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Abstract

We consider a seller who offers services to a buyer with multi-unit demand. Prior

to the realization of demand, the buyer receives a noisy signal of their future demand,

and the seller can design contracts based on the reported value of this signal. Thus, the

buyer can contract with the service provider for an unknown level of future consump-

tion, such as in the market for cloud computing resources or software services. We

characterize the optimal dynamic contract, extending the classic sequential screening

framework to a nonlinear and multi-unit setting. The optimal mechanism gives dis-

counts to buyers who report higher signals, but in exchange they must provide larger

fixed payments. We then describe how the optimal mechanism can be implemented

by two common forms of contracts observed in practice, the two-part tariff and the

committed spend contract. Finally, we use extensions of our base model to shed light

on policy-focused questions, such as analyzing how the optimal contract changes when

the buyer faces commitment costs, or when there are liquid spot markets.
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1 Introduction

1.1 Motivation

The digital economy increasingly runs on service contracts that commit buyers to future

purchases before they fully understand their needs. In committed spend contracts, cloud

computing providers like Amazon Web Services, Microsoft Azure, and Google Cloud Plat-

form offer substantial discounts to customers who commit to minimum spending levels over

a time period of variable length. Similar arrangements appear in the enterprise software

licensing, data services, and API access contracts. These committed spend agreements have

attracted regulatory scrutiny, with the UK’s Competition and Markets Authority launch-

ing an investigation in 2023 over concerns that they may reduce competition by locking

customers into single providers.

A prominent example of service contracts are contracts for software as a service (SaaS)

and cloud computing. These contracts often feature committed spend agreements. “Those

are agreements between a cloud provider and a customer in which the customer commits

to spend a minimum amount across the cloud provider’s cloud services over a period of

years, and in return, receives a percentage discount on its spend with that provider during

those same years” (Competition and Markets Authority (CMA) (2024)). A third prominent

example are service agreements for data and LLMs that cover the use of data for training

and the use of the model and weights, respectively.

Yet the theoretical foundations for such contracts remain poorly understood. While the

basic economic intuition is clear—providers offer discounts in exchange for reduced demand

uncertainty—the optimal structure of these contracts involves subtle trade-offs. Buyers re-

ceive noisy signals about their future demand, but face genuine uncertainty when signing

contracts. Contracts must balance the benefits of early commitment against the costs of po-

tential misallocation. Moreover, real-world frictions like capital constraints and spot market

alternatives shape both the feasible and optimal contract forms.

This paper provides a comprehensive theoretical analysis of optimal service contracting

under demand uncertainty. We consider a monopolist offering a service or portfolio of services

to a buyer over a certain time period. The buyer can choose a level (or intensity) of the

service to use. This level can refer to either the quantity or the quality of services used.

In the initial period, the users have imperfect information about their willingness to pay

for the service, and thus they have an expectation over the use and their willingness to pay,

but do not know for sure. We model this with the buyers having a prior distribution over

the willingness to pay. The users contract on the basis of knowing their prior estimate, but

acknowledging that their eventual value when buying is given by a realized demand level.
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The seller can offer contracts in the initial period that specify both upfront payments and

future usage-based prices. As the willingness to pay evolves over time, the contract, either

implicitly or explicitly, involves an element of sequential screening. Furthermore, given the

variable level of the good provided, the provider simultaneously employs the tools of second

degree price discrimination.

The first objective of the paper is to derive the optimal contract (mechanism) to solve

the allocation problem as a revenue maximizing solution for the service provider. Our first

main result characterizes the optimal dynamic mechanism. We show that buyers who report

higher signals should receive more favorable usage rates, but must provide larger commit-

ments. This matches the structure of real-world cloud computing contracts, where larger

commitments come with higher discounts. The optimal mechanism can be implemented in

two ways that mirror common practice: (1) A two-part tariff, which consists of an upfront fee

combined with usage-based prices, where higher upfront fees lead to lower usage payments,

and (2) Committed spend contracts, which combine a minimum purchase requirement with

discounted rates, where larger commitments yield greater discounts. Our results provide

both theoretical foundations for existing practices and practical guidance for contract design

in digital service markets.

These implementations are revenue-equivalent under standard conditions but diverge

when we introduce realistic frictions. Our second set of results analyzes two key frictions:

First, we consider the case of capital constraints. When buyers face high costs of capital

(making early payments especially costly), pure committed spend contracts become optimal.

This helps explain why cloud providers often use committed spend rather than upfront pay-

ments, particularly with startup customers. Second, we consider spot market alternatives:

When buyers have access to competitive spot markets, the optimal contract offers larger

discounts to high-demand buyers while potentially excluding or distorting service for low-

demand buyers. This creates a form of market segmentation between committed and spot

market customers.

1.2 Related Literature

We offer a generalization of the sequential screening problem of Courty and Li (2000) to a

continuous demand model rather than single-unit demand model. The continuous demand

model used is a version of Mussa and Rosen (1978) and Maskin and Riley (1984). A general

class of socially efficient dynamic mechanisms is provided by Bergemann and Välimäki (2010)

and Athey and Segal (2013). A related class of allocation problems were analyzed under

the objective of revenue maximization by Pavan et al. (2014) and Bergemann and Strack
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(2015). A recent survey of this literature appears in Bergemann and Välimäki (2019). Given

the presence of sequential screening, the optimal (revenue maximizing) contract includes

elements of an option, namely an option fee and a strike price, that is a commitment price

and usage price, see Bergemann and Strack (2022). A broader survey of the economics of

cloud computing is offered in Biglaiser et al. (2024).

This paper is also related to a more general literature on mechanism design with partici-

pation constraints stronger than those considered in the classic work of Myerson (1981). The

structure of optimal mechanisms with type-dependent outside options is considered in Lewis

and Sappington (1989). The implications of stronger participation constraints specifically

on the optimal sequential screening contract are analyzed in Krähmer and Strausz (2015)

and Bergemann et al. (2020).

2 Model

We consider a buyer and seller who operate in two periods τ ∈ {0, 1}. Trade occurs in period

1: the seller produces some quantity q ≥ 0 of a good at constant marginal cost c ≥ 0, which

is purchased by the buyer. The buyer’s utility is quasilinear in the transfer t, and displays

constant demand elasticity in the quantity q:

u(v, q, t) = vqα − t, α ∈ (0, 1).

The seller’s payoff is the transfer minus their cost of production:

Π(q, t) = t− qc.

In period 0, the buyer observes a one-dimensional signal θ ∈ [θ, θ] ⊂ R+ of their value.

Let G(v | θ) denote the distribution of v conditional on θ, and F (θ) the distribution of the

initial signal. We assume that the distribution of values is increasing in the signal θ, in the

stochastic dominance sense:

G(v | θ) < G(v | θ′), ∀v,∀θ′ < θ.

Assumption 1 (First Order Stochastic Domiance Ordering).

G(· | θ) is ordered in first order stochastic dominance by θ.

We think of θ as a parameter describing the firm’s “demand projection”; it does not enter

the firm’s actual payoff, but provides information about what the firm’s realized demand in
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the next period will be. Larger θ corresponds to more optimistic demands, which we capture

in the FOSD ordering of G.

To derive the optimal mechanism, we will need a form of regularity. Define the dynamic

virtual value as

ϕ(θ, v) = v +
1− F (θ)

f(θ)
· ∂G(v | θ)/∂θ

g(v | θ)
. (1)

Assumption 2 (Regularity).

ϕ(θ, v) is weakly increasing in both θ and v.

Assumptions 1-2 allow us to apply the insights of the earlier cited literature on sequential

screening and dynamic mechanism design, and focus on how to use these results to study

the design of committed spend and service contracts.

In this setting, a mechanism (or contract)M := (q, t) specifies, for each signal and value

realization pair (θ, v), a quantity q(θ, v) and transfer t(θ, v). By the revelation principle, it is

without loss of generality to restrict attention to mechanisms which are incentive compatible,

meaning the buyer finds it optimal to truthfully report θ, and then v.

The seller’s problem is thus to choose q and t to maximize expected profit:

max
q,t

Eθ×v

[
t(θ, v)− q(θ, v)c

]
subject to incentive compatibility (IC) in period 0 and period 1 :

Ev

[
u(v, q(θ, v), t(θ, v)

)
| θ
]
≥ Ev

[
u
(
v, q(θ′, v), t(θ′, v)

)
| θ
]
∀θ, θ′; (IC0)

u
(
v, q(θ, v), t(θ, v)

)
≥ u

(
v, q(θ, v′), t(θ, v′)

)
∀θ, v, v′; (IC1)

and interim individual rationality in period 0 :

Ev

[
u
(
v, q(θ, v), t(θ, v)

)
| θ
]
≥ 0 ∀θ. (IR)

Note that (IC0) contains only a subset of the period-0 IC constraints, namely deviation with

respect to the initial report, but the remainder of the deviations are automatically satisfied

if (IC1) is.

We believe this framework describes markets in which, prior to the actual delivery of the

services, buyers and seller establish future pricing based on the buyer’s expected demand,

but this expected demand has no effect on the seller’s marginal costs. Our leading example is

the cloud computing service market, where buyers receive per-unit discounts for committing

to certain levels of use, although the setup just as easily describes many service and digital

resource allocation contracts. This model could also be applied to physical goods, assuming
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that the marginal costs associated with serving high- and low-demand customers are the

same; note that the solicitation of the demand forecast θ is used purely to screen customers,

and does not affect the choice of production technology.

3 Optimal Dynamic Mechanism

We first determine the optimal dynamic direct mechanism. Then we consider indirect im-

plementations of the direct mechanism in form of a two-part tariff and a committed spend

contract.

3.1 Dynamic Direct Mechanism

Following Courty and Li (2000) and Pavan et al. (2014), the optimal mechanism can be

found with a Myersonian approach. For notational simplicity, denote by

u(θ, v) := u(θ, q(θ, v), t(θ, v)).

In period 1, the mechanism devolves to a standard static mechanism. That is, (IC1) requires

that
∂

∂v
u(θ, v) = q(θ, v)α =⇒ u(θ, v) = u(θ, v) +

∫ v

v

q(θ, x)α dx.

Using this, we can derive the first-period envelope condition:

d

dθ
Ev

[
u(θ, v) | θ

]
=

∫ v

v

u(θ, v)
∂g(v | θ)

∂θ
dv = −

∫ v

v

q(θ, v)α
∂G(v | θ)

∂θ
dv.

Let us consider the relaxed seller’s problem which only imposes the local (IC0) constraints

(along with (IR) and all (IC1) constraints). The objective function in this relaxed problem,

from standard mechanism design techniques, is

Eθ,v

[
ϕ(θ, v)qα − cq

]
− Ev

[
u(θ, v) | θ = θ

]
.

Setting the IR constraint to be binding, the point-wise maximization is

q∗(θ, v) =
(α
c
ϕ(θ, v)I[ϕ(θ,v)≥0]

) 1
1−α

, (2)
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where the indicator function I[ϕ(θ,v)≥0] indicates that only customers with a positive virtual

utility, ϕ(θ, v) as defined earlier in (1), are offered a positive level of service:

I[ϕ(θ,v)≥0] =

{
0, if ϕ(θ, v) < 0;

1, if ϕ(θ, v) ≥ 0.

The transfers are pinned down by the envelope conditions from before:

u(θ, v) = u(θ, v) +

∫ v

v

q∗(θ, x)α dx, (3)

Ev

[
u(θ, v) | θ

]
= −

∫ θ

θ

∫ v

v

q∗(x, v)α
∂G(v | x)

∂x
dv dx. (4)

Under the regularity conditions imposed earlier, this mechanism satisfies the global (IC0)

constraints, and hence is optimal.

Theorem 1 (Optimal Dynamic Direct Mechanism).

Under Assumptions 1-2, the mechanism characterized by (2)-(4) is optimal.

Proof. The construction of this mechanism satisfies (IR) and (IC1), so all we need is to show

that the global (IC0) constraints are satisfied. We do this by showing that the indirect utility

function

w(θ, θ′) =

∫ v

v

(
vq∗(θ′, v)− t(θ′, v)

)
g(v | θ) dv

satisfies the single-crossing property over θ and θ′ whenever q(θ′, v) is increasing (pointwise)

in θ′, which is implied by Assumption 2.1 In particular, we wish to show that

w(θ, θH)− w(θ, θL)

is increasing in θ for any θL ≤ θH . For every θ′, the static mechanism {q(θ′, v), t(θ′, v)} is

incentive compatible, which in particular by standard results means that

vq∗(θ′, v)− t(θ′, v) = u(θ′, v) +

∫ v

v

q∗(θ′, x)α dx

for all θ. That is, after reporting θ′ initially, the payoff after v realizes ex-post in period 1 is

1We could apply Pavan et al. (2014) Corollary 1 of Theorem 3, but for completeness we provide a direct
proof.
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the same regardless of the true θ. Thus, we can decompose

w(θ, θH)−w(θ, θL) =
(
u(θH , v)−u(θL, v)

)
+

∫ v

v

(∫ v

v

q∗(θH , x)α − q∗(θL, x)α dx

)
g(v | θ) dv.

q(θ′, v) is increasing in θ′, so the inner integral (the term in parentheses) is increasing in v.

Thus, since G(· | θ) are ordered in FOSD, this means that the entire expression is increasing

in θ.

The optimal mechanism delivers, for every realized value of demand v, higher quality

to buyers with higher first-period signals θ. However, for low v, buyers with higher θ re-

ceive lower net utility. That is, buyers who report more optimistic demand projections are

penalized for having low actual demand, but rewarded (relative to reporting a low demand

projection) when their realizations are high.

Example 1. We now introduce our running example for the remainder of the paper. Suppose

that v = θz, where z ∼ U [1
2
, 1] and θ ∼ U [1, 2]. Then,

ϕ(θ, v) = 2z(θ − 1) =
2v(θ − 1)

θ
=⇒ dt

dq
=

θ

2(θ − 1)
c.

The optimal mechanism for selected values of θ is plotted in Figure 1. Quantity provided,

as function of the realized demand v, is plotted with solid lines, while total transfers are

plotted with dashed lines.

Figure 1: Optimal Mechanism for Example 1 (q solid, t dashed).
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3.2 Two-Part Tariff

We now describe two natural implementations of the optimal direct mechanism via indirect

mechanisms which match contracts observed in reality. In this section, we allow the mecha-

nism to separate transfers across the two periods, i.e. the contract specifies payments t0(θ)

and t1(θ, v) after periods 0 and 1, respectively. For now, we assume the buyer and seller

have no preference for payment timing, so that any t0, t1 such that

t0(θ) + t1(θ, v) = t(θ, v) ∀θ, v

for some t are revenue-equivalent.

For now, what follows are simply particular selections of ways to divide up the transfers

of the optimal mechanism; later, when we add in additional design considerations, the choice

of timing will matter.

A (non-linear) pricing schedule is a function p : R+ → R+ which specifies a set of possible

quantities and a price for each quantity. Observe that by definition, the price for each of

these quantities must be positive, i.e. this rules out mechanisms which involve refunds from

the seller to the buyer.2

Definition 1 (Two-Part Tariff).

A two-part tariff is a contract consisting of an initial payment function t0 : [θ, θ]→ R+ and

a collection of (type-dependent) pricing schedules {pθ} such that for every θ,

min
q∈R+

[
pθ(q)

]
= 0.

That is, the buyer can always decline to make a payment in the second period.

Let

v(θ) := inf{v | g(v | θ) > 0}

denote the low end of the support of G(· | θ). For any θ such that

ϕ(θ, v(θ)) = 0, (5)

there is a unique3 two-part tariff implementing the optimal mechanism. Otherwise, there is

indeterminacy in how the seller wants to split t(θ, v(θ)) into the up-front payment and the

2Such refunds might be desirable if the buyer has imperfect commitment power. Then, charging large
prices up-front and providing a refund in the second period alleviates the lack of commitment. However, we
rarely observe refunds in practice.

3Up to choice of pθ(q) which are never chosen in equilibrium.
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price schedule. When (5) holds, we set

t0(θ) = −u(θ, v) and t1(θ, v) = t(θ, v) + u(θ, v). (6)

The non-linear price schedule for type θ is defined by:

pθ(q
∗(θ, v)) = t1(θ, v).

Since u(θ, v) is increasing in v by (IC1), and p(q∗(θ, v)) = 0, the construction clearly produces

a valid pricing schedule pθ for every θ. What remains is to check that the initial payments

−u(θ, v) are all positive. By (IR),

Ev

[
u(θ, v)

]
= 0 =⇒ u(θ, v) ≤ 0,

and by the period-0 envelope condition (4),

t0(θ) =

∫ v

v

∫ v

v

(α
c
ϕ(θ, x)

) α
1−α

dx g(v | θ) dv +

∫ θ

θ

∫ v

v

(α
c
ϕ(x, v)

) α
1−α ∂G(v | x)

∂x
dv dx.

Doing the usual integration by parts, the first term is equal to∫ v

v

(α
c
ϕ(θ, v)

) α
1−α

(1−G(v | θ)) dv.

Finally, we can differentiate to get

∂

∂θ

[
− u(θ, v)

]
=
(α
c

) α
1−α

∫ v

v

α

1− α
ϕ(θ, v)

2α−1
1−α

[
∂

∂θ
ϕ(θ, v)

]
(1−G(v | θ)) dv ≥ 0,

showing that the initial payment is always positive. In fact, it is increasing in θ, which aligns

with how these contracts look in practice.

Observe that we can write

t1(θ, v) = t(θ, v) + u(θ, v) =
(α
c

) α
1−α

(
vϕ(θ, v)

α
1−α −

∫ v

v

ϕ(θ, x)
α

1−α dx

)
.

Using implicit differentiation, we can compute the marginal price of quantity:

dt

dq
=
∂t(θ, v)/∂v

∂q(θ, v)/∂v
=

cv

ϕ(θ, v)
.
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From above, we can see that if
1

v
· ∂G(v | θ)/∂θ

g(v | θ)
,

is increasing in v (note that the expression is negative, so decreasing in absolute value), then

the marginal price of quantity is decreasing in v. A sufficient condition for this is that∣∣∣∣∂G(v | θ)/∂θ
g(v | θ)

∣∣∣∣
is decreasing in v, which is a form of a monotone hazard rate condition.

This two-part tariff mirrors contracts in which the buyer incurs some fixed contracting

fee, and then at the time of service realization faces a non-linear pricing schedule. The

pricing schedule becomes more generous when they sign “larger” service contracts, where

larger is both in the sense of the fixed fee and the expected quantity of service provided.

A setting in which the optimal mechanism is particularly tractable is the multiplicative

values setting, in which v = θz, and z ∼ H is independent of θ ∼ F . Then,

ϕ(θ, v) = θz − 1− F (θ)

f(θ)
z = zϕF (θ).

Here, ϕF is the usual one-dimensional virtual value. Assumption 2 becomes the condition

that

ϕ(θ, v) = v · ϕF (θ)

θ

is increasing in both v and θ (when positive), which is true if and only if F satisfies monotone

hazard rate, i.e. that
1− F (θ)

f(θ)

is decreasing in θ. The optimal contract can be implemented with an up-front payment

increasing in θ and a constant unit price of

θ

ϕF (θ)
c,

or, equivalently, a constant mark-up of

θ

ϕF (θ)
− 1.

In this case, we see clearly that larger θ get more advantageous prices in the second-stage,

at the cost of a higher up-front payment.
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The notable feature of this setting is that the second stage pricing schedule is in fact linear,

with a unit price which is independent of H. This setting is related to that of Bergemann

and Strack (2015), who find that a geometric Brownian motion structure simplifies incentive

compatibility constraints in the continuous dynamic mechanism design context. We work

in the multiplicative setting for Section 4.2, our extension analyzing the optimal dynamic

contract with spot markets.

Recall Example 1, where we assumed v = θz, z ∼ U [1
2
, 1], and θ ∼ U [1, 2]. Thus, the

optimal contract can be implemented as a two-part tariff where in period 1, the buyer faces

a constant unit price of 2θ
θ−1c. In Figure 2, we plot the up-front payment when c = 1 and

α = 1
2
, along with the corresponding unit prices associated with each θ (the parameters

chosen make the scale of the two quite different, so they are plotted on parallel y axes).

Figure 2: t0(θ) and Unit Price for Example 1 when c = 1 and α = 1
2
.

In this example, because ϕ(θ, v(θ)) > 0 for all θ, the optimal two-part tariff is not unique.

The up-front payment are computed as in (6).

3.3 Committed Spend Contract

Another type of contract commonly observed in practice, which has recently attracted signif-

icant regulatory attention, are contracts which do not extract payments upfront but specify

mandatory minimum spends.

Definition 2 (Committed Spend Contract).

A committed spend contract is a collection of pricing schedules {pθ} such that each type θ
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has a minimum spend (sometimes called a minimum budget)

B(θ) := min
q∈R+

[
pθ(q)

]
which is strictly positive for all θ > θ.

Trivially, any two-part tariff can be converted into a committed spend contract by com-

bining the upfront payment with the original pricing schedule. The committed spend con-

tract, because it consists of a single pricing schedule per type, is always unique (again, up

to pθ(q) which are not chosen in equilibrium). In particular, the committed spend contract

is characterized by

pθ(q
∗(θ, v)) = t(θ, v).

The largest possible B(θ) in an optimal committed spend contract is

B(θ) = t(θ, v(θ)). (7)

The “off-path” values of pθ(q) may technically lower the minimum spend, if they are below

this value.

This committed spend contract, however, has the feature that the minimum spend B(θ)

may buy a quantity of 0. That is, the minimum spend is exactly playing the part of the

upfront payment in the two-part tariff, and does not seem to be a “true” minimum spend

contract.

Contracts more similar to what we observe in reality, where the buyer can always buy

some quantity with any positive purchase, are optimal when the buyer’s virtual values are

almost always high enough to justify making a sale.

Proposition 1 (Guaranteed Positive Quantity).

There exists a committed spend contract implementing the optimal mechanism such that, for

every θ,

B(θ) > 0 =⇒ min
{
q | pθ(q) ≥ B(θ)

}
> 0

if and only if for all θ > θ,

ϕ(θ, v(θ)) > 0.

Proof. (⇐) Since ϕ(θ, v(θ)) > 0, every type θ > θ always receives some allocation, the price

of which forms their largest minimum spend under (7). Note that we exclude θ = θ from this

condition because our definition of a committed spend contract permits us to set B(θ) = 0.

(⇒) If the condition is not satisfied, then there is no allocation to v(θ), and then hence
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by (7) even the largest possible minimum spend is not sufficient to purchase any positive

quality.

This condition is exactly the same as the requirement that the optimal two-part tariff is

non-unique for every θ > θ, as it exactly involves the situation where the transfer is always

strictly positive (in equilibrium), producing some indeterminacy in how to split the payments

across periods.

Figure 3 plots the (largest) minimum spends B(θ) for Example 1, again with c = 1 and

α = 1
2

and the unit price plotted on a parallel axis.

Figure 3: B(θ) and Unit Price for Example 1 when c = 1 and α = 1
2
.

Unlike with the two-part tariff discussed previously, the optimal committed spend con-

tract is unlikely to exhibit linear pricing, as we would need the average transfer to remain

constant:
d

dq

[
t(θ, θ)

q(θ, v)

]
= 0 ⇐⇒ d

dq

[
t(θ, v)

]
=
t(θ, v)

q(θ, v)
.

That is, the marginal transfer must satisfy, for all v ≥ v(θ),

cv

ϕ(θ, v)
=
t(θ, v(θ))

q(θ, v(θ))
=
c

α
−
( c
α

) 1
1−α

[
u(θ, v(θ))

v(θ)
1

1−α

]
,

which is a knife-edge case.
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4 Contract Frictions

In this section, we demonstrate how the solution of the dynamic mechanism is affected by

contractual frictions that arise in cloud computing and software as a service. First, we

introduce a cost of capital for providing payments in the early period of the relationship.

This is particularly relevant in the cloud computing environment where many early stage

companies with large computing needs are credit constrained. Second, we consider the

impact that a functioning spot-market for computing services has for the designing and

pricing of the dynamic contract.

4.1 Cost of Committed Capital

A common reason for the use of a committed spend contract over a two-part tariff is that

early-stage firms, such as startups requiring the use of computing power, are often very

capital-constrained in the early period. Then, the committed spend contract allows them to

effectively make payments to the seller, but drawn against their future (anticipated) revenues

rather than immediately at the time of contracting.

We can model this as making the timing of transfers matters to the buyer (but not to

the seller). In particular, the buyer incurs a linear penalty γ for payments made in the early

period:

u(v, q, t) = vqα − (1 + γI[t0≥0])t0 − t1, γ ≥ 0.

This is also equivalent to a model with time discounting where the seller is more patient

than the buyer.

The optimal mechanism is still implementable in this framework by backloading all the

transfers to period 1. This exactly selects the committed spend contract, with minimum

spend given by (7), as the optimal contract. In fact, any other mechanism which implements

the optimal contract must involve negative transfers on-path, which is effectively the seller

providing lending to the buyer.

Proposition 2 (Optimal Contract with Commitment Cost).

For any γ > 0, the committed contract with B(θ) given by (7) is optimal. Furthermore, it is

the only optimal contract where (on-path) transfers are always positive.

Here, there is a social benefit to allowing the buyer to backload payments, but of course

the seller is only willing to allow this if the buyer can commit to eventually making those

payments.
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4.2 Sequential Screening in the Presence of Spot Markets

We now consider the interaction between dynamic contract and spot markets. Suppose that

in period 1, buyers have access to a liquid spot market, which provides any quantity of the

good at constant price pS > c. Now, buyers who sign a dynamic contract in period 0 are

bound to it. However, they anticipate the existence of a future spot market, and do not sign

contracts which deliver expected payoffs worse than participating in the future spot market.

Mathematically, this is equivalent to enhancing the IR constraint of the buyers. The current

setting thus introduces the possibility that the computing services may be procured through

a variety of sources and market. Stoica and Shenker (2021) offer a more comprehensive view

of how the interaction between “cloud” and “sky” computing may enhance the efficiency

and competitiveness of computing services.

In this extension, we work in the multiplicative setting: that is, for the committed buyers,

gross utility is θz, where z ∼ H is independent of θ ∼ F . The seller’s problem is to design a

mechanism (q, t) which maximizes profit subject to (IC0)-(IC1) and the new IR constraint:

E
[
u(v, q(θ, v), t(θ, v)) | θ

]
≥ uS(θ) := Ev

[
max
q

{
vqα − pSq

}
| θ
]
, ∀θ.

We provide a partial characterization of the constrained optimal mechanism, (qD, tD). There

exists a cutoff θ∗ such that above θ∗, buyers receive the same allocations as they do in the

original optimal mechanism, q∗(θ, v), but at a discounted price. For θ < θ∗, the allocation

(and prices) are distorted relative to (q∗, t∗).

Proposition 3 (Optimal Contract with Spot Market).

With multiplicative values, qD(θ, ·) = q∗(θ, ·) if and only if θ ≥ θ∗, where θ∗ is determined by

ϕF (θ∗)

θ∗
=

c

pS
.

Furthermore, when θ ≥ θ∗,

tD(θ, v) = t∗(θ, v)− tc,

where

tc = uS(θ∗)− u∗(θ∗) ≥ 0

is a constant that depends only on θ∗.

Recall that under the monotone hazard rate assumption (which is Assumption 2 in the

multiplicative setting), the ratio of ϕF (θ) to θ is monotonically increasing, and reaches 1 at

θ = θ. Thus, θ∗ is larger the closer that pS is to c (i.e. the more competitive the spot market
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is).

So, sufficiently high θ benefit directly from the spot market, in terms of a flat discount

tc, while low θ have their allocation distorted away from the original optimal mechanism.

Note that this distortion may ultimately increase or decrease social efficiency, depending on

the parameters of the problem. This formalizes the notion that having liquid, functional

spot markets is beneficial not only in terms of putting price pressure on the commitment

contract, but also potentially improving the allocative efficiency.

Formally, the optimal mechanism features no exclusion, meaning that every buyer par-

ticipates. However, in practice, there may be (low type) buyers for whom the optimal

mechanism simply replicates the spot market. These buyers are de facto excluded from the

mechanism, in that they receive no per-unit discounts for reporting their type, and are not

asked to make any up-front commitments; in contrast, in the absence of the spot market, all

buyer types sign a non-trivial dynamic contract.

Proof. First suppose the seller wants to design the optimal contract which captures the entire

market. We modify the original optimal mechanism (q∗, t∗) in two ways. First, we shift u(θ)

to be equal to the outside option,

t(θ, v) = t∗(θ, v) +

∫ v

v

uS(v)g(v | θ) dv,

where uS(v) is the net payoff of a buyer of type v participating in the spot market.

Next, for any values of θ such that

d

dθ
E
[
u∗(θ)

]
<

d

dθ
E
[
uS(θ)

]
,

we distort the allocations until this inequality is an equality, subject to the global (IC0)

constraints. The exact nature of this distortion is a complicated multi-dimensional mecha-

nism design problem, which is why we cannot provide a description in general of what the

mechanism looks like when θ < θ∗.

However, we can compute the θ∗ above which no distortion is necessary. Observe that,

by the multiplicative structure,

∂G(v | θ)
∂θ

= −z
θ
h(z), ϕ(θ, v) = ϕF (θ)z.

Hence,
d

dθ
E
[
u∗(θ)

]
= − 1

θ2

∫ z

z

(α
c
ϕF (θ)z

) α
1−α

zh(z) dz. (8)
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The spot market clearly defines a dynamic mechanism over (θ, v) which satisfies all IC

constraints (including the local ones), so we can apply (3) to it as well. In particular, a

buyer with realized type v = θz participating in the spot market purchases

q(θ, z) =

(
αzθ

pS

) 1
1−α

and thus
d

dθ
E
[
uS(θ)

]
= − 1

θ2

∫ z

z

(
αzθ

pS

) α
1−α

zh(z) dz. (9)

The ratio of (8) to (9) is (
pS

c
· ϕF (θ)

θ

) α
1−α

By assumption, this is increasing in θ, so the necessary distortion is declining with θ. Hence,

once
ϕF (θ)

θ
=

c

pS
,

distortion is no longer necessary. Since above θ∗, the allocations are equal to q∗, the transfers

must also be equal to t∗ plus a constant, which is the constant necessary to make the IR

constraint binding at θ∗. Below θ∗, at least some distortion is necessary, or the IR constraint

would not be met.

Finally, no exclusion is ever optimal since the seller can at worst replicate the spot market

for low types, and with pS > c this is always profitable.

It is apparent from the upper bound on θ∗ that a more competitive spot market makes

the distortion relative to q∗ more severe, and in the limit where pS = c the seller of course

cannot do anything except replicate the spot market.

5 Conclusion

There is a growing regulatory interest in the potentially anti-competitive effects of committed

spend contracts. Our model makes clear that the ability to force buyers to commit to future

payment schemes obviously benefits the seller, but also benefits high type buyers, at the

expense of low-type ones. We could analyze the overall benefit of allowing these contracts by

comparing with the optimal mechanism under ex-post implementability constraints (which

captures the lack of commitment from the buyer), extending work such as Chung and Ely

(2002) and Bergemann et al. (2020).

The setup of Section 4.2 also leaves open the possibility of modeling more explicitly
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competition in the spot market, as well what happens when the seller is also the designer

of the spot market, which is common in practice. There, we expect that the seller would

often find it optimal to degrade the spot market in order to extract additional rents from

the commitment contract.

Our analysis has several implications for ongoing policy debates about committed spend

agreements. First, it suggests that while committed spend contracts can improve efficiency by

enabling better capacity planning and reducing uncertainty, they may indeed create switch-

ing costs that reduce ex-post competition. However, the welfare impacts depend crucially

on market structure—in monopolistic markets, commitments mainly affect rent extraction

rather than efficiency. Second, committed spend contracts can be particularly valuable when

capital markets are imperfect, as they allow resource-constrained firms to effectively borrow

against future service usage. Policy interventions should consider these financial market

interactions. Third, the presence of liquid spot markets can discipline long-term contract

prices and improve overall market efficiency. Regulators might focus on ensuring robust spot

market development rather than directly restricting committed spend agreements. Finally,

our model suggests that optimal commitment periods should be linked to the precision of

demand signals. This provides a framework for evaluating whether particular contract du-

rations are anticompetitive.
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