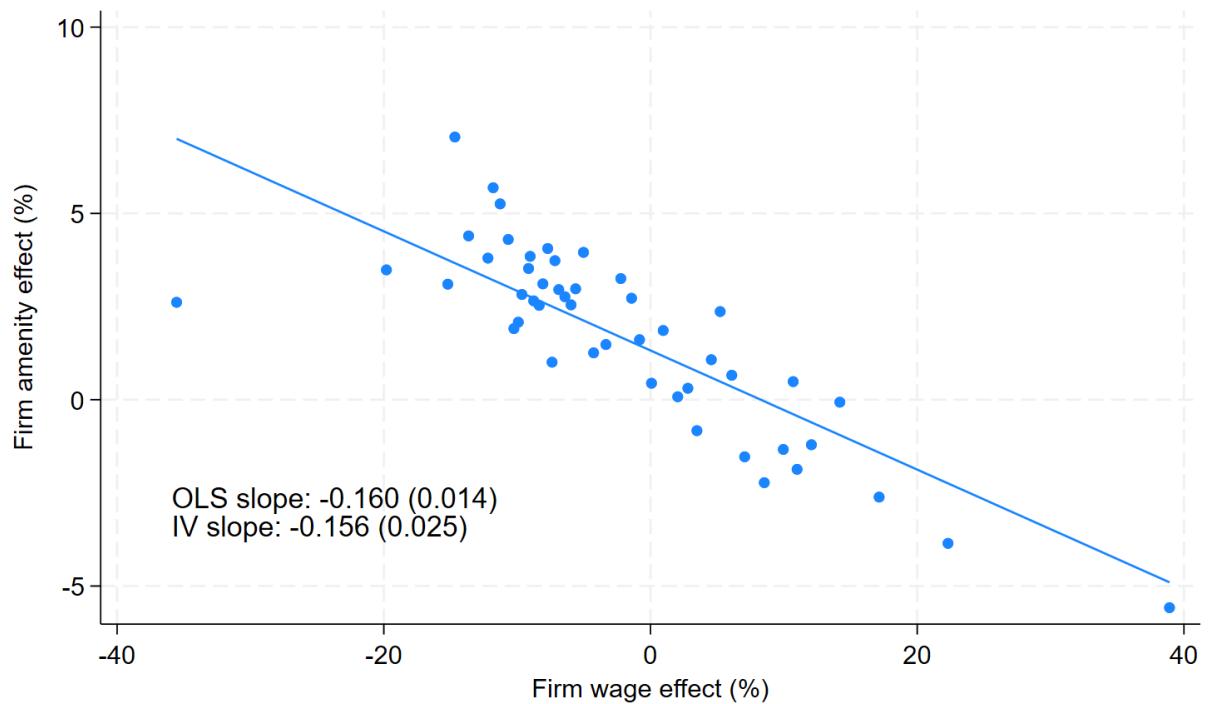

Notes: This figure shows the relationship between changes in firm amenity effects and changes in workers' specific amenities. Blue dots reflect the bivariate relationship, while red squares are coefficients from a multivariate regression including all amenities simultaneously. Amenities are divided by their pooled standard deviation so that coefficients can be interpreted as the impact of a 1 s.d. increase. Whiskers represent 95% confidence bands. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore by cardinalizing responses (e.g., 1 = "Very good," 2 = "Good," etc.).

Figure 4: Validating firm amenity effects

(a) Out-of-sample predictive power



(b) Symmetry in changes

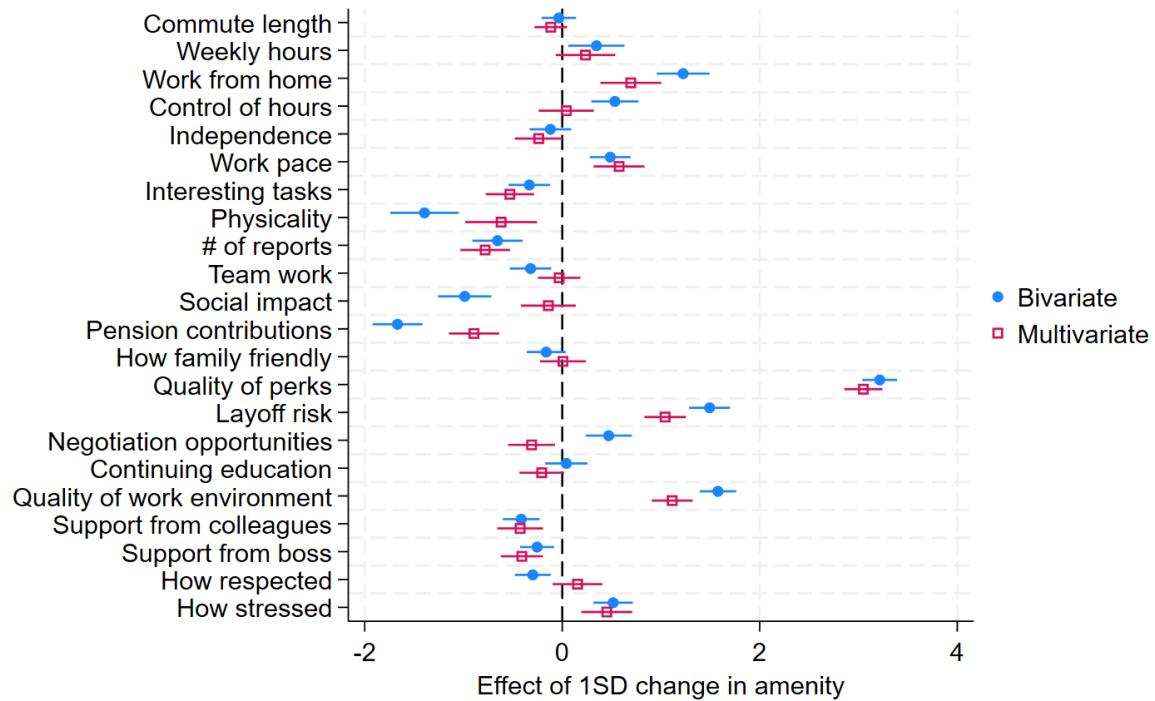

Notes: This figure presents validation tests of the estimated firm amenity effects. Panel (a) shows a binned scatter plot of workers' typical worker reservation wage response against the change in firm amenity effects for their current vs. prior firm, estimated leaving out that worker. The positive slope (estimates reported in the footer) indicates that amenity estimates constructed using other workers' responses predict workers' own responses. Panel (b) plots the average typical worker reservation wage for movers grouped by deciles of amenity effects estimated excluding that worker. Means for workers moving up the amenity ladder are the x-axis variable, while means for workers moving down are the y-axis variable. The footer of the plot presents a bootstrap chi-square test of the null hypothesis that all dots lie on the 45-degree line up to sampling error. The test cannot reject perfect symmetry ($p = 0.559$). All reservation wage questions are adjusted for estimated status-quo bias.

Figure 5: Relationship between pay and amenity effects: \hat{a}_j vs. \hat{w}_j

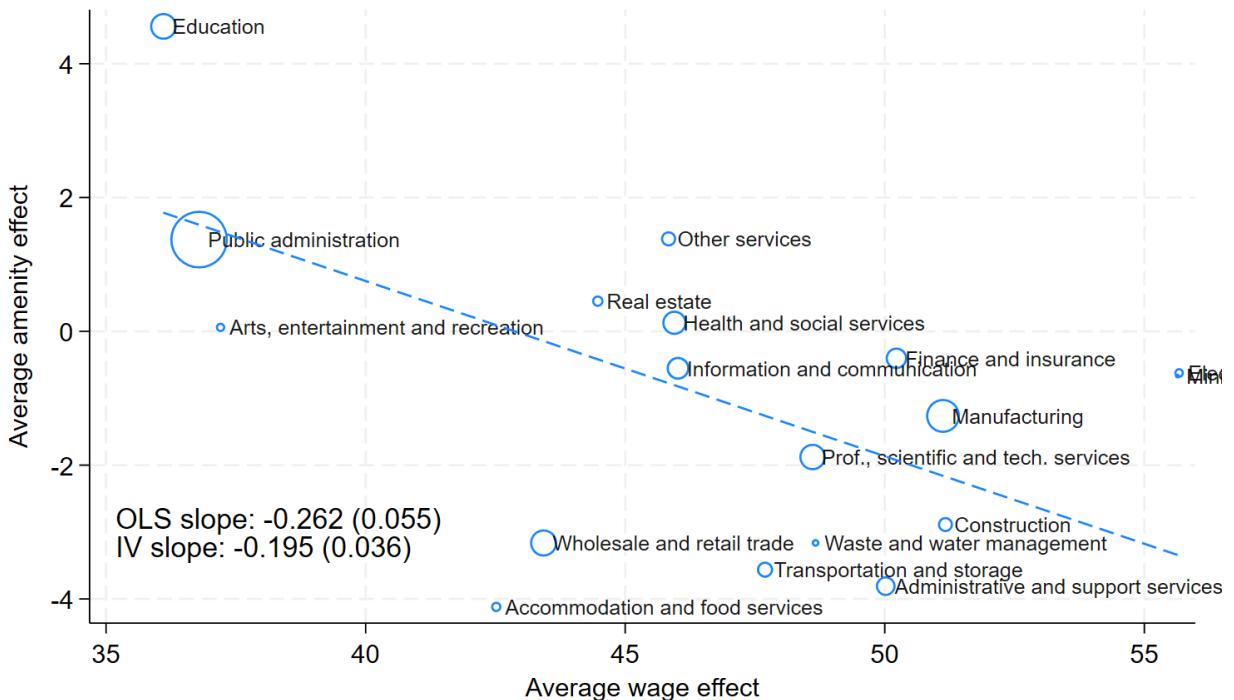

Notes: This figure shows a binned scatter plot of firm wage effects versus firm amenity effects in the survey sample. Each dot represents the average of the dependent and independent variables within one of 50 quantiles of the independent variable. Both effects are scaled by 100, so units reflect percentage point differences. The line shows the OLS fit, with a slope of -0.16 and a robust standard error of 0.014, as reported in the plot. The IV slope is estimated by instrumenting for firm wage effects \hat{w}_j using out-of-sample predictions \hat{w}_j^{-s} , constructed from the full Danish population excluding the survey sample. The IV slope is -0.156 with a standard error of 0.025.

Figure 6: Predictors of firm wage effects

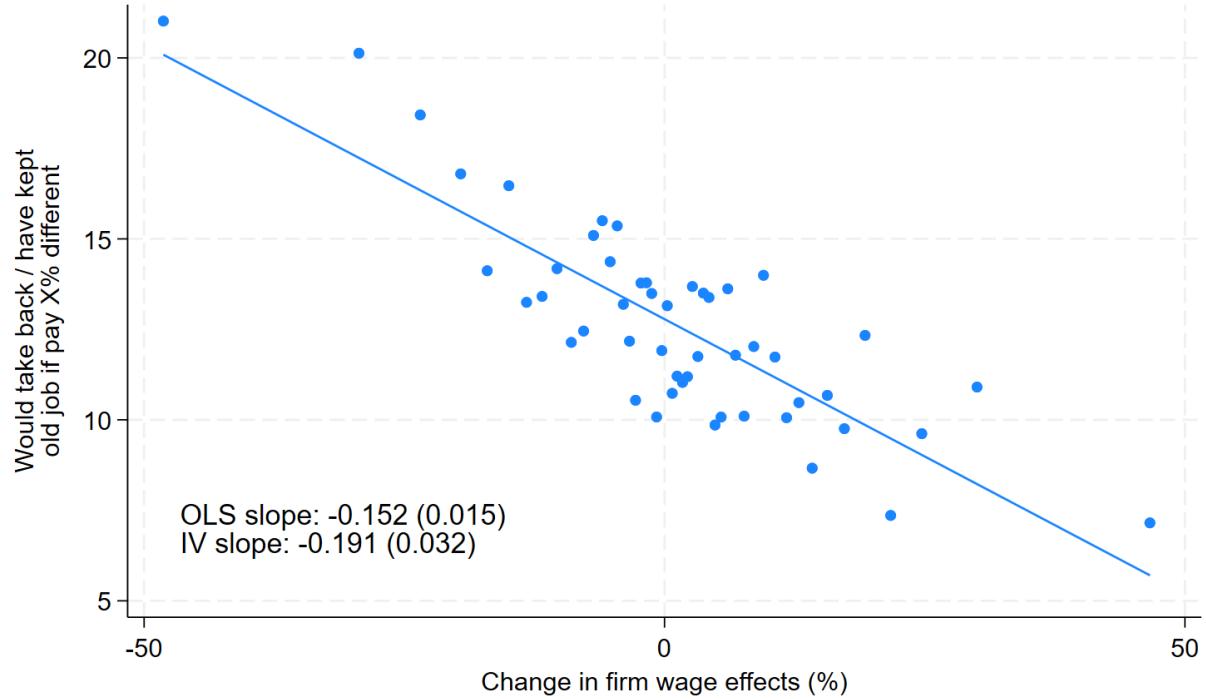

Notes: This figure shows the relationship between changes in firm wage effects and changes in workers' specific amenities. Blue dots reflect the bivariate relationship, while red squares are coefficients from a multivariate regression including all amenities simultaneously. Amenities are divided by their pooled standard deviation so that coefficients can be interpreted as the impact of a 1 s.d. increase. Whiskers represent 95% confidence bands. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore by cardinalizing responses (e.g., 1 = "Very good," 2 = "Good," etc.).

Figure 7: Pay vs. amenity effects at the industry level

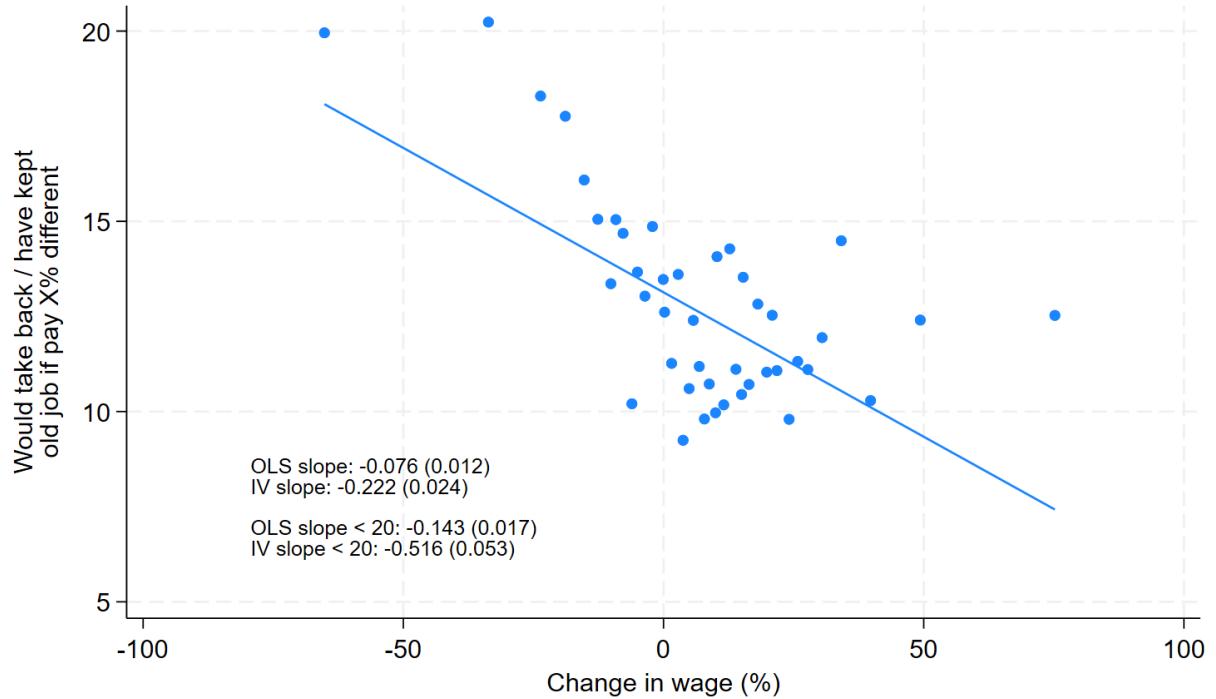

Notes: This figure shows the relationship between industry-level averages of firm wage effects and firm amenity effects. Averages are weighted by firm size within the survey sample. The dotted line depicts the OLS fit, with a slope of -0.262 and a robust standard error of 0.055 , as reported in the plot. The IV slope is estimated by instrumenting for average firm wage effects using industry averages of out-of-sample estimates, constructed from the full Danish population excluding the survey sample. The IV slope is -0.195 with a standard error of 0.036 .

Figure 8: Changes in total amenities vs. firm wage effects

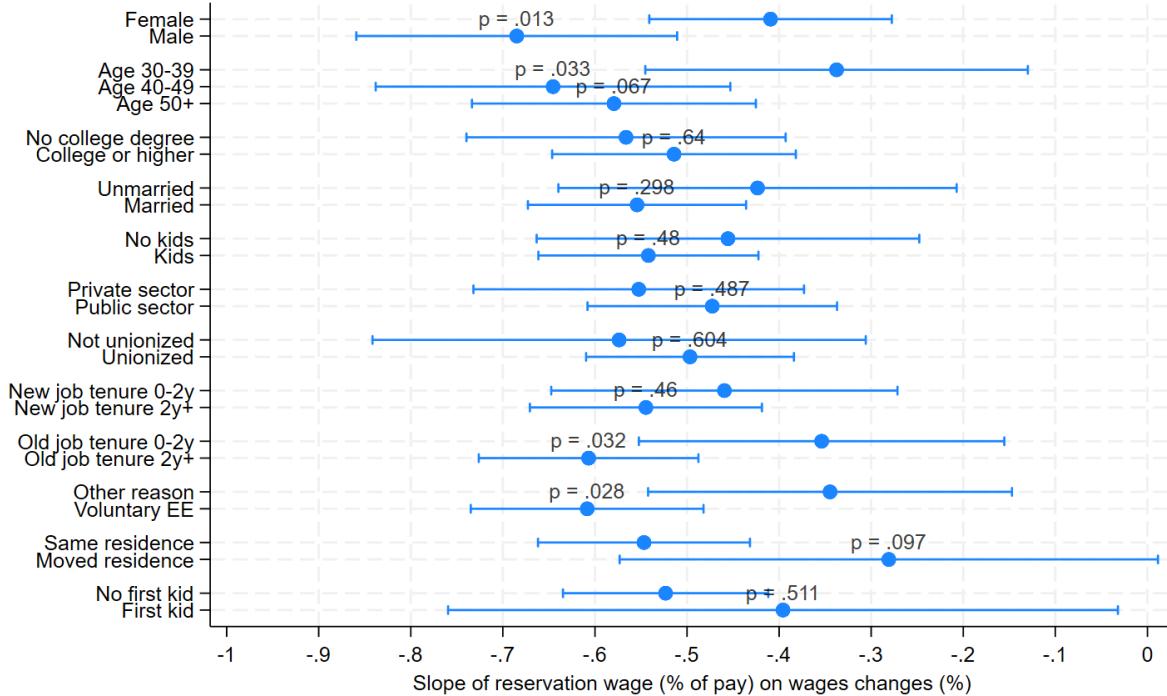

Notes: This figure shows a binned scatter plot of own reservation wages versus changes in estimated firm wage effects: $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ on the vertical axis and $\hat{w}_k - \hat{w}_j$ on the horizontal axis. Each blue dot represents the average of the dependent and independent variables within one of 50 quantiles of the independent variable. Both effects are multiplied by 100, so values can be interpreted as percentage point differences. Reservation wage responses are adjusted for status quo bias as estimated in Section 2.3, though the large intercept suggests that some residual bias may remain. The line shows the OLS fit, with a slope of -0.152 and a robust standard error of 0.015 , as reported in the plot. The IV slope is estimated by instrumenting for firm wage effects \hat{w}_j using out-of-sample predictions \hat{w}_j^{-s} , constructed from the full Danish population excluding the survey sample. The IV slope is -0.191 with a standard error of 0.032 .

Figure 9: Changes in total amenities vs. wages

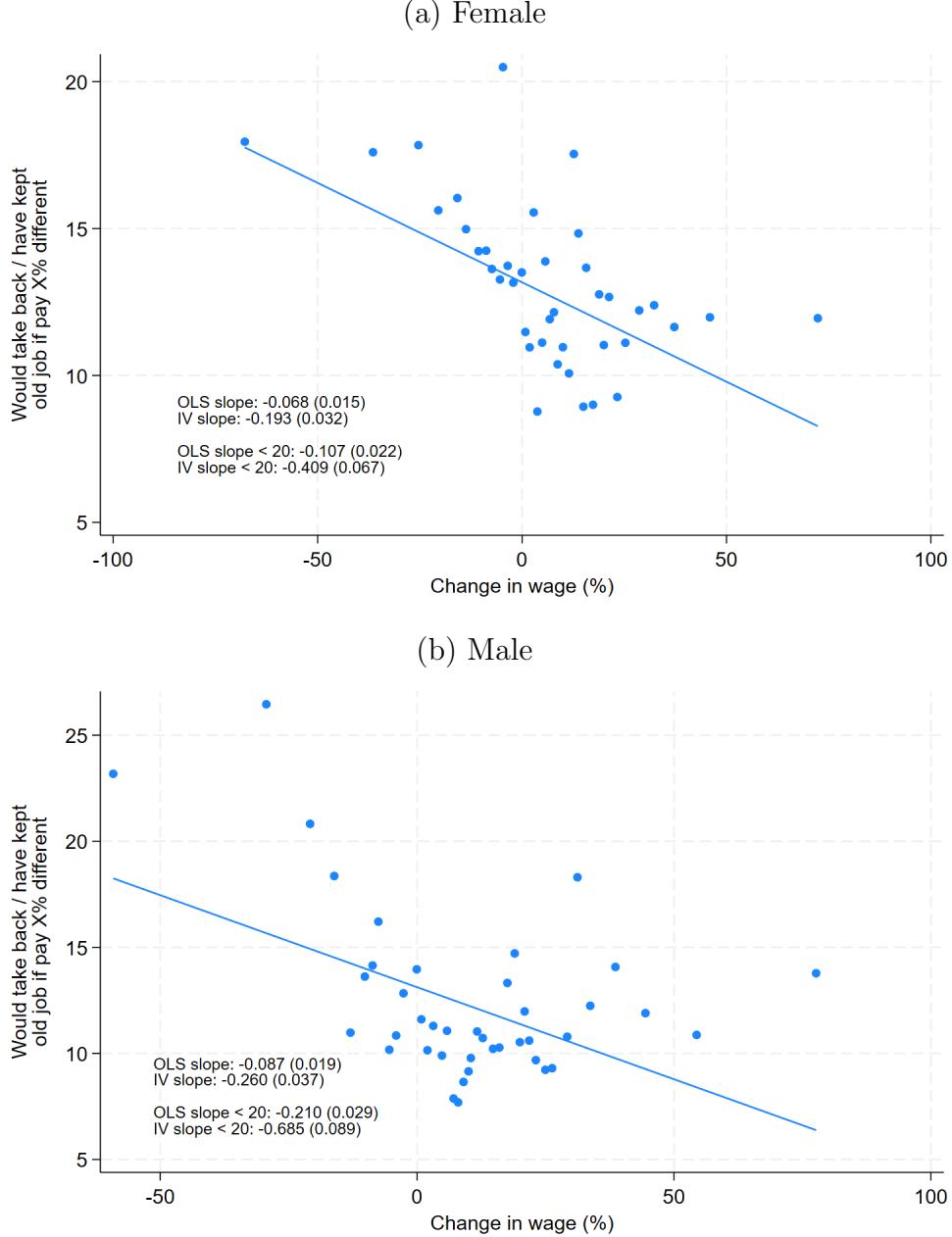
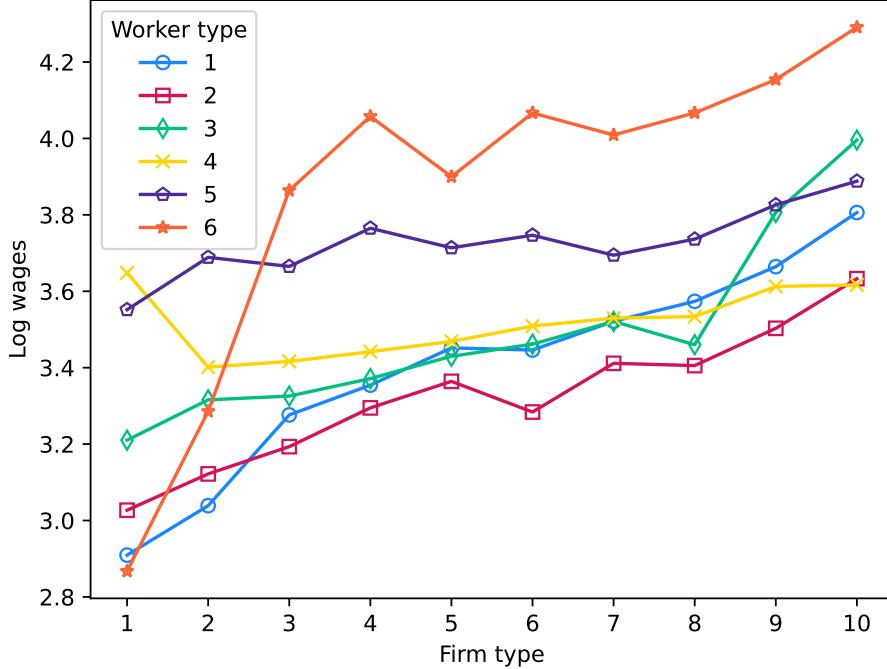

Notes: This figure shows a binned scatter plot of own reservation wages versus changes in wages reported in the survey, i.e., $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ on the vertical axis and $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$ on the horizontal axis. Each dot represents the average of the dependent and independent variables within one of 50 quantiles of the independent variable. Both axes are scaled by 100, so values reflect percentage point differences. Reservation wage responses are adjusted for estimated status quo bias. The line shows the OLS fit, with a slope of -0.076 and a robust standard error of 0.012 , as reported in the plot. Restricting the sample to wage changes below 0.2 log points yields an OLS slope of -0.143 (0.017). The IV slope is estimated by instrumenting survey-reported wage changes with wage changes reported in administrative registers, yielding a slope of -0.222 with a standard error of 0.024 . Both OLS and IV estimates are attenuated by large positive wage changes, primarily from workers who reported low hours in their prior job. Restricting to wage changes below 0.2 log points yields an IV slope of -0.516 (0.053).

Figure 10: Heterogeneity analysis: changes in total amenities vs. wages
(Slope estimates by group; p -values for differences from base category)

Notes: This figure shows heterogeneity in the relationship between own reservation wages and changes in wages reported in the survey, i.e., $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ versus $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$. Following the approach described in the notes to Figure 9, we instrument for survey-reported wage changes using wage changes from administrative registers and restrict the sample to wage changes below 0.2 log points. The figure reports slope estimates by subgroup. The reported p -values above each point test whether the estimate differs significantly from that of the base category. The first five categories reflect worker characteristics: gender, age, education, and family situation at the time of the survey. The next four pertain to job characteristics: whether the new job is in the public or private sector, union membership (measured in 2022, the most recent year with available union dues data), and tenure in the new and prior job. The final three categories capture aspects of the job transition itself: the worker's reason for moving, and whether the move coincided with a residential move or becoming a parent.


Figure 11: Changes in total amenities vs. pay: gender heterogeneity

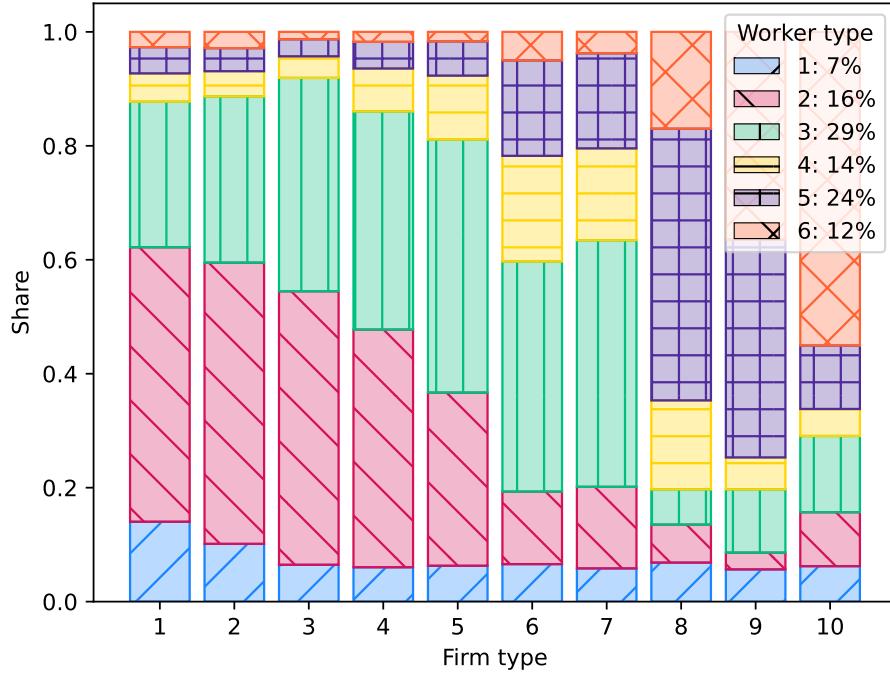
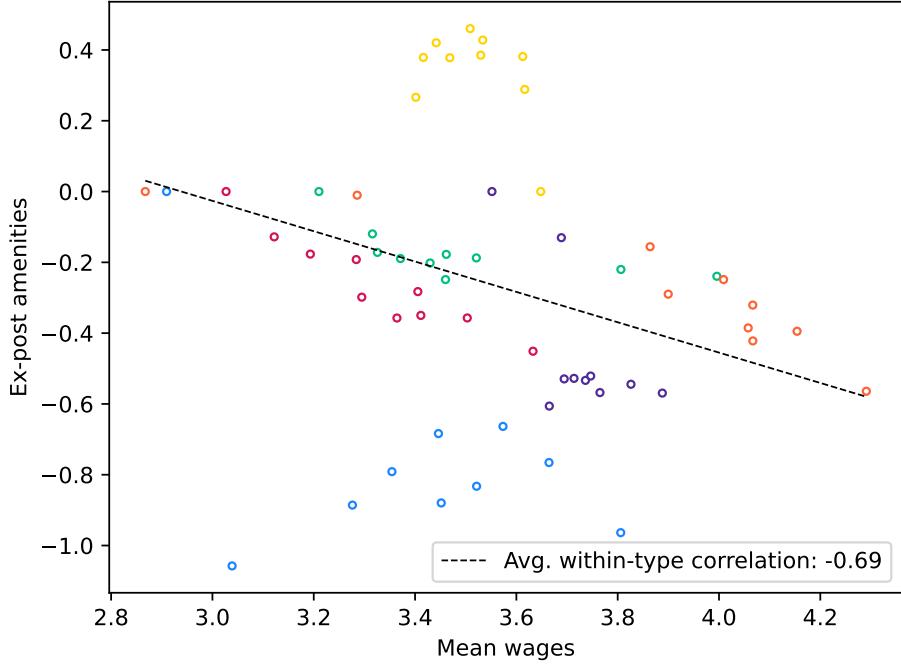

Notes: This figure presents a binned scatter plot of own reservation wages versus changes in wages reported in the survey, i.e., $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ against $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$, separately by gender. Each dot shows the mean of the dependent and independent variables within quantiles of the independent variable. All values are multiplied by 100 so that quantities can be interpreted as percentage point differences. Reservation wage responses are adjusted for estimated status-quo bias. Panel (a) focuses on women, and Panel (b) focuses on men. The line is the OLS fit, which has a slope of -0.068 for women (-0.087 for men) with a robust standard error of 0.015 (0.019 for men). The IV slope is estimated instrumenting for survey-reported wage changes with wage changes reported in the register and has a slope of -0.193 for women (-0.26 for men) with a standard error of 0.032 (0.037 for men). Both estimates are attenuated by large positive wage changes, largely driven by workers who report low hours in their prior jobs. Sub-setting to wage changes below .2 log points yields an IV slope of -.409 for women (-0.685 for men) with a standard error of 0.067 (0.089 for men).

Figure 12: Search model: Wage and type distributions

(a) Worker and firm type mean wages


(b) Initial worker distributions across firm types

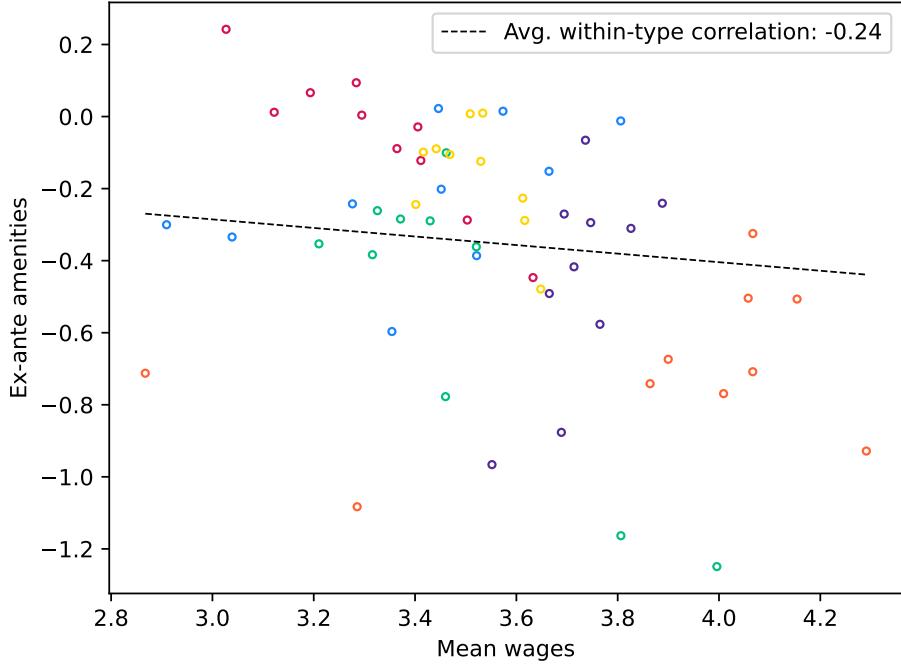
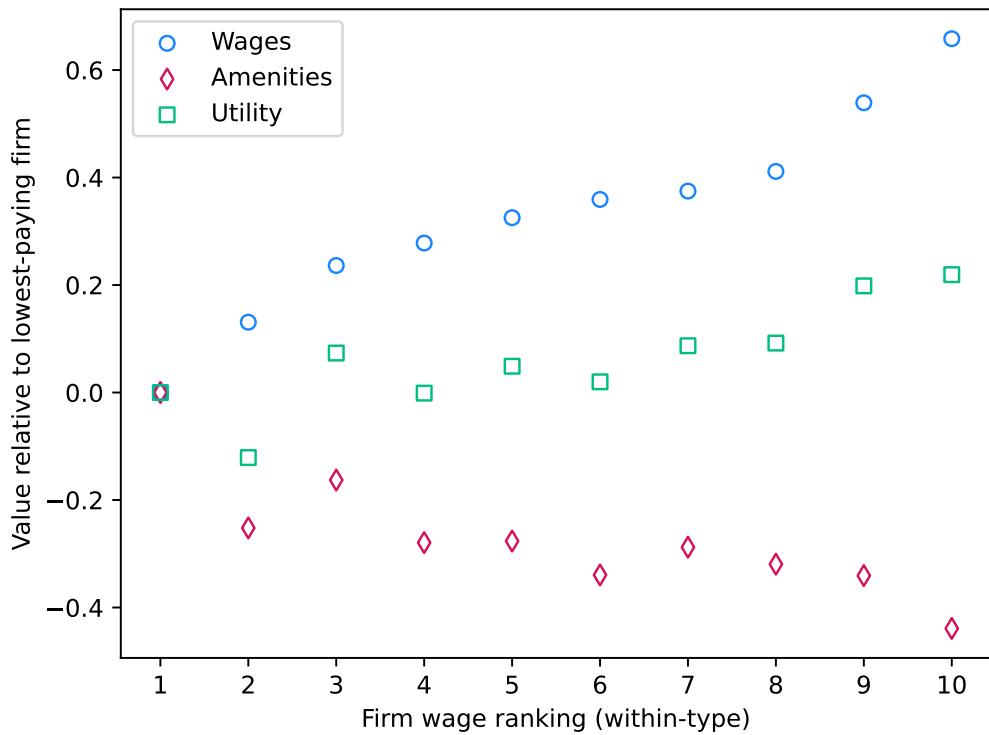

Notes: This figure shows estimated mean wage parameters $\mu(k, l)$ (Panel a) and initial worker allocations across firms $g(k, l)$ (Panel b) from the model described in Section 7. Mean wages are the spell-mean log wages for each worker and firm type combination. Initial conditions (Panel b) describe the share of worker types in each firm type at the start of the panel.

Figure 13: Search model: Wages vs. amenities in the offer distribution

(a) Wages vs. ex-post amenities



(b) Wages vs. ex-ante amenities

Notes: This figure shows the offer distribution of wages ($\mu(k, l)$) vs. ex-post ($a^1(k, l)$, panel a) and ex-ante ($a^0(k, l)$, panel b) amenities across firm and worker types. The dotted lines present the average within-type OLS fit, constructed by averaging separate regressions of mean wages on amenities for each worker type. The legend reports the average of the within-type correlations, weighted by population type share.

Figure 14: Search model: Between-firm wage, amenity, and utility inequality

Notes: This figure summarizes average between-firm inequality according to estimates of the model in Section 7. For each worker type, we compute wages, ex-post amenities, and utility (the sum of wages and amenities for each firm type) relative to the lowest paying firm for that worker type. We then average by population type shares. The results show that a significant share of the higher utility offered by high-paying firms is offset by lower values of amenities.

Online Appendix

Firm Premia and Match Effects in Pay vs. Amenities

Anders Humlum Mette Rasmussen Evan K. Rose
University of Chicago University of Copenhagen University of Chicago

A Additional tables and figures	2
B Survey sample	27
B.1 Sample criteria	27
B.2 Sampling methodology	27
B.3 Response rates	29
C Invitation letter	30
C.1 English translation	31
C.2 Original Danish version	33
D Survey questionnaire	35
D.1 English translation	36
D.2 Original Danish version	52

A Additional tables and figures

Table A.1: Re-weighted summary statistics

Jobs included	(1)	(2)	(3)	(4)	(5)	(6)
	Movers	Last two	Survey invites	Last two	Survey sample	Last two
Worker month-level means						
Earnings	5470.3 (4619.6)	5909.3 (4751.3)	5507.8 (4002.7)	5937.3 (4006.7)	5715.4 (3639.8)	6036.6 (3216.0)
Hours	140.6 (42.9)	147.7 (34.0)	140.6 (42.9)	147.8 (34.3)	143.0 (39.6)	149.9 (29.5)
Tenure (months)	64.3 (51.6)	73.5 (56.3)	63.9 (51.2)	72.6 (55.9)	70.3 (52.8)	80.2 (57.4)
Worker-level means						
Male	0.52	0.52	0.53	0.53	0.44	0.44
YOB	1979.8 (8.97)	1979.8 (8.97)	1979.8 (8.93)	1979.8 (8.93)	1978.2 (9.01)	1978.2 (9.01)
Bachelor or higher	0.44	0.44	0.45	0.45	0.57	0.57
# firms	4.79 (2.41)	2 (0)	4.78 (2.38)	2 (0)	4.68 (2.24)	2 (0)
Firm-level means						
# workers	7.60 (57.4)	7.60 (57.4)	2.97 (18.1)	7.51 (56.9)	4.65 (34.7)	19.1 (110.9)
Construction	0.12	0.12	0.15	0.12	0.083	0.068
Knowledge services	0.089	0.089	0.062	0.092	0.067	0.11
Accommodation / food	0.067	0.067	0.12	0.050	0.16	0.021
# worker-months	52,410,602	28,296,091	13,297,153	7,229,056	2,781,838	1,541,424
# workers	400,349	400,349	100,200	100,200	19,211	19,211
# firms	46,212	46,212	31,615	20,530	14,259	7,088

Notes: This table provides summary statistics after re-weighting to account for nonrandom sampling. Earnings information is converted to USD at an exchange rate of 0.14 USD/DKK and inflated to 2023 equivalents using the CPI. Columns 1 and 2 include all workers and firms in the leave-one-out connected set of firms among workers who had changed jobs within the last three years. Column 1 differs from column 2 of table 1 because it drops all firms not in the movers connected set, since these firms do not have a defined sampling weight. Columns 3 and 4 provide the same statistics sub-setting to the sample of workers invited to take the survey. If sampling weights were perfectly accurate, these means should match those in columns 1 and 2 exactly. Columns 5 and 6 subset to the sample of survey respondents matched to jobs in the register data. These means need not match even after re-weighting due to differential response rates across survey characteristics. Worker-month and worker-level means use worker-level inverse sampling probabilities as weights, while firm-level means use the firm-level analogue. See Figure B.1 for the distribution of worker-level sampling weights and Figure B.2 for the distribution of firm-level sampling weights.

Table A.2: Summary statistics for specific amenity responses

Variable	Old Firm			New Firm			Difference	
	Mean	SD	Median	Mean	SD	Median	Mean	SD
Commute length	3.75	1.03	[4]	3.63	1.03	[4]	-0.11	1.35
Work from home	3.46	1.40	[3]	3.11	1.39	[3]	-0.35	1.22
Control of hours	2.75	1.07	[2]	2.39	1.01	[2]	-0.36	1.07
Independence	2.57	0.91	[2]	2.20	0.78	[2]	-0.36	1.00
Work pace	1.98	1.07	[2]	2.17	1.02	[2]	0.19	1.20
Interesting tasks	2.11	1.10	[2]	1.59	0.85	[1]	-0.52	1.13
Physicality	3.66	1.61	[5]	3.89	1.47	[5]	0.23	1.13
# of reports	1.44	0.94	[1]	1.43	0.94	[1]	-0.0094	0.91
Team work	1.91	1.28	[1]	1.69	1.10	[1]	-0.22	1.41
Social impact	2.17	1.15	[2]	1.85	1.00	[2]	-0.32	1.04
Pension contributions	2.10	0.86	[2]	1.92	0.77	[2]	-0.18	0.89
Paid holidays	1.85	0.50	[2]	1.94	0.51	[2]	0.00	0.00
How family friendly	2.47	1.13	[2]	1.89	0.96	[2]	-0.58	1.32
Quality of perks	3.00	1.25	[3]	2.66	1.29	[2]	-0.34	1.59
Layoff risk	1.64	0.80	[1]	1.52	0.66	[1]	-0.12	0.89
Negotiation opportunities	3.23	1.45	[2]	2.90	1.37	[2]	-0.33	1.43
Continuing education	3.14	1.50	[3]	2.46	1.41	[2]	-0.68	1.63
Quality of work environment	2.45	1.04	[2]	2.14	0.95	[2]	-0.31	1.28
Support from colleagues	2.23	1.07	[2]	1.70	0.79	[2]	-0.53	1.26
Support from boss	2.82	1.30	[3]	1.89	0.98	[2]	-0.93	1.62
How respected	2.23	1.09	[2]	1.71	0.79	[2]	-0.52	1.27
How stressed	2.72	1.30	[3]	3.20	1.13	[3]	0.48	1.46
Weekly hours	37.3	6.76	[37]	37.2	5.91	[37]	-0.16	5.89
Observations	19167			19167			19167	

Notes: This table reports summary statistics for the specific amenity questions. Most questions presented options on a 1-5 Likert scale; see Appendix D for complete questions.

Table A.3: Share of workers and regret rates (in %) by reason for job move

Reason for move	Share of movers (1)	Regret rate (raw elicitation) (2)	Regret rate (adjusted for status-quo bias) (3)	Downgrade job ideality (4)
I switched voluntarily	66.0	5.0	24.0	10.1
Other	10.3	8.7	28.9	14.5
Fired	6.6	12.1	35.4	15.5
I quit	5.8	5.8	23.3	10.3
Temporary position	4.8	10.7	34.9	17.9
Moved residence	2.5	18.4	52.5	28.4
Workplace closed	1.9	19.9	55.7	28.9
Family situation	1.2	14.5	39.6	25.6
Part of education	0.9	4.4	16.7	15.0
All	100	6.9	27.2	12.3

Notes: This table reports the share of workers and their regret rates by reason for job move. Column (2) shows the share of workers whose reservation wage changes exceed their actual wage changes from switching jobs (i.e., their actual wage change was not enough to make them indifferent between the jobs). Column (3) adjusts these reservation wages for status quo bias (see Table A.5). Column (4) presents the share of workers who report that their new job is further from their ideal than their previous one. The rows are sorted according to their share of movers (Column 1).

Table A.4: Are you actively looking for new work? (in pp)

	(1)	(2)	(3)	(4)
Pay change in %	-0.110 (0.015)		-0.137 (0.015)	
Own res wage in %		-0.165 (0.008)		-0.158 (0.010)
Typical worker res wage in %			-0.125 (0.009)	-0.0242 (0.011)
Constant	17.02 (0.300)	20.60 (0.386)	18.07 (0.319)	21.82 (0.418)
Observations	19211	19211	19211	19211

Notes: This table presents a regression of a dummy variable for whether workers are actively searching for new work on their reported pay and non-pay changes. Columns (1)-(3) are univariate regressions, and Column (4) is a multivariate regression. Standard errors in parentheses.

Table A.5: Estimates of status-quo bias

Gender	Education	Age	Estimate	Observations
Female	High school or lower	Below median	16.78	2598
Female	High school or lower	Above median	15.88	1283
Female	Bachelor or more	Below median	15.91	3641
Female	Bachelor or more	Above median	15.02	3990
Male	High school or lower	Below median	12.82	2118
Male	High school or lower	Above median	11.89	1232
Male	Bachelor or more	Below median	11.94	1790
Male	Bachelor or more	Above median	11.03	2559

Notes: This table reports the estimation results for the status-quo bias in reservation wage elicitations, $c(X)$; see Equation (2). The bias is measured in percent of workers' pay. We allow this bias to vary flexibly by workers' gender, education (above/below BA), and age (above/below median).

Table A.6: Comparison with revealed preference measures of firm amenities

	(1)	(2)	(3)	(4)	(5)	(6)
	Log(size)		Sorkin (2018)		Poaching index	
Firm amenity effect	1.835*** (0.145)	0.672*** (0.163)	-0.155*** (0.0311)	0.338*** (0.0410)	-0.114*** (0.00754)	0.0214* (0.0101)
Firm wage effect		-7.952*** (0.235)		3.269*** (0.0596)		0.928*** (0.0160)
Observations	38332	38332	37643	37643	38332	38332
# workers	19167	19167	19167	19167	19167	19167
# firm	7017	7017	7017	7017	7017	7017

Notes: This table reports regressions of various revealed preference measures of firm amenities on firm wage and amenity effects estimated in this paper. Columns 1 and 2 use log average monthly employment. Columns 3 and 4 use the PageRank valuation from the methodology described in Sorkin (2018). Columns 5 and 6 use the poaching rank, which is the share of new hires coming from other employers vs. non-employment. Firm wage effects included in columns 2, 4, and 6 are instrumented with independent estimates constructed using the complete register data excluding the survey sample.

Table A.7: Regressions of reservation wages on recoded amenities

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Set own schedule	6.344*** (0.472)								3.573*** (0.515)	
Telecommute		3.636*** (0.566)							-0.473 (0.608)	
Not physical			0.579 (0.679)						-1.165 (0.687)	
Relaxed				6.299*** (0.389)					4.997*** (0.392)	
Choose how to work					9.821*** (0.550)				6.501*** (0.580)	
Six + weeks PTO						5.702*** (0.647)			2.945*** (0.641)	
Work in teams							3.165*** (0.417)		3.171*** (0.412)	
Training opportunities								7.758*** (0.477)	5.051*** (0.487)	
Social impact									1.990*** (0.414)	1.648*** (0.404)
Constant	25.93*** (0.226)	26.47*** (0.225)	26.83*** (0.222)	26.01*** (0.222)	25.67*** (0.223)	26.54*** (0.221)	26.66*** (0.220)	25.68*** (0.224)	26.03*** (0.277)	23.17*** (0.278)
Observations	19167	19167	19167	19167	19167	19167	19167	19167	19167	19167

Notes: This table reports the results of regressions of own reservation wages on changes in specific amenities recoded to mirror the coding in [Maestas et al. \(2023\)](#) as closely as possible. Each variable is coded as a binary indicator for the presence of the amenity. The outcome is the reservation wage, which can be interpreted as the percentage point change in pay required to make the respondent indifferent between their current and previous job. The coefficients can therefore be interpreted as estimated willingness to pay for each amenity.

Table A.8: Robustness: Reservation wages vs. wage changes for movers

	(1) All moves	(2) Wage $\Delta < 20\%$	(3) $\Delta \in [-30, 30]$	(4) $\Delta \in [-20, 20]$	(5) $\Delta \in [-10, 10]$	(6)
Change in wages	-0.283*** (0.0732)	-0.684*** (0.193)	-0.468*** (0.0577)	-0.399*** (0.0418)	-0.537*** (0.0683)	-0.913*** (0.188)
Observations	19211	15156	15156	16892	14449	9842
# directed moves	15601	15601	15601	15601	15601	15601
First-stage coef	0.52	0.31	0.28	0.35	0.25	0.12
First-stage SE	(0.017)	(0.022)	(0.011)	(0.007)	(0.006)	(0.005)
Sampling weights	Yes	Yes		Yes		
Alt. instrument						

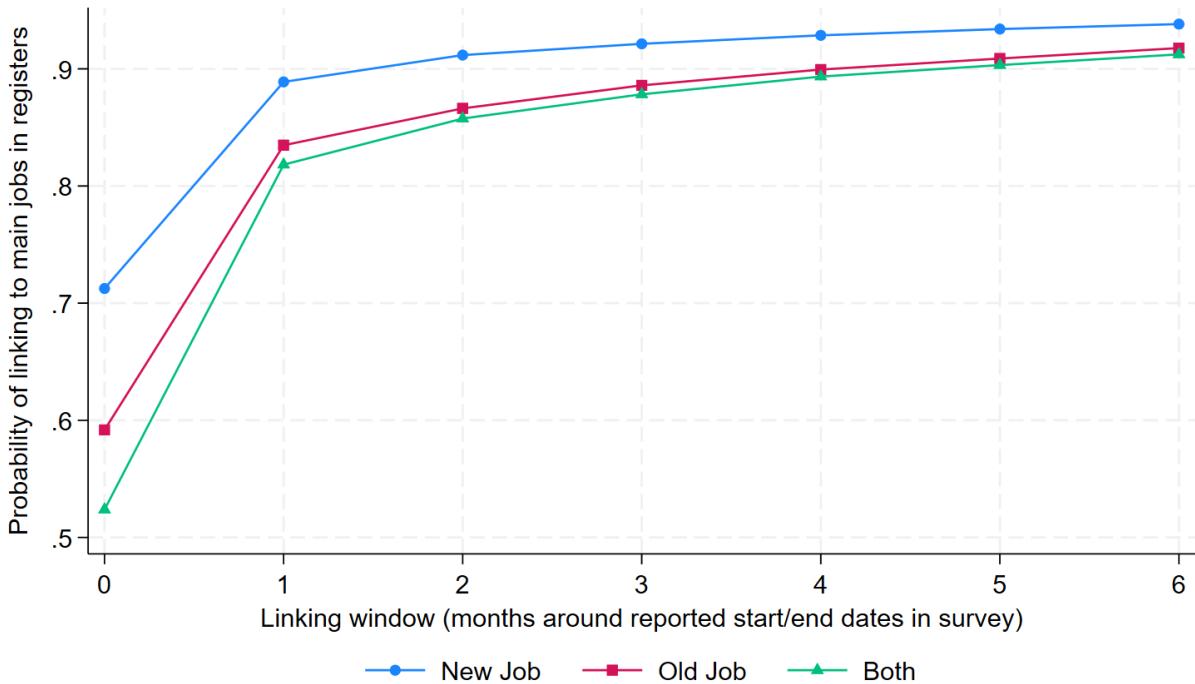

Notes: This table reports 2SLS regressions of own reservation wage responses on changes in log wages. All columns use the same instrument as in Table 5 except column 3, which uses the mean hourly wage recorded in the register instead of the median. Columns 1-2 use worker-level inverse sampling weights. Columns 2-6 vary the restriction on wage changes included. Robust standard errors are shown in parentheses. The bottom of the table reports the first stage coefficient and standard error.

Table A.9: Model type shares

Type	Est. sample	Survey	Population	Male	Female	Young	Old
1	0.076	0.052	0.065	0.069	0.061	0.084	0.050
2	0.16	0.079	0.16	0.19	0.13	0.23	0.10
3	0.17	0.11	0.29	0.33	0.25	0.23	0.33
4	0.22	0.29	0.14	0.17	0.10	0.18	0.098
5	0.25	0.31	0.24	0.19	0.28	0.20	0.27
6	0.13	0.16	0.12	0.060	0.17	0.075	0.15

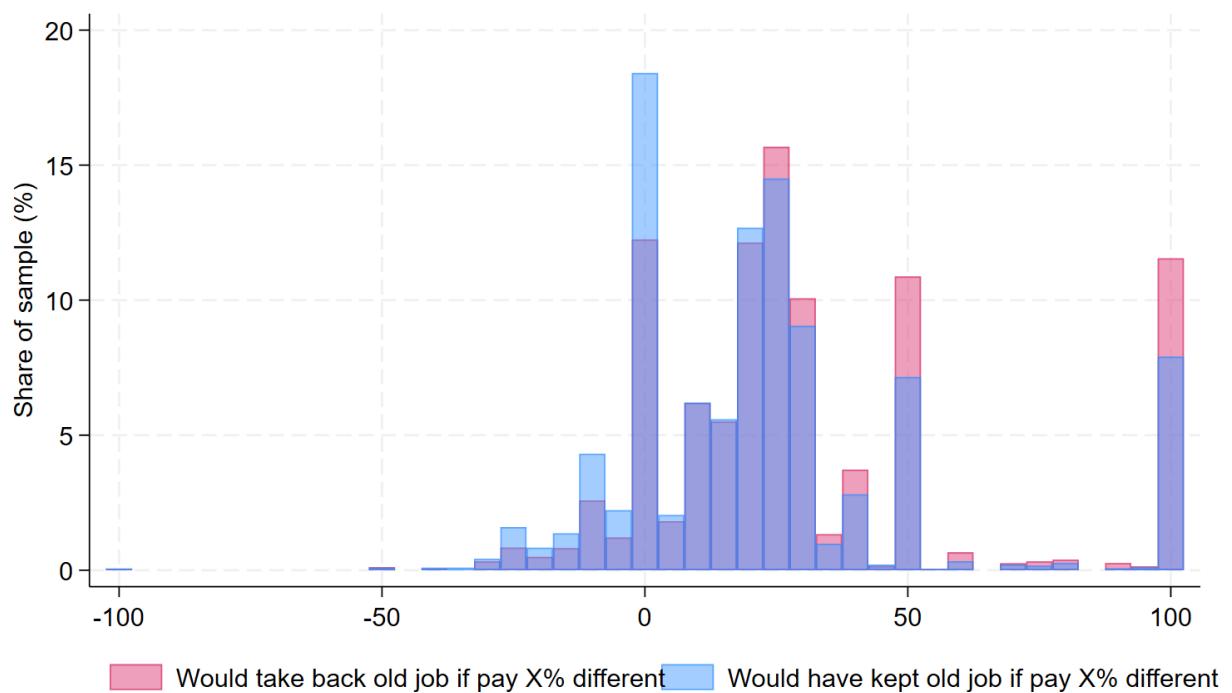
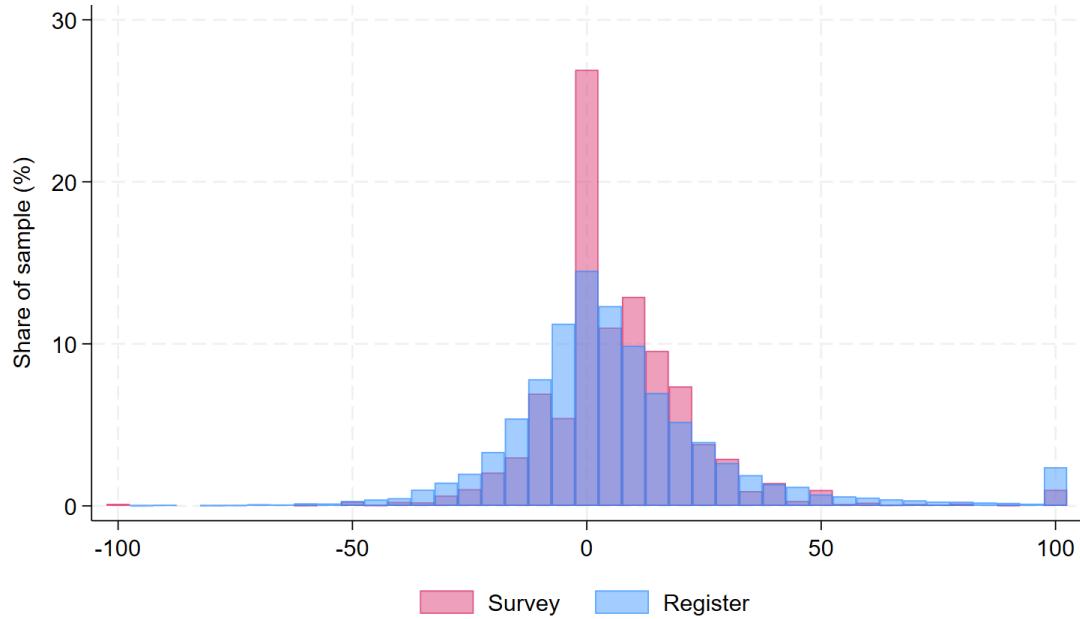

Notes: This reports estimated worker type shares for the full estimation sample, individuals in the survey sample, individuals in the full Danish population, and several demographic subsets thereof. “Young” and “Old” are defined as birth years above vs. below the sample median, respectively. Type shares are computed by averaging type posteriors in the relevant sample.

Figure A.1: Match rates between job start/end dates in survey and register

Notes: This figure shows the share of survey respondents we can link to jobs in the register data based on the reported start/end dates of their current/prior jobs. The x-axis increases the window we allow around the reported dates in the survey.


Figure A.2: Distribution of own reservation wages (stay vs. take-back framings)

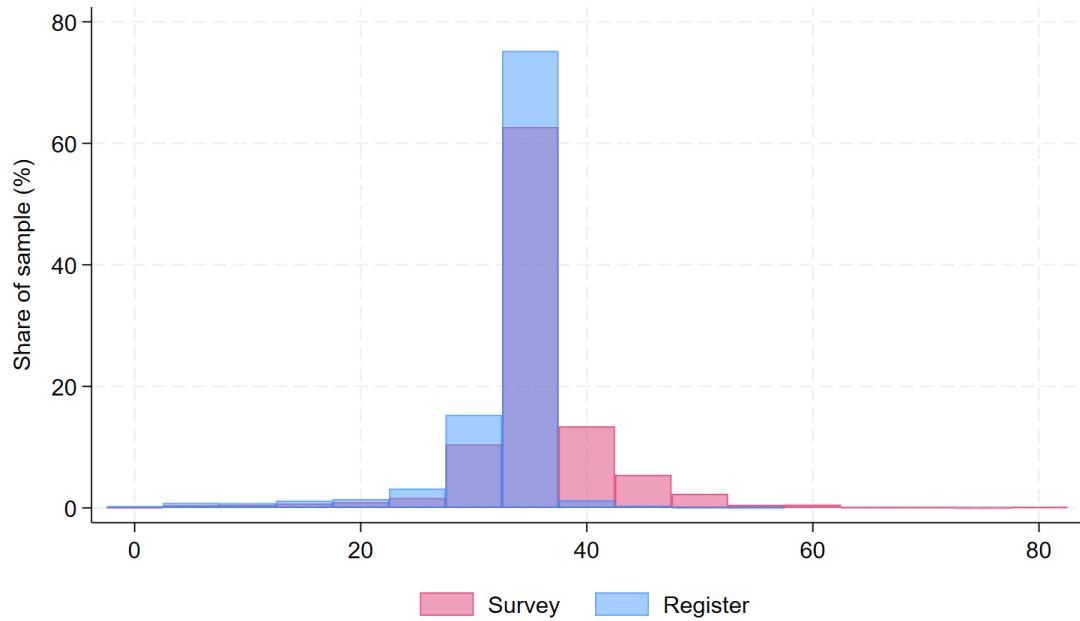
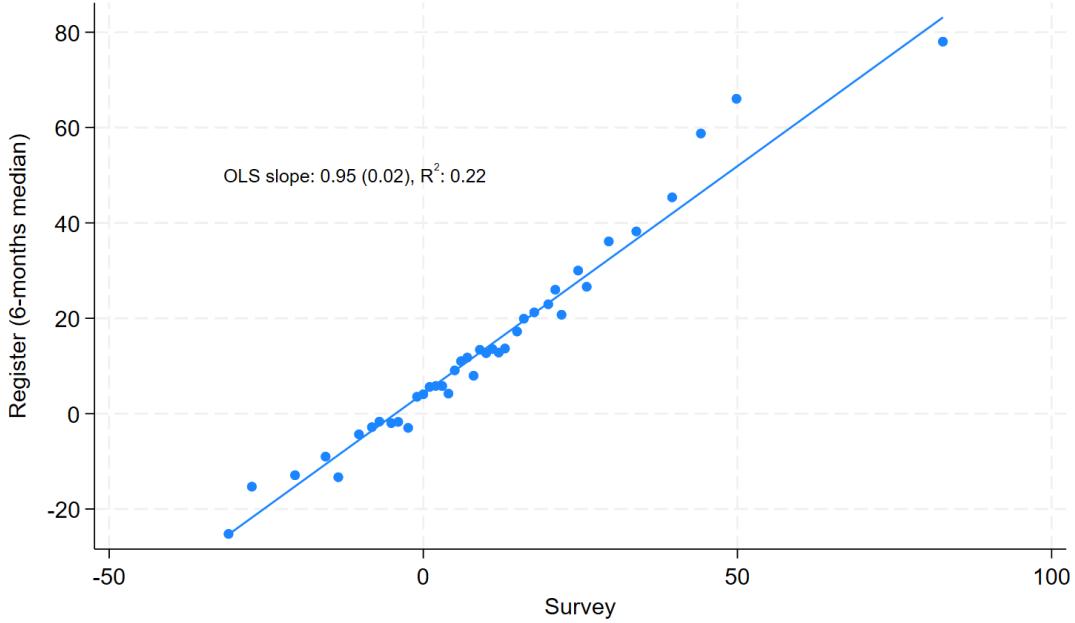

Notes: This figure shows the distribution of own reservation wages by whether workers were shown the question framed as taking back vs. staying in their previous jobs.

Figure A.3: Marginal distributions of pay and hours in survey and register

a) Earnings change between jobs


b) Weekly hours of prior and current job

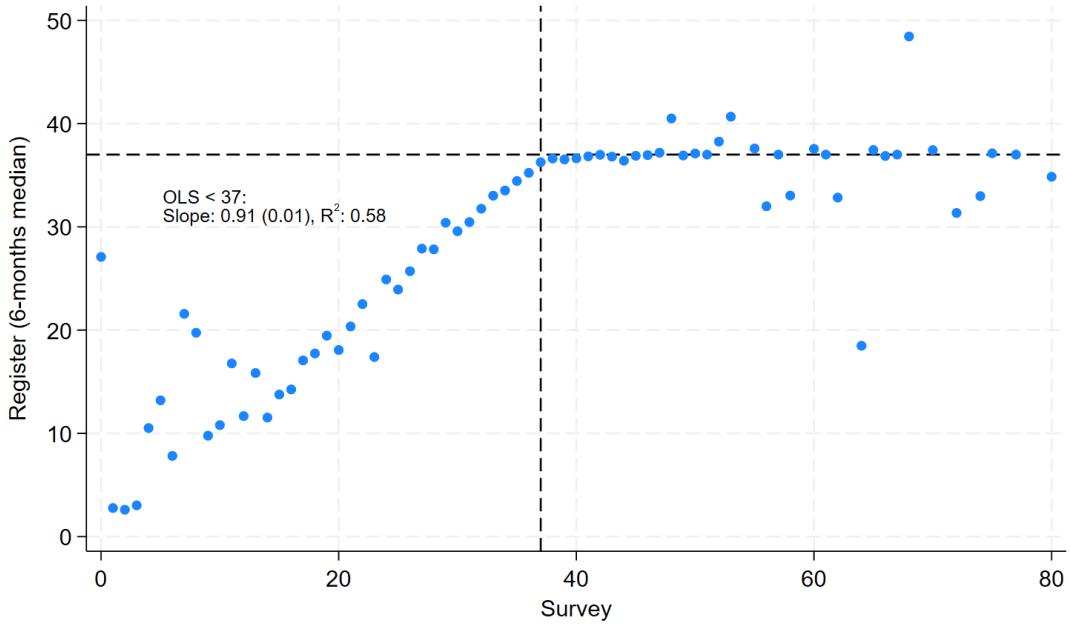
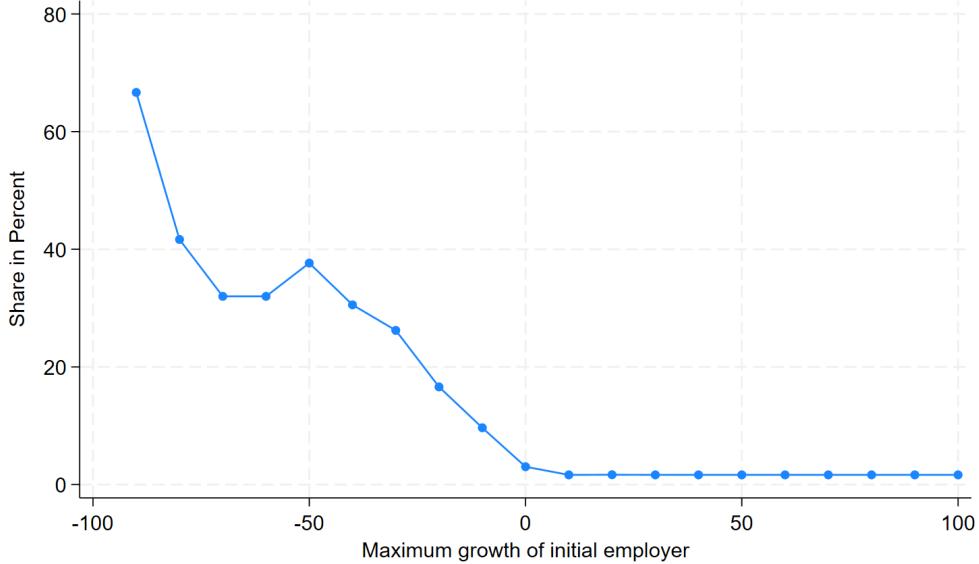

Notes: This figure shows the distributions of earnings changes (Panel (a)) and weekly hours (Panel (b)) in the survey and register data. Earnings in the register are recorded as the median monthly pay during the last six months of the prior job and the first six months of the current job, excluding the last and first month of each, respectively.

Figure A.4: Pay and hours in survey vs. register

(a) Earnings change between jobs


(b) Hours of jobs

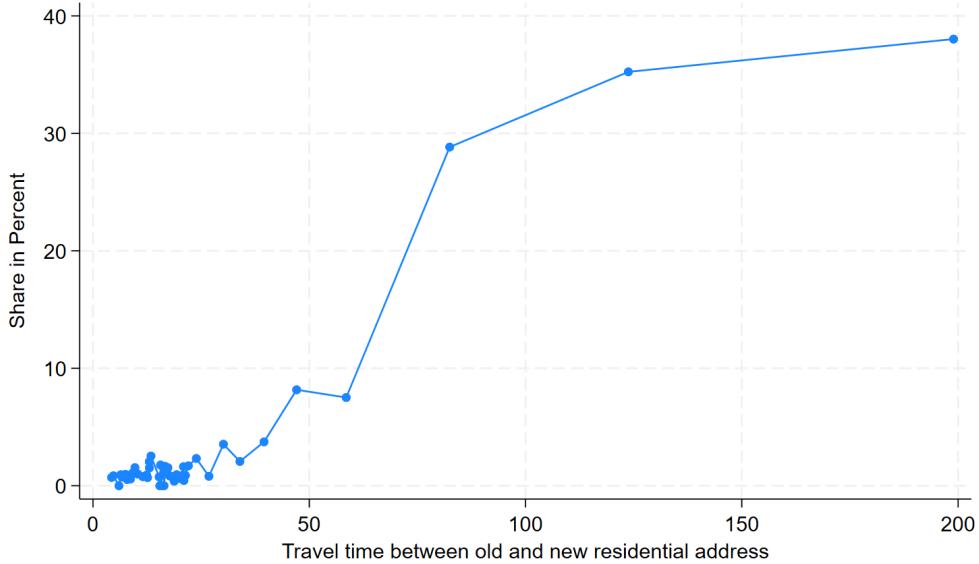
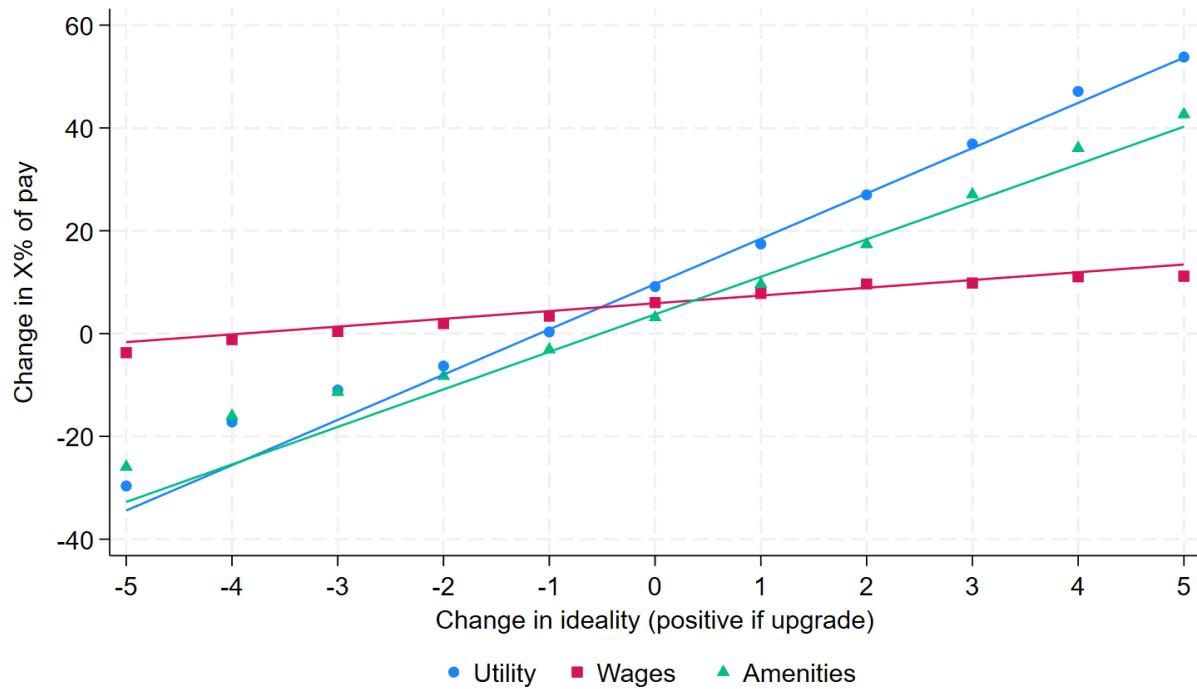

Notes: This figure shows binned scatter plots comparing register data with survey responses for changes in earnings (Panel (a)) and hours (Panel (b)). The corresponding marginal distributions are shown in Figure A.3. Register earnings are measured as the median monthly pay over the last six months in the prior job and the first six months in the new job, excluding the final month of the former and the first month of the latter. Panel (b) includes a dashed line at 37 hours, where the register data exhibit clear evidence of top-coding. In Panel (a), the OLS slope is 0.95 (robust standard error: 0.02; R^2 : 0.22). In Panel (b), restricting to observations below the 37-hour threshold, the OLS slope is 0.91 (standard error: 0.01; R^2 : 0.58). All regression results are reported in the plots.

Figure A.5: Self-reported reason vs. register-based circumstances for job move

(a) “Workplace closure” vs. firm growth



(b) “Moved residence” vs. distance of move

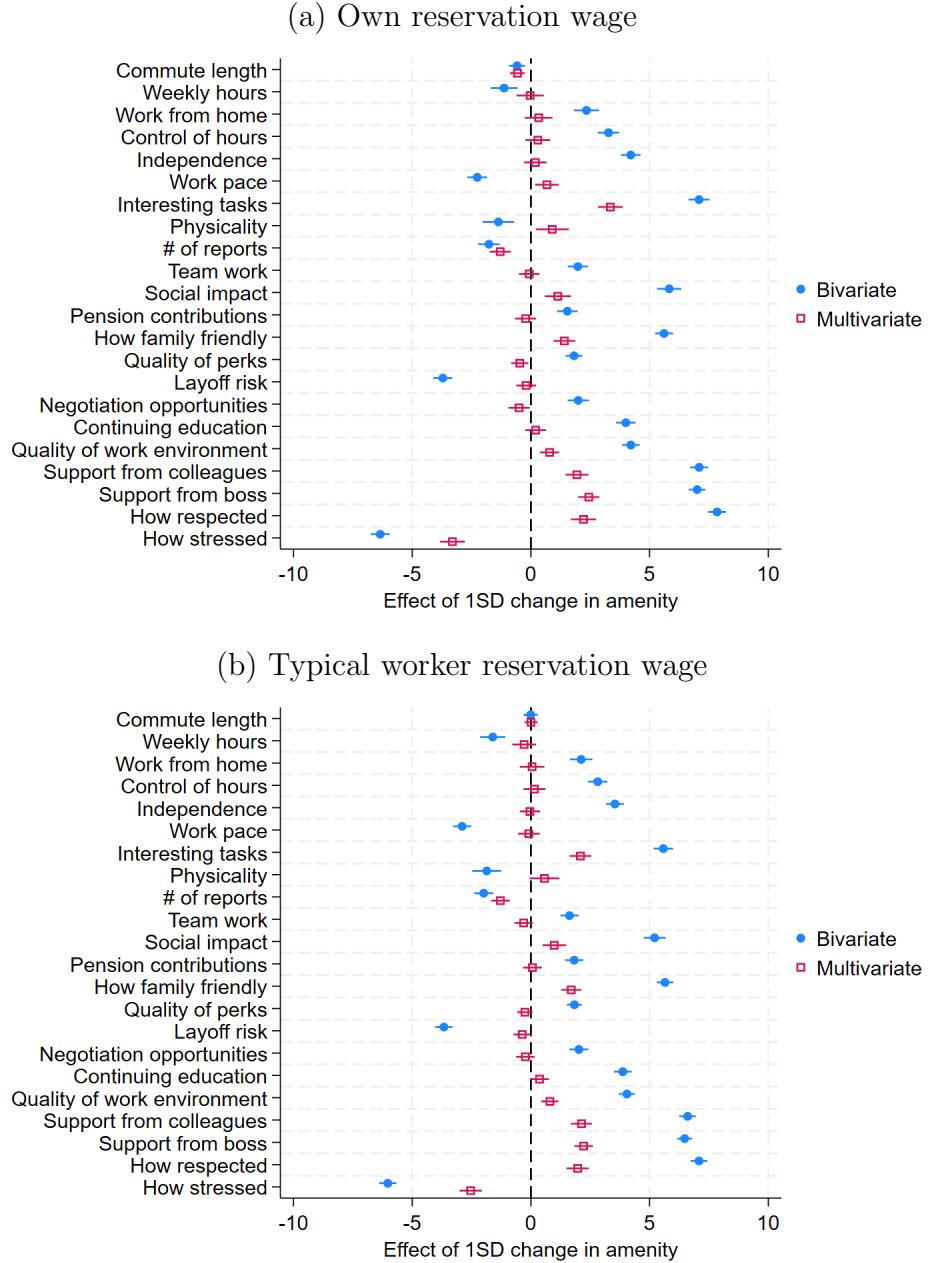

Notes: This figure shows how workers’ self-reported reasons for job changes correspond to register-based indicators of their circumstances. Panel (a) groups workers along the x-axis based on the employment growth of their former employers, measured as the year-over-year change in total hours worked at the workplace in the year the worker left. The y-axis shows the share of workers who reported “workplace closure” as their reason for switching jobs. The x-axis values represent upper bounds on employer growth—for example, an x-value of 0 includes all workers whose former employers experienced no growth or contraction in that year. This panel focuses on firms with at least 10 employees (full-time equivalents) in the year before the job switch. Panel (b) shows the share of workers who reported “moved residence” as their reason for switching jobs (y-axis), plotted against travel time between their previous and new residential addresses (x-axis). This panel focuses on workers who relocated to a different residential municipality between their previous and current jobs. Travel times are calculated following the method in [Harmon \(2015\)](#). For both panels, the share that reports “I switched voluntarily” displays the mirror pattern.

Figure A.6: Changes in utility, wages, and reservation wages versus changes in job ideality

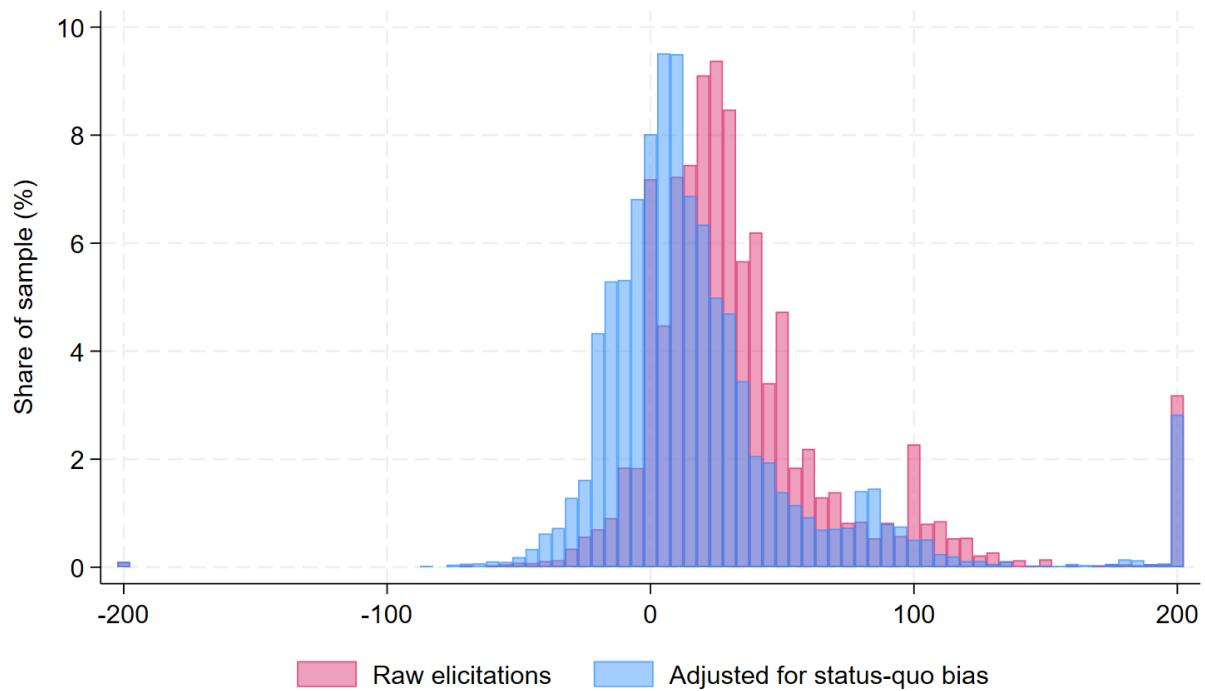

Notes: This figure shows a binned scatter plot of job movers' changes in utility, wages, and reservation wages (all measured in percent of pay) against the difference in ideality of their current versus previous jobs. Utility is defined as the sum of wage changes and the reservation wage. The change in ideality is the difference in responses for the old and new job, with "The ideal job" coded as a 6 and "Very far from ideal" coded as a 1. Reservation wages are adjusted for status-quo bias (see Table A.5).

Figure A.7: Predictors of reservation wages

Notes: This figure shows the relationship between reservation wages (measured in % of pay) and changes in specific amenities. Blue dots reflect the bivariate relationship, while red squares are coefficients from a multivariate regression including all amenities simultaneously. Amenities are divided by their pooled standard deviation so that coefficients can be interpreted as the impact of a 1 s.d. increase. Whiskers represent 95% confidence bands. Panel (a) shows the results for workers' own reservation wage between the jobs, while Panel (b) shows their reported reservation wage for the typical worker. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore by cardinalizing responses (e.g., 1 = "Very good," 2 = "Good," etc.).

Figure A.8: Distribution of utility changes (in % of pay) from switching jobs

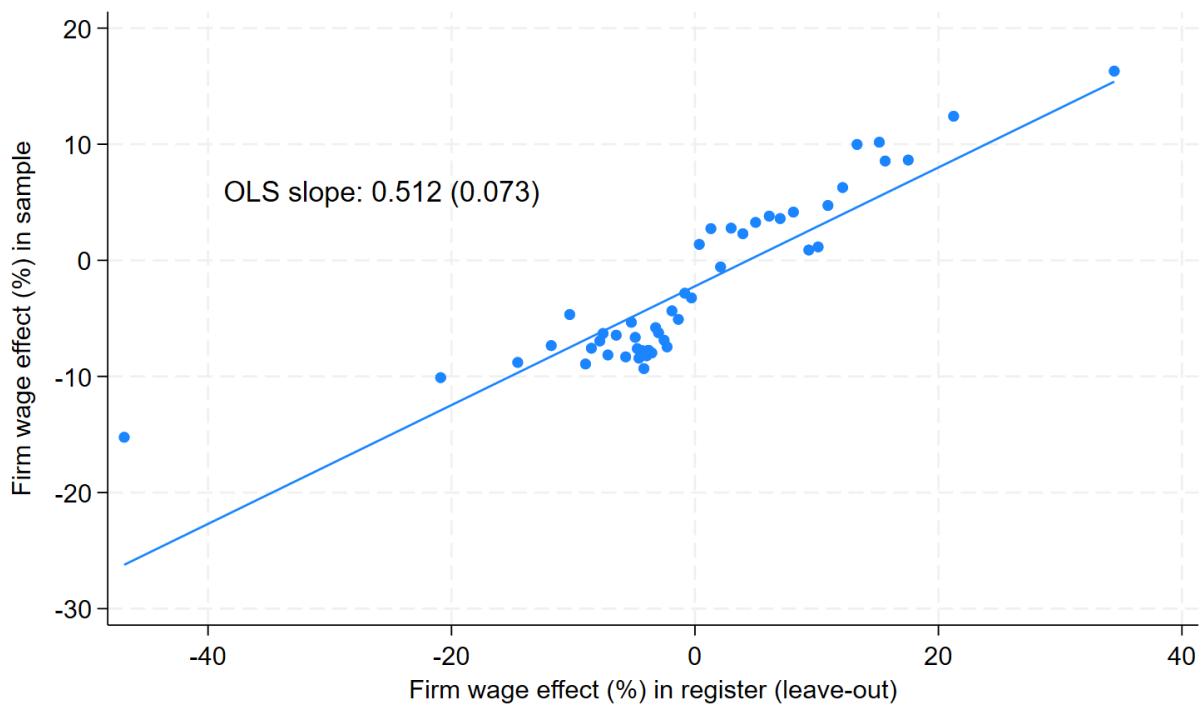

Notes: This figure shows a histogram of workers' total utility changes from switching jobs, measured as the sum of their actual wage change and their reservation wage change. *Raw elicitation* refers to the unadjusted reported reservation wages. *Adjusted for status-quo bias* corrects for status-quo bias in the elicited reservation wages (see Table A.5).

Figure A.9: Predictors of revealed preference amenity measures

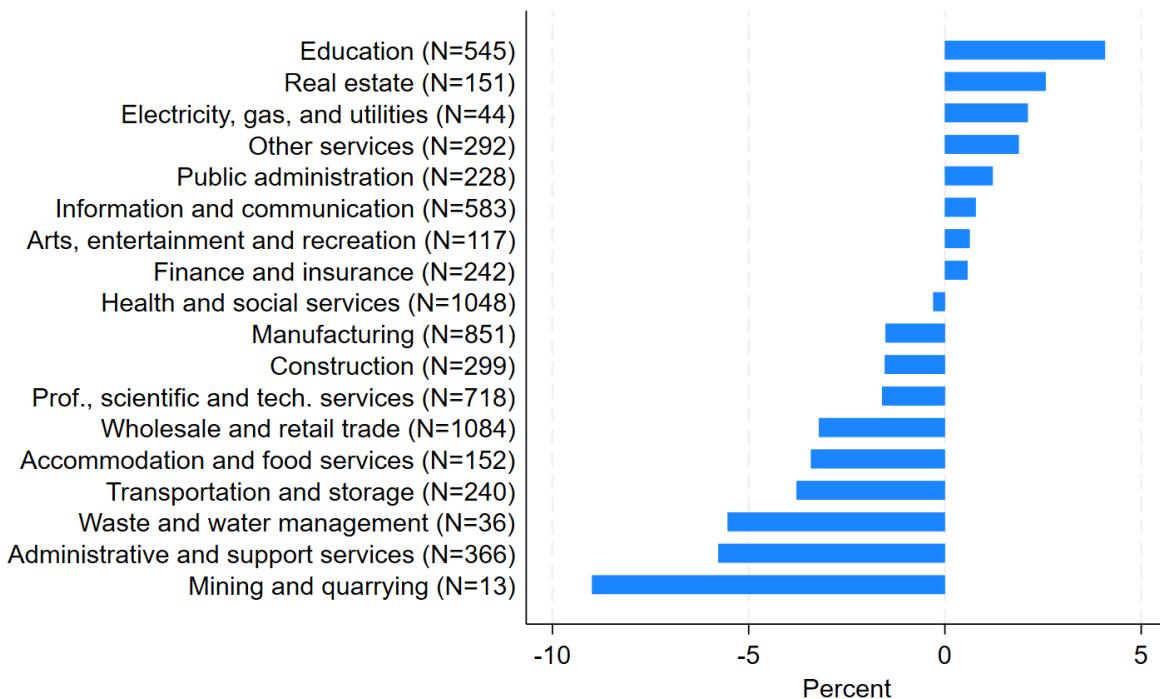

Notes: This figure shows the relationship between changes in various revealed preference measures of amenities and changes in workers' specific amenities. The effects have been multiplied by 100 so that quantities can be interpreted as percentage point differences where appropriate. Given differences in how the outcomes are measured, however, coefficients are not directly comparable across panels. Blue dots reflect the bivariate relationship, while red squares are coefficients from a multivariate regression including all amenities simultaneously. Amenities are divided by their pooled standard deviation so that coefficients can be interpreted as the impact of a 1 s.d. increase. All estimates include worker fixed effects, as well as a control for firm wage effects instrumented with independent estimates constructed using the complete register data excluding the survey sample. The outcome in panel (a) is log average monthly employment. Panel (b) uses the PageRank valuation from the methodology described in [Sorkin \(2018\)](#). Panel (c) uses the poaching rank, which is the share of new hires coming from other employers vs. non-employment. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore by cardinalizing responses (e.g., 1 = "Very good," 2 = "Good," etc.).

Figure A.10: Wage effects estimated in- vs. out-of-sample

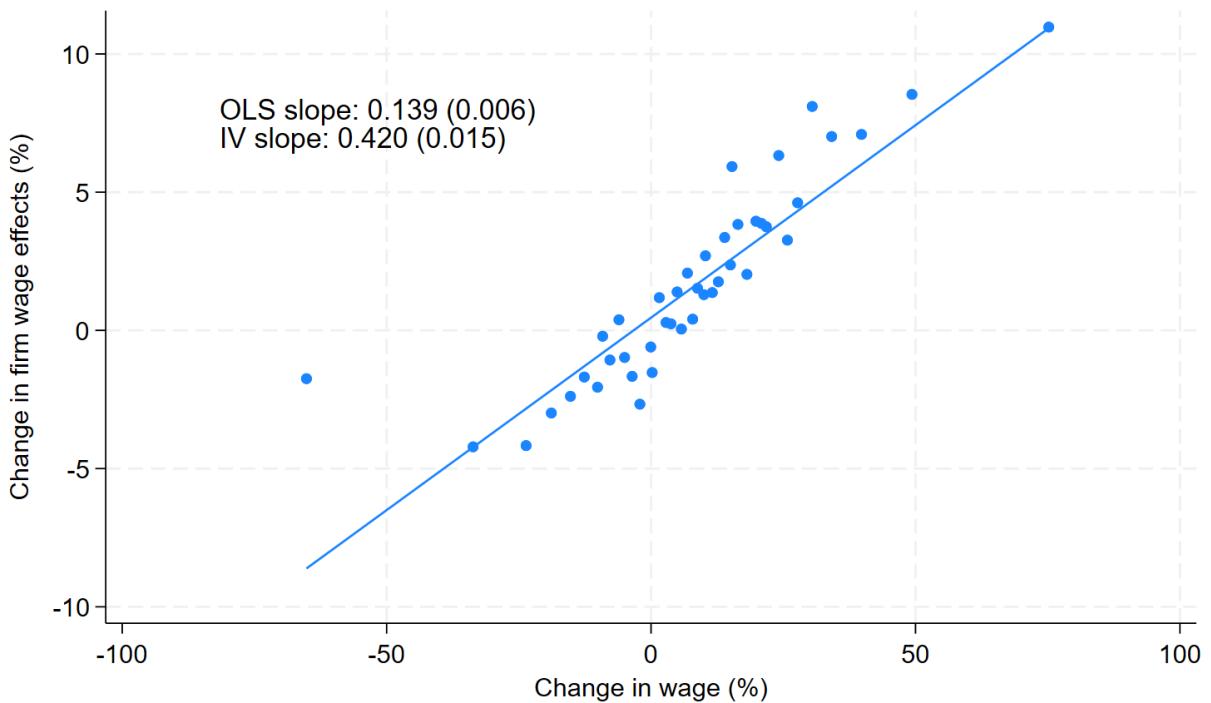

Notes: This figure shows a binned scatter plot of firm wage effects estimated in the full Danish register data (excluding the survey sample) and in the survey sample using survey responses. The line shows the OLS fit, with a slope of 0.512 and a robust standard error of 0.073, as reported in the plot.

Figure A.11: Average firm amenity effects by industry: Population weighted

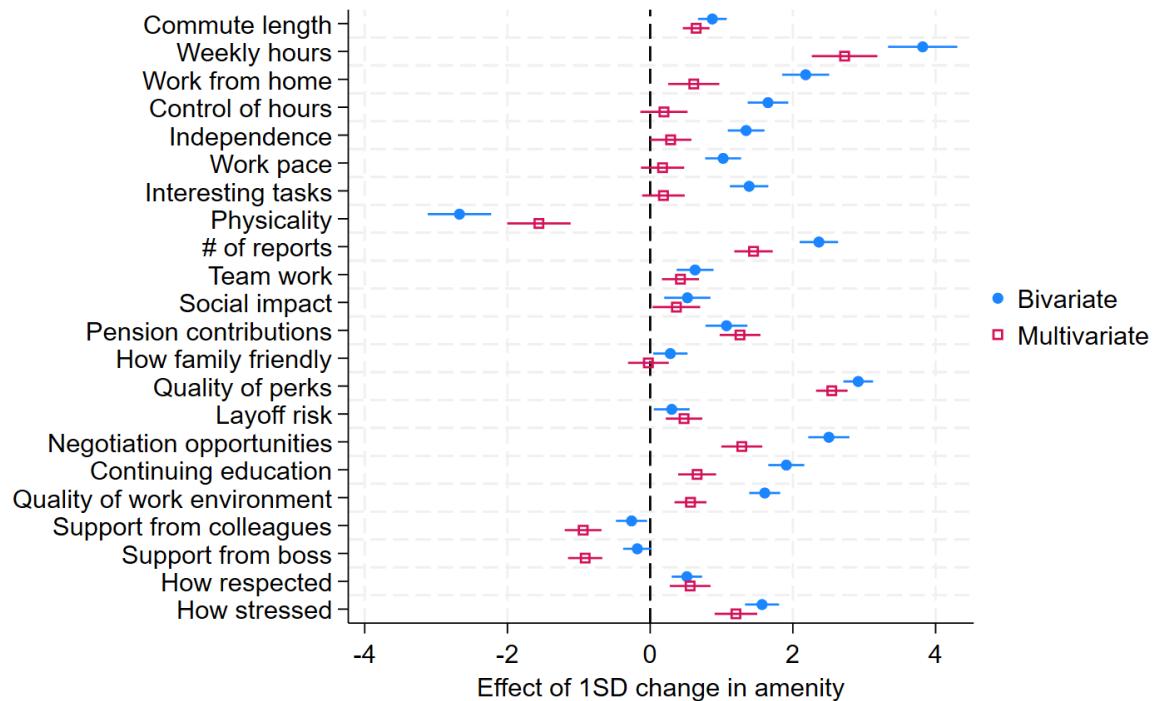

Notes: This figure shows average firm amenity effects estimated by industry. The number in parentheses indicates the number of firms in the industry in the sample. Industries with 10 or fewer firms are not shown. Amenity effects are multiplied by 100 so that values can be interpreted as approximate percentage point differences. Averages are weighted by the product of their inverse sampling probability and their average monthly employment in the full Danish microdata.

Figure A.12: Relationship between changes in wages and change in firm wage effects

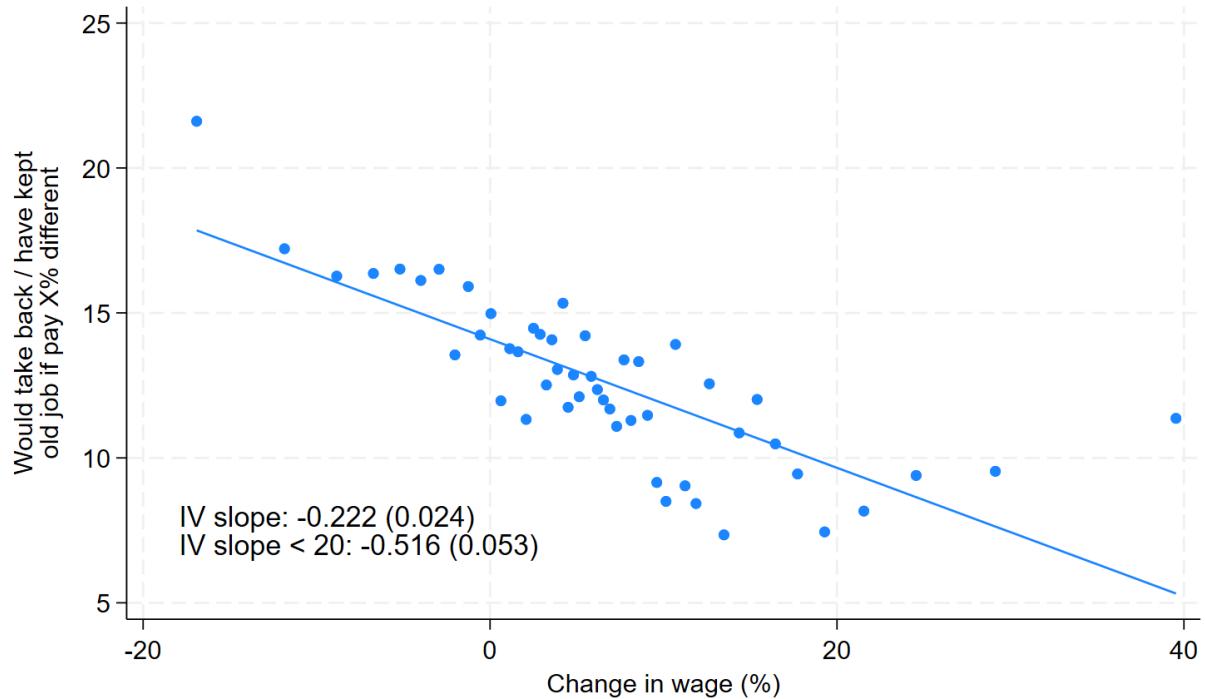

Notes: This figure shows the relationship between changes in wages and changes in firm wage effects. Each dot represents the average of the dependent and independent variables in quantiles of the independent variable. Both effects are multiplied by 100 so that quantities can be interpreted as percentage point differences. The line shows the OLS fit, with a slope of 0.139 and a robust standard error of 0.006, as reported in the plot. The IV slope is estimated instrumenting for survey-reported wage changes with wage changes reported in the register and has a slope of 0.42 with a standard error of 0.015.

Figure A.13: Predictors of pay changes

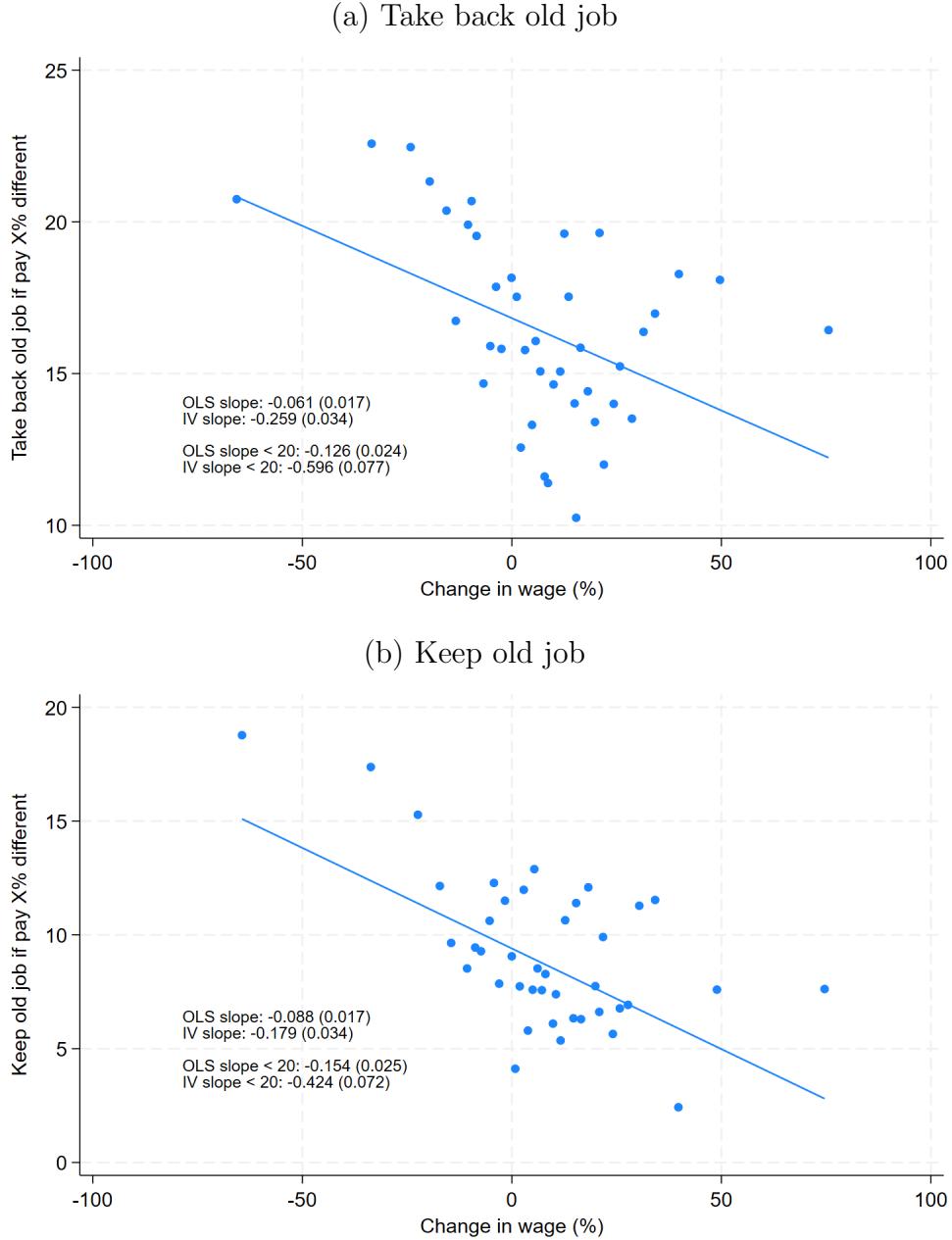

Notes: This figure shows the relationship between changes in pay (in %) and specific amenities. Blue dots reflect the bivariate relationship, while red squares are coefficients from a multivariate regression including all amenities simultaneously. Amenities are divided by their pooled standard deviation so that coefficients can be interpreted as the impact of a 1 s.d. increase. The specific amenity questions typically elicited ordinal information (see Appendix D), an issue we ignore by cardinalizing responses (e.g., 1 = “Very good,” 2 = “Good,” etc.).

Figure A.14: Changes in total amenities vs. wages (second stage fits)

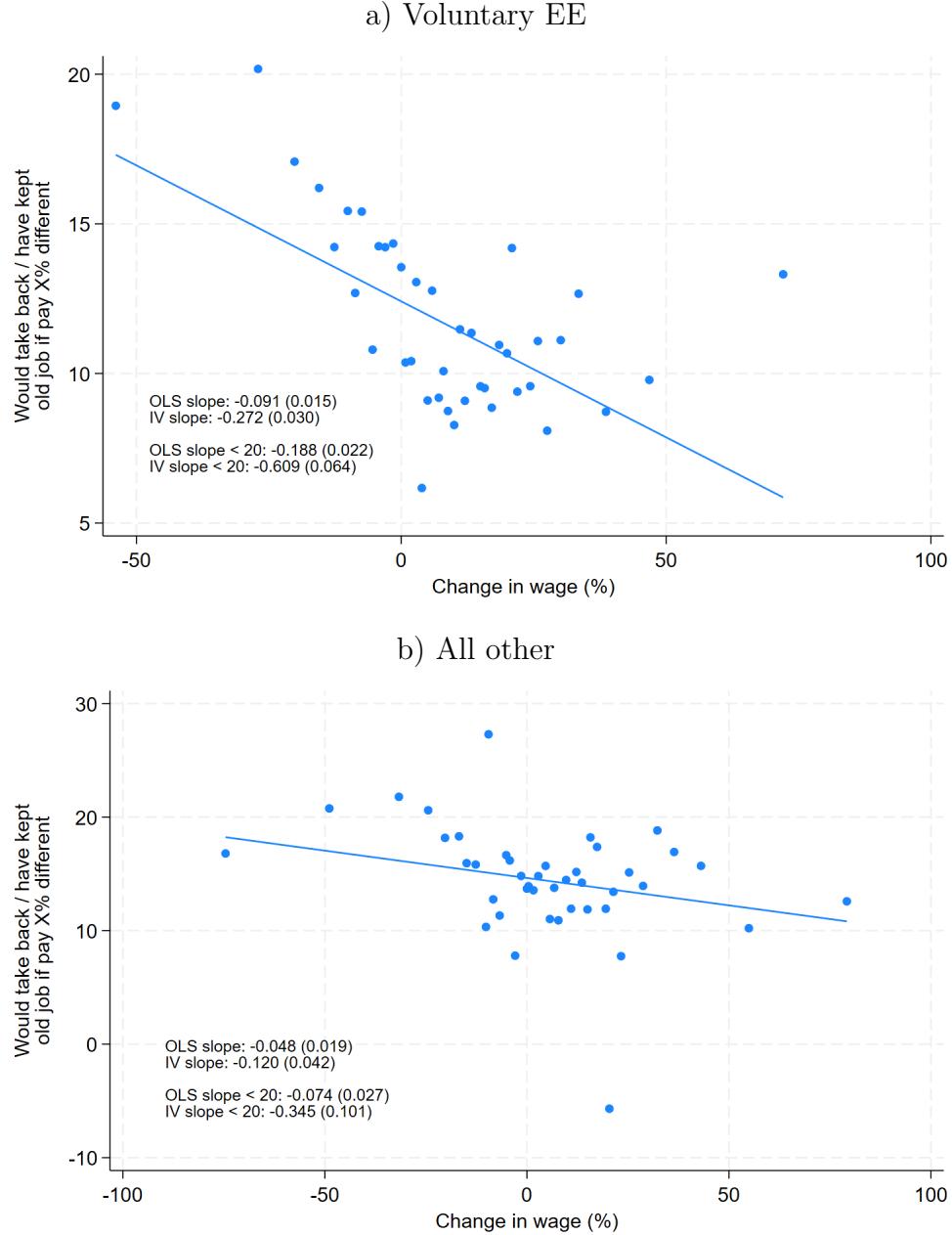

Notes: This figure shows a binned scatter plot of own reservation wages vs. second-stage fitted values from a regression of changes in wages reported in the survey on changes in wages reported in the register. Each dot represents the average of the dependent and independent variables in quantiles of the independent variable. Both effects are multiplied by 100 so that quantities can be interpreted as percentage point differences. The line is the OLS fit of the outcome on the independent variable, which in this case corresponds to the second stage regression in the 2SLS regression instrumenting for survey-reported wage changes with wage changes reported in the register. The slope of this line corresponds to the IV estimate from Figure 9. As reported in the plot, the slope is -0.222 with a standard error of 0.024 . When restricting to wage changes below 0.2 log points, the IV slope is -0.516 with a standard error of 0.053 .

Figure A.15: Changes in total amenities vs. pay: Effects of question framing

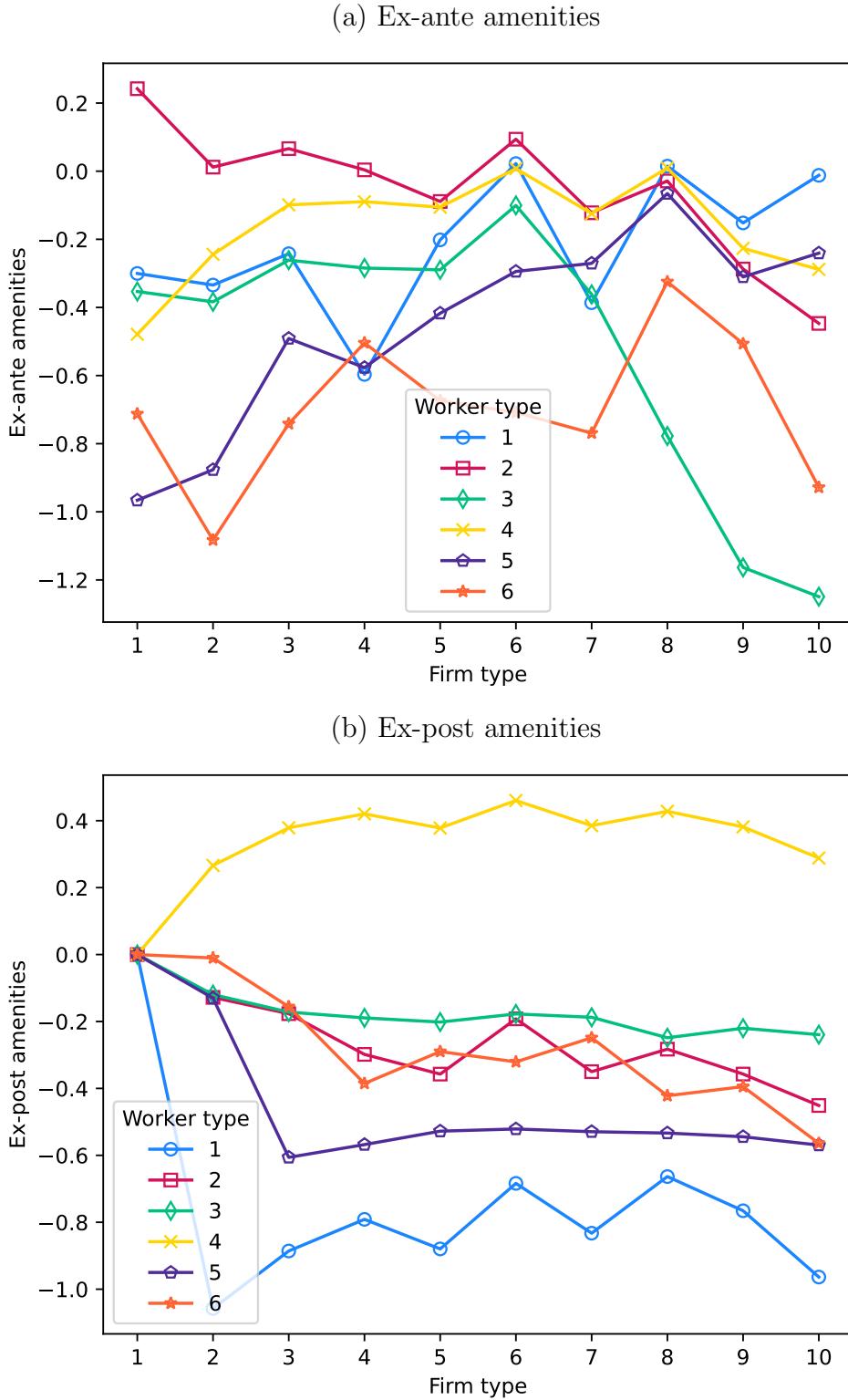

Notes: This figure shows a binned scatter plot of own reservation wages versus changes in wages reported in the survey, i.e., $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ on the vertical axis and $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$ on the horizontal axis. Panel (a) uses only the “take-back” framing of the reservation wage question, while panel (b) uses the keep old job framing. Each blue dot represents the average of the dependent and independent variables within one of 50 quantiles of the independent variable. Both axes are scaled by 100, so values reflect percentage point differences. Reservation wage responses are adjusted for estimated status quo bias. The OLS slope and IV slope (instrumenting survey-reported wage changes with wage changes reported in administrative registers) are reported in the plots, estimated both on the full sample and restricted to wage changes below 0.2 log points. The slopes in Panels (a) and (b) are not significantly different in any of the specifications: p -values are 0.250 (OLS, full sample), 0.099 (IV, full sample), 0.408 (OLS, restricted sample), 0.104 (IV, sample restricted).

Figure A.16: Changes in total amenities vs. pay: heterogeneity by reason for job move

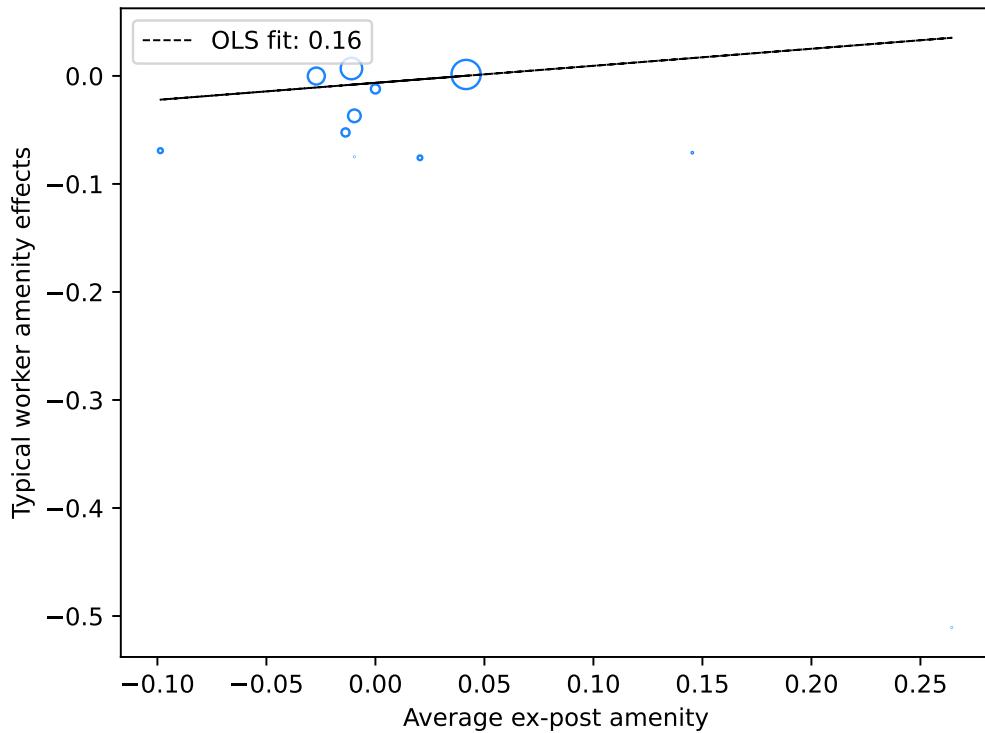

Notes: This figure shows a binned scatter plot of own reservation wages vs. changes in wages reported in the survey, i.e., $(a_k + \tilde{a}_{ik}) - (a_j + \tilde{a}_{ij})$ vs. $(w_k + \tilde{w}_{ik}) - (w_j + \tilde{w}_{ij})$, split by workers' reported reasons for their job moves. Each dot represents the average of the dependent and independent variables in quantiles of the independent variable. Both effects are multiplied by 100 so that quantities can be interpreted as percentage point differences. Panel (a) focuses on workers who switched voluntarily from their previous job, and Panel (b) focuses on all other reasons. The line is the OLS fit, which has a slope of -0.091 for voluntary EE (-0.048 for all other) and a robust standard error of 0.015 (0.019 for all other), as reported in the plot. The IV slope is estimated instrumenting for survey-reported wage changes with wage changes reported in the register and has a slope of -0.272 for voluntary EE (-0.12 for all other) with a standard error of 0.03 (0.042 for all other). Both estimates are attenuated by large positive wage changes, largely driven by workers who report low hours in the prior job. Sub-setting to wage changes below .2 log points yields an IV slope of -.609 (0.064) for voluntary EE and -0.345 (0.101) for all other.

Figure A.17: Search model: Amenities by firm and worker type

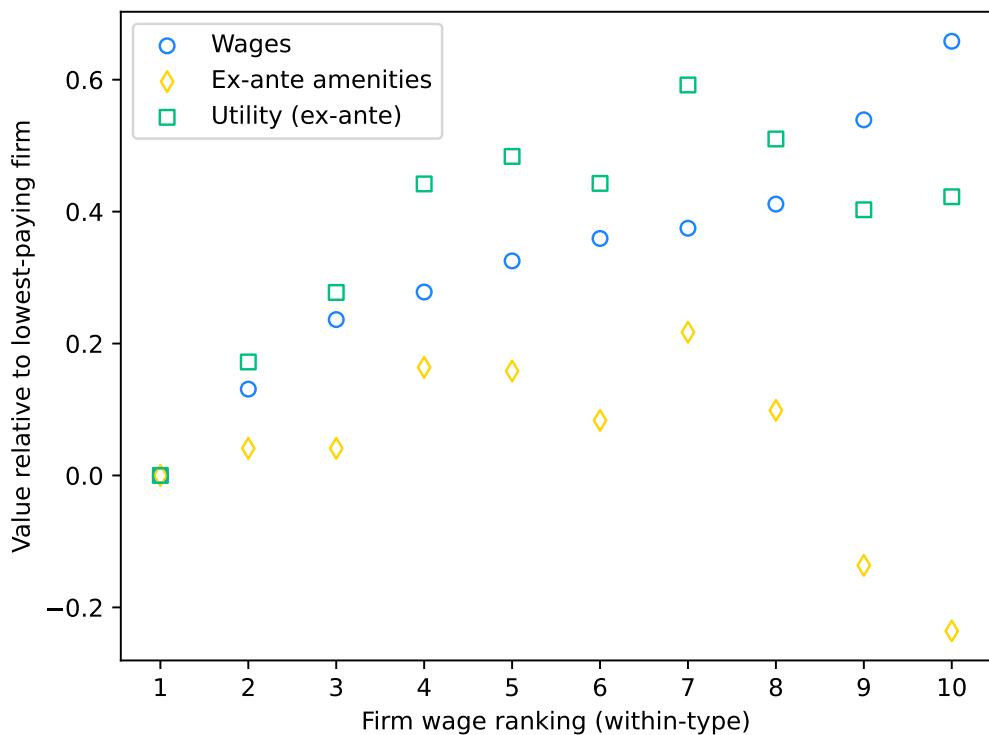

Notes: This figure shows estimated ex-ante amenity parameters $a^0(k, l)$ (panel a) and ex-post amenity parameters $a^1(k, l)$ (panel b) by firm and worker type.

Figure A.18: Search model: Reduced-form vs. model-based firm-level amenities

Notes: This figure plots the firm-level amenity effects estimated in Section 2.3 against model-based analogues of the same object. The former uses AKM-style models applied to survey respondents' estimates of reservation wages for a typical worker deciding between their former and current firm. The latter is the average of the type-specific ex-post amenities ($a^1(k, l)$) using population type weights. The model is estimated only using workers' own reservation wages. The scatterplot and fit are weighted by each firm's employment in the full Danish population.

Figure A.19: Search model: Between firm inequality using ex-ante amenities

Notes: This figure summarizes average between-firm inequality according to estimates of the model in Section 7. For each worker type, we compute mean relative wages, ex-ante amenities, and utility (the sum of wages and amenities for each firm type ranking from lowest to highest paying. We then average by population type shares.

B Survey sample

B.1 Sample criteria

Our survey universe consists of individuals who meet the following criteria:

1. Employed as a wage earner as of February 1, 2024
2. Aged 30-60 as of February 1, 2024
3. Changed jobs at least once within the last three years preceding February 1, 2024, subject to the following conditions:
 - (a) A maximum gap of six months between jobs
 - (b) At least three months of tenure in each job
 - (c) Neither jobs in agriculture
4. Current and previous employers are part of the largest leave-one-out connected set of firms (that is, firms that remain connected by job moves if we drop any worker from the dataset)

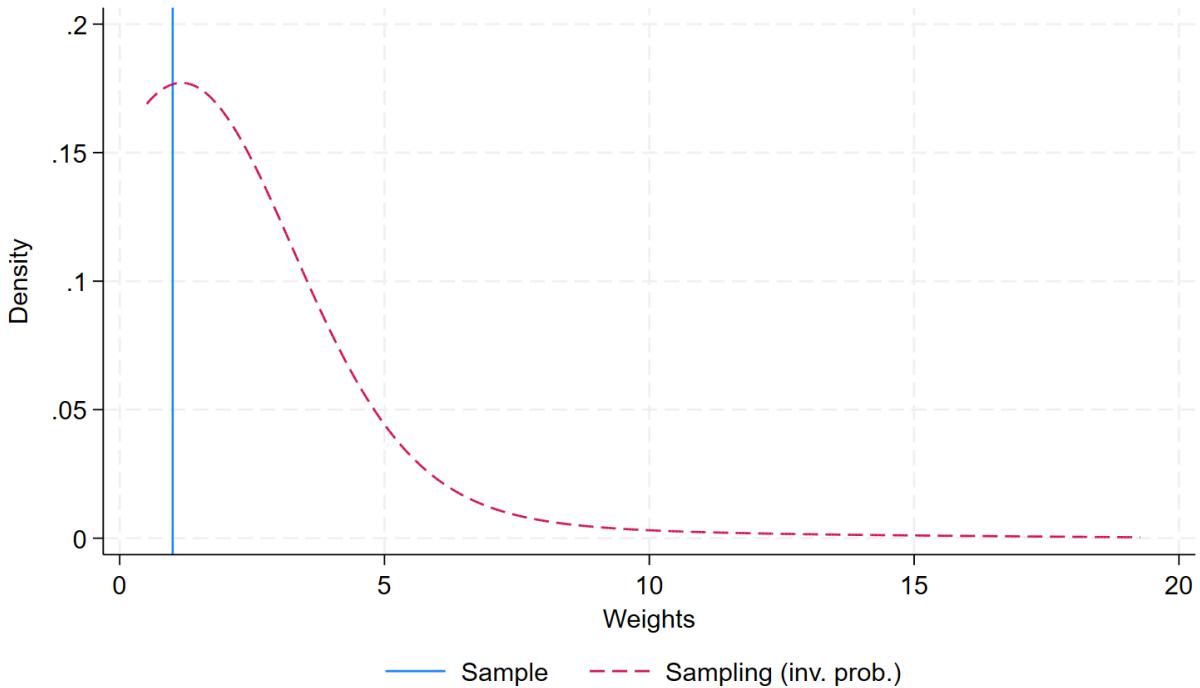
B.2 Sampling methodology

We employ a “snowball” sampling methodology, which ensures our survey participants move within a large, interconnected set of firms with multiple observations within firm pairs. The method begins with a randomly selected firm and expands through the networks of firms and workers, randomly sampling edges of movers connected to the previously selected firms.

Formally, our sampling method is a variant of Prim’s algorithm for finding a Minimum Spanning Tree of a connected, weighted graph (Prim, 1957). Our algorithm relies on a graph representation, where:

- Firms are represented as nodes in an undirected, weighted graph $G = (V, E, w)$.
- Edges correspond to worker transitions between firms.
- Edge weights represent the number of workers who moved between firms.

The sampling procedure begins by selecting a random firm j and proceeds as follows:


1. Identify the set of connected firms $C = \{k \mid k \in V \text{ and } \{j, k\} \in E\}$.

2. For each firm $k \in C$, add a maximum of $\min\{w(\{j, k\}), 10\}$ workers to the sample, provided the edge $\{j, k\}$ has not been previously selected.
3. Select the next firm at random from the set C .

This process repeats until the maximum sample size of 100,000 is reached.

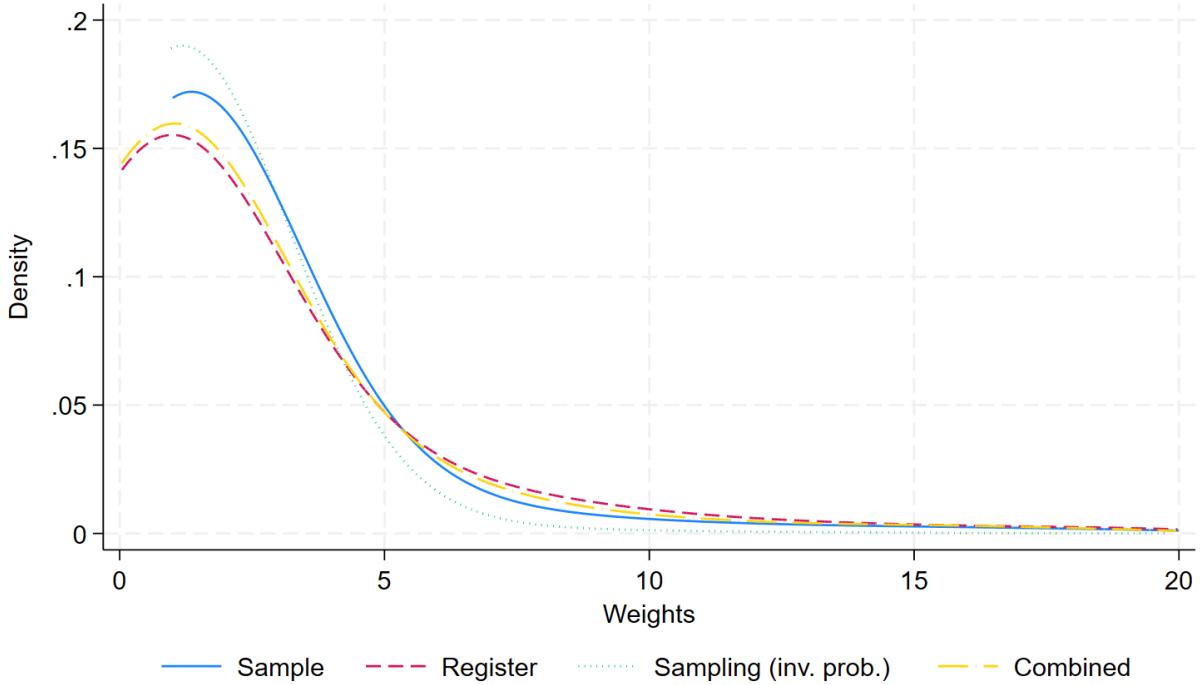

Because we know the sampling mechanism, we can simulate probability weights for any unit of analysis. See Figure B.1 for the distribution of worker-level sampling weights and Figure B.2 for the distribution of firm-level sampling weights. Using these weights, we can correct for non-random sampling to ensure our analysis is representative of the survey population.

Figure B.1: Worker-level sampling weight distributions

Notes: This figure shows kernel density estimates of the distribution of weights for the worker in the analysis sample. “Sample” refers to observations per worker in the analysis sample, which is mechanically equal to 1 for each worker. “Sampling” is the inverse probability of sampling, normalized by the median weight. The share with inverse probability weights over 20 (not shown in the plot) is 0.4%.

Figure B.2: Firm-level sampling weight distributions

Notes: This figure shows kernel density estimates of the distribution of weights for the firms in the analysis sample. “Sample” is the number of workers at the firm in the survey sample. “Register” is the average monthly employment in the full Danish microdata. “Sampling” is the inverse probability of sampling. “Combined” is the product of register and sampling weights. All weights are normalized by the median. The shares with sampling weights over 20 (not shown in the plot) are 3.7%, 4.6%, 0.2%, and 3.8%, respectively.

B.3 Response rates

Table B.1 shows how our sample restrictions reduce the analysis dataset. We sent 100,044 survey invitations and received 26,265 complete and valid responses, of which 19,211 could be linked to the corresponding prior and main jobs in the administrative data.

Table B.1: Analysis sample construction

	Individuals
1. Invitees	100,044
2. Respondents	34,225
3. Employed and recent job movers	29,312
4. Complete responses	26,265
5. Link to registers	19,211

Notes: This table shows how our sample restrictions shrink the analysis data.

C Invitation letter

This section contains the invitation letter for the main survey. We sent three reminders, two by e-mail (Digital Post) and one by text (SMS).

The English translation starts on page [31](#), with the original Danish version on page [33](#).

Maj 2024

What is a good job?

Dear [name]

We are reaching out to hear your opinion about your current job and your previous job, as well as the aspects you value most in a job.

Statistics Denmark is conducting this survey on behalf of a team of researchers from the University of Copenhagen and the University of Chicago. The results will be part of a **research project** on inequality in the Danish labor market. By completing the questionnaire, you will contribute to our understanding of what drives inequality in the Danish labor market.

Your responses are important, regardless of which aspects of a job you value, and they will not be shared with your employer.

By completing the questionnaire, you will automatically participate in a lottery for a **prize of [X.XXX] DKK tax-free**.

The questionnaire takes **about 10 minutes** to complete. You can participate by clicking the link below and filling out the questionnaire:

Start survey <<uns_url>>

Alternatively, visit www.dst.dk/ditsvar and enter the response code **<<code>>**.

Statistics Denmark handles your responses confidentially. Results are presented in a way that ensures no one can see individual answers, and the data is used solely for statistical and scientific purposes.

Participation is voluntary. If you do not wish to participate, you can indicate so: **<<refusal_link>>**.

If you have questions, you can email info@dstsurvey.dk or call 7777 7708 (every day from 9:00 AM to 4:00 PM). Please provide your response code when contacting us.

Best regards,

Marie Fuglsang
Head of Division, DST Survey

Mette Rasmussen
Assistant Professor, University of Copenhagen

Who gets invited to Statistics Denmark's surveys?

Everyone residing in Denmark may be invited to participate in one of Statistics Denmark's surveys. Selection for the survey is random. It is crucial for our surveys to include opinions and attitudes from the entire population across gender, age, education, and residence.

Why can Statistics Denmark contact you?

One of Statistics Denmark's statutory tasks is to use statistical production and related activities to perform tasks for customers under the rules for income-financed business activities. This is stipulated in Section 1, Subsection 3, No. 5 of the Statistics Denmark Act. This allows Statistics Denmark to contact you to collect information for this survey.

How do we process your information?

Your responses in the questionnaire are processed in accordance with the rules in the European General Data Protection Regulation (GDPR) and the Danish Data Protection Act.

The University of Copenhagen is the data controller for the survey. You can read more about the data controller and find contact information here: <https://informationssikkerhed.ku.dk/persondatabeskyt-telse/privatlivspolitik/>

Statistics Denmark is the data processor and manages data collection on behalf of the data controller.

Your responses are used solely for statistical and scientific purposes in this survey. Your responses are deleted or archived in accordance with applicable legislation when they are no longer needed for the survey.

At this link, <https://www.dst.dk/privatlivspolitik-i-en-frivillig-undersoegelse>, you can read more about how we process your information.

If you have further questions about how we process your personal data, you are welcome to contact Statistics Denmark's Data Protection Officer at databeskyttelse@dst.dk.

Maj 2024

Hvad er et godt job?

Kære «navn»

Vi skriver til dig, fordi vi gerne vil høre din mening om dit nuværende job og dit forrige job, samt hvilke aspekter du sætter pris på i dit job.

Danmarks Statistik gennemfører undersøgelsen for et hold forskere fra Københavns Universitet samt University of Chicago. Resultaterne fra undersøgelsen skal indgå i et **forskningsprojekt** om ulighed på det danske arbejdsmarked. Ved at besvare spørgeskemaet vil du derfor medvirke til at gøre os klogere på hvad der skaber ulighed på det danske arbejdsmarked.

Dine svar er vigtige, uanset hvilke aspekter af et job du sætter pris på, og de vil ikke blive delt med din arbejdsgiver.

Ved at gennemføre spørgeskemaet deltager du automatisk i lodtrækningen om **en præmie på [X.XXX] kr. skattefrit**.

Det tager **ca. 10 minutter** at besvare spørgeskemaet. Du deltager ved at klikke på nedenstående link og svare på spørgeskemaet.

Start undersøgelsen «uns_url»

Eller gå ind på www.dst.dk/ditsvar og tast svarkoden «**kode**»

Danmarks Statistik behandler dine svar fortroligt. Vi formidler resultaterne på en måde, så ingen kan se, hvad den enkelte har svaret og data anvendes alene til statistiske og videnskabelige formål.

Det er frivilligt at deltage. Ønsker du ikke at deltage, kan du tilkendegive det: «**refusal_link**»

Har du spørgsmål, kan du skrive til info@dstsurvey.dk eller ringe på tlf. 7777 7708 (alle dage ml. kl. 9-16). Oplys venligst din svarkode ved henvendelse.

Med venlig hilsen

Marie Fuglsang
Kontorchef, DST Survey

Mette Rasmussen
Adjunkt, Københavns Universitet

Invitation letter – Danish version

Hvem bliver inviteret til Danmarks Statistik's undersøgelser?

Alle, der har bopæl i Danmark, har mulighed for at blive inviteret til at deltage i en af Danmarks Statistik's undersøgelser. Udvælgelse af personer til undersøgelsen sker tilfældigt. I vores undersøgelser er det vigtigt at kende meninger og holdninger fra hele befolkningen på tværs af køn, alder, uddannelse og bopæl.

Hvorfor må Danmarks Statistik kontakte dig?

En af Danmarks Statistik's myndighedsopgaver er at bruge den statistiske produktion og afledte aktiviteter til at udføre opgaver for kunder mod betaling efter reglerne for indtægtsdækket virksomhed. Det følger af § 1, stk. 3, nr. 5, i lov om Danmarks Statistik. Dette er årsagen til, at Danmarks Statistik må kontakte dig for at indsamle oplysninger til denne undersøgelse.

Hvordan behandler vi oplysninger om dig?

De svar, du afgiver ved deltagelse i spørgeskemaundersøgelsen, bliver behandlet i overensstemmelse med reglerne i den europæiske databeskyttelsesforordning (GDPR) og den danske databeskyttelseslov.

Københavns Universitet er dataansvarlig for undersøgelsen. Du kan læse mere om den dataansvarlige og finde kontaktoplysninger her: <https://informationssikkerhed.ku.dk/persondatabeskyt-telse/privatlivspolitik/>

Danmarks Statistik er databehandler og står for dataindsamlingen på vegne af den dataansvarlige.

Dine svar i bruges udelukkende til statistiske og videnskabelige formål i denne undersøgelse. Dine svar slettes eller arkiveres efter gældende lovgivning, når oplysningerne ikke længere har et formål i undersøgelsen.

På linket <https://www.dst.dk/privatlivspolitik-i-en-frivillig-undersoegelse> kan du læse mere om, hvordan vi behandler oplysninger om dig.

Har du andre spørgsmål til behandling af dine personoplysninger, er du velkommen til at kontakte Danmarks Statistik's databeskyttelsesrådgiver på databeskyttelse@dst.dk.

D Survey questionnaire

This section contains our survey questionnaire. The English translation starts on page [36](#), with the original Danish version on page [52](#).

“What is a good job?”

[Q1] Thank you for participating in this survey.

Are you employed?

1. No
2. Yes

[Q1e] Have you changed jobs within the last three years?

1. No
2. Yes

If [1] = No or [1e] = No: The questionnaire ends.

Block 1: Facts about current and previous job

[Intro_A]

We will now ask you a series of questions regarding your current and previous job. If you have several jobs, we ask you to think about the job where you earn the most.

It will not be possible to answer “don't know” in the questionnaire. If you are unsure which answer category is correct, please choose the one you think comes closest.

Your answers will be kept strictly confidential and will not be shared with your employer.

[For Q1a: Answer option in dropdown with months (Jan-Dec) and year (2024-1970).]

[Q1a] When did you start your current job?

Month [XX] Year [XX]

[For Q1b: Allow answers in the range between 0-120 hours, otherwise warning]

[Q1b] How many hours a week do you work on average in your current job? Please enter your answer in whole hours.

[XX] hours

[For Q1c: Answer option in dropdown with months (Jan-Dec) and year (2024-1970)]

[Q1c] When did you end your previous job, i.e. the job before your current job?

Month [XX] Year [XXXX]

[For Q1d: Allow answers in the range between 0-120 hours, otherwise warning]

[Q1d] How many hours per week did you work on average in your previous job? Please enter your answer in whole hours.

[XX] hours

[Q2] Why did you end your previous job? Choose the statement that best fits.

1. I was fired.
2. My previous workplace closed.
3. My previous job was a temporary position.
4. My previous job was part of my education.
5. I resigned from my previous job without having a new job at hand.
6. I resigned from my previous job because I found my current job.
7. I wanted to move residence.
8. My family situation changed.
9. Other, please write: [open text]

[if Q2=8:]

[Q2b] How did your family situation change?

1. I had children/child
2. I found a partner
3. I got married
4. My partner/spouse and I separated
5. My partner got a new job
6. A member of my family fell ill
7. Other, please write

[Q2a1] Think about the salary in your current and previous job. How does the salary you received at the start of your current job compare to the salary in your previous job?

We define salary as your gross monthly salary, before tax and including pension contributions. Choose the answer that is most accurate.

The salary at the start of my current job was...

1. over 20% higher than the salary in my previous job.
2. 10-20% higher than the salary in my previous job
3. 1-10% higher than the salary in my previous job
4. same as the salary in my previous job
5. 1-10% lower than the salary in my previous job
6. 10-20% lower than the salary in my previous job
7. over 20% lower than the salary in my previous job.

[If Q2a1= 2,3 (only allow answers in the relevant range)]

[Q2a2] You stated that the salary at the start of your current job was [xx-xx%] higher than the salary in your previous job. Which number in the range [xx-xx%] best corresponds to how much higher the salary was in your current job?

Please enter your answer in whole numbers

[xx]%

[If Q2a.1=1 (allow answers >=20, i.e. no upper limit)]

[Q2a2a] You indicated that the salary at the start of your current job was more than 20% higher than the salary in your previous job.

Which number (over 20%) best corresponds to how much higher the salary was in your current job?

Please enter your answer in whole numbers

[xx]%

[If Q2a1= 5,6 (only allow answers in the relevant range)]

[Q2a3] You stated that the salary at the start of your current job was [xx-xx%] lower than the salary in your previous job. Which number in the range [xx-xx%] best corresponds to how much lower pay was in your current job?

Please enter your answer in whole numbers

[xx]%

[H show Q2a.1=7 (allow answers >=20, i.e. no upper limit).]

[Q2a3a] You indicated that the salary at the start of your current job was more than 20% lower than the salary in your previous job.

Which number (above 20%) best corresponds to how much lower the salary was in your current job?

Please enter your answer in whole numbers

[xx]%

Block 2: Job amenities

[Intro_B]

You will now be presented with a series of questions about different aspects of your current and previous job.

Please enter one answer in each column.

[Programming: Randomize all Q3 3D grids. Randomize column x=1 (Current job) and x=2 (Previous job), but keep order for each respondent from Q3a through Q4.]

[Q3a_x] How long is your commute between your place of residence and your workplace?

1. No commute / homework
2. Less than 10 minutes
3. 10 to 19 minutes
4. 20 to 40 minutes
5. More than 40 minutes

[Q3b_x] How often does your workplace allow you to work from home?

1. Every day
2. A couple of times a week
3. A couple of times a month
4. A few days a year
5. Never

[Q3c_x] To what extent does your employer decide when you work?

1. I decide my own working hours
2. I can organize my working hours within certain limits
3. I can choose between several fixed working hours
4. My employer determines my working hours

[Q3d_x] How much independence do you have in your work?

1. I decide entirely on my tasks and work methods
2. I decide on my tasks and working methods within certain limits
3. My manager and I jointly decide on my tasks and working methods
4. My manager decides my tasks and working methods

[Q3e_x] How often do you have to work at a fast pace?

1. Every day
2. A couple of times a week
3. A couple of times a month
4. A few times a year
5. Never

[Q3f_x] How often do you work on tasks that you find interesting?

1. Every day
2. A couple of times a week
3. A couple of times a month
4. A few times a year
5. Never

[Q3g_x] How often does your job involve physically demanding work?

1. Every day
2. A couple of times a week
3. A couple of times a month
4. A few times a year
5. Never

[Q3h_x] How many employees do you have managerial responsibility for?

1. None
2. 1-3 employees
3. 4-10 employees
4. More than 10 employees

[Q3i_x] How often does your job involve working in a team?

1. I work in a team every day
2. I work in a team a few times a week
3. I work in a team a few times a month
4. I work in a team a few times a year
5. I always work alone

[Q3j_x] How often do your work tasks contribute positively to society?

1. Always
2. Often
3. Sometimes
4. Rarely
5. Never

[Q3k_x] How much does your employer contribute to your pension?

1. Over 15%
2. 10-15%
3. Under 10%
4. I do not have any employer-paid pension

[Q3l_x] How much vacation are you entitled to?

1. 5 weeks
2. 6 weeks
3. More than 6 weeks

[Q3new1_x] To what extent is your job family-friendly? For example, regarding parental leave conditions, accommodations for family challenges, etc.

1. To a very high degree
2. To a great extent
3. Somewhat
4. To a lesser extent
5. Not at all

[Q3m_x] How good or bad are your perks? Perks can be, for example, lunch arrangements, Christmas gifts, company parties, etc.

1. Very good
2. Good
3. Neither good nor bad
4. Bad
5. Very bad

[Q3n_x] What is your risk of being laid off in a typical working year?

1. Very small risk
2. Small risk
3. Big risk
4. Very big risk

[Q3o_x] How often do you have the opportunity to negotiate with your employer? For example, about salary increases beyond the regular salary adjustment?

1. Several times a year
2. Once a year
3. Every other year approximately
4. Every five years approximately
5. Never

[Q3p_x] How often do you have the opportunity for continuing education?

1. Several times a year
2. Once a year
3. Every other year approximately
4. Every five years approximately
5. Never

[Q3q_x] How good or bad is your physical working environment? For example, buildings, furniture, temperature, equipment, etc.?

1. Very good
2. Good
3. Neither good nor bad
4. Bad
5. Very bad

[Q3r_x] How supportive are your colleagues?

1. Very supportive
2. Supportive
3. Neither supportive nor non-supportive
4. Not supportive
5. Not supportive at all
6. I don't have any colleagues

[Q3new2_x] How supportive is your boss?

1. Very supportive
2. Supportive
3. Neither supportive nor non-supportive
4. Not supportive
5. Not supportive at all
6. I don't have a boss

[Q3s_x] How respected do you feel in general at your workplace?

1. Very respected
2. Respected
3. Neither respected nor disrespected
4. Not respected
5. Not respected at all

[Q3t_x] How often do you feel stressed because of your work?

1. Every day
2. A couple of times a week
3. A couple of times a month
4. A few times a year
5. Never

Block 3: Evaluation of jobs

[Intro_c]

We will now ask for your overall assessment of your current and previous job.

Please note that since you changed jobs, your personal situation may have changed and you may also have gotten to know your new job better. Please answer the following questions based on your situation and knowledge today.

[Q4a_x] Considering all aspects of your previous and current job (including salary), how would you rate the jobs?

1. The ideal job
2. Very close to ideal
3. Close to ideal
4. Neither far from nor close to ideal
5. Far from ideal
6. Very far from ideal

[Q4b_x] Considering all aspects of your previous and current job (including salary), how do you think a typical person with the same skills as you would rate the jobs?

1. The ideal job
2. Very close to ideal
3. Close to ideal
4. Neither far from nor close to ideal
5. Far from ideal
6. Very far from ideal

[If subtype2=1]

[Q5a] Now imagine that you could get your previous job back to the way it was before you left it. Everything else in your life was otherwise as it is today, i.e. family situation, place of residence, etc.

Try to disregard one-off costs or difficulties of changing jobs, such as changing workplaces, learning new work procedures, etc.

What is the lowest salary that would make you willing to take your previous job back?

We define salary as your gross monthly salary, before tax and including pension contributions. Choose the statement that best fits.

I would take my previous job back...

1. even if the salary was over 20% lower than the salary in my current job.
2. even if the salary was 10-20% lower than the salary in my current job.
3. even if the salary was 1-10% lower than the salary in my current job.
4. if the salary was the same as the salary in my current job.
5. if the salary was 1-10% higher than the salary in my current job.
6. if the salary was 10-20% higher than the salary in my current job.
7. if the salary was over 20% higher than the salary in my current job.

[If subtype2=1 and Q5a=1]

[Q5a1] You indicated that you would be willing to take your previous job back even if the salary was over 20% lower than the salary in your current job.

What is the biggest pay cut (over 20%) you would accept to take back your previous job?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=1 and Q5a=2,3]

[Q5b] You indicated that you would be willing to take your previous job back even if the salary was [xx-xx%] lower than the salary in your current job. What is the largest salary decrease in the range [xx-xx%] you would accept to take your previous job back?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=1 and Q5a=5,6]

[Q5c] You indicated that you would be willing to take your previous job back if the salary was [xx-xx%] higher than the salary in your current job. What is the minimum salary increase in the [xx-xx%] range you would require to take your previous job back?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=1 and Q5a=7]

[Q5c1] You indicated that you would be willing to take your previous job back if the salary was 20% higher than the salary in your current job.

What is the minimum salary increase (over 20%) you would accept to take your previous job back?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=1 and Q5a1>=50]

[Q5a1a] You indicated that you would be willing to take your previous job back if the salary was [answer from Q5a1]% lower than the salary in your current job.

Can you briefly explain why you would take your previous job back despite such a big pay cut?

[open text]

[If subtype2=1 and Q5c1>=50]

[Q5c1a] You indicated that you would be willing to take your previous job back if the salary was [answer from Q5c1]% higher than the salary in your current job.

Can you briefly explain why you would require such a large salary increase to take your previous job back?

[open text]

[If subtype2=2]

[Q5d] Now imagine that you were still employed in your previous job and had the opportunity to switch to your current job. Everything else in your life was otherwise as it is today, i.e. family situation, place of residence, etc.

Try to disregard one-off costs or difficulties of changing jobs, such as changing workplaces, learning new work procedures, etc.

What is the lowest salary that would have made you willing to stay in your previous job and not switch to your current job?

We define salary as your gross monthly salary, before tax and including pension contributions. Choose the statement that best fits.

I would have stayed in my previous job...

1. even if the salary was over 20% lower than the salary in my current job.
2. even if the salary was 10-20% lower than the salary in my current job.
3. even if the salary was 1-10% lower than the salary in my current job.
4. if the salary was the same as the salary in my current job.
5. if the salary was 1-10% higher than the salary in my current job.
6. if the salary was 10-20% higher than the salary in my current job.
7. if the salary was over 20% higher than the salary in my current job.

[If subtype2=2 and Q5d=1]

[Q5d1] You indicated being willing to stay in your previous job, even if the salary was over 20% lower than the salary in your current job.

What is the biggest pay cut (over 20%) you would accept to stay in your previous job?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=2 and Q5d=2,3]

[Q5e] You indicated being willing to stay in your previous job even if the salary was [xx-xx%] lower than the salary in your current job. What is the largest salary decrease in the [xx-xx%] range you would accept to stay in your previous job?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=2 and Q5d=5,6]

[Q5f] You indicated that you would be willing to stay in your previous job again if the salary was [xx-xx%] higher than the salary in your current job. What is the minimum salary increase in the [xx-xx%] range you would require to stay in your previous job?

Please enter your answer in whole numbers.

[xx]%

[If subtype2=2 and Q5d=7]

[Q5f1] You indicated that you would be willing to stay in your previous job again if the salary was over 20% higher than the salary in your current job.

What is the minimum salary increase (over 20%) you would accept to stay in your previous job?

Please enter your answer in whole numbers

[xx]%

[If subtype2=2 and Q5d1>=50]

[Q5d1a] You indicated being willing to stay in your previous job, even if the salary was [answer from Q5d 1] % lower than the salary in your current job.

Can you briefly explain why you would be willing to stay in your previous job despite such a big pay cut?

[open text]

[If subtype2=2 and Q5f1>=50]

[Q5f1a] You indicated that you would be willing to stay in your previous job if the salary was [answer from Q5f 1] % higher than the salary in your current job.

Can you briefly explain why you would demand such a large salary increase to stay in your previous job?

[open text]

[Q6] Think of a typical person with the same skills as you. Imagine that you had to advise the person to choose between your previous or current job. Assume the person is qualified for both positions.

What is the lowest salary where you would recommend your previous job?

We define salary as your gross monthly salary, before tax and including pension contributions. Choose the statement that best fits.

I would recommend my previous job over my current job...

1. even if the salary was over 20% lower than the salary in my current job.
2. even if the salary was 10-20% lower than the salary in my current job.
3. even if the salary was 1-10% lower than the salary in my current job.
4. if the salary was the same as the salary in my current job.

5. if the salary was 1-10% higher than the salary in my current job.
6. if the salary was 10-20% higher than the salary in my current job.
7. if the salary was over 20% higher than the salary in my current job.

[If Q6=1]

[Q6a] You indicated that you would recommend your previous job over your current job, even though the salary was over 20% lower than the salary in your current job.

What is the biggest salary decrease (over 20%) where you would recommend your previous job?

Please enter your answer in whole numbers.

[xx]%

[If Q6=2.3]

[Q6 b] You indicated that you would recommend your previous job over your current job, even if the salary was [xx-xx%] lower than the salary in your current job. What is the biggest salary difference in the range [xx-xx%] where you would recommend your previous job?

Please enter your answer in whole numbers.

[xx]%

[If Q6=5.6]

[Q6c] You indicated that you would recommend your previous job over your current job if the salary was [xx-xx%] higher than the salary in your current job. What is the smallest salary difference in the range [xx-xx%] where you would recommend your previous job?

Please enter your answer in whole numbers.

[xx]%

[If Q6=7]

[Q6d] You indicated that you would recommend your previous job instead of your current job if the salary was more than 20% higher than the salary in your current job.

What is the smallest salary increase (over 20%) at which you would recommend your previous job?

Please enter your answer in whole numbers

[xx]%

[If Q6a>=50]

[Q6a1a] You indicated that you would recommend your previous job over your current job, even though the salary was [answer from Q6 a]% lower than the salary in your current job.

Can you briefly explain why you would recommend your previous job despite such a big pay cut?

[free text]

[If Q6d>=50]

[Q6d1a] You indicated that you would recommend your previous job over your current job if the salary was [answer from Q6 d]% higher than the salary in your current job.

Can you briefly explain why you would require such a large salary increase to recommend your previous job?

[free text]

[Q7] Are you actively looking for a new job?

1. Yes
2. No

[Q8] How long do you expect to stay in your current job?

1. Less than six months
2. Between six months and a year
3. Between one and three years
4. More than three years

[Outro]

We have now received your answers - thank you very much for your participation.

Survey questionnaire – English translation

You can now close the window or you can click further below and read more about surveys at Statistics Denmark.

"Hvad er et godt job?"

[Q1] Tak fordi du vil deltage i denne undersøgelse.

Er du beskæftiget?

1. Nej
2. Ja

[Q1e] Har du skiftet job inden for de seneste tre år?

1. Nej
2. Ja

Hvis [1] = Nej eller [1e] = Nej: Spørgeskemaet ender.

Blok 1: Oplysninger om nuværende og forrige job

[Intro_A]

Vi vil nu stille dig en række spørgsmål vedrørende dit nuværende og dit forrige job. Såfremt du har flere jobs, beder vi dig tænke på det job, hvor du tjener mest.

Det vil i spørgeskemaet ikke være muligt at svare "ved ikke". Hvis du er usikker på hvilken svarkategori, der er den rigtige, bedes du vælge den, du mener kommer tættest på.

Dine svar vil blive holdt strengt fortrolige og vil ikke blive delt med din arbejdsgiver.

[For Q1a: Svarmulighed i dropdown med måneder (Jan-Dec) samt år (2024-1970).]

[Q1a] Hvornår startede du i dit nuværende job?

Måned [XX] År [XX]

[For Q1b: Tillad svar i intervallet mellem 0-120 timer, ellers advarsel]

[Q1b] Hvor mange timer om ugen arbejder du i gennemsnit i dit nuværende job? Du bedes angive dit svar i hele timer.

[XX] timer

[For Q1c: Svarmulighed i dropdown med måneder (Jan-Dec) samt år (2024-1970)]

[Q1c] Hvornår stoppede du i dit forrige job, dvs. jobbet før dit nuværende job?

Måned [XX] År [XXXX]

[For Q1d: Tillad svar i intervallet mellem 0-120 timer, ellers advarsel]

[Q1d] Hvor mange timer om ugen arbejdede du i gennemsnit i dit forrige job? Du bedes angive dit svar i hele timer.

[XX] timer

[Q2] Hvorfor stoppede du i dit forrige job? Vælg det udsagn, der passer bedst.

1. Jeg blev afskediget.
2. Mit tidligere arbejdssted lukkede.
3. Mit tidligere job var en tidsbegrænset stilling.
4. Mit tidligere job var en del af min uddannelse.
5. Jeg sagde op i mit forrige job, uden at have et nyt job på hånden.
6. Jeg sagde op fra mit forrige job, fordi jeg fandt mit nuværende job.
7. Jeg ville gerne flytte bopæl.
8. Min familiesituation ændrede sig.
9. Andet, skriv venligst [åbent tekstfelt]

[hvis Q2=8:]

[Q2b] Hvordan ændrede din familiesituation sig?

1. Jeg fik børn/barn
2. Jeg fandt en partner
3. Jeg blev gift
4. Min partner/ægtefælle og jeg gik fra hinanden
5. Min partner fik et nyt job
6. Et medlem af min familie blev syg
7. Andet, skriv venligst [åbent tekstfelt]

[Q2a1] Tænk på lønnen i dit nuværende og forrige job. Hvordan er den løn, du fik ved ansættelsestidspunktet i dit nuværende job sammenholdt med lønnen i dit forrige job?

Vi definerer løn som din månedlige bruttoløn, før skat og inklusiv pensionsbidrag. Vælg den svarmulighed, der passer bedst.

Lønnen på ansættelsestidspunktet i mit nuværende job var...

1. over 20% højere end lønnen i mit forrige job.
2. 10-20% højere end lønnen i mit forrige job
3. 1-10% højere end lønnen i mit forrige job
4. tilsvarende lønnen i mit forrige job
5. 1-10% lavere end lønnen i mit forrige job
6. 10-20% lavere end lønnen i mit forrige job
7. over 20% lavere end lønnen i mit forrige job.

[Hvis Q2a1= 2,3 (tillad kun svar i det relevante interval)]

[Q2a2] Du angav, at lønnen på ansættelsestidspunktet i dit nuværende job var [xx-xx%] højere end lønnen i dit forrige job. Hvilket tal i intervallet [xx-xx%] svarer bedst til hvor meget højere lønnen var i dit nuværende job?

Du bedes angive dit svar i hele tal

[xx]%

[Hvis Q2a.1=1 (tillad svar >=20, dvs. ingen øvre grænse)]

[Q2a2a] Du angav, at lønnen på ansættelsestidspunktet i dit nuværende job var over 20% højere end lønnen i dit forrige job.

Hvilket tal (over 20%) svarer bedst til hvor meget højere lønnen var i dit nuværende job?

Du bedes angive dit svar i hele tal

[xx]%

[Hvis Q2a1= 5,6(tillad kun svar i det relevante interval)]

[Q2a3] Du angav, at lønnen på ansættelsestidspunktet i dit nuværende job var [xx-xx%] lavere end lønnen i dit forrige job. Hvilket tal i intervallet [xx-xx%] svarer bedst til hvor meget lavere lønnen var i dit nuværende job?

Du bedes angive dit svar i hele tal

[xx]%

[Hvis Q2a.1=7 (tillad svar >=20, dvs. ingen øvre grænse).]

[Q2a3a] Du angav, at lønnen på ansættelsestidspunktet i dit nuværende job var over 20% lavere end lønnen i dit forrige job.

Hvilket tal (over 20%) svarer bedst til hvor meget lavere lønnen var i dit nuværende job?

Du bedes angive dit svar i hele tal

[xx]%

Blok 2: Jobgoder

[Intro_B]

Du vil nu blive præsenteret for en række spørgsmål, der handler om forskellige aspekter ved dit nuværende og forrige job.

Du bedes indtaste ét svar i hver kolonne.

[Programming: Randomize all Q3 3D-grids. Randomize column x=1 (Nuværende job) and x=2 (Forrige job), but keep order for each respondent from Q3a through Q4.]

[Q3a_x] Hvor lang er din transport mellem din bopæl og din arbejdsplads?

1. Ingen transport / hjemmearbejde
2. Mindre end 10 minutter
3. 10 til 19 minutter
4. 20 til 40 minutter
5. Mere end 40 minutter

[Q3b_x] Hvor ofte tillader din arbejdsplads, at du kan du arbejde hjemmefra?

1. Hver dag
2. Et par gange om ugen
3. Et par gange om måneden
4. Et par dage om året
5. Aldrig

[Q3c_x] I hvilken grad bestemmer din arbejdsgiver, hvornår du arbejder?

1. Jeg bestemmer helt selv mine arbejdstider
2. Jeg kan tilrettelægge mine arbejdstider inden for visse grænser

3. jeg kan vælge mellem flere faste arbejdstider
4. Min arbejdsgiver fastsætter mine arbejdstider

[Q3d_x] Hvor meget selvstændighed har du i dit arbejde?

1. Jeg bestemmer helt selv mine opgaver og arbejdsmetoder
2. Jeg bestemmer mine opgaver og arbejdsmetoder inden for visse grænser
3. Min leder og jeg beslutter i fællesskab mine opgaver og arbejdsmetoder
4. Min leder fastlægger mine opgaver og arbejdsmetoder

[Q3e_x] Hvor ofte skal du arbejde i højt tempo?

1. Hver dag
2. Et par gange om ugen
3. Et par gange om måneden
4. Et par gange om året
5. Aldrig

[Q3f_x] Hvor ofte arbejder du på opgaver, som du finder interessante?

1. Hver dag
2. Et par gange om ugen
3. Et par gange om måneden
4. Et par gange om året
5. Aldrig

[Q3g_x] Hvor ofte indebærer dit job fysisk anstrengende arbejde?

1. Hver dag
2. Et par gange om ugen
3. Et par gange om måneden
4. Et par gange om året
5. Aldrig

[Q3h_x] Hvor mange medarbejdere har du lederansvar for?

1. Ingen
2. 1-3 medarbejdere
3. 4-10 medarbejdere
4. Flere end 10 medarbejdere

[Q3i_x] Hvor ofte indebærer dit job at arbejde i et team?

1. Jeg arbejder i et team hver dag
2. Jeg arbejder i et team et par gange om ugen
3. Jeg arbejder i et team et par gange om måneden
4. Jeg arbejder i et team et par gange om året
5. Jeg arbejder altid alene

[Q3j_x] Hvor ofte bidrager dine arbejdsopgaver positivt til samfundet?

1. Altid
2. Ofte
3. Nogle gange
4. Sjældent
5. Aldrig

[Q3k_x] Hvor meget indbetalter din arbejdsgiver til din pension?

1. Over 15%
2. 10-15%
3. Under 10%
4. Jeg har ikke nogen arbejdsgiverbetalt pension

[Q3l_x] Hvor meget ferie har du ret til?

1. 5 uger
2. 6 uger
3. Mere end 6 uger

[Q3new1_x] I hvilken grad er dit job familievenligt? Fx ift. barselsvilkår, hensyn til udfordringer i familien etc.

1. I meget høj grad
2. I høj grad
3. I nogen grad
4. I mindre grad
5. Slet ikke

[Q3m_x] Hvor gode eller dårlige er dine frynsegoder? Frynsegoder kan fx være frokostordning, julegaver, firmafester, mv.

1. Meget gode
2. Gode
3. Hverken gode eller dårlige
4. Dårlige
5. Meget dårlige

[Q3n_x] Hvad er din risiko for at blive afskediget i et typisk arbejdsår?

1. Meget lille risiko
2. Lille risiko
3. Stor risiko
4. Meget stor risiko

[Q3o_x] Hvor ofte har du mulighed for at forhandle med din arbejdsgiver? Fx om løNSTIGNINGER udover den almindelige lønregulering?

1. Flere gange om året
2. Én gang om året
3. Hvert andet år cirka
4. Hvert femte år cirka
5. Aldrig

[Q3p_x] Hvor ofte har du mulighed for efteruddannelse?

1. Flere gange om året
2. Én gang om året
3. Hvert andet år cirka
4. Hvert femte år cirka
5. Aldrig

[Q3q_x] Hvor godt eller dårligt er dit fysiske arbejdsmiljø? Fx bygninger, møbler, temperatur, udstyr mv.?

1. Meget godt
2. Godt
3. Hverken godt eller dårligt
4. Dårligt
5. Meget dårligt

[Q3r_x] Hvor støttende er dine kolleger?

1. Meget støttende
2. Støttende
3. Hverken støttende eller ikke støttende
4. Ikke støttende
5. Slet ikke støttende
6. Jeg har ikke nogen kolleger

[Q3new2_x] Hvor støttende er din chef?

1. Meget støttende
2. Støttende
3. Hverken støttende eller ikke støttende
4. Ikke støttende
5. Slet ikke støttende
6. Jeg har ikke nogen chef

[Q3s_x] Hvor respekteret føler du dig generelt set på din arbejdsplads?

1. Meget respekteret
2. Respekteret
3. Hverken respekteret eller ikke respekteret
4. Ikke respekteret
5. Slet ikke respekteret

[Q3t_x] Hvor ofte føler du dig stresset pga. dit arbejde?

1. Hver dag
2. Et par gange om ugen
3. Et par gange om måneden
4. Et par gange om året
5. Aldrig

Blok 3: Evaluering af jobs

[Intro_c]

Vi vil nu spørge til din samlede vurdering af dit nuværende og forrige job.

Bemærk venligst, at siden du skiftede job, kan din personlige situation have ændret sig, og du har måske også fået et bedre kendskab til dit nye job. Besvar venligst følgende spørgsmål ud fra din situation og viden i dag.

[Q4a_x] Taget alle aspekter af dit forrige og nuværende job (inklusiv løn) i betragtning, hvordan vil du bedømme jobbene?

1. Det ideelle job
2. Meget tæt på ideelt
3. Tæt på ideelt
4. Hverken langt fra eller tæt på ideelt
5. Langt fra ideelt
6. Meget langt fra ideelt

[Q4b_x] Taget alle aspekter af dit forrige og nuværende job (inklusiv løn) i betragtning, hvordan tror du, at en typisk person med de samme kompetencer som dig, vil bedømme jobbene?

1. Det ideelle job
2. Meget tæt på ideelt
3. Tæt på ideelt
4. Hverken langt fra eller tæt på ideelt
5. Langt fra ideelt
6. Meget langt fra ideelt

[Hvis undertype2=1]

[Q5a] Forestil dig nu, at du kunne få dit forrige job igen, som det var, før du forlod det. Alt andet i dit liv var ellers som i dag, dvs. familiesituation, bopæl mv.

Forsøg at se bort fra engangsomkostninger eller besværigheder ved at skifte jobs, såsom at skifte arbejdsplads, lære nye arbejdsgange, mv.

Hvad er den laveste løn, der ville gøre dig villig til at tage dit forrige job tilbage?

Vi definerer løn som din månedlige bruttoløn, før skat og inklusiv pensionsbidrag. Vælg det udsagn, der passer bedst.

Jeg ville tage mit forrige job tilbage...

1. selv hvis lønnen var over 20% lavere end lønnen i mit nuværende job.
2. selv hvis lønnen var 10-20% lavere end lønnen i mit nuværende job.
3. selv hvis lønnen var 1-10% lavere end lønnen i mit nuværende job.
4. hvis lønnen var den samme som lønnen i mit nuværende job.
5. hvis lønnen var 1-10% højere end lønnen i mit nuværende job.
6. hvis lønnen var 10-20% højere end lønnen i mit nuværende job.
7. hvis lønnen var over 20% højere end lønnen i mit nuværende job.

[Hvis undertype2=1 og Q5a=1]

[Q5a1] Du angav at være villig til at tage dit forrige job tilbage, selvom lønnen var over 20% lavere end lønnen i dit nuværende job.

Hvad er den største lønnedgang (over 20%), du ville acceptere for at tage dit forrige job tilbage?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=1 og Q5a=2,3]

[Q5b] Du angav at være villig til at tage dit forrige job tilbage, selvom lønnen var [xx-xx%] lavere end lønnen i dit nuværende job. Hvad er den største lønnedgang i intervallet [xx-xx%], du ville acceptere for at tage dit forrige job tilbage?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=1 og Q5a=5,6]

[Q5c] Du angav at være villig til at tage dit forrige job tilbage, hvis lønnen var [xx-xx%] højere end lønnen i dit nuværende job. Hvad er den mindste lønstigning i intervallet [xx-xx%], du ville kræve for at tage dit forrige job tilbage?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=1 og Q5a=7]

[Q5c1] Du angav at være villig til at tage dit forrige job tilbage, hvis lønnen var 20% højere end lønnen i dit nuværende job.

Hvad er den mindste lønstigning (over 20%), du ville acceptere for at tage dit forrige job tilbage?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=1 og Q5a1>=50]

[Q5a1a] Du angav at være villig til at tage dit forrige job tilbage, hvis lønnen var [answer from Q5a1]% lavere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville tage dit forrige job tilbage trods en så stor lønnedgang?

[fritekst]

[Hvis undertype2=1 og Q5c1>=50]

[Q5c1a] Du angav at være villig til at tage dit forrige job tilbage, hvis lønnen var [answer from Q5c1]% højere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville kræve en så stor lønstigning for at tage dit forrige job tilbage?

[fritekst]

[Hvis undertype2=2]

[Q5d] Forestil dig nu, at du stadig var ansat i dit forrige job og havde muligheden for at skifte til dit nuværende job. Alt andet i dit liv var ellers som i dag, dvs. familiesituation, bopæl, mv.

Forsøg at se bort fra engangsomkostninger eller besværligheder ved at skifte jobs, såsom at skifte arbejdsplads, lære nye arbejdsgange, mv.

Hvad er den laveste løn, der ville have gjort dig villig til at blive i dit forrige job og ikke skifte til dit nuværende job?

Vi definerer løn som din månedlige bruttoløn, før skat og inklusiv pensionsbidrag. Vælg det udsagn, der passer bedst.

Jeg ville være blevet i mit forrige job...

1. selv hvis lønnen var over 20% lavere end lønnen i mit nuværende job.
2. selv hvis lønnen var 10-20% lavere end lønnen i mit nuværende job.
3. selv hvis lønnen var 1-10% lavere end lønnen i mit nuværende job.
4. hvis lønnen var den samme som lønnen i mit nuværende job.
5. hvis lønnen var 1-10% højere end lønnen i mit nuværende job.
6. hvis lønnen var 10-20% højere end lønnen i mit nuværende job.
7. hvis lønnen var over 20% højere end lønnen i mit nuværende job.

[Hvis undertype2=2 og Q5d=1]

[Q5d1] Du angav at være villig til at blive i dit forrige job, selvom lønnen var over 20% lavere end lønnen i dit nuværende job.

Hvad er den største lønnedgang (over 20%), du ville acceptere for at blive i dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=2 og Q5d=2,3]

[Q5e] Du angav at være villig til at blive i dit forrige job, selvom lønnen var [xx-xx%] lavere end lønnen i dit nuværende job. Hvad er den største lønnedgang i intervallet [xx-xx%], du ville acceptere for at blive i dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=2 og Q5d=5,6]

[Q5f] Du angav at være villig til at blive i dit forrige job tilbage, hvis lønnen var [xx-xx%] højere end lønnen i dit nuværende job. Hvad er den mindste lønstigning i intervallet [xx-xx%], du ville kræve for at blive i dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis undertype2=2 og Q5d=7]

[Q5f1] Du angav at være villig til at blive i dit forrige job tilbage, hvis lønnen var over 20% højere end lønnen i dit nuværende job.

Hvad er den mindste lønstigning (over 20%), du ville acceptere for at blive i dit forrige job?

Du bedes angive dit svar i hele tal

[xx]%

[Hvis undertype2=2 og Q5d1>=50]

[Q5d1a] Du angav at være villig til at blive i dit forrige job, selvom lønnen var [answer from Q5d1]% lavere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville være villig til at blive i dit forrige job trods en så stor lønnedgang?

[fritekst]

[Hvis undertype2=2 og Q5f1>=50]

[Q5f1a] Du angav at være villig til at blive i dit forrige job, hvis lønnen var [answer from Q5f1]% højere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville kræve en så stor lønstigning for at blive i dit forrige job?

[fritekst]

[Q6] Tænk på en typisk person med de samme kompetencer som dig. Forestil dig, at du skulle rådgive personen om at vælge imellem dit forrige eller nuværende job. Antag, at personen er kvalificeret til begge stillinger.

Hvad er den laveste løn, hvor du vil anbefale dit forrige job?

Vi definerer løn som din månedlige bruttoløn, før skat og inklusiv pensionsbidrag. Vælg det udsagn, der passer bedst.

Jeg ville anbefale mit forrige job i stedet for mit nuværende job...

1. selv hvis lønnen var over 20% lavere end lønnen i mit nuværende job.
2. selv hvis lønnen var 10-20% lavere end lønnen i mit nuværende job.
3. selv hvis lønnen var 1-10% lavere end lønnen i mit nuværende job.
4. hvis lønnen var den samme som lønnen i mit nuværende job.
5. hvis lønnen var 1-10% højere end lønnen i mit nuværende job.
6. hvis lønnen var 10-20% højere end lønnen i mit nuværende job.
7. hvis lønnen var over 20% højere end lønnen i mit nuværende job.

[Hvis Q6=1]

[Q6a] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, selvom lønnen var over 20% lavere end lønnen i dit nuværende job.

Hvad er den største lønnedgang (over 20%), hvor du ville anbefale dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis Q6=2,3]

[Q6b] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, selvom lønnen var [xx-xx%] lavere end lønnen i dit nuværende job. Hvad er den største lønforskel i intervallet [xx-xx%], hvor du ville anbefale dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis Q6=5,6]

[Q6c] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, hvis lønnen var [xx-xx%] højere end lønnen i dit nuværende job. Hvad er den mindste lønforskel i intervallet [xx-xx%], hvor du ville anbefale dit forrige job?

Du bedes angive dit svar i hele tal.

[xx]%

[Hvis Q6=7]

[Q6d] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, hvis lønnen var over 20% højere end lønnen i dit nuværende job.

Hvad er den mindste lønstigning (over 20%), hvor du ville anbefale dit forrige job?

Du bedes angive dit svar i hele tal

[xx]%

[Hvis Q6a>=50]

[Q6a1a] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, selvom lønnen var [answer from Q6a]% lavere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville anbefale dit forrige job trods en så stor lønnedgang?

[fritekst]

[Hvis Q6d>=50]

[Q6d1a] Du angav at ville anbefale dit forrige job i stedet for dit nuværende job, hvis lønnen var [answer from Q6d]% højere end lønnen i dit nuværende job.

Kan du kort forklare, hvorfor du ville kræve en så stor lønstigning for at anbefale dit forrige job?

[fritekst]

Blok 4: Planer om fremtidige jobskift

[Q7] Søger du aktivt efter et nyt job?

1. Ja
2. Nej

[Q8] Hvor længe forventer du at blive i dit nuværende job?

1. Mindre end seks måneder
2. Mellem seks måneder og et år
3. Mellem et og tre år
4. Mere end tre år

[Outro]

Vi har nu modtaget dine svar – mange tak for din deltagelse.

Du kan nu lukke vinduet eller du kan klikke videre herunder, og læse mere om undersøgelser hos Danmarks Statistik.