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Abstract

Cointegrating rank selection is studied in a function space reduced rank regression

where the data are time series of cross section curves. A semiparametric approach to rank

selection is employed using information criteria suitably modified to take account of the

function space context, extending the linear cointegrating model to accommodate cross

section data under general forms of dependence. A parametric formulation is employed

analogous to recent work on cross section curve autoregression and cointegrating regression.

Consistent cointegrating rank estimation is developed by the use of information criteria

methods that are extended to the curve time series environment. The asymptotic theory

involves two parameter Gaussian processes that generalize the standard limit processes

involved in cointegrating regressions with conventional multiple time series. Simulations

provide evidence of the effectiveness of consistent rank selection by the BIC criterion and

the tendency of AIC to overestimate order as it does in standard lag order selection in

autoregression as well as in reduced rank regression with multiple time series.

Keywords: Cointegrating rank, Curved cross section data, Hilbert space, Gaussian pro-

cesses, Information criteria.

JEL classification: C21, C23

1 Introduction

Research on nonstationarity has occupied a central position in time series econometrics since

the mid 1980s. Formal methods using function space limit theory that were employed in the

original developments, most particularly those that appeared during 1985, were at that time

completely novel in econometric teaching and research. Several of those initial developments

were discussed by David Hendry (Hendry, 1986) in a special issue of the Oxford Bulletin of

Economics and Statistics that appeared remarkably soon after the work was circulated and

submitted. The OBES special issue was devoted partly to these methods and partly to the

*Phillips acknowledges partial research support from the Kelly Fund at the University of Auckland and a
KLC Fellowship at Singapore Management University.
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doors they had opened for new applications, including those that enabled spurious regressions

to be detected by well-founded techniques.

The origins of and especially the need for this line of research in econometrics go back

much further to work on modeling macroeconomic variables by way of error correction systems.

Models of this type had already been in use in crafting theory specifications with some empirical

implementations in a longstanding tradition associated with the London School of Economics

primarily by Bill Phillips, Rex Bergstrom, and Denis Sargan (Phillips, 1954; Sargan, 1964;

Bergstrom, 1967) in the 1950s and 1960s. That research reflected an intuitive grasp that

the nonstationarity so evident in macroeconomic time series might somehow be eliminated or

sufficiently attenuated by careful formulation of error correction systems to model differences

as dependent variables, giving conventional econometric methods designed for stationary data

a possible basis for estimation, inference and prediction. In this intuitive line of thinking there

was no apprehension of the fact that nonstationary data, in particular unit roots and other

stochastic trends that were present in the levels variables within the correction system itself,

had subtle lasting technical impacts on the limit theory needed to guide the design and valid

application of econometric methods. It was this discovery, largely through the circulation of

several technical papers by the present author distributed during 1985 and cited in David

Hendry’s overview (Hendry, 1986), that opened the doors to a formal study of the impact of

nonstationarity in numerous arenas of empirical econometric work. That same year at the

1985 World Congress of the Econometric Society at MIT, two papers were presented that

addressed key foundational aspects of this subject (Engle and Granger, 1987; Phillips, 1987)

exposing a wide audience to the new ideas that have subsequently had such a longstanding

influence on econometric research. These two papers were later published together as the

leading two articles in the March issue of Econometrica 1987. Coupled with related work that

dealt directly with the development of a rigorous asymptotic theory of cointegrated system

estimation (Phillips and Durlauf, 1986; Phillips, 1988a,b; Phillips and Ouliaris, 1988; Park and

Phillips, 1988; Johansen, 1988), this research paved a new technical path forward that fostered

the emergence of vast fields of empirical applications.

The present paper forms part of an ongoing study of nonstationary time series that is

linked to the foundational research discussed above. But while that early technical work

and the vast proportion of subsequent research dealt exclusively with multiple time series

living in Euclidean space, this research involves time series of curves of cross section data,

which we refer to as curved cross section time series or more simply as curve time series. In

doing so, it provides new linkages between time series econometrics and microeconometrics by

introducing cross section data in a manner that accommodates general forms of cross section

dependence, thereby extending more conventional approaches to dynamic panel data analysis

with independent or clustered cross section observations. Our approach relates also to general

Hilbert and Banach space modeling with nonstationary data that uses operator formulations to

capture possible cointegrating relationships between variables in function space (Beare et al.,

2017; Beare and Seo, 2020; Chang et al., 2019; Franchi and Paruolo, 2020; Seo and Beare,
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2019; Seo, 2023a,b), although our modeling uses simpler parametric cointegrating forms which

avoid the challenges of estimating function space operators.

One of the modern approaches to practical cointegration modeling is semiparametric, which

allows model users to be agnostic regarding the short memory features of the data and to

concentrate attention on long run behavior. The methods that have been developed since 1985

cover several aspects of modeling that are useful in applied work, including estimation and

inference concerning the cointegrating space, estimation of cointegrating rank, prediction, and

allowance for time series that do not fall strictly within unit root or local unit regimes. The

author’s recent work in this area (Phillips and Jiang, 2024; Phillips, 2024, 2025) has focused

on extending these procedures to time series of curve data that allow cross section curves to

evolve over time while maintaining any cointegrating linkages among them.

The present paper’s focus is on the estimation of cointegrating rank. The methodology

employed involves the use of information criteria. Such criteria are often well suited to order

estimation, primary examples being the choice of lag length in autoregressions and variable

choice in regression. Application of these methods in cointegrating systems is also natural be-

cause rank is itself an order parameter with only a finite number of choices in finite dimensional

reduced rank regression. In parametric time series modeling, information criteria have been

employed in this context in the past and are known to be consistent under certain conditions

(Phillips, 1996; Chao and Phillips, 1999). Those ideas were employed in a semiparametric

setting for the purpose of unit root model selection (Phillips, 2008) and cointegrating rank

selection (Cheng and Phillips, 2009, 2012). The present paper is most closely related to the

latter research, extending the methods of those papers to the context of curved cross section

time series models of reduced rank regression.

The following model is a semiparametric formulation of an m-vector of cointegrated curve

time series Xt(r) that are assumed to satisfy a reduced rank regression of the form

∆Xt(r) = αβ′Xt−1(r) + ut(r), t ∈ {1, . . . , n} , r ∈ [a, b], (1)

where α and β are m × ℓ0 matrices of full rank ℓ0 ≤ m and the m-vector time series

{Xt(r), ut(r)}nt=1 each live in the Hilbert spaceH = L2 [a, b]
m where L2[a, b]

m =
{
f :
∫ b
a f

′f <∞
}

with inner product ⟨f, g⟩ =
∫ b
a f

′g taken over some finite or infinite observational interval [a, b].

A common interval for each dimension of the data is used and this can be arranged by suit-

able choice of the interval [a, b]. It is also convenient but not necessary in applications to

consider the case where all the functions in (1) are continuously differentiable in r and lie in

C[a, b]m ⊂ L2[a, b]
m.1 The error process ut(r) is a weakly dependent stationary curve time

series process with zero mean, satisfying conditions that are detailed below. The series Xt(r)

is initialized at t = 0 by some (possibly random) quantity X0(r) = op(
√
n) and does not mate-

1In practice, this could be achieved by using a smoothing technique such as kernel regression to convert finely
observed discrete cross section data (comprising N observations) into a continuously differentiable curve. Pro-
vided the error in such a technique passes to zero fast enough as N → ∞ relative to the errors involved in
estimation and inference as the sample size n → ∞ this replacement is innocuous asymptotically.

3



rially affect the limit theory. The model (1) is estimated by reduced rank regression in Hilbert

space using the time series curves {Xt(r) : t = 1, · · · , n; r ∈ [a, b]} leading to estimates of the

matrices α and β obtained by ignoring any temporal weak dependence structure or the form

of cross section dependence in ut(r).

The paper is organized as follows. The cointegrating rank selection methodology is given in

Section 2. Assumptions and some preliminaries needed for the asymptotic development are in

Section 3. Reduced rank regression formulae are given in Section 4. The required limit theory

involves two parameter vector Gaussian processes that take account of the cross section curve

data used in estimation and rank selection. The main result is given in Section 5 and Section

6 reports simulation findings with reduced rank regression involving curve time series and

provides comparisons with rank selection in conventional time series reduced rank regression.

Section 7 concludes with some final discussion. Proofs are in Section 8. Tables are in Appendix

A (Section 9) and Figures in Appendix B (Section 10).

2 Cointegrating rank selection by information criteria

As discussed in earlier work (Cheng and Phillips, 2009, hereafter CP(2009)) a complete model

for statistical purposes is often unnecessary when cointegrating rank determination is needed

and asymptotically efficient estimation of a reduced rank regression is the primary focus. Many

approaches to econometric estimation and inference are semiparametric in character, allowing

practitioners to concentrate on long run behavior without paying attention to specific short

memory features of the data. It is then desirable to use methods to evaluate cointegrating

rank (or choice of the number of unit roots or near unit roots in a reduced rank system) in a

semiparametric context where the short memory component has a general form. This approach

extends naturally to systems in which the time series data are cross section curves evolving

over time, such as (1).

In such settings, the issue of cointegrating rank choice reduces to the alternative problem of

distinguishing the number of unit roots that are present in the system (1), viz., m−ℓ0, thereby
leading directly to the cointegrating rank ℓ0. If α⊥ is an m × (m − ℓ0) matrix orthogonal

complement to the full rank matrix α then α′
⊥∆Xt(r) = α′

⊥ut(r) is a weakly dependent curve

time series process and the multiple time series process α′
⊥Xt(r) has m− ℓ0 unit roots. Since

the rank ℓ0 is unknown, the reduced rank system (1) can be estimated using standard methods

for all values of ℓ and the corresponding residual variance matrix calculated in each case. The

asymptotic behavior of these fitted residual variance matrices then embodies information about

the number of unit roots, thereby producing an indicator of the cointegrating rank in the true

system.

More specifically, let α̂ and β̂ be reduced rank estimates of the m× ℓ matrices α and β in

(1) for some given value of the integer ℓ ≤ m. For each value of ℓ = 0, 1, ..,m, then define the
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corresponding average residual variance matrices

Σ̂ (ℓ) = n−1
n∑

t=1

∫ b

a

(
∆Xt(r)− α̂β̂′Xt−1(r)

)(
∆Xt(r)− α̂β̂′Xt−1(r)

)′
dr, ℓ = 1, ...,m (2)

with Σ̂ (0) = n−1
∑n

t=1

∫ b
a ∆Xt(r)∆Xt(r)

′dr for ℓ = 0 when a full set of m unit roots are

assumed in estimation of the reduced rank regression. Note that the expression for Σ̂ (ℓ)

involves averaging not only over the historical time series but also across the curved cross

section data for r ∈ [a, b].

The asymptotic behavior of the residual moment matrix Σ̂ (ℓ) depends on how the value of

ℓ that is employed in the estimation of the (assumed) reduced rank regression with associated

estimated matrices α̂ and β̂ relates to the true cointegrating rank ℓ0. The criterion used to

evaluate cointegrating rank is based on the multiple time series case of CP(2009) and takes the

following simple form that involves a penalty term based on the number of degrees of freedom

remaining in the reduced rank regression after estimation and identification

IC (ℓ) = log
∣∣∣Σ̂ (ℓ)

∣∣∣+ Cnn
−1
(
2mℓ− ℓ2

)
. (3)

The penalty term in (3) has coefficient Cn = log n, 2 log log n, or 2 corresponding to the BIC

(Schwarz, 1978; Rissanen, 1978), Hannan-Quinn (HQ) Hannan and Quinn (1979), and Akaike

AIC Akaike (1998) penalties, respectively. In (3) the degrees of freedom term 2mℓ − ℓ2 is

calculated to account for the 2mℓ elements in the matrices α and β that have to be estimated,

adjusted for the ℓ2 restrictions that are needed to ensure structural identification of β in a

reduced rank regression.2 The BIC version of (3) in the simpler multiple time series case was

earlier given in Phillips and McFarland (1997) and used to determine cointegrating rank in an

empirical exchange rate application.

Model evaluation based on IC (ℓ) uses the simple cointegrating rank selection criterion

ℓ̂ = argmin
0≤ℓ≤m

IC (ℓ) . (4)

As in the pure time series case of CP(2009) and as shown below in Theorem 1, the rank selector

ℓ̂ turns out to be weakly consistent for selecting the cointegrating rank ℓ0 provided that the

penalty term in (3) satisfies the weak requirements that Cn → ∞ and Cn/n→ 0 as n→ ∞. No

minimum expansion rate for Cn such as log log n is required and no more complex parametric

model needs to be estimated. The approach is therefore straightforward for practical imple-

mentation. Simulations reported in Section 6 reveal that the BIC criterion generally works

well for cointegrating rank determination but with a slight tendency to underestimate rank in

fully stationary systems, whereas AIC is inconsistent and has a clear tendency to overestimate

rank just as it does in estimating lag order in autoregressions.

2For further discussion of the formulation of the penalty used in (3) see the Appendix of CP(2009).
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3 Assumptions and preliminaries

To develop the limit theory we start with two assumptions. As discussed earlier it will often

be convenient to work with the Hilbert space regression model (1) which is parameterized in a

finite dimensional way so that the operator αβ′ is simply a finite dimensional m×m matrix of

unknown rank ℓ0. Multiple time series regressions of this type in Euclidean space coupled with

the functional limit theory associated with their data trajectories provided the foundational

elements for studying cointegrating regressions among stochastically nonstationary time series

(Phillips and Durlauf, 1986; Phillips, 1988a,b; Park and Phillips, 1988; Johansen, 1995) for

testing the existence of cointegration, amongst a host of other applications. Our focus in this

section is on the development of a procedure for determining cointegrating rank, allowing for

curve time series observations in the context of a generating mechanism where there is general

weak dependence in the innovations ut(r). The asymptotic results provide a semiparametric

framework for cointegration rank assessment with function space data, which lead to various

other potential applications of curve time series cointegrated system estimation and inference.

The conditions below allow for general linear process curve innovations within a cointegrated

system specification. The subsequent development follows the same general framework as that

used in the multiple time series reduced rank regression analysis of CP(2009).

Assumption LP.

(i) The H-valued error sequence ut(r) follows the linear process ut(r) = D (L) (εt(r)) :=∑∞
j=0 dj(εt−j(r)), where εt(r) ∼ mds(0,Kε) is an m-dimensional martingale difference

process with natural filtration and covariance matrix kernel Kε(r, s) = Eεt(r)εt(s)′ ∈
L2[a, b]

m×m. Fourth moments of εt exist and the dj are bounded linear m × m matrix

operators with nonsingular D(1) =
∑∞

j=1 dj and
∑∞

j=1 j
2 ∥dj∥op <∞, where ∥dj∥op is the

operator norm. The long run covariance matrix operator of ut(r) is Cu = D(1)CεD(1)∗,

where D(1)∗ is the adjoint matrix operator of D(1) and Cε is the covariance matrix

operator of εt.

(ii) X0(r) is an L2[a, b]
m-valued initial condition and satisfies supr∈[a,b] |X0(r)| = op(n

1/2).

In Assumption LPi covariance operators such as Cε are defined by their action on the

function space, here L2[a, b]
m with inner product ⟨x, y⟩ =

∫ b
a x(s)

′y(s)ds and norm ∥x∥ =(∫ b
a x(s)

′x(s)ds
)1/2

, so that for any x ∈ L2[a, b]
m, Cε(x) := E(εt⟨εt, x⟩). Then

Cε(x)(r) = E(εt(r)⟨εt, x⟩) = E
[
εt(r)

∫ b

a
εt(s)

′x(s)ds
]

=

∫ b

a
E
[
εt(r)εt(s)

′
]
x(s)ds =

∫ b

a
Kε(r, s)x(s)ds, (5)

where Kε(r, s) = E
[
εt(r)εt(s)

′
]
is the matrix covariance kernel of the process εt(r). The

matrix covariance kernel of the error process ut(r) is Ku(r, s) = E
[
ut(r)ut(s)

′
]
. Under LPi,
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the spectral density matrix operator of ut(r) is given by

fu(λ) =
1

2π

∞∑
h=−∞

Γhe
−iλh =

1

2π

 ∞∑
j=−∞

dje
−iλj

Cε

 ∞∑
j=−∞

dje
−iλj

∗

,

where Γh is the autocovariance matrix operator of ut(r). The long run covariance matrix

operator of ut(r) is then Cu = 2πfu(0) =
∑∞

h=−∞ Γh. Further, the coefficient operators dj

in the linear process ut(r) =
∑∞

j=0 dj(εt−j)(r) are defined by dj(x)(r) =
∫ b
a dfj (s, r)x(s)ds for

some functions dfj(·,·) ∈ L2[a, b]
m2

, m-vector of functions x ∈ L2[a, b]
m and the operator norm

is ∥dj∥op =
(
sup∥x∥≤1 ∥

∫ b
a dfj (s, r)x(s)ds∥

2
)1/2

.

Assumption LPi is a Hilbert space linear process condition of the type that is convenient

in developing partial sum functional limit theory (Bosq, 2000; Phillips, 2024). The methods

of Phillips and Solo (1992) apply in the Hilbert space context under suitable summability

conditions and are convenient for establishing results of this type, just as they are in Euclidean

space.

Assumption RR.

(i) The determinantal equation |Im − (Im + αβ′)L| = 0 has roots on or outside the unit

circle, i.e., |L| ≥ 1.

(ii) Define Π = Im+αβ′ where α and β are m×ℓ0 matrices of full column rank ℓ0, 0 ≤ ℓ0 ≤ m.

If ℓ0 = 0 then Π = Im; if ℓ0 = m then β has full rank m and so both β′Xt(r) and Xt are

(asymptotically) stationary.

(iii) The matrix R = Iℓ0 + β′α has eigenvalues within the unit circle.

Assumption RR gives conditions that are standard in the study of reduced rank regressions

with some unit roots (Johansen, 1988, 1995; Phillips, 1996). Assumption RRiii ensures that

the matrix β′α has full rank. Define α⊥ and β⊥ to be orthogonal complements to α and β, so

that [α, α⊥] and [β, β⊥] are nonsingular and β
′
⊥β⊥ = Im−ℓ. Then, nonsingularity of β′α implies

the nonsingularity of α′
⊥β⊥. Under RR we have a curve time series Wold representation of the

stationary transform vt(r) := β′Xt(r) = Rβ′Xt−1(r) + β′ut(r)

vt(r) =

∞∑
i=0

Riβ′ut−i(r) = R (L)β′ut(r) = R (L)β′D (L) εt(r). (6)

Average covariance matrices of the stationary curve time series {ut(r), vt(r) = β′Xt(r)} are

written as Γh(u, u) =
∫ b
a Eut(r)ut+h(r)

′dr. Γh(u, v) =
∫ b
a Eut(r)vt+h(r)

′dr, and Γh(v, v) =∫ b
a Evt(r)vt+h(r)

′dr.

The Wold representation (6) yields the following useful partial sum representation of the
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curve time series Xt(r) after some further manipulations

Xt(r) = C
t∑

s=1

us(r) + α
(
β′α
)−1

R (L)β′ut(r) + CX0(r), (7)

where C = β⊥ (α′
⊥β⊥)

−1 α′
⊥. Expression (7) extends the Granger-Johansen representation by

allowing for weakly dependent time series of curve innovations ut(r) rather than martingale

differences, as in reduced rank regressions that are assumed to be correctly specified VARs.

Note that (7) also delivers a decomposition of the Phillips and Solo (1992) type suited for

functional central limit theory for partial sums of curve time series innovations.

Under assumption LP a Hilbert space functional law for partial sums of the curve error

processes ut(r) holds. In particular, using the limit theory in Phillips (2025) for scalar and

vector curve time series, we have as n→ ∞

Gn(p, r) :=
1√
n

⌊np⌋∑
s=1

us(r)⇝ Gu (p, r) , (8)

where Gu (p, r) is a two parameter m-vector Gaussian process with p ∈ [0, 1], r ∈ [a, b]. The

process Gu(p, r) = (Gu,h(p, r)) lives on the product space C[0, 1]m×C[a, b] and the limit theory

(8) follows by virtue of multi-dimensional Hilbert space weak convergence. Functional weak

convergence results of this general type in the scalar case m = 1 are given in recent work

(Berkes et al., 2013; Jirak, 2013; Phillips, 2024). In the present multiple curve time series

case with m > 1 the Gaussian process Gu(p, r) has long run covariance matrix kernel function

Ω(r, s) =
∑∞

j=−∞ E(ut(r)ut+j(s)).

The component processes Gu,h(p, r) may each be represented in terms of a coordinatewise

limit involving independent standard Wiener processes {Wh,i(·)}∞i=1 by a Karhunen Loève (KL)

representation. In fact, each element Gu,h(p, r) can be written in the form

Gu,h(p, r) =

∞∑
i=1

λ
1/2
h,i ϕh,i(r)Wh,i(p), (9)

where the {Wh,i(p)}∞i=1 are independent standard Wiener processes on C[0, 1] and where

{λh,i, ϕh,i(r)}∞i=1 are the eigenvalues and orthonormal eigenfunctions of the covariance kernel

Kuh
(r, s) = Euh,t(r)uh,t(s) with Mercer representation Kuh

(r, s) =
∑∞

j=1 λh,iϕh,i(r)ϕh,j(s).

In view of (6) and the fact that R (1) =
∑∞

i=0R
i = (I −R)−1 = − (β′α)−1, we further have

n−1/2

⌊np⌋∑
s=1

vs(r) = n−1/2

⌊np⌋∑
s=1

β′Xs(r)⇝ −
(
β′α
)−1

β′Gu (p, r) , as n→ ∞. (10)

The limit laws (8) and (10) involve the same two-dimensional vector Gaussian process Gu (p, r)

and they combine to determine the asymptotic forms of the various sample moment matrices

involved in the reduced rank regression estimation of (1). We finish these preliminaries by defin-

ing the following partitioned cross section average variance matrix of the stationary components
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of the curve time series Xt(r), viz., ∆Xt(r) = αβ′Xt−1(r) + ut(r) and vt−1(r) = β′Xt−1(r)∫ b

a
E

[
∆Xt(r)

β′Xt−1(r)

] [
∆Xt(r)

′, Xt−1(r)
′β
]
dr =

[
Σ00 Σ0β

Σβ0 Σββ

]
. (11)

These covariance matrices involve cross section averaged expectations of the key stationary

elements in the reduced rank regression. Explicit expressions for the submatrices in the above

expression are worked out in terms of the autocovariance matrix sequences of the component

curve time series ut(r) and vt(r) and the parameters of (1). These are given in the Appendix.

4 Reduced rank regression formulae for curve time series

Our procedure is to perform a reduced rank regression (RRR) with estimates of α and β in (1)

obtained by ignoring any weak dependence error structure in ut(r). To analyze the asymptotic

properties of the rank order estimates and the information criterion IC(ℓ) under a general

error structure, we start by investigating the asymptotic properties of the various regression

components. Using conventional RRR notation but allowing for curve time series data, define

the following average sample moment matrices

S00 = n−1
n∑

t=1

∫ b

a
∆Xt(r)∆Xt(r))

′dr, S11 = n−1
n∑

t=1

∫ b

a
Xt−1(r)Xt−1(r)

′dr, (12)

S01 = n−1
n∑

t=1

∫ b

a
∆Xt(r)Xt−1(r)

′dr, and S10 = n−1
n∑

t=1

∫ b

a
Xt−1(r)∆Xt(r)

′dr. (13)

These formulae extend those in CP(2009) by the use of cross section as well time series averaging

of the data. For some given ℓ and β, the estimate of α is obtained by regression as

α̂ (β) = S01β
(
β′S11β

)−1
. (14)

Again, given ℓ, the corresponding RRR estimate of β in (1) is an m× ℓ matrix satisfying

β̂ = argmin
β

∣∣∣S00 − S01β
(
β′S11β

)−1
β′S10

∣∣∣ , (15)

subject to a normalization such as3

β̂′S11β̂ = Ir. (16)

The estimate β̂ is found in the usual way by first solving the determinantal equation∣∣λS11 − S10S
−1
00 S01

∣∣ = 0 (17)

3Quadratic form normalizations like (16) are commonly used in reduced rank regression applications. But such
normalization, as distinct from normalization on a particular element of the vector Xt(r), has the property
that no finite moments of the corresponding reduced rank regression estimates of the elements of β exist, which
is partly responsible for the heavy tailed feature of these finite sample distributions Phillips (1994).
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for the ordered eigenvalues 1 > λ̂1 > · · · > λ̂m > 0 and corresponding eigenvectors assembled

in the matrix V̂ = [v̂1, · · · , v̂m], which is normalized by V̂ ′S11V̂ = Im. Estimates of β and α

are then obtained as

β̂ = [v̂1, · · · , v̂ℓ], and α̂ = α̂(β̂) = S01β̂, (18)

with β̂ formed from the eigenvectors of V̂ corresponding to the ℓ largest roots of (17). The

residuals from the RRR and the corresponding moment matrix of residuals that appear in the

information criterion are

ût(r) = ∆Xt(r)− α̂β̂′Xt−1(r), and (19)

Σ̂ (ℓ) = n−1
n∑

t=1

∫ b

a
ût(r)ût(r)

′dr = S00 − S01β̂β̂
′S10. (20)

Using (20) we have from standard RRR manipulations, e.g., Johansen (1995, theorem 6.1),∣∣∣Σ̂ (ℓ)
∣∣∣ = |S00|Πℓ

i=1

(
1− λ̂i

)
, (21)

where λ̂i, 1 ≤ i ≤ ℓ, are the ℓ largest solutions to (17). The criterion (4) is then well determined

for any given value of ℓ.

Lemma 1. Under Assumptions LP and RR and using the cross section average variance

matrix expressions in (11), the following limit theory holds for the stationary and nonstationary

components:

S00 →p Σ00, β
′S11β →p Σββ , β

′S10 →p Σβ0,

n−1β′⊥S11β⊥ ⇝
(
α′
⊥β⊥

)−1
α′
⊥

(∫ b

a

∫ 1

0
Gu(p, r)Gu(p, r)

′dpdr

)
α⊥
(
β′⊥α⊥

)−1
,

β′⊥(S10 − S11βα
′)⇝

(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′dr +Ψ1
wu,

β′⊥S11β ⇝ −
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drβ(α′β)−1 +Ψwv,

β′⊥S10 ⇝
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drα⊥
(
β′⊥α⊥

)−1
β′⊥ +Ψ1

wu +Ψwvα
′,

where the two parameter limit process Gu(p, r) is as in (8), and

Ψ1
wu =

∞∑
h=1

∫ b

a
E
{(
β′⊥∆Xt(r)

)
ut+h(r)

′} ,Ψwv =
∞∑
h=0

∫ b

a
E
{(
β′⊥∆Xt(r)

) (
β′Xt+h(r)

)′}
, (22)

are one-sided average long run variance matrices, and wt(r) = β′⊥∆Xt(r) = β′⊥ut(r)+β
′
⊥αvt−1(r).

Remarks:

(a) When the curve time series errors ut(r) are weakly dependent the asymptotic limits of
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β′⊥(S10 − S11βα
′), β′⊥S10, and β′⊥S11β each involve bias terms dependent on one-sided

long run average covariance matrices in (22) that are associated with the stationary curve

time series components ut(r), vt(r), and wt(r) = β′⊥∆Xt(r). These one-sided long run

covariance matrices are given explicitly in (40)-(42) in the proofs.

(b) In the special case of martingale difference errors ut(r), we have Ψ1
wu = 0, Ψwv =

β′⊥
∫ b
a E (ut(r)vt(r)

′) dr, and simpler results apply, such as

β′⊥(S10 − S11βα
′)⇝

(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′dr, (23)

for the various limits given in Lemma 1. These deliver curve time series extensions

of results for RRR in explicit VAR models with martingale difference errors such as

those in Johansen (1995, theorem 10.3) and the weakly dependent innovation results in

Cheng and Phillips (2009, Lemma 3.1). The matrix
∫ b
a

∫ 1
0 Gu(p, r)dGu(p, r)

′dr in the limit

(23) is a matrix stochastic integral taken over p ∈ [0, 1]) and integrated over the curve

r ∈ [a, b]. Stochastic integrals of this type are discussed in Phillips (2025) and play a

major role in cointegrated regression limit theory with curve time series observations.

When the data are multiple time series instead of multiple time series of cross section

curves the stochastic integrals
∫ b
a

∫ 1
0 Gu(p, r)dGu(p, r)

′dr and
∫ b
a

∫ 1
0 Gu(p, r)Gu(p, r)

′dpdr

reduce to the integrals
∫ 1
0 BudB

′
u and

∫ 1
0 BuB

′
u involving the simpler process Bu(p),

vector Brownian motion with variance matrix Ω =
∑∞

h=−∞ Eutu′t+h. In this event,

the functional limit theory (8) is replaced by Gn(p) := 1√
n

∑⌊np⌋
s=1 us ⇝ Bu(p), thereby

reducing to the findings in CP(2009), Lemma 3.1 after similar reductions in the formulae

for the one-sided long run covariances in (22).

5 Main results

Rewriting the model (1) as ∆Xt(r) = ut(r) + αβ′Xt−1(r) = ut(r) + αvt−1(r) in terms of the

stationary components {ut(r), vt−1(r)}, the following relationships are obtained among the

submatrix covariances in (11)

Σ0β = αΣββ +

∫ b

a
Eut(r)vt−1(r)

′dr, Σβ0 = Σ′
0β, (24)

Σββ =

∫ b

a
Evt(r)vt(r)′dr, Σuu =

∫ b

a
Eut(r)ut(r)′dr, (25)

Σ00 = αΣβ0 +

∫ b

a
Eut(r)vt−1(r)

′drα′ +Σuu. (26)

Define

α̃ = Σ0βΣ
−1
ββ = α+

∫ b

a
Eut(r)vt−1(r)

′drΣ−1
ββ , (27)

11



and let α̃⊥ be an m× (m− ℓ) orthogonal complement to α̃ such that [α̃, α̃⊥] is nonsingular.

Lemma 2. Under Assumptions LP and RR, when the true cointegration rank is ℓ0, the ℓ0

largest solutions to (17) , denoted by λ̂i with 1 ≤ i ≤ ℓ0, converge to the ℓ0 roots 0 < λi < 1 of

the following determinantal equation in λ∣∣λΣββ − Σβ0Σ
−1
00 Σ0β

∣∣ = 0. (28)

The remaining m − ℓ0 roots, denoted by λ̂i with ℓ0 + 1 ≤ i ≤ m, decrease to zero at the rate

O
(
n−1

)
and the rescaled roots {nλ̂i : i = ℓ0 + 1, ...,m} converge weakly to the roots of the

following determinantal equation in ρ∣∣∣∣ρ ∫ b

a

∫ 1

0
G̃u(p, r)G̃u(p, r)

′dpdr − Ãuα̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥Ã

′
u

∣∣∣∣ = 0, (29)

where Ãu =
(∫ b

a

∫ 1
0 G̃u(p, r)dG̃u(p, r)

′drβ′⊥ +Ψ
)
, G̃u (p, r) = (α′

⊥β⊥)
−1 α′

⊥Gu(p, r) is a two

parameter (m− ℓ0)-vector process with long run covariance matrix kernel

(
α′
⊥β⊥

)−1
α′
⊥

∞∑
j=−∞

E(ut(r)ut+j(s))α⊥(β
′
⊥α⊥)

−1 =
(
α′
⊥β⊥

)−1
α′
⊥Ω(r, s)α⊥(β

′
⊥α⊥)

−1, (30)

and Ψ = Ψ1
wu +Ψwvα

′ is a composite one-sided long run covariance matrix.

Remarks:

(c) The findings in Lemma 2 relate closely to those obtained in CP(2009) for the multiple time

series case with weakly dependent errors and to those of a standard RRR in a VAR with

martingale difference errors (Johansen, 1995, p.158). In particular, as in the standard

case, the ℓ0 largest roots of (17) are all positive in the limit and the m− ℓ0 smallest roots

converge to 0 at the rate n−1, with both results now holding under weakly dependent

errors. Since ut(r) is a weakly dependent curve time series, the limit distribution deter-

mined by (29) is considerably more complex than in the standard correctly specified RRR

case and also the more general case of weakly dependent time series without curve data.

In particular, the determinantal equation (29) now involves the composite one-sided long

run covariance matrix Ψ as well as the two parameter Gaussian process G̃u (p, r) in place

of a transformed vector Brownian motion.

(d) When ut(r) is a martingale difference sequence, we find that α̃ = α, α̃⊥ = α⊥, Ψ
1
wu = 0,

Ψ = Ψwvα
′, Σ00 = αΣββα

′ +Σuu and so

α̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥ = α⊥

(
α′
⊥Σuuα⊥

)−1
α′
⊥.

Then α′
⊥β⊥G̃u (p, r) = α′

⊥Gu(p, r) =: Gα⊥(p, r) is a Gaussian process with long run

covariance matrix kernel α′
⊥Ω(r, s)α⊥, and the one-sided long run covariance Ψα⊥ = 0.

12



In this case the determinantal equation (29) has the following form (omitting the (p, r)

arguments for simplicity)∣∣∣∣ρ ∫ b

a

∫ 1

0
G̃uG̃

′
u −

∫ b

a

∫ 1

0
G̃udG̃

′
uβ

′
⊥α⊥

(
α′
⊥Σuuα⊥

)−1
α′
⊥β⊥

∫ b

a

∫ 1

0
dG̃uG̃

′
u

∣∣∣∣ = 0.

Scaling this determinantal equation on left and right by the determinant |α′
⊥β⊥| leaves

the roots of the equation unaffected, giving the equivalent determinantal equation (again

omitting the (p, r) arguments)∣∣∣∣ρ∫ b

a

∫ 1

0
Gα⊥G

′
α⊥

−
∫ b

a

∫ 1

0
Gα⊥dG

′
α⊥

(
α′
⊥Σuuα⊥

)−1
∫ b

a

∫ 1

0
dGα⊥G

′
α⊥

∣∣∣∣ = 0. (31)

The system can be further simplified to the multiple time series case by imposing full

cross section curve dependence so that ut(r) = ut a.s. with Σuu,0 = Eut(r)ut(r)′ for
all r ∈ [a, b]. The stochastic process Gα⊥ (p, r) = Gα⊥(p) is then fixed over the cross

section dimension [a, b]. The vector Gaussian process Gα⊥(p) is now simply m − ℓ0

vector Brownian motion with covariance matrix α′
⊥Σuuα⊥ = (b − a)α′

⊥Σuu,0α⊥ since,

in view of (25), Σuu =
∫ b
a Eut(r)ut(r)′dr = (b − a)Σuu,0 with Σuu,0 = Eutu′t. We may

now write Gα⊥(p) = (α′
⊥Σuuα⊥)

1/2 V (p) = (b− a)1/2Σ
1/2
uu,0V (p) in terms of the standard

vector Brownian motion process V (p) with variance matrix Im−ℓ0 . Then, rescaling (31)

by the determinant |α′
⊥Σuuα⊥| leads to the equivalent determinantal equation∣∣∣∣ρ∫ 1

0
VuV

′
u −

∫ 1

0
VudV

′
u

∫ 1

0
dVuV

′
u

∣∣∣∣ = 0,

in this special case of martingale difference errors ut(r) = ut with full cross section

dependence. These simplifications reduce the general result of Lemma 2 for weakly

dependent curve time series errors to the standard limit theory of a strictly well-specified

parametric reduced rank regression (Johansen, 1995).

Theorem 1. (a) Under Assumptions LP and RR, the rank estimator ℓ̂ in (4) based on the

criterion IC(ℓ) is weakly consistent for selecting the true cointegrating rank ℓ0 provided the

penalty coefficient Cn → ∞ at a slower rate than n.

(b) The asymptotic distribution of the AIC estimator ℓ̂ using the penalty criterion IC(ℓ)

with coefficient Cn = 2 is

lim
n→∞

P
(
ℓ̂AIC = ℓ0

)
= P

 m
∩

ℓ=ℓ0+1


ℓ∑

i=ℓ0+1

ξi < 2 (ℓ− ℓ0) (2m− ℓ− ℓ0)


 , (32)
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lim
n→∞

P
(
ℓ̂AIC = ℓ|ℓ > ℓ0

)
= P

{(
m
∩

ℓ′=ℓ+1

{
ℓ′∑

i=ℓ+1

ξi < 2
(
ℓ′ − ℓ

)
(2m− ℓ′ − ℓ)

})
∩

(
r−1
∩

ℓ′=ℓ0

{
ℓ∑

i=ℓ′+1

ξi > 2
(
ℓ− ℓ′

) (
2m− ℓ− ℓ′

)})}
, (33)

and

lim
n→∞

P
(
ℓ̂AIC = ℓ|ℓ < ℓ0

)
= 0, (34)

where ξℓ0+1, ..., ξm are the ordered roots of the limiting determinantal equation (29).

Remarks:

(e) The findings in Theorem 1(a) match those in CP(2009) for the consistency of BIC, HQ

(Hannan and Quinn, 1979) and other information criteria with Cn → ∞ and Cn/n→ 0.

Importantly, consistency in determining cointegrating rank holds under these two simple

rate conditions without having to specify a full parametric model. This means that

cointegrating regression analysis for curve time series can be conducted conditional on

the selected rank in the RRR or using alternative IVX methods such as those discussed

in Phillips (2025), which allow for the same generality concerning weak dependence in

the innovations ut(r) as well as the presence of some roots local to unity as well as other

roots at unity.

(f) The findings for AIC also match those in CP(2009). AIC is inconsistent, overestimating

cointegrating rank asymptotically in favor of more liberally parametrized systems in

terms of higher cointegrating rank. This compares with AIC’s well-known overestimation

tendency in lag length selection in autoregression. But in cointegrating rank selection

maximum rank is bounded above by the order of the system. So the potential advantage

(e.g. in terms of size control in inference) of overestimation in lag length selection in

autoregressions might not be anticipated here. However, when cointegrating rank is high

(and close to full dimension), AIC can be expected to perform well largely because the

upper bound in rank restricts the tendency to overestimate. This tendency is confirmed

in simulations reported below and matches what was found in the multiple time series

case in CP(2009), although the findings differ in terms of degree because of additional

cross section curve information that is brought to bear in model selection.

(g) Whenm = 1, the rank ℓ0 = 0 corresponds to the unit root case and ℓ0 = 1 is the stationary

case. Thus, Theorem 1 specializes to unit root testing and the selection criteria are

consistent in discriminating between unit root and stationary curve time series provided
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Cn → ∞ and Cn/n → 0, matching the finding in Phillips (2008) for simple scalar time

series. In this case, as shown in (68) in the proofs, the limit distribution of AIC is itself

much simpler and involves only the limiting root with the following explicit form

ξ1 =

(∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)dr + ψ

)2/{(∫ b

a

∫ 1

0
Gu(p, r)

2dr

)
Σ00

}
, (35)

where the limit process Gu(p, r) is now a scalar two-dimensional Gaussian process, Σ00 =∫ b
a Eut(r)2dr is the average variance of ut(r) and ψ =

∑∞
h=1

∫ b
a E (ut(r)ut+h(r)dr) is the

one-sided average long run covariance of ut(r). The distribution of ξ1 is a curve time

series version of the usual limiting unit root distribution and reduces to that simpler limit

distribution when there is full cross section dependence and Gu(p, r) = Bu(p), Brownian

motion with variance ω2 =
∑∞

h=−∞1 E (utut+h). This ‘curve unit root limit distribution’

of ξ1 in (35) is supported on the entire real line, just as the distribution of the usual

unit root statistic. Using the fact that the penalty coefficient Cn = 2 for AIC we have

limn→∞ P
(
ℓ̂AIC = 0

)
= P(ξ21 < 2) and limn→∞ P

(
ℓ̂AIC = 1

)
= 1 − P(ξ21 < 2), when

ℓ0 = 0 and there is a unit root in the data. So, AIC is inconsistent with an asymptotic

bias towards the stationary case.

(h) Theorem 1 relates to the model (1). But, as in CP(2009), the findings also apply in cases

where the model has intercepts and drift. So consistent cointegration rank selection is

possible using this approach in most empirical contexts with curve time series data. The

only change in the limit theory involves the use of limit processes that are constructed

using the appropriate L2-space residual projections of the type introduced in Park and

Phillips (1988).

(i) A further extension of Theorem 1 applies to the case where the model (1) may have local

unit roots rather than (or in addition to) strict unit roots in the specification. In such

cases, the model would then have m− ℓ0 roots local to unity and take the following form

in the direction α′
⊥ of nonstationarity

∆cα
′
⊥Xt(r) = α′

⊥ut(r), t ∈ {1, . . . , n} , r ∈ [a, b], ∆c = Im−ℓ0 −
c

n
L (36)

with c = diag{c1, · · · , cm−ℓ0}, fixed localizing coefficients ci and lag operator L. The

Gaussian process G̃u (p, r) = (α′
⊥β⊥)

−1 α′
⊥Gu(p, r) in (29) would then be replaced by

a corresponding two parameter (m − ℓ0)-vector Gaussian diffusion process.4 The main

conclusions of Theorem 1 in terms of consistent cointegrating rank selection by BIC and

inconsistent selection by AIC would be expected to continue to hold. In this respect, the

order selection approach to cointegrating rank estimation would provide a considerable

4Such a two parameter (m− ℓ0)-vector Gaussian diffusion process may be defined as the vector process J̃c(p, r)

satisfying the stochastic differential equation dJ̃c(p, r) = cJ̃c(p, r)dp + dG̃u (p, r) with solution J̃c(p, r) =∫ p

0
ec(p−q)dG̃u (q, r) for all r ∈ [a, b] given zero initial conditions at the origin p = 0.

15



advantage over sequential testing methods which rely on explicit unit root specifications

for the computation of critical values. Detailed investigation of these properties and the

finite sample performance characteristics of rank determination in the presence of local

unit roots are topics for future research.

6 Simulations

This section reports simulations conducted to evaluate the finite sample performance of four

cointegrating rank selection criteria: AIC (Cn = 2), BIC (Cn = log n), HQ (Cn = 2 log log n),

and Log(HQ) (Cn = log (2 log log n)). The models chosen are Hilbert space versions of the

multiple time series RRR models used in the simulation study reported in CP(2009). These

choices enable a comparison that reveals the impact of cross section curve time series data

on the effectiveness of the main model selection criteria. The model designs include various

generating mechanisms for the short memory component ut, different settings for cointegrating

rank, and the various choices of the penalty coefficient Cn. As in CP(2009) we report findings

for systems of dimension m = 2 and m = 4 variables. Several generating mechanisms (VAR,

VMA, VARMA) were employed for the short memory component ut(r), different settings for

the true cointegrating rank ℓ, and for the penalty coefficient Cn.

The simulation design is based on (1) and employs curve time series formulations that

extend the designs used in CP(2009). In particular, Brownian motion, Brownian bridge and

segmented Brownian bridge curves are used in modeling the cross section data in conjunction

with the reduced rank time series specification. When the model dimension m = 2, the designs

allow for three different cointegrating ranks. For ℓ0 = 0 with a full set of m unit roots we have

α′β = 0; for ℓ0 = 1 the reduced rank coefficient structure is set so that

α′β = R1 = (1, 0.5)

(
−1

1

)
, with stationary root λ1

[
I + β′α

]
= 0.5,

and for ℓ0 = 2

α′β = R2 =

(
−0.5 0.1

0.2 −0.4

)
, with stationary roots λi

[
I + β′α

]
= {0.7, 0.4} , i = 1, 2.

The error processes ut(r) were formulated as curve time series generated from VAR(1), VMA(1),

and VARMA(1,1) models as follows

ut(r) = Aut−1(r) + εt(r), ut(r) = εt(r) +Bεt−1(r), and ut(r) = Aut−1(r) + εt(r) +Bεt−1(r),

(37)

with coefficient matrices A = ψIm, B = ϕIm, where ψ = ϕ = 0.4, and with innovation processes

εt(r) ∼iid {W (r) : r ∈ [0, 1]}, for each t = 1, · · · , n, and with standard Brownian motion curves

W (r) over the interval [0, 1]. The time series models in (37) take Brownian motion curves as
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inputs and generate weakly dependent time series of curve cross section data.

The performance of the four rank selection criteria (AIC, BIC, HQ, log(HQ)) were inves-

tigated for various time series sample sizes (n ∈ {50, 100, 250, 1000} to show the capabilities

of these criteria in determining cointegrating rank with small and large time series samples

and n = 1000 used primarily to assess the degree of inconsistency in AIC and the relative

success of BIC, HQ and log(HQ). All cases included 20 additional observations to eliminate

start-up effects from the initializations X0(r) = 0 and ε0(r) = 0. The findings are based on

3, 000 replications. Summary results for time series regressions are reported here in Tables

1-2 with correct selections (i.e., correctly selected rank ℓ0) shown in bold type; and for curve

time series regressions in Tables 3-4. Results for the primary cases of interest are shown in

color with AIC (gold) and BIC (blue). The findings are given for models driven by time series

and curve time series VARMA(1) errors. Similar results were obtained for VAR and VMA

error generating schemes in (37) and are not reported. To assist in understanding the main

effects of curve time series on cointegrating rank selection, Tables 1 and 2 show results for a

simple time series reduced rank regression with VARMA(1,1) errors; and Tables 3 and 4 show

corresponding results for curve times series reduced rank regressions with VARMA(1,1) errors

for the same sample sizes. Bar graphics of the respective results for both time series and curve

time series are shown in Figures 2 - 7.

The main findings for the time series models are given in (a) and (b) below. These broadly

match those reported in CP(2009) for models with VAR errors ut. The corresponding findings

for curve time series data are given in (c) and (d).

(a) For the smaller sample sizes n = 50, n = 100 in Table 1 the poor performance of AIC, HQ

and Log(HQ) in estimating the correct number of unit roots is apparent. Each of these

methods favor the existence of some degree of cointegration (and hence a greater number

of fitted parameters) over a full set of 2 unit roots when ℓ0 = 0. The penalties in each

case for excessive parameterization are therefore too low for satisfactory rank selection.

Note that for n = 50 the HQ penalty coefficient (2log(logn) = 2.7281) barely exceeds 2

and for Log(HQ) the penalty is even smaller (2log(log(logn)) = 1.0036). Furthermore,

AIC shows no improvement in detecting two unit roots when n = 100 or even for the

larger values n = 250, 1000 as shown in Table 2. These findings strongly corroborate the

inconsistency of AIC in cointegrating rank estimation.

(b) By contrast, the BIC criterion shows substantial improvement over the other criteria in

selecting two unit roots (ℓ0 = 0) when n = 50 and shows further improvement when

n = 100. These improvements in BIC performance continue with the higher sample size

n = 250 and for n = 1000, where BIC has more than 90% success rate in selecting the

right number of unit roots in the system, with 99% for cointegrating rank ℓ0 = 1 and

100% for cointegrating rank ℓ0 = 2.

(c) The most notable change with curve time series data shown in Tables 3 and 4 is the

substantial improvement in rank determination by the AIC criterion. For the smaller
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sample sizes n = 50, 100 the AIC correct detection rate for a full set of unit roots is 77%,

much larger than the 20% rate for time series data. But the rate of correct detection of

ℓ0 = 0 remains around the 77% level for both larger sample sizes n = 250, 1000 revealing

no tendency to rise, which corroborates the limit theory of inconsistency. The correct

detection rates by AIC for positive cointegrating ranks also rise considerably: to 86%

with n = 50 and 96% with n = 100 for ℓ0 = 1; to 96% for n = 250 and 97% n = 1000;

and to 100% for n ≥ 100. These findings show that the additional information embodied

in the curve time series data (even heavily cross section dependent data like Brownian

motion curves) are put to good use in overcoming some of the deficiencies of the AIC

criterion in overestimating order.

(d) The gains from the use of curve time series data are also evident in the performance of

BIC. The correct detection rates for BIC are at least 97% for ℓ0 = 0 for all sample sizes

with essentially the same rates for cointegrating rank ℓ0 = 1; and when n ≥ 100 the

correct detection rates for BIC are 100%.

(e) The results for both HQ and Log(HQ) show clear tendencies to overestimate cointegrating

rank, particularly when ℓ0 = 0 and the system has a full set of unit roots. The findings

for models with curve time series data show some improvement over those with time

series but overestimation of cointegrating rank is still strongly evident when ℓ0 = 0. As

pointed out in the proof of Theorem 1, when Cn → ∞ very slowly as n→ ∞ very large

samples may be needed to prevent overestimation of cointegrating rank.

The simulation findings reported above are all given for the case of Brownian motion cross

section curve time series errors ut(r).
5 Segmented Brownian bridge curves (Phillips and Jiang,

2024; Phillips, 2024) may attract some special interest because this class of segmented curve

provides a specification that relates more closely to typical dynamic panel modeling (under

independence or clustering) where there is more limited cross section dependence than Brown-

ian motion and quite different asymptotic theory with potentially higher rates of convergence

that reflect the presence of some degree of independence in the cross section. Nonetheless,

empirical data such as Engel curves for many commodity groups such as transportation and

education demonstrate a considerable degree of cross section dependence – see Figure 1 for

illustrative data drawn from the Singapore Life panel for ageing seniors.6 Other data such as

lifetime income quantiles with specific educational qualifications and gender across the pop-

ulation display similar dependence characteristics (Cho et al., 2022). So there seems to be

empirical relevance in considering systems that permit substantial cross section dependence

and in using this information constructively in estimation and inference.

5Other models for cross section curves are currently under study and will be reported in later work.
6The SLP is a continuing longitudinal study at Singapore Management University of consumption behavior of
ageing seniors in Singapore, see https://rosa.smu.edu.sg/singapore-life-panel/about-singapore-life-panelr.
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7 Concluding remarks

When the Oxford Bulletin of Economics and Statistics published its special issue on cointegra-

tion in 1986 it showed remarkable prescience of the importance of unit root and cointegration

theory to the future of econometrics. This importance was underlined by the longstanding ab-

sence of any formal asymptotic basis suited to the manifest nonstationarity of the time series

data used in much econometric research. While there were prior findings on scalar unit root re-

gressions and testing in the late 1970s, notably Dickey and Fuller (1979) and Hasza and Fuller

(1979), that work relied on independent, identically distributed normally distributed errors

and no central limit theory, invariance principle, functional limit theory or multivariate limit

theory was established, which delimited the applicability of the results. Only in the mid-1980s

were suitably general asymptotics developed that were robust to distributional characteristics,

heterogeneity, potential weak dependence in the errors and multivariate regression applica-

tions, not to mention departures from strict unit roots. The Oxford Bulletin recognized these

developments almost as soon as they appeared as an advance on existing statistical theory that

would bring vast benefits to applied research. Econometrics as a discipline and particularly

time series econometrics benefited immediately from the provision of this new foundation for

estimation, inference and prediction designed particularly for the type of nonstationary data

available for empirical work and the linkages between the relevant variables that economic

theory suggested.

Since 1986 a vast body of econometric research in the general field of nonstationarity has

emerged, influencing subject areas throughout the social and business sciences, as well as major

areas of climate science and paleobiology in the natural sciences, where rich high-dimensional

data sources are abundant. The present paper contributes to this body of econometric work by

introducing curve time series analysis to the study of reduced rank regression. The framework

employed allows for quite general forms of cross section dependence in contrast to much existing

work on panel data and clustering. Although the use of heavily dependent data does not

typically raise convergence rates it is evident from the simulations reported here that curve time

series data does sharpen inference on cointegrating rank determination. The semiparametric

approach taken in the paper also allows for general forms of weak temporal dependence in

the innovations and broader specifications that accommodate deterministic components and

local unit roots in reduced rank regressions. The present work provides a useful beginning

on rank determination in this line of multivariate curve time series analysis of cointegration.

Estimation, inference and prediction with cointegrating curve time series is ongoing and will be

reported elsewhere. Further extensions to the more general operator framework in full function

space settings are possible and would help to complete much of the present research agenda.
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8 Proofs

Our approach throughout this section follows similar lines to those employed in Phillips (2008)

and CP(2009), but uses the functional limit theory and cross section averaging involved in

dealing with sample moments of curve time series. We start with some preliminary algebraic

representations that are useful in the proofs below and are established in CP(2009), Lemma

3, which we follow in laying out the formulae below. First, under (1) and Assumption LP, we

have

Σ−1
00 − Σ−1

00 Σ0β

(
Σβ0Σ

−1
00 Σβ0

)−1
Σβ0Σ

−1
00 = Σ

−1/2
00 c⊥

(
c′⊥c⊥

)−1
c′⊥Σ

−1/2
00 , (38)
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where c = Σ
−1/2
00 Σ0β and c⊥ is an orthogonal complement to c. Setting α̃ = Σ0βΣ

−1
ββ = Σ

1/2
00 cΣ

−1
ββ

and α̃⊥ = Σ
−1/2
00 c⊥, we then have the alternate form

Σ
−1/2
00 c⊥

(
c′⊥c⊥

)−1
c′⊥Σ

−1/2
00 = α̃⊥

(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥. (39)

When Σ0β = αΣββ , (39) then becomes

Σ
−1/2
00 c⊥

(
c′⊥c⊥

)−1
c′⊥Σ

−1/2
00 = α⊥

(
α′
⊥Σ00α⊥

)−1
α⊥,

as in Johansen (1995, Lemma 10.1).

In the present semiparametric curve time series case we have ∆Xt(r) = ut(r)+αβ
′Xt−1(r) =

ut(r) + αvt−1(r) and the covariance matrix of the two stationary components {vt−1(r), ut(r)}
is Γvu (1) =

∫ b
a E (vt−1(r)ut(r))

′ dr, which is generally nonzero. Then

Σββ =

∫ b

a
Evt(r)vt(r)′dr = Γvv (0) , (40)

Σβ0 =

∫ b

a
Evt−1(r) (ut(r) + αvt−1(r))

′ dr = Γvu (1) + Γvv (0)α
′ = Γvu (1) + Σββα

′, (41)

Σ00 = αΣββα
′ + αΓvu (1) + Γuv (−1)α′ + Γuu (0) . (42)

Note that α̃ = Σ0βΣ
−1
ββ = Σ

1/2
00 cΣ

−1
ββ and we may choose α̃⊥ = Σ

−1/2
00 c⊥. In this notation, we

may write in the general case

Σ
−1/2
00 c⊥

(
c′⊥c⊥

)−1
c′⊥Σ

−1/2
00 = α̃⊥

(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥, (43)

as given in (39).

Proof of Lemma 1: Both ∆Xt(r) = ut(r)+αβ
′Xt−1(r) = ut(r)+αvt(r) and vt(r) = β′Xt(r)

are stationary curve time series that satisfy Assumption LP. Hence, by the law of large numbers

S00 = n−1
n∑

t=1

∫ b

a
∆Xt(r)∆X

′
t(r)dr →p Σ00 = Γuu (0) + αΓvv (0) a

′ + αΓvu (0) + Γuv (0) a
′,

β′S11β = n−1
n∑

t=1

β′Xt−1

(
β′Xt−1

)′ →p Σββ = Γvv (0) , and

β′S10 = n−1
n∑

t=1

β′Xt−1∆X
′
t →p Σβ0 = Γvu (1) + Γvv (0) a

′.

In view of (7) we have

β′⊥Xt(r) = β′⊥C
t∑

s=1

us(r) + β′⊥α
(
β′α
)−1

R (L)β′ut(r) + β′⊥CX0(r)
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=
(
α′
⊥β⊥

)−1
α′
⊥

{
t∑

s=1

us(r) +X0(r)

}
+ β′⊥α

(
β′α
)−1

R (L)β′ut(r),

so that the standardized process n−1/2β′⊥X[n·](r) ⇝ (α′
⊥β⊥)

−1 α′
⊥Gu(·, r) by virtue of the

functional law (8), and then from (10) we have

n−1/2

[n·]∑
s=1

β′Xs(r)⇝ −
(
β′α
)−1

β′Gu(·, r). (44)

By conventional weak convergence methods

n−1β′⊥S11β⊥ ⇝
(
α′
⊥β⊥

)−1
α′
⊥

(∫ b

a

∫ 1

0
Gu(p, r)Gu(p, r)

′dpdr

)
α⊥
(
β′⊥α⊥

)−1
,

β′⊥(S10 − S11βα
′) = β′⊥

{
n−1

n∑
t=1

∫ b

a
Xt−1(r)

(
∆Xt(r)− αβ′Xt−1(r)

)′
dr

}

=

∫ b

a

n∑
t=1

β′⊥Xt−1(r)√
n

ut(r)√
n
dr ⇝

(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′dr +Ψ1
wu,

β′⊥S11β =

∫ b

a

n∑
t=1

β′⊥Xt−1(r)√
n

(β′Xt−1(r))
′

√
n

dr ⇝ −
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drβ(α′β)−1+Ψwv,

where

Ψ1
wu =

∞∑
h=1

∫ b

a
E
{(
β′⊥∆Xt(r)

)
ut+h(r)

′} dr and Ψwv =
∞∑
h=0

∫ b

a
E
{(
β′⊥∆Xt(r)

) (
β′Xt+h(r)

)′}
dr

are one-sided long run covariance matrices involving wt(r) := β′⊥(r)∆Xt(r) = β′⊥ut+β
′
⊥αvt−1,

ut(r) and vt(r). We thereby deduce the explicit form

Ψ1
wu =

∞∑
h=1

∫ b

a
E
{(
β′⊥∆Xt(r)

)
ut+h(r)

′} = β′⊥

∞∑
h=1

∫ b

a
E
{
ut(r)ut+h(r)

′} dr + β′⊥α
∞∑
h=1

∫ b

a
E
{
vt−1(r)ut+h(r)

′} dr
= β′⊥Λuu + β′⊥α [Λvu − Γvu (1)] , (45)

where Λuu =
∑∞

h=1

∫ b
a E {ut(r)ut+h(r)

′} dr =
∑∞

h=1 Γuu(h) and Λvu =
∑∞

h=1

∫ b
a E {vt(r)ut+h(r)

′} dr =∑∞
h=1 Γvu(h); and further

Ψwv =

∞∑
h=0

∫ b

a
E
{(
β′⊥∆Xt(r)

) (
β′Xt+h(r)

)′}
dr

= β′⊥

∞∑
h=0

∫ b

a
E
{
ut(r)vt+h(r)

′} dr + β′⊥α
∞∑
h=0

∫ b

a
E
{
vt−1(r)vt+h(r)

′} dr
= β′⊥(Λuv + Γuv(0)) + β′⊥αΛvv. (46)
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Then, using the limit theory (44) and standard methods again, we obtain

β′⊥S10 =

n∑
t=1

∫ b

a

β′⊥Xt−1(r)√
n

∆Xt(r)
′

√
n

dr =

n∑
t=1

∫ b

a

β′⊥Xt−1(r)√
n

(
ut(r) + αvt−1(r)√

n

)′
dr

⇝
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′dr −
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drβ
(
α′β
)−1

α′

+

∞∑
h=1

∫ b

a
E
{(
β′⊥∆Xt(r)

)
ut+h(r)

′} dr + ∞∑
h=0

∫ b

a
E
{(
β′⊥∆Xt(r)

)
vt+h(r)

′α′} dr
=
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′dr
{
I − β

(
α′β
)−1

α′
}

+

∞∑
h=1

∫ b

a
E
{(
β′⊥∆Xt(r)

)
ut+h(r)

′} dr + ∞∑
h=0

∫ b

a
E
{(
β′⊥∆Xt(r)

)
vt+h(r)

′α′} dr
=
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drα⊥
(
β′⊥α⊥

)−1
β′⊥ +Ψ1

wu +Ψwvα
′,

since β (α′β)−1 α′ + α⊥ (β′⊥α⊥)
−1 β′⊥ = I (e.g., Johansen, 1995, p. 39). ■

Proof of Lemma 2: Let S (λ) = λS11 − S10S
−1
00 S01, so that the determinantal equation (17)

is |S (λ)| = 0. Defining Pn = [β, n−1/2β⊥] and using Lemma 1, we have∣∣P ′
n (S (λ))Pn

∣∣
=

∣∣∣∣∣
[
λβ′S11β λn−1/2β′S11β⊥

λn−1/2β′⊥S11β λn−1β′⊥S11β⊥

]
−

[
β′S10S

−1
00 S01β n−1/2β′S10S

−1
00 S01β⊥

n−1/2β′⊥S10S
−1
00 S01β n−1β′⊥S10S

−1
00 S01β⊥

]∣∣∣∣∣
⇝

∣∣∣∣∣
[
λΣββ 0

0 λ (α′
⊥β⊥)

−1 α′
⊥

(∫ b
a

∫ 1
0 Gu(p, r)Gu(p, r)

′dpdr
)
α⊥ (β′⊥α⊥)

−1

]
−

[
Σβ0Σ

−1
00 Σ0β 0

0 0

]∣∣∣∣∣
=
∣∣λΣββ − Σβ0Σ

−1
00 Σ0β

∣∣ ∣∣∣∣λ (α′
⊥β⊥

)−1
α′
⊥

(∫ b

a

∫ 1

0
Gu(p, r)Gu(p, r)

′dpdr

)
α⊥
(
β′⊥α⊥

)−1
∣∣∣∣ .

(47)

The determinantal equation

∣∣λΣββ − Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ (α′
⊥β⊥

)−1
α′
⊥

(∫ b

a

∫ 1

0
Gu(p, r)Gu(p, r)

′dpdr

)
α⊥
(
β′⊥α⊥

)−1
∣∣∣∣ = 0

has m− ℓ0 zero roots and ℓ0 positive roots given by the solutions of∣∣λΣββ − Σβ0Σ
−1
00 Σ0β

∣∣ = 0. (48)

Thus, the ℓ0 largest roots of (17) converge to the roots of (48) and the remainder converge to
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zero. Defining P = [β, β⊥], we have

∣∣∣P ′
(S (λ))P

∣∣∣ = ∣∣∣∣∣
[
β′S (λ)β β′S (λ)β⊥

β′⊥S (λ)β β′⊥S (λ)β⊥

]∣∣∣∣∣
=
∣∣β′S (λ)β

∣∣ ∣∣∣β′⊥ {S (λ)− S (λ)β
[
β′S (λ)β

]−1
β′S (λ)

}
β⊥

∣∣∣ . (49)

As in Johansen (1995, theorem 11.1), we let n → ∞ and λ → 0 such that ρ = nλ = Op (1) .

Using Lemma 1, we have

β′S (λ)β = ρn−1β′S11β − β′S10S
−1
00 S01β = −Σβ0Σ

−1
00 Σ0β + op (1) ,

β′⊥S (λ)β⊥ = ρn−1β′⊥S11β⊥ − β′⊥S10S
−1
00 S01β⊥, and

β′⊥S (λ)β = ρn−1β′⊥S11β − β′⊥S10S
−1
00 S01β

= −β′⊥S10S−1
00 S01β + op (1) . (50)

Define

Nn = S−1
00 − S−1

00 S01β
(
β′S10S

−1
00 S01β

)
β′S10S

−1
00 .

Using Lemma 1, (38) and (39), we have

Nn = Σ−1
00 − Σ−1

00 Σ0β

(
Σβ0Σ

−1
00 Σ0β

)
Σβ0Σ

−1
00 + op (1)

= α̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥ + op (1) . (51)

By (50) and (51) , the second factor in (49) becomes

β′⊥

{
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}
β⊥

= ρn−1β′⊥S11β⊥ − β′⊥S10NnS01β⊥ + op (1)

= ρn−1β′⊥S11β⊥ − β′⊥S10α̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥S01β⊥ + op (1) . (52)

By Lemma 1, we have

β′⊥

{
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}
β⊥

⇝ ρ
(
α′
⊥β⊥

)−1
α′
⊥

(∫ b

a

∫ 1

0
Gu(p, r)Gu(p, r)

′dpdr

)
α⊥
(
β′⊥α⊥

)−1

−
{(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
Gu(p, r)dGu(p, r)

′drα⊥
(
β′⊥α⊥

)−1
β′⊥ +Ψ

}
× α̃⊥

(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥

{
β⊥
(
α′
⊥β⊥

)−1
α′
⊥

∫ b

a

∫ 1

0
dGu(p, r)Gu(p, r)

′drα⊥
(
β′⊥α⊥

)−1
+Ψ′

}
= ρ

∫ b

a

∫ 1

0
G̃u(p, r)G̃u(p, r)

′dpdr −
(∫ b

a

∫ 1

0
G̃u(p, r)dG̃u(p, r)

′drβ′⊥ +Ψ

)
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× α̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥

(
β⊥

∫ b

a

∫ 1

0
dG̃u(p, r)G̃u(p, r)

′dr +Ψ′
)
, (53)

where Ψ = Ψ1
wu +Ψwvα

′ and G̃u(p, r) = (α′
⊥β⊥)

−1 α′
⊥Gu(p, r) is the two parameter (m− ℓ0)-

vector process defined in (29) with long run covariance matrix kernel given in (30).

Equations (49), (52) and (53) reveal that when normalized by n them−ℓ0 smallest solutions

of (17) converge to those of the equation∣∣∣∣ρ ∫ b

a

∫ 1

0
G̃u(p, r)G̃u(p, r)

′dpdr − Ãuα̃⊥
(
α̃′
⊥Σ00α̃⊥

)−1
α̃′
⊥Ã

′
u

∣∣∣∣ = 0, (54)

where Ãu =
(∫ b

a

∫ 1
0 G̃u(p, r)dG̃u(p, r)

′drβ′⊥ +Ψ
)
and G̃u (p, r) = (α′

⊥β⊥)
−1 α′

⊥Gu(p, r) as stated.

■

Proof of Theorem 1

The proof follows the same lines as CP(2009) with modifications to take account of the limit

theory and selection criteria based on the use of curve time series regression.

Part (a) Let IC (ℓ0) denote the information criterion defined in (3) when the true cointegration

rank is ℓ0. Cointegrating rank is estimated by minimizing IC (ℓ) for 0 ≤ ℓ ≤ m; and consistency

is checked by comparing IC (ℓ) with IC (ℓ0) for any ℓ ̸= ℓ0 as n→ ∞.

When ℓ > ℓ0, using (3) and (21) , we have

IC (ℓ)− IC (ℓ0) =
ℓ∑

i=ℓ0+1

log
(
1− λ̂i

)
+ Cnn

−1
[(
2mℓ− ℓ2

)
−
(
2mℓ0 − ℓ20

)]
=

ℓ∑
i=ℓ0+1

log
(
1− λ̂i

)
+ Cnn

−1 (ℓ− ℓ0) (2m− ℓ− ℓ0) . (55)

For consistent order selection with ℓ̂→ ℓ0 with probability 1 as n→ ∞ we need

ℓ∑
i=ℓ0+1

log
(
1− λ̂i

)
+ Cnn

−1 (r − ℓ0) (2m− r − ℓ0) > 0, (56)

with probability 1 as n → ∞ for any ℓ0 < ℓ < m. From (29) we know that λ̂i is Op

(
n−1

)
for

all i = ℓ0 + 1, ..., r. Expanding log
(
1− λ̂i

)
, we have

ℓ∑
i=ℓ0+1

log
(
1− λ̂i

)
= −

ℓ∑
i=ℓ0+1

λ̂i + op
(
n−1

)
= Op

(
n−1

)
. (57)
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Using (57) and Lemma 2, we then have

n

 ℓ∑
i=ℓ0+1

log
(
1− λ̂i

)
+ Cnn

−1 (ℓ− ℓ0) (2m− ℓ− ℓ0)


= −

ℓ∑
i=ℓ0+1

nλ̂i + Cn (ℓ− ℓ0) (2m− ℓ− ℓ0) + op (1) , (58)

where nλ̂i for i = ℓ0+1, ..., ℓ are Op (1) . Hence, as long as Cn → ∞ as n→ ∞, the second term

on the right side of (58) dominates, which leads to (56) as n → ∞. So whenever the penalty

coefficient satisfies Cn → ∞, cointegrating rank ℓ > ℓ0 will never be selected asymptotically.

So too few unit roots will never be selected in the system in such cases. Thus, the criteria BIC

and HQ will never select excessive cointegrating rank as n → ∞. On the other hand the AIC

penalty is fixed at Cn = 2 for all n, so we may expect AIC to select models with excessive

cointegrating rank with positive probability as n → ∞. This corresponds to a more liberally

parameterized system. Note further that if Cn → ∞ very slowly as n → ∞ it may be that

extremely large samples are needed to ensure (56) holds.

When ℓ < ℓ0,

IC (ℓ)− IC (ℓ0)

= −
ℓ0∑

i=ℓ+1

log
(
1− λ̂i

)
+ Cnn

−1
((
2mℓ− ℓ2

)
−
(
2mℓ0 − ℓ20

))
= −

ℓ0∑
i=ℓ+1

log
(
1− λ̂i

)
+ Cnn

−1 (ℓ− ℓ0) (2m− ℓ− ℓ0) . (59)

To consistently select ℓ0 with probability 1 as n→ ∞, we need

−
ℓ0∑

i=ℓ+1

log
(
1− λ̂i

)
+ Cnn

−1 (r − ℓ0) (2m− r − ℓ0) > 0, as n→ ∞, (60)

whenever ℓ < ℓ0. By definition in (17) and from Lemma 2, we know that 0 < λ̂i < 1 for

i = ℓ+1, ..., ℓ0. So the first term on the right side of (59) is a positive number that is bounded

away from 0 and the second term on the right side of (59) is a negative number of order

O
(
Cnn

−1
)
. In order for (60) to hold as n→ ∞, we therefore require only that Cn/n = o (1) ,

i.e. that the penalty coefficient must pass to infinity slower than n. For each of the criteria

AIC, BIC and HQ, the penalty coefficient Cn → ∞ slower than n. These three information

criteria therefore select models with insufficient cointegrating rank (or excess unit roots) with

probability zero asymptotically.

Combining these results for ℓ > ℓ0 and ℓ < ℓ0, we deduce that use of the information

criterion leads to consistent estimation of cointegration rank provided the penalty coefficient
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satisfies Cn → ∞ and Cn/n→ 0 as n→ ∞.

Part (b) Under AIC, Cn = 2. The limiting probability that AIC(ℓ0) ≤ AIC(ℓ) for some

ℓ ≤ ℓ0 is given by

lim
n→∞

P {AIC(ℓ0) ≤ AIC(ℓ)}

= lim
n→∞

P

{
−

ℓ0∑
i=ℓ+1

log
(
1− λ̂i

)
+ 2n−1 (ℓ− ℓ0) (2m− ℓ− ℓ0) > 0

}

= lim
n→∞

P

{
ℓ0∑

i=ℓ+1

log
(
1− λ̂i

)
< 2n−1 (ℓ− ℓ0) (2m− ℓ− ℓ0)

}
= 1, (61)

because the λi with 0 < λi < 1 for i = ℓ+1, ..., ℓ0 are the ℓ0 − ℓ smallest solutions to (28) and

then
∑ℓ0

i=ℓ+1 log (1− λi) < 0, giving (61). Hence, when ℓ0 is the true rank, AIC will not select

any ℓ < ℓ0 as n→ ∞, i.e.,

lim
n→∞

P
(
ℓ̂AIC = ℓ|ℓ < ℓ0

)
= 0. (62)

Let ξℓ0+1 > ... > ξm be the ordered roots of the limiting determinantal equation (29).

When ℓ′ > ℓ ≥ ℓ0, AIC(ℓ) < AIC(ℓ′) iff

ℓ′∑
i=ℓ+1

log
(
1− λ̂i

)
+ Cnn

−1
(
ℓ′ − ℓ

) (
2m− ℓ′ − ℓ

)
> 0,

so that the limiting probability that ℓ will be chosen over ℓ′ is

lim
n→∞

P
{
AIC(ℓ) < AIC(ℓ′)

}
= lim

n→∞
P

{
−

ℓ′∑
i=ℓ+1

nλ̂i + 2
(
ℓ′ − ℓ

) (
2m− ℓ′ − ℓ

)
> 0

}

= P

{
ℓ′∑

i=ℓ+1

ξi < 2
(
ℓ′ − ℓ

) (
2m− ℓ′ − ℓ

)}
. (63)

The probability that AIC will select rank ℓ is then equivalent to the probability that ℓ is chosen

over any other ℓ′ ≥ ℓ0 for which (63) holds. This probability is

lim
n→∞

P
(
ℓ̂AIC = ℓ > ℓ0

)
= P

{(
m
∩

ℓ′=ℓ+1

{
ℓ′∑

i=ℓ+1

ξi < 2
(
ℓ′ − ℓ

) (
2m− ℓ′ − ℓ

)})
∩

(
ℓ−1
∩

ℓ′=ℓ0

{
ℓ∑

i=ℓ′+1

ξi > 2
(
ℓ− ℓ′

) (
2m− ℓ− ℓ′

)})}
, (64)

where the first part is the limiting probability that ℓ is chosen over all ℓ′ > ℓ and the other

part is the probability that ℓ is chosen over all ℓ0 ≤ ℓ′ < ℓ. Any rank less than ℓ0 is not taken
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into account here because those ranks are always dominated in the limit by ℓ0 from (62).

The probability that the true cointegrating rank ℓ0 is consistently estimated by AIC is

lim
n→∞

P
(
ℓ̂AIC = ℓ0

)
= P

 m
∩

ℓ=ℓ0+1


ℓ∑

i=ℓ0+1

ξi < 2 (ℓ− ℓ0) (2m− ℓ− ℓ0)


 . (65)

This is a special case of (64) with ℓ = ℓ0. ■

The curve time series unit root case

When the system order is m = 1, the model (1) is simply a scalar curve time series process

Xt(r) = γXt−1+ut(r) with parameter γ = 1+αβ. The procedure then reduces to a mechanism

for unit root testing of γ = 1 for the curve time series observations Xt(r). In this case the

model has a unit root when α = β = αβ = 0, i.e., when ℓ0 = 0 and there is no stationary root.

From (65) we have

lim
n→∞

P
(
ℓ̂AIC = 1|ℓ0 = 0

)
= P {ξ1 > 2} = 1− P {ξ1 < 2} and (66)

lim
n→∞

P
(
ℓ̂AIC = 0|ℓ0 = 0

)
= P {ξ1 < 2} , (67)

where ξ1 is the solution to (29) when m = 1 and ℓ0 = 0. In this scalar curve time series case

under the null of a unit root with γ = 1, the limiting root ξ1 takes the explicit form

ξ1 =

(∫ b
a

∫ 1
0 G̃u(p, r)dG̃u(p, r)dr +Ψ

)2
∫ b
a

∫ 1
0 G̃u(p, r)2dpdrΣ00

=

(∫ b
a

∫ 1
0 Gu(p, r)dGu(p, r)dr + ψ

)2
∫ b
a

∫ 1
0 Gu(p, r)2dpdrΣ00

, (68)

as reported in (35). We note the following simplifications that apply in this scalar unit root

case: (i) with α = β = 0 the orthonormal complements become α⊥ = 1, β⊥ = 1 so that

G̃u (p, r) = (α′
⊥β⊥)

−1 α′
⊥Gu(p, r) = Gu(p, r), which is now a scalar two parameter Gaussian

process; (ii) the bias parameter in the numerator of (68) is ψ =
∑∞

j=1

∫ b
a Eut(r)ut+h(r)dr, a

scalar version of Ψ1
wu in (22) and the composite one-sided average long run covariance matrix

Ψ = Ψ1
wu + Ψwvα

′ in (29); and (iii) the matrix α̃⊥ (α̃′
⊥Σ00α̃⊥)

−1 α̃′
⊥ in (29) reduces to the

simple scalar Σ−1
00 , with Σ00 =

∫ b
a Eut(r)2dr being the average variance of the scalar curve

error process ut(r).

If ℓ0 = 1 and the model is stationary with |γ| = |1 + αβ| < 1, we have

lim
n→∞

P
(
ℓ̂AIC = 0|ℓ0 = 1

)
= 0 and lim

n→∞
P
(
ℓ̂AIC = 1|ℓ0 = 1

)
= 1, (69)

using (61) . The results (66) – (69) for the scalar case case m = 1 are curve time series

versions of those in Phillips (2008) for simple time series autoregression and unit root testing

by use of AIC selection. Direct methods for testing the presence of a unit root in curve time

series autoregression have been developed in recent work by the author (Phillips, 2024), which
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studies curve time series unit root autoregression limit theory and provides extensions to such

regressions of the coefficient and t-ratio semiparametric unit root tests in Phillips (1987) as

well as conventional ADF regression tests. ■

9 A: Simulation results – tables

Table 1: Cointegrating rank selection in a time series reduced rank regression with ARMA(1,1)
equation errors ut for sample sizes n = 50 and n = 100

n = 50 n = 100

ℓ0 = 0

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.22 0.68 0.09 0.20 0.70 0.10
BIC 0.68 0.33 0.01 0.75 0.25 0.00
HQ 0.09 0.73 0.17 0.11 0.73 0.16
Log(HQ) 0.00 0.46 0.54 0.00 0.52 0.48

ℓ0 = 1

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.83 0.17 0.00 0.82 0.18
BIC 0.00 0.96 0.04 0.00 0.97 0.03
HQ 0.00 0.73 0.27 0.00 0.76 0.24
Log(HQ) 0.00 0.37 0.63 0.00 0.43 0.57

ℓ0 = 2

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.14 0.86 0.00 0.00 1.00
BIC 0.05 0.40 0.54 0.00 0.03 0.97
HQ 0.00 0.08 0.92 0.00 0.00 1.00
Log(HQ) 0.00 0.01 0.99 0.00 0.00 1.00

31



Table 2: Cointegrating rank selection in a time series reduced rank regression with ARMA(1,1)
equation errors ut for sample sizes n = 250 and n = 1000

n = 250 n = 1000

ℓ0 = 0

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.20 0.71 0.09 0.20 0.72 0.08
BIC 0.82 0.18 0.00 0.91 0.09 0.00
HQ 0.15 0.73 0.12 0.19 0.73 0.08
Log(HQ) 0.00 0.59 0.41 0.01 0.62 0.37

ℓ0 = 1

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.83 0.17 0.00 0.82 0.18
BIC 0.00 0.98 0.02 0.00 0.99 0.01
HQ 0.00 0.79 0.21 0.00 0.82 0.18
Log(HQ) 0.00 0.49 0.51 0.00 0.53 0.47

ℓ0 = 2

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.00 1.00 0.00 0.00 1.00
BIC 0.00 0.00 1.00 0.00 0.00 1.00
HQ 0.00 0.00 1.00 0.00 0.00 1.00
Log(HQ) 0.00 0.00 1.00 0.00 0.00 1.00
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Table 3: Cointegrating rank selection in a curve time series reduced rank regression with
ARMA(1,1) cross section curve errors ut(r), r ∈ [0, 1] for sample sizes n = 50 and n = 100

n = 50 n = 100

ℓ0 = 0

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.77 0.22 0.01 0.77 0.22 0.01
BIC 0.97 0.03 0.00 0.98 0.02 0.00
HQ 0.56 0.42 0.02 0.63 0.34 0.03
Log(HQ) 0.04 0.60 0.36 0.07 0.67 0.26

ℓ0 = 1

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.83 0.16 0.00 0.96 0.04
BIC 0.00 0.96 0.04 0.00 1.00 0.00
HQ 0.00 0.73 0.27 0.00 0.93 0.07
Log(HQ) 0.00 0.37 0.63 0.00 0.57 0.43

ℓ0 = 2

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.14 0.86 0.00 0.00 1.00
BIC 0.05 0.40 0.54 0.00 0.01 0.99
HQ 0.00 0.08 0.92 0.00 0.00 1.00
Log(HQ) 0.00 0.01 0.99 0.00 0.00 1.00
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Table 4: Cointegrating rank selection in a curve time series reduced rank regression with
ARMA(1,1) cross section curve errors ut(r), r ∈ [0, 1] for sample sizes n = 250 and n = 1000

n = 250 n = 1000

ℓ0 = 0

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.77 0.22 0.01 0.78 0.21 0.01
BIC 0.99 0.01 0.00 1.00 0.00 0.00
HQ 0.70 0.28 0.02 0.75 0.23 0.02
Log(HQ) 0.10 0.68 0.22 0.14 0.69 0.17

ℓ0 = 1

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.96 0.04 0.00 0.97 0.03
BIC 0.00 1.00 0.00 0.00 1.00 0.00
HQ 0.00 0.94 0.06 0.00 0.96 0.04
Log(HQ) 0.00 0.66 0.34 0.00 0.71 0.29

ℓ0 = 2

ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2 ℓ̂ = 0 ℓ̂ = 1 ℓ̂ = 2
AIC 0.00 0.00 1.00 0.00 0.00 1.00
BIC 0.00 0.00 1.00 0.00 0.00 1.00
HQ 0.00 0.00 1.00 0.00 0.00 1.00
Log(HQ) 0.00 0.00 1.00 0.00 0.00 1.00

34



10 B: Figures
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Figure 1: Smoothed Engle curves for ageing seniors in the Singapore Life Panel

Figure 2: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
time series reduced rank regression with ARMA(1) time series errors and n = 50
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Figure 3: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
time series reduced rank regression with ARMA(1,1) time series errors and n = 100
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Figure 4: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
time series reduced rank regression with ARMA(1,1) time series errors and n = 500
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Figure 5: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
curve time series reduced rank regression with BM curve ARMA(1,1) time series errors and
n = 50
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Figure 6: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
curve time series reduced rank regression with BM curve ARMA(1,1) time series errors and
n = 100

39



Figure 7: Selection probabilities by AIC, BIC, HQ and log(HQ) for cointegrating rank in a
curve time series reduced rank regression with BM curve ARMA(1,1) time series errors and
n = 500
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