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Abstract

In digital advertising, the allocation of sponsored search, sponsored product, or

display advertisements is mediated by auctions. The generation of bids in these auc-

tions for attention is increasingly supported by auto-bidding algorithms and platform-

provided data. We analyze the equilibrium properties of a sequence of increasingly

sophisticated auto-bidding algorithms. First, we consider the equilibrium bidding be-

havior of an individual advertiser who controls the auto-bidding algorithm through

the choice of their budget. Second, we examine the interaction when all bidders use

budget-controlled bidding algorithms. Finally, we derive the bidding algorithm that

maximizes the platform’s revenue while ensuring all advertisers continue to participate.
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1 Introduction

1.1 Motivation and Results

The allocation of digital advertisements is increasingly conducted through auctions with

automated bidding agents. Advertisers provide high-level constraints (such as total spending

or a return-on-investment target) to the digital platform that operates the auction, and the

platform then determines specific bids for each impression and viewer via an automated (or

algorithmic) bidding protocol. These approaches are now the dominant mode of advertiser

interaction with major digital platforms like Google, Meta, and Amazon (Aggarwal et al.

2024). Most often, the auto-bidding systems are offered directly by the digital platforms

that run the auctions, although they can also be provided as a service by third parties

that manage bidding on advertisers’ behalf. Advertisers embrace these protocols because

they reduce the complexity of handling thousands or millions of keyword- or user-level bids.

In turn, the platforms’ bidding algorithms harness real-time consumer data and large-scale

machine learning to optimize each advertiser’s campaign.

Automated bidding protocols rely on the large datasets that digital platforms accumu-

late over time. These datasets consist of past impressions and advertiser–viewer interactions,

which help identify and monetize the most valuable matches. The interplay between algorith-

mic and data-augmented bidding reveals two distinct gatekeeper roles for digital platforms.

First, the platform acts as a competition gatekeeper among advertisers, with its auction al-

gorithm determining which advertisers get listed and how they are ranked. Second, it serves

as an information gatekeeper, using past information and current bids to allocate positions

in a way that creates new matches and further refines the platform’s data for future allo-

cations. In essence, the proprietary, data-driven bidding system ties these two gatekeeping

roles together. Trained on past impressions, the auto-bidding system creates new impressions

in real time. From the advertiser’s perspective, this setup produces a managed advertising

campaign subject to the advertiser’s stated constraints. By managing campaigns through

bids and data, the platform effectively controls which products and viewers get matched.

The objective of the current paper is to develop the details of the auctions and auto-

bidding protocols that provide the market-design foundations of a managed advertising cam-

paign, thereby clarifying the separate role of the auction engine that powers the matching

engine. We focus on algorithmic bidding protocols–also called auto-bidding agents–that
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let advertisers specify higher-level targets such as budgets or return-on-investment require-

ments and then delegate the actual bidding over many impressions and keywords to the

auto-bidding agents. We characterize the properties of auto-bidding mechanisms that ad-

dress the platform’s design objectives. In particular, we show that such mechanisms preserve

standard auction logic—for example, awarding an impression to the highest bidder under a

second-price or first-price payment—while guaranteeing that each advertiser’s total expen-

diture remains within its stated budget.

In earlier work, Bergemann & Bonatti (2024) and Bergemann, Bonatti & Wu (2025)

studied how managed advertising campaigns monetize the match between viewer and product

by selling impressions. We defined such campaigns as protocols that form matches based on

past data and current bids, focusing primarily on the matching design and downplaying the

specifics of the auction design. The central finding was that these centralized mechanisms

enhance platform profits and push equilibrium product prices upward. However, advertisers’

budgets appeared mainly as coarse, aggregate constraints that mapped directly to advertiser

payoffs under the platform’s chosen mechanism, without explicitly modeling the intermediate

steps of bidding and bid-based ranking.

In Bergemann & Bonatti (2024), we focused on multi-product sellers, demonstrating

that the optimal managed advertising campaign induces product steering that facilitates

second-degree price discrimination. By leveraging data on past interactions, the platform

can efficiently match products to viewers’ preferences. Equipped with extensive consumer-

level information, the platform tailors not only which advertiser is displayed to each user

but also which product and price each viewer is offered.

In Bergemann, Bonatti & Wu (2025), our focus turned to single-product sellers, showing

that the optimal managed advertising campaign delivers personalized product discounts—effectively

a form of third-degree price discrimination. The principal goal of that work was to identify

the managed advertising campaign maximizing the platform’s revenue, subject to advertisers’

participation constraints and, in particular, their ability to reach consumers on competing

sales channels.

Here, in contrast, we develop an equilibrium model of these managed campaigns that

incorporates both budgets and bidding strategies. Our framework explicitly ties each adver-

tiser’s budget to a formal bidding mechanism in which total spending is capped, yet each

impression-level bid adjusts to user-specific factors. In other words, we connect (i) a managed
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campaign, which internally enforces budget constraints, with (ii) a visible shadow-auction,

where an advertiser’s effective bid is a function of its chosen budget. This formulation cap-

tures the core idea of auto-bidding with pacing : at each impression, the platform sets or scales

the advertiser’s bid to stay within the daily (or monthly) spend constraint while seeking to

maximize that advertiser’s return.

Formalizing the link between advertisers’ budgets and real-time bidding explicitly is es-

sential for two main reasons. First, nearly all major platforms implement budget-based

auto-bidding, yet classical auction theory (without budgets) often struggles to predict ad-

vertiser behavior in modern, large-scale ad systems. Second, while earlier studies such as

Bergemann, Bonatti & Wu (2025) largely treat the mapping from budgets to per-impression

bids as a “black box,” our mechanism models the intermediate pacing or shadow-price step

directly. This fuller view shows precisely how an advertiser’s total spending constraint trans-

lates into a continuum of value-dependent bids.

The perspective that we offer here departs from much of the recent work on auto-bidding

agents in three main respects. First, we deliberately set aside the explicit dynamic dimen-

sion—how a budget is gradually spent over many auction events. Although budgets are

stock variables and impressions arrive as a flow, we adopt a steady-state (implicitly static)

view. The auto-bidding protocol must keep total expected spending below or equal to the

declared budget over a given distribution of impressions, items, and payments. Second, we

enlarge the standard notion of a bidding equilibrium to accommodate algorithmic bidding.

The auto-bidding algorithm effectively lets each advertiser commit to a protocol mapping

budgets into bids. In this context, the equilibrium notion must capture not only that the

resulting bids are optimal given a budget, but also that advertisers choose their budget con-

straints optimally. Third, rather than focusing on a single exogenous bidding protocol, we

investigate which auto-bidding protocol maximizes the digital platform’s revenue, in contrast

to much of the literature that analyzes protocols maximizing social surplus or advertisers’

net surplus.
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1.2 Related Literature

We study the role of bidding algorithms, or automated bidding strategies, in matching ad-

vertisers with viewers on digital platforms. The rising prevalence of auto-bidding in online

advertising has spurred substantial research, particularly in theoretical computer science

and operations research (see Aggarwal et al. (2024) for a survey). The typical approach is

to design algorithms that generate bids subject to advertiser-defined constraints that apply

collectively over numerous auction events. For instance, one may seek to maximize the adver-

tiser’s total value of matches given a budget constraint or a target cost per acquisition. The

resulting algorithm then issues a sequence of bids across different times, websites, impres-

sions, and users, striving to meet the global constraint. Because the arrival of impressions

and viewers is random, the algorithm must react in real time with incomplete knowledge of

future events (see, e.g., Balseiro et al. 2015, Balseiro & Gur 2019). Often, the best practical

solutions involve approximate methods or performance bounds rather than an exact ex-post

optimum.

Given the prevalence of bidding agents, a natural question is how best to design auctions

when auto-bidders are present, as explored by Golrezaei et al. (2021) and Balseiro et al.

(2021). Unlike those papers, which treat the algorithm’s design as exogenous, we examine

how to optimize the auction design when the seller (e.g., a platform like Google or Meta)

controls both the auction rules and the bidding algorithms.

Although algorithmic approaches to auctions remain underexplored, algorithmic pricing

in strategic settings has generated considerable discussion (Johnson et al. 2023, Calvano

et al. 2020, Brown & MacKay 2023, Asker et al. 2024). Johnson et al. (2023) show how

AI-driven pricing strategies on platforms can reward price cuts with increased exposure,

boosting consumer surplus and undermining algorithmic collusion. Calvano et al. (2020)

provide experimental evidence that repeated oligopoly settings with AI pricing can foster

tacit collusion, which emerges from self-enforcing punishment-and-reward schemes. Brown

& MacKay (2023) demonstrate that high-frequency pricing algorithms help online retailers

sustain higher prices and amplify merger effects. Finally, Asker et al. (2024) distinguish

between asynchronous learning (which may converge to monopoly prices) and synchronous

learning (which is more likely to produce competitive pricing). They find that asynchronous

learning, which updates only based on results of past actions, leads to pricing close to

monopoly levels, whereas synchronous learning, which accounts for counterfactuals, results
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in more competitive pricing.

By contrast, our focus here as well as in the earlier contributions, Bergemann & Bonatti

(2024) and Bergemann, Bonatti & Wu (2025), is on algorithmic tools provided by a central

player, rather than separate algorithms independently introduced by multiple parties. This

centralization potentially heightens the risk of collusion through coordination, even if each

advertiser’s algorithm nominally responds only to that advertiser’s own data and inputs.

Another key difference from much of the auto-bidding literature (and from studies of collusion

by algorithm) is that we explicitly allow for competition through other sales channels outside

the platform. Each advertiser thus retains an outside option, shaping how it assesses the

platform’s inside option and responds strategically to the central auto-bidding algorithm.

Our analysis also complements the literature on auto-bidding and auctions with bud-

get constraints. Pai & Vohra (2014), for instance, demonstrate that standard auction for-

mats often fail to maximize revenue under budget limitations, and they propose a revenue-

maximizing mechanism that pools bidders strategically and distorts allocations to heighten

competition. Crucially, the top bidder may not always be awarded the item outright, and

standard formats (first-price or second-price) are generally suboptimal when buyers’ budget

constraints are private information.

Recent work continues to investigate how algorithmic decision-making and platform-

driven interventions shape digital markets. Musolff (2024) studies algorithmic pricing in

e-commerce and finds that although repricing tools may initially drive prices down, sell-

ers eventually engage in strategic resets that raise prices, enabling tacit collusion. Like-

wise, Lee & Musolff (2021) examine Amazon’s recommendation algorithms, showing that

platform-guided search boosts both price elasticity and competition, even as it modestly

favors Amazon’s own products. Their results suggest that self-preferencing need not un-

dermine consumer welfare; in fact, it can increase overall surplus by directing consumers to

more suitable offers.
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2 Model

We consider a single digital platform and J advertisers, indexed by i = 1, . . . , J . A unit

continuum of consumers visit the platform. Each consumer is characterized by a value

profile

v =
(
v1, v2, . . . , vJ

)
∈ RJ

+,

where vi represents the consumer’s willingness to pay for the product or service of advertiser

i. Each value vi is distributed identically and independently over an interval in R+ according

to Fi (vi) and thus the joint distribution of v is given by

F (v) =
∏
i

Fi(vi).

The associated density function is given by fi(vi).

Advertisers and Budgets Each advertiser i chooses a nonnegative budget Ti ∈ R+ to

allocate on the platform. An advertiser’s total spending cannot exceed this budget. After

the advertisers set budgets T = (T1, . . . , TJ), the platform determines how to bid for each

consumer type v on behalf of each advertiser.

Mechanism There is a single sponsored slot available for each impression of a viewer. The

platform operates a mechanism that translates each value and budgets profile (v, T ) into a

shadow bid bi(v, T ) for advertiser i. Conditional on these bids, the platform awards the

sponsored placement to the highest-bidding advertiser and charges the winner a payment.

At this level of generality, we allow the bid of advertiser to be informed by the entire vector

of values v. In the analysis, we start in Section 3 with a bidding algorithm that generates

the bids for advertiser i with information about vi alone. We denote by pi(v) the payment

that advertiser i makes if it wins consumer v.

We require the platform’s mechanism (i.e., bidding and payment functions) to be such

that each advertiser i’s payment does not exceed their submitted budget Ti. Thus, letting

Si(T ) ≜ {v : bi(v, T ) = max
k

bk(v, T )}

denote the set of consumers won by advertiser i, we require∫
Si(T )

pi(v) dF (v) ≤ Ti. (1)
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Our leading example is that of a second price auction, where bids are nonetheless con-

strained by the budget and thus do not necessarily follow the standard logic of bidding equal

to the value. In this case, the payment of the winning bidder is

pi(v) = max
k ̸=i

{bk(v, T )} .

In another example, the platform chooses a bidding strategy for each advertiser to maximize

their expected profits given the realized bid distribution of the other advertisers.

We abstract from the downstream pricing mechanisms and assume for now that the

advertiser is able to extract the consumer’s full willingness to pay. Hence, the ex-post payoff

for advertiser i given consumer type v is

vi − pi(v, T ),

if i is assigned consumer v, and zero otherwise.

The expected profit of advertiser i under the budget profile T and bid strategies b (which

determine the market segments S), is then given by

Πi(Ti, T−i) =

∫
Si(T )

(
vi − pi(v, T )

)
dF (v).

Discussion of Assumptions and Real-World Auto-bidding Our modeling approach

posits that an auto-bidding system runs the detailed auction-level decisions for each adver-

tiser. In practice, platforms like Google, Meta, and Amazon offer advertisers a simplified

interface where the advertiser specifies a budget, and the platform then determines individual-

ized bids across a heterogeneous stream of potential impressions. This structure is consistent

with our mechanism that translates (v, Ti) into an effective bid bi(v;Ti). Empirical evidence

shows that most advertisers adopt such delegated solutions because it eliminates the need

to micromanage bids across thousands or millions of auctions (see also the discussion in

Aggarwal et al. 2024).

In line with Bergemann, Bonatti & Wu (2025), we let the platform fully observe each

consumer’s value profile v. In reality, modern advertising platforms use extensive consumer

data to predict relevant signals, such as click propensity or expected conversions, which proxy

for willingness to pay. Our model interprets these advanced machine-learning predictions as

the {vi}. Consequently, we allow the platform to condition each advertiser’s (auto-generated)

bid on the entire vector v. As Bergemann, Bonatti & Wu (2025) underscore, the ability
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to finely segment users and tailor bids or prices is a central feature of digital advertising

markets. In a model of competing heterogeneous advertisers (and products) as analyzed here,

Bergemann, Brooks & Morris (2025) show how the shape of the information can influence

the distribution of the social surplus even in the absence of an intermediary platform.

Finally, each advertiser’s ex-ante choice of a budget {Ti} arises naturally from institu-

tional features. Many real-world platforms (e.g. Google Ads or Facebook Ads) prompt ad-

vertisers to enter a daily or monthly spend cap, or to adopt a particular return-on-investment

target. The platform’s auto-bidding system then implements the campaign with continuous

pacing (Aggarwal et al. 2024). This reduced-form approach aligns with how leading digital

platforms convert high-level constraints (“target spend” or “target CPA”) into a bidding

policy.

3 Bidding with Budgets and Data

We begin by analyzing a second-price auction with a basic bidding algorithm that converts

each bidder’s chosen budget into a distribution of bids. This automated algorithm ensures

that an advertiser’s budget translates into bids across a range of auctions. In particular, it

(i) maximizes the advertiser’s value subject to the chosen budget and (ii) respects the budget

constraint by keeping the advertiser’s total expected payment across all auctions below its

budget. Thus, the budget provided by the advertiser effectively supports a managed adver-

tising campaign over multiple auctions. Given this specific bidding algorithm, we determine

the optimal budget for an individual advertiser. We then determine the equilibrium choice

of all bidders, where each bidder takes the distribution of bids as given. We call this the

“bid equilibrium.”

We next extend the analysis by examining the budgeting behavior of bidders who all

use the same bidding algorithm. Under this assumption, we can explore a more advanced

equilibrium concept. Specifically, if the strategic decisions lie in choosing budgets rather

than individual bids, and if everyone employs the same auto-bidding procedure, then we

can ask how those budgets are determined in equilibrium. We refer to this as the “budget

equilibrium.”

Because advertisers vary widely—some bid manually, others employ third-party services,

and still others rely on the platform’s own auto-bidding tools—the literature on auto-bidding
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has mostly focused on bid equilibria. However, as platform-provided bidding algorithms

become increasingly popular, we want to understand how widespread adoption of a single

class of algorithm affects bidding outcomes. As we will see, the budget equilibrium framework

allows bidders to engage in more nuanced strategic behavior. As the auto-bidding algorithm

commits each side to a specific mapping from budgets to bids, any particular budget choice

by bidder j influences how other bidders’ budgets translate into their bids.

3.1 Pacing Algorithm

In the pacing algorithm, the auction platform transforms the budget of an individual bidder

into a distribution of bids that are adapted to the value realization vi of the bidder. More

formally, the algorithm chooses a bid function as function of the budget Ti and the realized

value vi for each auction event:

bi : Vi × Ti → R+. (2)

In order to describe the budget constraint for bidder i explicitly, we introduce the bid

distribution by the other bidders, −i. In fact, it suffices to consider the distribution of the

highest bid among the remaining bidders −i, denoted by G−i (b−i) The distribution has a

support given by [
b−i, b−i

]
,

with 0 ≤ b−i < b−i < ∞. The bid b−i is the bid that bidder i has to beat in order to win the

auction. If the other bidders had bid their true values, then the support of the bids would of

course coincide with the support of the values, but we do not assume truthful bidding from

the outset. We assume that this first order statistic has finite expectation:∫
b−idG−i (b−i) ≜ Bi < ∞.

The expectation Bi of the highest competing bid against bidder i is the maximal expected

payment of bidder i in a second price auction.

Lemma 1 (Maximal Spend Budget)

Given a distribution of competing bids G−i (b−i), there is a maximal budget that any bidding

algorithm can spend for bidder i

Ti = Bi.
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Proof. Given the rules of the second price auction, the payment of the winning bidder

i is the highest bid among the competing bidders, b−i. By bidding sufficiently high, bidder

i wins all impressions and pays the second-price each time; hence the maximum feasible

budget to be fully spent is indeed the expectation of that highest competing bid, determined

by the distribution G−i(b−i).

With a budget of Bi bidder i wins all auction events but the outcome may be less than

desirable for bidder i since they may bid for an item more than the value vi that they assign

to the item. Now for any budget Ti < Bi, a bidding algorithm determines what is the least

expensive way to bid to satisfy the budget constraint while maximizing the net utility of

bidder i:

max
bi(·,Ti)

∫ ∞

0

∫ bi(v,Ti)

0

(vi − b−i) g−i (b−i) fi (vi) dvi (3)

subject to the budget constraint given by∫ ∞

0

∫ bi(vi,Ti)

0

b−ig−i (b−i) fi (vi) dvi ≤ Ti. (4)

Lemma 2 (Optimal Pacing Algorithm)

Given a distribution of competing bids G−i (b−i), the bidding algorithm which maximizes the

bidder’s net utility is given by constant fraction of the value:

bi (vi, Ti) = ki · vi.

Proof. This is a constrained optimization problem which can be solved pointwise for every

vi of the bidder identifying the optimal choice b (vi, Ti). The resulting first order condition

is:

(vi − bi (vi, Ti)) g−i (bi (vi, Ti))− λbi (vi, Ti) g−i (bi (vi, Ti)) = 0 ,

where λ ∈ R+ is the Lagrange multiplier associated with the budget constraint. Thus we

obtain that

bi (vi, Ti) =
1

1 + λ
vi, for all vi, (5)

which establishes the result.

The boost or pacing parameter ki is chosen such that the expected payment in the second

price auction equals the committed budget Ti:

Ti =

∫ ∞

0

(∫ kivi

0

b−idG−i (b−i)

)
dFi (vi) . (6)
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Thus, the budget Ti allows bidder i to bid kivi for a item of value vi. In consequence, bidder

i wins as long as the bid kivi which defines the upper integration limit is the highest realized

bid in the auction. Moreover, in the second price auction, the expected payment of such a

winning bid is simply the expectation of the highest losing bid in the integral between 0 and

kivi.

The budget constraint is thus interpreted as a constraint in terms of an ex-ante expecta-

tion. The committed budget supports a bidding strategy

bi (vi, Ti) = ki (Ti) vi.

across a distribution of values vi and v−i such that in expectation the budget is sufficient to

fund the payments in the winning auction. We refer to the realization of a particular auction

with realized values v as an auction event. The budget is being spent over a notional time

horizon over which the values of the advertisers are realized. Thus, the bidding strategy

defines an interim bid, conditional on the value realization vi that is consistent with an

ex-ante expectation of auction payments.

Lemma 3 (Bid Monotonicity)

The bidding boost ki (Ti) is monotone increasing in the budget Ti for all Ti ≤ Bi.

Proof. By the budget constraint equation (6) a larger Ti can support a larger upper

bound of integration, which is given by kivi.

We assume that submitted budgets Ti larger than Bi are executed by the platform but

returning funds to the bidder in case the platform fails to spend the budget. Given the bid

distribution G−i (b−i) there is a budget that allows bidder i to win if and only if his bid is

less than his value, in other words a paced bidding strategy that sets ki = 1:

Ti(G−i) =

∫ ∞

0

(∫ vi

0

b−idG−i (b−i)

)
dFi (vi) . (7)

Each bidder i who avails themselves of the auto-bidder is maximizing the net utility from

their budget commitment. The net utility can be written as∫ ∞

0

vi

(∫ bi(vi,Ti)

0

dG−i (b−i)

)
dFi (vi)− Ti,
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where by Lemma 1 it is sufficient to consider budgets T ≤ Bi. The problem for bidder i is

then to find the budget that maximizes the above expression, thus

max
Ti∈[0,Bi]

{∫ ∞

0

vi

(∫ b(vi,Ti)

0

dG−i (b−i)

)
dF (vi)− Ti

}
. (8)

We can now identify the optimal choice of budget Ti for advertiser i when the choice of

budget Ti is only constrained by their objective of maximizing the net utility given by (8).

Proposition 1 (Optimal Budget Strategy)

The optimal budget for bidder i is to set T ∗
i = Ti(G−i) and the optimal budget supports

truthful bidding

bi (vi,T
∗
i ) = vi ⇔ k∗

i = 1.

Proof. We remove the constraint on the budget in the choice of the optimal bidding

strategy in Lemma 2. This amounts to reducing the value of the Lagrange multiplier λ = 0

which delivers the result.

We can now formally define the bidding equilibrium.

Definition 1 (Bidding Equilibrium)

A bidding equilibrium is a profile of budgets T = (T1, ..., TJ) and associated bid distributions

Gi (b−i) such that every bidder i chooses their net-utility maximizing budget Ti and each

generated bid bi is a best response against the realized bids b−i of the other bidders given the

budget constraints.

The definition of a bidding equilibrium applies even if only some bidders adopt budget-

based strategies, while others submit manual bids or use different algorithms. Specifically,

the equilibrium concept only requires that those bidders who use auto-bidding choose their

budgets optimally. All remaining bidders are simply assumed to satisfy ex-post optimality

of their spending. This flexibility in defining equilibrium notions likely explains why such

frameworks (with small variations) dominate the study of auto-bidding algorithms in the

literature.

In digital auctions, the participants typically bid with a diversity of bidding strategies.

Some bidders deploy their proprietary algorithms, other employ auto-bidding algorithms by

the auction platform or third parties. Even if all bidders deploy auto-bidding algorithms

from the same platform or service provider, their bidding strategy may differ as the define
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their budget and their requirements over different objects, time horizons and constraints.

Nonetheless, we can ask what the equilibrium might look in an environment in which all

bidders avail themselves to the same budget pacing algorithm.

Proposition 2 (Bidding Equilibrium)

The unique symmetric bidding equilibrium is given by:

bi (vi,T
∗
i ) = vi ⇔ k∗

i = 1,

with

T ∗
i =

∫ ∞

0

(∫ vi

0

sdF J−1 (s)

)
dFi (vi) .

Proof. The benefit of bidder i with a budget Ti against a bid distribution by the

remaining bidders given by G−i (b−i) in a second price auction is:∫ ∞

0

[∫ bi(vi,Ti)

0

(vi − b−i) dG−i (b−i)

]
dFi (vi) . (9)

For every vi, the optimal bidding strategy is therefore to choose Ti in such a manner that

ki = 1. This allows the bidder to maximize the expected return against the competing

bidders for every vi: [∫ vi

0

(vi − b−i) dG−i (b−i)

]
.

Now, if the other bidders are bidding truthfully, meaning that bj (vj) = vj for all vj and j,

then the budget by bidder i to support ki = 1 is given by:

Ti =

∫ ∞

0

(
F J−1 (v)

∫ v

0
sdF J−1 (s)∫ v

0
dF J−1 (s)

)
dFi (vi) (10)

=

∫ ∞

0

(∫ v

0

sdF J−1 (s)

)
dFi (vi)

Namely, the expected payment of bidder i to support bidding his value is simply the expec-

tation of his payments in the second price auction.

Note that in a symmetric equilibrium, the discount ki is the same for all bidders, thus

ki = k, and therefore the resulting allocation is efficient.

Now if the competing bidders bid truthfully, or bj (vj) = vj, then the individual bidder

needs to provide a budget large enough to displace the bids of the competing bidders. If
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the displacement budget is supposed to attain the efficient placement of bidder i then the

budget needs to pay to displace the less efficient bidders, or

Ti =

∫ ∞

0

(∫ v

0

sdF J−1 (s)

)
dFi (vi) . (11)

We refer to this as the efficient displacement budget.

3.2 Budget Equilibrium

In the pacing equilibrium, each bidder submitted a budget Ti which generated bids bi as a

best response to (i.e., holding fixed) the realized bids b−i of the other bidders.

We now extend our notion of competition in budgets by allowing the platform to condition

each advertiser’s bid on the budgets submitted by all bidders. In particular, we maintain

our focus on the uniform pacing environment, where bi(v, T ) = ki vi, but we assume that

all ki(T ) are chosen by the platform as a function of all the submitted budgets so that each

bidder’s aggregate payment is exactly Ti.

Formally, we let {ki(T )}i=1,..,I denote the solution to the system of equations∫
Si(T )

max
j ̸=i

kjvjdF (v) = Ti for all i, (12)

where

Si(T ) ≜ {v : kivi = max
j

kjvj}.

In other words, the algorithm sets the boosts for all bids in such a way that each bidder

exhausts the budget they submitted.

Under this mechanism, the direct effect of bidder i raising their submitted budget Ti is

typically to increase their boost ki. It will also have an ambiguous effect on the boost of the

other bidders. On the one hand, bidder i needs to spend more, so kj may increase in order

to raise the losing bids. On the other hand, all budgets Tj are unchanged, and if ki increases,

so will the payments of all other bidders in the auctions they still win. Thus, kj may have

to decrease.

In the remainder of this section, we specialize to the case of two bidders (J = 2) and a

symmetric equilibrium. We begin by rewriting the expected payment (which is equal to the

budget) of each bidder as

Ti =

∫ ∞

0

∫ kivi
kj

0

kjvjdF (vj) dF (vi),
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and the expected payoff of each bidder as

Vi(T ) =

∫ ∞

0

∫ ki(T )vi
kj(T )

0

dF (vj) vi dF (vi)− Ti,

where ki(T ) and kj(T ) solve the budget spending constraint above.

We characterize the symmetric budget equilibrium in Proposition 3, which is proved in

the Appendix.

Proposition 3 (Budget Equilibrium) There exists a unique symmetric budgets equilib-

rium. In this equilibrium, each firm i submits a budget

Ti = T ∗ :=

∫∞
0

v2i f(vi)
2 dvi

∫∞
0

vi(1− F (vi))f(vi) dvi

2
∫∞
0

v2i f(vi)
2 dvi −

∫∞
0

vi(1− F (vi))f(vi) dvi
> 0

and their bids receive a boost

ki = k∗ :=
T ∗∫∞

0
vi(1− F (vi))f(vi) dvi

.

From this statement, it is immediate to see that the submitted budget exceeds the total

payment in a second-price auction if and only if k∗ > 1. In turn, the equilibrium boost

factor exceeds one if and only if ∂kj/∂Ti < 0, i.e., if one firm raising its budget above its

rival’s level induces a less aggressive response. We then have the following corollary of our

equilibrium characterization.

Corollary 1 (Revenue Comparison) The revenue in the two-bidder symmetric budget

equilibrium exceeds the revenue in the manual-bidding second-price auction if and only if

∂kj(T, T )/∂Ti < 0, i.e., ∫ ∞

0

(1− F (vi)− vif(vi))vif(vi) dvi ≥ 0.

This condition suggests that fat-tailed distributions yield an equilibrium in budgets that

is more profitable than manual bidding. In fact, it is easy to show that k∗ = 1 for any

exponential distribution and that k∗ < 1 for any power distribution on [0, 1]. Furthermore,

numerical results suggest that for a lognormal distribution with parameters (µ, σ), we have

k∗ < 1 for σ low enough and k∗ > 1 for σ high enough.
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Figure 1 illustrates this finding and displays values v, equilibrium bids b(v) = k∗v and

expected payments for type v conditional on winning, i.e.,

p(v) =

∫ v

0
k∗v dF (v)

F (v)
.

In panel 1a, the winning bids (and therefore the expected payments) are below the winner’s

valuation. Conversely, in panel 1b, the winning bid is always larger than the winner’s

valuation and, for low enough v, so is the expected conditional payment. In other words,

the platform spends the advertisers’ budgets in a way that induces losses on low types and

cross subsidizes them with gains on higher types.

b(v)

p(v)
v

0.2 0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

v,p,b

(a) µ = 1, σ = 1/2, k∗ ≈ 0.76

b(v)
v

p(v)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
v

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v,p,b

(b) µ = 1, σ = 3, k∗ ≈ 3.45

Figure 1: Values, bids, and expected payments–Lognormal distribution.

4 Optimal Mechanisms

In the previous sections, the platform was limited to running a second price auction with

bids generated from budgets according to a simple class of (pacing) rules.

In this section, we maintain the second price format, but we now consider mechanisms

that allow for arbitrary bidding functions bi : Vi×Ti → R+. We first characterize the optimal

bidding function in our baseline setting and then extend our results to a setting with parallel

sales channels for each advertiser.
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4.1 Vertical Integration Surplus

In this subsection, we show that when not restricted to pacing mechanisms, the platform

can select a bidding rule that extracts the vertical integration surplus from the bidders. To

that end, define the vertical-integration surplus as

ΠV ≜
∫ ∞

0

vdF J(v). (13)

We begin with a result showing how some bidding function induces an outcome where the

platform earns all the surplus, even if the allocation rule is continuous and must always

induce nonnegative profits for any budget offered.

Proposition 4 (Vertical Integration)

1. There exists a bid function that implements the vertical integration solution and ex-

tracts all the bidders’ surplus, induces continuous outcomes in the budget, and offers

nonnegative profits regardless of budget submitted. Furthermore, any such bid function

induces identical profits for each bidder and each budget submitted.

2. If a bidder chooses a lower budget than ΠV /J , the platform-optimal bid function submits

the equilibrium bid with a probability proportional to the budget submitted and a zero

bid otherwise.

The complete proof of this result is in the Appendix. To establish the first claim, we show

that there exists a bid function that grants all advertisers a payoff that is non-negative and

continuous in their budget, and which generates revenue JT ∗ for the platform in equilibrium.

The idea is to identify a bidding strategy for each bidder bi(v) that inflates the advertisers’

bids so that, in a second-price auction, the winning firm pays their full value, argmaxj vj.

The following is an example of such a bid function

bi(v) =


vi + ϵ {i} = argmaxk vk

vi i ∈ argmaxk vk and ∃j ̸= i, j ∈ argmaxk vk

vj j ∈ argmaxk vk and i ̸∈ argmaxk vk.

Under this bidding mechanism, if an advertiser submits the maximal budget T ∗, their

total spend is

T ∗ = ΠV /J =

∫
vF J−1(v)dF (v).
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Thus, the advertiser obtains zero net profits. If they submit any smaller budget, the platform

will randomly and uniformly drop some of their bids down to zero, so that the entire budget

is spent and the advertiser’s net payoff remains nil.

Figure 2 illustrates the realized bids if two bidders submit budgets T1 < T ∗ and T2 = T ∗.

v1

v2

b1(v, T ) =

{
v1 + ε w/pr. T1

T∗

0 w/pr. 1− T1
T∗

b2(v, T ) = v1

b1(v, T ) = v2,
b2(v, T ) = v2 + ε

Figure 2: Realized Bids for Budgets T1 < T ∗ and T2 = T ∗.

4.2 On- and Off-Platform Markets

We now extend Proposition 4 to a model where advertisers also have access to an off-

platform market. Following the setup of Bergemann, Bonatti & Wu (2025), suppose there is

a unit mass of consumers which is divided into markets. Each advertiser controls a random

“captive” set of consumers that only they can serve at a posted price, with total measure

(1− λ)/J per advertiser. Meanwhile, the on-platform market of measure λ is served via the

auction. Advertisers must set a budget for the on-platform auctions and a posted price for

their own off-platform market, knowing consumers can always choose the off-platform option

if it is more attractive.

Thus, each advertiser selects a posted price P̄i for their product in their off-platform
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market. On the platform, the platform sets prices as a function of the vector of the consumer’s

value, the budgets submitted, and off-platform prices. We suppose consumers on the platform

can shop off the platform if they wish, so we additionally have the showrooming constraint,

which requires that the platform never offers i’s product at a price higher than their off-

platform price P̄i.

The extensive form game is then

1. The platform proposes a mechanism (b, P ) to all firms. The first component b : V J ×
RJ

+ × RJ
+ → R+ is a bidding strategy, and it maps consumer value, budgets, and off-

platform prices into a bid. The second component P : V J ×RJ
+×RJ

+ → R+ is a pricing

policy, which maps consumer value, budgets, and off-platform prices into a price to be

offered on the platform.

2. The firms simultaneously decide how much budget to offer and what prices to post off

the platform.

3. Advertising auctions are run; bids are chosen according to b and the submitted budgets,

and the prices of products are set according to the policy P .

Bergemann, Bonatti & Wu (2025) show that the platform can attain its maximum profit

by using a forcing contract, or discontinuous allocation at the threshold required budget.

Under this forcing contract, the joint profit of the platform and the advertiser is maximized,

but each advertiser is held to their outside option (i.e., the profit they could attain by only

selling off-platform), and the platform appropriates all of the producer surplus it creates.

More precisely, the pricing problem of the platform-advertisers integrated firm is given by

ΠC(P ) ≜

{
(1− λ)P (1− F (P )) + λ

∫ ∞

0

min(v, P ) dF J(v)

}
.

Let Π∗ denote the maximized value; Π∗ ≜ maxP ΠC(P ), and so Π∗ is the vertical integration

surplus in this environment. Bergemann, Bonatti & Wu (2025) show that with the forcing

contract, the platform obtains Π∗−JΠO, where ΠO is the outside option of a given advertiser:

ΠO = max
P

{
1− λ

J
P (1− F (P )) + λ

∫ ∞

P

PF J−1(vj − P ) dF (vj)

}
. (14)

Note that (14) defines the price-setting problem where the firm can only sell via its posted

price. In the next result, we show that the forcing contract of Bergemann, Bonatti & Wu
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(2025) is not necessary; rather, the platform can appropriate the vertical-integration surplus

up to the outside options of the advertisers with an appropriate bidding strategy and pricing

policy, even if the allocation rule must be continuous and induce non-negative profits for any

budget offered.

Proposition 5 (Full Extraction with Off-Platform Market)

1. The platform can attain the optimal vertical integration surplus by having the bidders

select budgets.

2. If bidder i does not submit the required budget, the platform-optimal bid function sub-

mits the equilibrium bid with probability chosen as a function of the budget submitted,

and a zero bid otherwise.

3. The probability of a nonzero bid is not proportional to the budget but nevertheless

induces a linear best-response profit function Πi(Ti) for the bidders.

Here, the value of winning an auction is now disciplined by the pricing decisions made

by the advertisers. However, the platform’s optimal policy looks very similar to that of

Proposition 4—the platform inflates bids so that the bidder pays their effective value (which

depends on the off-platform prices).

Figure 3 below illustrates the expected bids made in equilibrium and the expected prices

charged to consumers for an example with two bidders, uniformly distributed values, and

off-platform prices P̄1 = P̄2 = 1/3. For each advertiser i, the expected prices charged

in equilibrium to a consumer with valuation vi are given by p(vi) = min{vi, 1/3}, which
also equals the advertiser’s expected payment conditional on winning the auction. The

expected bids exceed the expected payment for sufficiently low-value consumers, as with

high probability, these bids serve the goal of raising the competitor’s payment. In this

example, they are given by b(vi) = min{1/3, (9v2i + 5) /18}.
Similarly, in order to induce the advertisers to submit the optimal budgets, the platform

makes zero bids with some probability whenever an advertiser submits a smaller budget,

and designs this probability such that an advertiser cannot profit by submitting a smaller

budget. More precisely, if the platform submits a nonzero bid with probability q(t) whenever

the budget submitted is t, the revenue of an advertiser who submits t and sets price P is
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Figure 3: Values, Expected Bids, and Expected Payments (F (v) = v, P̄ = 1/3).

given by Πi(t, P ) which we can write explicitly as:

1− λ

J
P (1−F (P ))+λ

(
(1− q(t))

∫ ∞

P

PF J−1(v − P ) dF (v) + q(t)

∫ ∞

0

min(v, P )F J−1(v)dF (v)

)
.

In the environment of Proposition 4, the revenue from submitting a smaller budget equaled

the budget spent; with the off-platform market, the revenue maximized over off-platform

pricing choices must equal the budget spent; hence, the probability q(t) is nonlinear in t.

5 Conclusion

In this paper, we examined the implications of budget-constrained auto-bidding in digital

advertising auctions. We study the implications of the pacing algorithms used by a platform,

their implications on the equilibrium budgets provided by advertisers, and characterize the

extent to which platforms can extract surplus in equilibrium by optimizing auto-bidding

mechanisms.
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An important avenue for further exploration is the role of informational asymmetries be-

tween advertisers and platforms. Platforms have extensive data on user behavior and market

conditions, which they use to shape bidding strategies and pricing mechanisms. Thus, un-

derstanding how a platform’s informational role shapes budget-setting behavior could yield

further insights into the equilibrium consequences of platform behavior. Additionally, we did

not model competition among platforms; it would be interesting for future work to explore

how competitive pressures between platforms shape auto-bidding algorithms and advertis-

ing spending; if advertisers allocate budgets across multiple platforms, how do competing

platforms adjust their auto-bidding mechanisms to attract more spending?

By relating budget-constrained bidding to equilibrium platform outcomes, our work pro-

vides a foundation for understanding the strategic consequences of auto-bidding in digital

advertising markets. We hope these insights inspire further research on the economics of

algorithmic market design, platform competition, and the evolving structure of digital ad-

vertising.
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Appendix

Proof of Proposition 3. We first fully differentiate Vi with respect to Ti and we impose

ki = kj = k > 0. We then obtain

∂V (T, T )

∂Ti

=
A− 2Ak +Bk

2Ak −Bk
,

where

A =

∫ ∞

0

v2i f(vi)
2 dvi

B =

∫ ∞

0

vi(1− F (vi))f(vi) dvi

k = T/B.

Solving for k yields the result. Finally, to see that the equilibrium budget T ∗ is strictly

positive, we show that the denominator of T ∗ is positive. Consider the expression:∫ ∞

0

(1− F (v))vf(v) dv.

Note that
d

dv

[
−1

2
(1− F (v))2

]
= (1− F (v))f(v),

and so we can integrate by parts:∫ ∞

0

(1−F (v))vf(v) dv =
[
−v

2
(1− F (v))2

]∞
0
+

∫ ∞

0

1

2
(1−F (v))2 dv =

1

2

∫ ∞

0

(1−F (v))2 dv.

(15)

Additionally, we can also apply the Cauchy-Schwarz inequality to get∫ ∞

0

(1− F (v))vf(v) dv ≤
(∫ ∞

0

(1− F (v))2 dv

)1/2(∫ ∞

0

(vf(v))2 dv

)1/2

,

=

(
1

2

∫ ∞

0

(1− F (v))2 dv

)1/2(∫ ∞

0

2(vf(v))2 dv

)1/2

.

By (15), the first term on the RHS can be substituted, so this becomes∫ ∞

0

(1− F (v))vf(v) dv ≤
(∫ ∞

0

(1− F (v))vf(v) dv

)1/2(∫ ∞

0

2(vf(v))2 dv

)1/2

.
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Then dividing out the term
(∫∞

0
(1− F (v))vf(v) dv

)1/2
from both sides (which is positive)

we get (∫ ∞

0

(1− F (v))vf(v) dv

)1/2

≤
(∫ ∞

0

2(vf(v))2 dv

)1/2

.

Squaring both sides and rearranging, we get

2

∫ ∞

0

v2f(v)2 dv −
∫ ∞

0

v(1− F (v))f(v) dv ≥ 0.

and hence T ∗ > 0.

Proof of Proposition 4. Let T ∗ =
∫
vF J−1(v)dF (v) denote the value a bidder

gets from winning the consumers who have the highest value for that bidder. The vertical

integration surplus is equal to JT ∗. We first show that there exists a bid function that grants

bidders a nonnegative payoff that is continuous in their budget and generates equilibrium

revenues JT ∗ for the platform. Let bj(v) be a bidding strategy that inflates bids such that the

winning bidder always pays their value. The following is an example of such a bid function:

bi(v) =


vi + ϵ {i} = argmaxk vk

vi i ∈ argmaxk vk and ∃j ̸= i, j ∈ argmaxk vk

vj j ∈ argmaxk vk and i ̸∈ argmaxk vk

.

Note that such a function need not be unique; in the above example, any ϵ > 0 suffices.

Observe that the constructed bi has the feature that when all bidders bid according to

bi, bidder i will always end up winning and paying vi for every consumer such that i ∈
argmaxk vk; since every bidder wins exactly the set of consumers that prefer them most and

pays their value, if bi(v) is implemented, the total auction payments by all bidders generated

is precisely JT ∗.

It remains to show that such a bi can be obtained in equilibrium when the bidders select

budgets and the platform turns them into bids. Consider then the following strategy: given

a budget t, the platform bids 0 with probability 1 − max(1, t/T ∗) and bids according to

b(·) with probability max(1, t/T ∗). Note that by bidding T ∗, the bidder’s induced profit is

T ∗; the bidder earns exactly T ∗ in value from the auctions. If a bidder bids t < T ∗, the

bidder’s induced profit is t; they earn T ∗ if they are randomly chosen to bid “correctly” with

probability t/T ∗, and 0 otherwise. Hence, the bidder’s profit function is

Πi(t) =

t t ∈ [0, T ∗)

T ∗ t ≥ T ∗
(16)
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It is clear to see that regardless of the budget choice, the bidder gets net zero; by offering

any t < T ∗, the bidder spends their entire budget but earns exactly their budget: Πi(t) = t.

Similarly, by offering any t ≥ T ∗, the bidder spends T ∗ and makes profit exactly T ∗, and

hence earns zero. Thus, it is clear that the bidder’s profit is nonnegative and continuous in

their budget offered, weakly maximized at T ∗.

To show uniqueness of this equilibrium, note that since the vertical integration surplus

is at most JT ∗, it is impossible for bidders to earn a positive surplus on expectation if they

pay T ∗. Hence, their profit function Πi(T
∗) ≤ T ∗. Further, bidding 0 earns 0, so Πi(0) = 0.

Since the profit function must extract all bidder surplus, each bidder must find it weakly

optimal to submit T ∗, so it must be the case that Πi(T
∗)− T ∗ ≥ Πi(0), and so this is only

possible if Πi(T
∗) = T ∗. Since the profit function must induce a nonnegative payoff for any

t < T ∗, it follows that Πi(t) ≥ t for any t ∈ [0, T ∗]. But since the bidder must find it

weakly profitable to submit T ∗, Πi(T
∗) − T ∗ ≥ Πi(t) − t, so t ≥ Πi(t). Combining these,

together with the fact that the profit cannot exceed T ∗ in expectation, implies that (16) is

the unique profit function that implements vertical integration solution and extracts all the

bidder surplus.

Proof of Proposition 5. We claim that under an appropriate choice of bidding

strategy and pricing policy, the platform can induce the advertisers to each offer budget

T ∗ = Π∗/J −ΠO. Define the best-value price of firm j for some consumer v as follows, given

off-platform prices P̄ :

pj(v, P̄ ) = min(vj, P̄j,min
k ̸=j

(vj − vk + P̄k))+.

Note that Pj is the maximum price that advertiser j could extract after winning consumer

v. Then analogously to Proposition 4, define the bidding strategy:

bi(v, P̄ ) =


Pi(v, P̄ ) + ϵ {i} = argmaxk vk,

Pi(v, P̄ ) {i} = argmaxk vk and ∃j ̸= i, j ∈ argmaxk vk,

Pj(v, P̄ ) j ∈ argmaxk vk and i ̸∈ argmaxk vk.

Consider a platform policy that, given a budget Ti from i, randomizes between bidding

bi(v, P̄ ) and setting the best-value price Pj(v, P̄ ) with probability q(Ti), and bidding zero

with complementary probability. Note that the bidder’s induced profit function depends on
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their submitted budget and their posted price. That is, the bidder’s profit is

Πi(t, P ) = 1−λ
J
P (1− F (P ))+

λ
(
(1− q(t))

∫∞
P

PF J−1(v − P ) dF (v) + q(t)
∫∞
0

min(v, P )F J−1(v)dF (v)
)

Define the maximized expression

Π∗
i (t) ≜ max

P
Πi(t, P ).

If q(t) = 0, then Π∗
i (t) = ΠO,j, as the profit function collapses to the same as the outside

option in (14). Similarly, if q(t) = 1, then Π∗
i (t) = Π∗, since the profit function collapses into

the same objective as ΠC . Further, if Π∗
i is weakly concave and induces the advertisers to

submit T ∗ on-path, it must be linear in the budget from 0 to T ∗. We claim we can construct

a q that satisfies this. By the envelope theorem, we must have

∂

∂t
Π∗

i = λq′(t)

(∫ ∞

0

max(v, P ∗(t))F J−1(v)dF (v)−
∫ ∞

P ∗(t)

P ∗(t)F J−1(v − P ∗(t)) dF (v)

)
where P ∗(t) ∈ argmaxP Πi(t, P ). Observe that the parenthesized part is positive. For the

profit function to be linear, this derivative must be constant, and equal to 1. Therefore, q

must solve the differential equation:

q′(t) =
1

λ
(∫∞

0
max(v, P ∗(t))F J−1(v)dF (v)−

∫∞
P ∗(t)

P ∗(t)F J−1(v − P ∗(t)) dF (v)
)

with condition q(0) = 0. Note that q does not appear on the right-hand side, and hence given

the initial condition, we can integrate to obtain the unique solution q∗. By construction, it

follows that under q∗, Π∗
i (t) = ΠO + t, and q∗ is increasing since q′ is positive. Further, at

T ∗, the total surplus attains the vertical integration benchmark, and hence we must have

q(T ∗) = 1. Finally, q∗ is a well-defined probability, because q∗ is increasing, equal to 0 when

no budget is submitted and equal to 1 when T ∗ is submitted.
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