
DATA-DRIVEN MECHANISM DESIGN:
JOINTLY ELICITING PREFERENCES AND INFORMATION

By 

Dirk Bergemann, Marek Bojko, Paul Dütting, 
Renato Paes Leme, Haifeng Xu and Song Zuo

December 2024

COWLES FOUNDATION DISCUSSION PAPER NO. 2418

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY  

Box 208281  

New Haven, Connecticut 06520-8281 

http://cowles.yale.edu/ 

http://cowles.yale.edu/


Data-Driven Mechanism Design:

Jointly Eliciting Preferences and Information

Dirk Bergemann∗ Marek Bojko† Paul Dütting‡

Renato Paes Leme§ Haifeng Xu¶ Song Zuo‖

December 20, 2024

Abstract

We study mechanism design when agents hold private information about both their prefer-
ences and a common payoff-relevant state. We show that standard message-driven mech-
anisms cannot implement socially efficient allocations when agents have multidimensional
types, even under favorable conditions.

To overcome this limitation, we propose data-driven mechanisms that leverage addi-
tional post-allocation information, modeled as an estimator of the pay-off relevant state.
Our data-driven mechanisms extend the classic Vickrey-Clarke-Groves class. We show that
they achieve exact implementation in posterior equilibrium when the state is either fully
revealed or the utility is linear in an unbiased estimator. We also show that they achieve ap-
proximate implementation with a consistent estimator, converging to exact implementation
as the estimator converges, and present bounds on the convergence rate. We demonstrate
applications to digital advertising auctions and large language model (llm) - based mecha-
nisms, where user engagement naturally reveals relevant information.
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1 Introduction

1.1 Motivation

The rise of data-rich digital environments has created new opportunities and challenges for
mechanism design. In settings ranging from online advertising to large language models (LLM),
participants often possess private information not just about their preferences but also about
underlying states that affect all agents’ payoffs. For instance, in sponsored search auctions, ad-
vertisers have private information about both their value per click and user behavior patterns.
In emerging LLM applications, content providers have private knowledge of both their desired
outcomes and user preferences.1 Efficiently aggregating and incentivizing the revelation of this
multidimensional private information is crucial for the optimal allocation. While the tension be-
tween disentangling preferences from information in mechanism design and related environments
is well-documented,2 these “modern” applications highlight the timeliness and relevance of revis-
iting these questions. At the same time, these applications provide an abundance of additional
data revealed through user interactions, platform feedback, or other observable outcomes.3 As
we will show, this additional data can be used to reconcile these two forces.

In a static setting with interdependent values and quasi-linear preferences, we develop a
framework for mechanism design that moves beyond traditional message-driven approaches by
incorporating such naturally available data. Rather than relying solely on agents’ reported
messages, our mechanisms condition transfers on additional information about the state. This
data-driven approach enables the implementation of efficient allocations, maximizing the sum
of agents’ expected payoffs based on their combined information, even when agents have multi-
dimensional private types—a setting where standard mechanisms provably fail. We specifically
focus on implementation in posterior equilibrium, ensuring that no agent is incentivized to de-
viate from truthful reporting, provided that all other agents report truthfully, even after the
uncertainty regarding other agents’ types has resolved. Implementation in posterior equilibrium
thus ensures robustness to belief misspecification and eliminates incentives for agents to inef-
ficiently acquire information about other agents’ types. As a result, it promotes stability and
strategic simplicity in complex environments.

1.2 Results

We begin our analysis with the standard message-driven mechanism design framework, where
allocations and transfers depend solely on the messages sent by agents to the mechanism. In in-

1A prominent example is the novel format of digital advertising auctions, where advertisers bid to feature in
“sponsored” content generated by an LLM. At the time of this writing, Perplexity AI, a widely used LLM-based
chatbot with an integrated search engine, began incorporating such digital advertising auctions on its platform;
see this Financial Times article: https://on.ft.com/47BWbIX.

2See, for example, Lu (2019) and references therein for a related issue of identification of beliefs and state-
dependent utilities.

3For instance, in sponsored search auctions, this additional information includes click-through rates on ads.
In settings involving LLMs, it encompasses metrics such as clicks on suggested links, follow-up queries, and
engagement duration.
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terdependent value settings, Maskin (1992), Dasgupta and Maskin (2000), Jehiel and Moldovanu
(2001), and Bergemann and Välimäki (2002) established an implementation impossibility when
agents have multidimensional types or, in the case of single-dimensional types, when an ap-
propriate single-crossing condition is unmet. Given that agents in our model possess private
information regarding both the state and their preferences, private types are inherently multidi-
mensional. In Theorem 1, we show that implementation in our setting remains impossible even
under conditions where previous possibility results emerged: there is an instance with single-
dimensional signals and supermodular expected payoffs for which no message-driven mechanism
implements the efficient allocation in posterior equilibrium.

To address the impossibility result, we adopt an approach similar to Mezzetti (2004) by
relaxing the restriction that transfers rely solely on the agents’ messages. Instead, we allow
transfers to be conditioned on additional information about the state, while maintaining that
allocations are determined only by messages. In a setting similar to ours, Mezzetti (2004)
proposed a two-stage mechanism: in the first stage, the mechanism elicits agents’ types to
determine the allocation, and in the second stage, it elicits realized payoffs to compute transfers.
However, this approach assumes that agents can fully observe and report their final payoffs,
and that the second stage is feasible—conditions that may be restrictive or unworkable due to
institutional constraints.4 We show implementation in posterior equilibrium can be obtained
under strictly weaker requirements.

We formalize the additional information as a state estimator available to the designer after
allocation but before finalizing transfers, with the estimator’s data-generating process being
common knowledge. In our motivating examples, this approach captures scenarios where the
designer gathers data on user interactions both within and beyond the auction environment,
thereby gaining insights into user preferences and demand (i.e., the state). As highlighted,
such data is naturally available and already collected by platforms, providing a straightforward
interpretation for our framework. Notably, unlike Mezzetti (2004), our method eliminates the
need for a second reporting stage or access to agents’ true preferences, thereby reducing the
amount of information necessary for implementation.

We introduce a modified version of Vickrey–Clarke–Groves (VCG) mechanisms (Vickrey,
1961; Clarke, 1971; Groves, 1973), which we call data-driven VCG mechanisms (Definition 6).
In data-driven VCG transfers, the designer plugs in the estimator into agents’ payoffs. We
then examine how various properties of the estimator affect the feasibility of implementation.
We first show that with full resolution of uncertainty, data-driven VCG mechanisms achieve
implementation in posterior equilibrium (Proposition 1). Specifically, if the designer ultimately
observes the true state, she can utilize ex-post utilities based on the reported types to calculate
VCG payments, aligning agents’ incentives. This alignment occurs because agents assess these

4For example, Jehiel and Moldovanu (2005) highlight the fragility of mechanisms proposed by Mezzetti (2004).
Specifically, agents may have only noisy and subjective perceptions of the state, which affect both their payoffs and
the reliability of the mechanism. This fragility is further compounded by issues such as moral hazard, verifiability,
and other practical concerns. Furthermore, in the second stage of Mezzetti (2004)’s two-stage generalized VCG
mechanism, agents are indifferent to their utility reports. This contrasts with the typical strict incentives for
truthful reporting in standard VCG mechanisms, particularly in settings with private values.
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transfers according to their true posterior beliefs, making truthful reporting optimal by the
efficiency of the allocation, as per a standard argument.

Next, we examine the scenario where the designer only has access to a noisy estimate of the
state and assess the implications of two key properties of estimators common in statistics and
econometrics. First, when using an unbiased estimator and assuming agents’ utility functions
are linear in the state, data-driven VCG mechanisms yield implementation in posterior equi-
librium (Proposition 2). However, as anticipated by Jensen’s inequality, this result does not
hold universally beyond linear utilities. Nevertheless, our application to click-through auctions
demonstrates that an unbiased estimator can be highly beneficial in settings with risk-neutral
bidders and appropriately defined states.

Second, we consider the property of consistency, where a sequence of estimators, indexed by
the dataset size, converges in probability to the true state as the dataset size approaches infinity.
Subject to regularity conditions on agents’ utility functions, Theorem 2 establishes that any
corresponding sequence of data-driven VCG mechanisms achieves implementation in ϵ-posterior
equilibrium, where no agent has more than an ϵ additive regret of having reported truthfully
after the resolution of uncertainty about others’ types when other agents also report truthfully,
with ϵ approaching zero as the sample size increases. That is, while reporting truthfully is
an ϵ-posterior equilibrium in any finite sample for large enough ϵ for any estimator, consistent
estimators ensure the ϵ can be made arbitrarily small in the limit. Proposition 3 further extends
this result by linking the rate of convergence of the estimator to the rate at which ϵ approaches
zero. Assuming both regularity in agents’ utility functions and uniform integrability of the
sequence of relevant random variables, we demonstrate that the sequence of ϵ’s can be reduced
at essentially the same rate as the estimator converges in probability to the true state.

1.3 Applications

We first apply our framework and results to click-through auctions, focusing on a position
auction for a single advertising slot for simplicity. Following the standard specification of agents’
utility functions (Edelman et al., 2007; Varian, 2007), we treat agents’ values per click as their
preference types and the click-through rates as the state. Within this framework, mechanisms
based solely on per-impression payments—conditioned only on agents’ actions—are subject to
the same impossibility result identified earlier. In contrast, the commonly used per-click pay-
ments fall within the class of data-driven mechanisms. However, their effectiveness in eliciting
truthful reporting of both agents’ values and signals hinges on whether the click-through rates
are common or agent-specific.

When click-through rates are common, per-click pivot payments achieve implementation in
posterior equilibrium. These payments align with the data-driven VCG mechanisms class, as
the observed frequency of clicks serves as an unbiased (and consistent) estimator of the true
click-through rate if clicks are sampled independently and identically (i.i.d.). However, with
agent-specific click-through rates, data-driven VCG transfers cannot be feasibly structured as
per-click payments, and feasible per-click payment rules become vulnerable to manipulation.

Our second application focuses on mechanism design for content generated by LLMs. Each
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input prompt defines a distinct mechanism design environment. We model an LLM as a con-
ditional prediction system that selects a generation distribution over feasible output text units
to maximize the expected value of a provided reward function, leveraging its training data,
knowledge bases, and model architecture—represented as signals and preference types within
our framework. We introduce a reference LLM that represents the platform’s organic generation
distribution, aiming to align responses with user preferences. The designer’s objective is to de-
termine a central LLM generation distribution that maximizes the total reward of agents while
accounting for a regularization term that measures deviations from the reference distribution.
Incorporating this regularization term into each agent’s transfer within data-driven VCG mech-
anisms leads to the definition of regularized data-driven VCG mechanisms (Definition 9). These
mechanisms retain the key properties established in our main analysis (Corollary 3). To illus-
trate, we provide an example where the regularization term is specified as the Kullback-Leibler
divergence between the selected distribution and the reference distribution (Example 4).

1.4 Related Literature

This paper contributes to several strands of the mechanism design literature.

Efficient mechanism design with interdependent values. The literature on mechanism
design with interdependent values, initiated by Milgrom and Weber (1982) and expanded in
subsequent work, is extensive. More recent research (Dasgupta and Maskin, 2000; Jehiel and
Moldovanu, 2001; Bergemann and Välimäki, 2002) has shown that incentive compatibility and
efficiency cannot be simultaneously achieved when signals are independent and multidimensional,
or single-dimensional if the single-crossing condition is violated. These impossibility results
extend to implementation in posterior equilibrium, irrespective of the stochastic structure of the
signals.

Our impossibility result builds on this body of work, relying on the assumption that agents
have a strictly positive informational size, as defined by McLean and Postlewaite (2002). In
contrast, McLean and Postlewaite (2015) demonstrate that when agents have zero informa-
tional size, implementation in posterior equilibrium is possible. Furthermore, they establish a
continuity result: as agents’ informational size approaches zero, approximate posterior equilib-
rium implementation becomes feasible, converging to exact implementation in the limit. We
also provide a continuity result, albeit through a different channel, while allowing for arbitrary
informational sizes of the agents.

Several papers propose two-stage mechanisms to align incentives. In McLean and Postlewaite
(2017)’s mechanism, agents first report their signals. The designer collects the information and
announces the implied posterior on the state. This reduces the problem to a private value
setting in the second stage, where agents report their expected payoffs for each social outcome.
Allocations and transfers are then determined using a VCG mechanism based on these reports.
Mezzetti (2004) considers a framework where the allocation is fixed upfront, but transfers depend
on agents’ subsequent reports of their final payoffs. The central result establishes that efficient
allocation can always be implemented in Perfect Bayesian Equilibrium via a two-stage VCG
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mechanism. Instead, we show how additional information often readily available to the designer
can be utilized to align incentives without requiring further communication. Our data-driven
transfer scheme also addresses practical challenges, such as when agents cannot observe final
payoffs or when a two-stage mechanism is infeasible. Furthermore, compared to Mezzetti (2004),
our results imply that implementation is achievable with strictly less information transmitted to
the mechanism. Specifically, agents’ true ex-post payoffs need not be reported for implementation
in posterior equilibrium.

Wu et al. (2024) study an auction design setting where bidders also have both preference
and information. However, for information component, they only allow bidders to reveal partial
information but forbid misreports, whereas our model allows information misreporting.

Mechanism design with contingent payments and data-driven components. Our data-
driven transfer scheme also connects with the literature on mechanisms involving contingent
payments and public ex-post information (e.g. the work of Hansen (1985) and Riordan and
Sappington (1988), and the follow-on literature). Additionally, a growing body of research
examines how data on agent types can facilitate efficient outcomes in environments with adverse
selection (Braverman and Chassang, 2022; She et al., 2022; Liang and Madsen, 2024). Our focus
diverges by exploring how a designer can leverage data on a common, payoff-relevant stochastic
factor to design transfers that encourage truthful reporting of agents’ types.

Sponsored-search auctions. The standard model for sponsored-search auctions due to Varian
(2007) and Edelman et al. (2007) assumes that bidders have a value per click and ad slots
have non-increasing click-through rates. Both studies independently propose (essentially the
same) refinement of (pure) Nash equilibrium, and argue that under this equilibrium concept the
Generalized-Second Price (GSP) mechanism yields an efficient allocation. In fact, as shown by
Caragiannis et al. (2015), even worst-case equilibria of the GSP mechanism are close to optimum
for a broad range of equilibrium concepts. A particular feature of the GSP mechanism is that
it can be implemented without knowledge of the click-through rates. This is also true for the
VCG mechanism, but requires a more careful implementation in which bidders get charged and
credited (Varian, 2009; Varian and Harris, 2014).

Milgrom (2010) argues that the common practice of asking advertisers for a single bid (their
value per click) can be beneficial (e.g., to rule out low-revenue equilibria). However, he also
points out the associated risk of model mis-specification. Specifically, he argues that there may
be situations where clicks are perfectly observable, but an advertiser’s value may be misaligned
with observable clicks. As a concrete example, he mentions a situation where there are two
types of searchers—potential shoppers who are actually looking to buy a product and others
that are merely curious. The two groups may have different click-through rates, but only clicks
from potential shoppers are valuable. Motivated by this, Dütting et al. (2019) and Dütting et al.
(2024) examine standard position auctions with mis-specified bidding languages; and establish a
ranking between standard position auction formats in regard to the format’s ability to support
an efficient equilibrium, when values follow different click-through rates than those used in the
auction. Our work approaches this differently, by modeling the click-through rates as private
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information that the bidders can report to the auctioneer.
Another related line of work is Bergemann et al. (2022) and Chen et al. (2023), who consider

a situation where click-through rates are stochastic; and the auctioneer strategically discloses
information about the distribution of click-through rates so as to maximize revenue. In this
model the auctioneer has additional information, which is in contrast to our model where it is
the bidders that hold additional information.

Mechanism design for LLMs. The nascent strand of literature on mechanism design for LLM-
based auctions began with Dütting et al. (2024), who proposed a sequential auction mechanism
for creative ad generation where advertisers bid on a token-by-token basis. In this framework,
each advertiser uses its own LLM to generate ad content, which is assumed to be truthfully re-
ported to a central LLM. The token auction takes single-dimensional bids as inputs and produces
a joint output by aggregating individual LLM distributions. They also develop an analogue of
the second-price auction for this setting, demonstrating desirable incentive properties. Soumalias
et al. (2024) propose an auction that allows agents to influence the output of the central LLM
according to their reported reward functions, with an aggregate cost based on the distance
between the generated LLM and a reference LLM. They design a sampling allocation scheme
and payment rule to ensure incentive compatibility. Meanwhile, Dubey et al. (2024) examine
a setting where advertisers bid for prominence in an LLM-generated summary, constructing an
auction to allocate ad prominence within the output. Similarly, Hajiaghayi et al. (2024) propose
an auction mechanism that probabilistically selects the ad displayed in each segment following
the Retrieval-Augmented Generation framework.

In contrast to these approaches, we examine a setting where agents not only have prefer-
ences over the central LLM’s output but also possess valuable information that can improve its
accuracy. Additionally, we explore a richer environment in terms of potential manipulations and
mechanism design. For example, unlike Soumalias et al. (2024), our framework requires agents
to pay for introducing bias into the final allocation, with the payment increasing according to
the marginal impact of the introduced bias.

1.5 Organization of the Paper

The paper is organized as follows. Section 2 introduces the formal model. In Section 3,
we analyze the implementation problem in the setting of standard message-driven mechanisms,
establishing an impossibility result for implementation in posterior equilibrium. In Section 4,
we define data-driven mechanisms, introduce the data-driven VCG mechanism, and present our
implementation results within this framework. Sections 5.1 and 5.2 apply these results to click-
through auctions and LLM-based environments, respectively. Finally, Section 6 discusses the
implications of our model, summarizes the key findings, proposes directions for future research,
and concludes the paper.
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2 Model

We consider the following mechanism design setting. There is a set N ≡ {1, . . . , n} of agents.
Let X be the space of feasible allocations. Uncertainty is represented by a set of possible states
of the world Ω, with a typical element ω. X and Ω are assumed to be compact subsets of
Euclidean spaces. We denote by ∥·∥ the Euclidean norm unless otherwise specified.

Each agent i has private information about her preference type θi ∈ Θi and a private signal
si ∈ Si. Tuple (θi, si) forms agent i’s type. Define Θ =

∏n
i=1Θi and S =

∏n
i=1 Si, with generic

elements θ = (θ1, . . . , θn) and s = (s1, . . . , sn). Θi and Si are assumed to be compact subsets of
Euclidean spaces for each agent i.

There is a full-support prior P ∈ ∆(Ω × Θ × S) on the state and agents’ preference types
and signals which is common knowledge. We assume si is sufficient for ω with respect to θi:
P (ω|si, θi) = P (ω|si) for each agent i, θi ∈ Θ, and si ∈ Si. Observing a profile of signal
realizations s leads each agent to update her prior belief on ω according to Bayes’ rule, with a
posterior distribution P (ω|s).

Agent i’s utility is quasi-linear in the payoff and transfers: Ui : X × Ω×Θi × R → R given
by:

Ui(x, ω, θi, ti) = ui(x, ω, θi) + ti,

where we assume ui is common knowledge and continuous. Agent i’s expected payoff from
decision x, conditional on θi and s, is given by:5

vi(x, θi, s) ≡
∫
Ω
ui(x, ω, θi)dP (ω|s).

An instance is a tuple Γ = (N,X,Ω,Θ,S, P, (Ui)i∈N ).
This paper focuses on implementing the efficient allocation rule based on the combined

information held by agents while allowing for residual uncertainty about the state of the world.

Definition 1. (Efficient allocation rule)
The deterministic allocation rule x : Θ×S → X is efficient if, for all θ ∈ Θ and s ∈ S, it satisfies

x(θ, s) ∈ argmax
x∈X

∑
i∈N

vi(x, θi, s). (1)

We will denote a generic efficient allocation rule by x∗. Note that it is always well-defined
by our continuity and compactness assumptions.

3 Message-Driven Mechanisms

In a message-driven mechanism, agents are asked to select from a menu of messages and
the allocation and transfers are determined solely based on the agents’ selection. This is, of
course, a standard notion in the mechanism design literature. It is without loss of generality

5Similarly to McLean and Postlewaite (2015), our formulation of agents’ utilities highlights the source and
type of interdependence: agents care about others’ signals only in so far as they provide valuable information
about the state.
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types are
realized reports

final allocation
and transfers

Figure 1: Timing of a message-driven direct revelation mechanism (Definition 2).

to focus on direct revelation mechanisms by the revelation principle. The standard timeline of
these mechanisms is illustrated in Figure 1.

Definition 2. (Message-driven direct revelation mechanism)
A message-driven direct revelation mechanism is a pair (x, t) where x : Θ × S → X is the
outcome function and t : Θ× S → RN are the transfers.

We focus on efficient implementation in posterior equilibrium, an equilibrium notion first
defined by Green and Laffont (1987).

Definition 3. (Posterior equilibrium with message-driven mechanisms)
A message-driven direct revelation mechanism (x, t) permits implementation in posterior equi-
librium if for each agent i ∈ N and true types θ ∈ Θ and s ∈ S,

vi(x(θ, s), θi, s) + ti(θ, s) ≥ vi(x(θ
′
i, θ−i, s

′
i, s−i), θi, s) + ti(θ

′
i, θ−i, s

′
i, s−i),∀s′i ∈ Si, θ

′
i ∈ Θi.

In essence, once uncertainty about other agents’ types is resolved, no agent has any regret
about reporting her type truthfully. That is, truthful reporting remains optimal for each agent
given that others also report truthfully—ex-post with respect to agent types (though not nec-
essarily the state).6 This equilibrium concept is appealing because it does not require agents to
specify beliefs over others’ types and ensures they will not wish to alter their actions after the
allocation is finalized.

Maskin (1992), Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), and Bergemann
and Välimäki (2002) demonstrated the impossibility of implementation with interdependent
values when types are either multidimensional or single-dimensional without a suitable single-
crossing condition.7 In our setting, even with single-dimensional signals and a single-crossing
condition, types remain multidimensional. We obtain the following result.

Theorem 1. (Impossibility)
There is an instance where the signal of each agent is single-dimensional and vi is supermodular

6Note that the posterior equilibrium concept defined by Green and Laffont (1987) for an arbitrary mechanism
requires agents’ strategies to be optimal against each other’s strategies, based on the specific information revealed
by the mechanism. In a direct revelation mechanism, this corresponds to revealing the transmitted messages,
i.e., the reported types, leading to the notion defined here. The idea that agents have no regret about truthful
reporting after uncertainty about others’ types is resolved is often referred to as ex-post equilibrium (Bergemann
and Välimäki, 2002). While these two concepts coincide in our context, they generally differ (Jehiel et al.,
2007). Given the importance of resolving uncertainty about the state in our setting, we adopt the terminology
of posterior equilibrium for discussing implementation.

7Each of these works assumes independent signals, but the results extend to cases of arbitrarily correlated
signals when considering implementation in posterior equilibrium.
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in (x, sj) for each i and j but for which no message-driven mechanism implements the efficient
allocation rule in posterior equilibrium.

To prove the impossibility result, we provide the following example, which will also serve as
our running example later in the paper.

Example 1. (Quadratic loss: impossibility)
There are two agents with single-dimensional preference types, where we assume Θ1 = Θ2 ⊂ R
are closed intervals sufficiently wide to make the objects below well-defined, and signals, S1 =

S2 ⊆ R. Agent i’s payoff is given by

ui(x, ω, θi) = −(x− θi − ω)2.

The efficient allocation is then given by

x∗(θ, s) =
θ1 + θ2

2
+ Eω|s1,s2 [ω].

That is, θi can be interpreted as the bias agent i seeks to introduce into the allocation.
We assume the following condition on the informativeness of signals.8 There are signals

s1, s
′
1 ∈ S1, s

′
1 ̸= s1 and s2 ∈ S2 such that

Eω|s1,s2 [ω] ̸= Eω|s′1,s2 [ω]. (∗)

We also assume the mapping x 7→ Eω|x,s−i
[ω] is differentiable for each i and s−i and increasing.

These conditions are satisfied, for example, if ω ∼ N(µ, σ2) with unknown µ and for each i,
si = ω+ ϵi with independent ϵi ∼ N(0, σ2

i ) and known variances σ2
i .

9 Under these assumptions,
∂vi(x,θi,s)

∂x∂sj
≥ 0 for any i, j ∈ N, x ∈ X, θi ∈ Θi, and s ∈ S.

We now prove that no message-driven mechanism can implement the efficient allocation rule
in posterior equilibrium. By the revelation principle, it suffices to demonstrate this for direct
revelation mechanisms. We proceed by contradiction. Suppose there exist s1, s

′
1, s2 satisfying

(∗) and a transfer rule t that depends only on agents’ reports such that (x∗, t) implements the
efficient allocation in posterior equilibrium. Then t must prevent each agent from having a
profitable deviation by misreporting either her preference type or her signals.

Using standard results from the literature, we characterize the class of transfer schemes that
deter profitable deviations along each dimension of agents’ types. Specifically, if only preference
types are private and signals are truthfully reported, the transfer scheme must belong to the
class of standard VCG payments. Conversely, if signals are private and reported truthfully, the
transfer scheme must follow the class of generalized VCG payments described by Bergemann
and Välimäki (2002). The fact that these two classes of payment rules are generally distinct
helps us reach the desired contradiction. Details of the argument are provided below.

8 Note that the condition is satisfied if the signals of all agents jointly determine the state; for example, in
the wallet model: ω =

∑
i∈N si (Klemperer, 1998). The result thus directly applies to this benchmark case.

9To ensure these distributional assumptions match the current framework where all spaces considered are
compact, we can suitable truncate these distributions. As standard algebra reveals, the formula for the posterior
mean and variance is essentially unchanged.
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Suppose the true profile of signals is s = (s1, s2) and it is fixed to be reported truthfully by
both agents. Consider the class of VCG transfers for agent 1:

t1(θ, s;h1) = h1(θ2; s) + Eω|s

[
u2
(
x∗(θ, s), ω, θ2

)]
= h1(θ2; s)−

1

4
(θ1 − θ2)

2 −Varω|s[ω],

for an arbitrary function h1(θ2; s) of θ2. We can define the class of VCG transfers for agent 2
analogously. As is well-known, the VCG mechanism implements the efficient outcome in poste-
rior equilibrium.10 Moreover, any transfer scheme t, such that (x∗, t) permits implementation
in posterior equilibrium, must have this form (Green and Laffont, 1977; Holmström, 1979).

Similarly, if preference types θ are fixed to be reported truthfully, and since agent i’s expected
utility given a profile of signals s is supermodular in (x, sj) for each j, the sorting conditions of
Proposition 4 of Bergemann and Välimäki (2002) are satisfied. Therefore, the transfer functions
t such that (x∗, t) permits implementation in posterior equilibrium must belong to the class of
generalized VCG mechanisms with transfers for agent 1 given by:11∫ s1

0

∂

∂x
Eω|v1,s2

[
u2
(
x∗(θ, v1, s2), ω, θ2

)] ∂

∂v1
x∗(θ, v1, s2) dv1 = −(θ1 − θ2)

∫ s1

0

∂

∂v1
Eω|v1,s2 [ω] dv1

= −(θ1 − θ2)
[
Eω|s1,s2 [ω]− Eω|0,s2 [ω]

]
.

Since (θ1 − θ2)Eω|0,s2 [ω] does not depend on s1, the generalized VCG payments for agent 1
are of the form

t1(θ, s; k1) = k1(s2; θ)− (θ1 − θ2)Eω|s[ω],

for an arbitrary function k1(s2; θ) of s2.
Towards a contradiction, suppose there is a transfer rule t implementing the efficient out-

come in posterior equilibrium. Since the transfer function t must ensure there are no profitable
deviations along each dimension, it follows that there are functions h1 and k1 such that

h1(θ2; s)− k1(s2; θ) =
1

4
(θ1 − θ2)

2 +Varω|s[ω]− (θ1 − θ2)Eω|s[ω].

Repeating the above for s′1 ̸= s1 and s2, θ:

h1(θ2; s
′
1, s2)− k1(s2; θ) =

1

4
(θ1 − θ2)

2 +Varω|s′1,s2 [ω]− (θ1 − θ2)Eω|s′1,s2 [ω].

Taking their difference, we obtain

h1(θ2; s)− h1(θ2; s
′
1, s2) = Varω|s[ω]−Varω|s′1,s2 [ω]− (θ1 − θ2)

(
Eω|s[ω]− Eω|s′1,s2 [ω]

)
.

Since the right-hand side varies with θ1 by (∗), while the left-hand side does not, we arrive at a
contradiction, thus completing the proof.

10Equivalently, in the case signals are fixed and assumed not to be a strategic object, dominant strategies.
11This is up to the addition of an arbitrary function of agent 2’s report of signal and the profile of preference

types.
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If a condition analogous to (∗) is not satisfied, implementation in posterior equilibrium
remains possible. In a model with finite state and signal spaces, McLean and Postlewaite (2015)
demonstrate that if agents have zero informational size in the terminology of McLean and
Postlewaite (2002), that is, the private information held by any single agent is redundant when
combined with the joint information of the other agents,12 their generalized VCG mechanism
allows for implementation in posterior equilibrium.13 Moreover, McLean and Postlewaite (2015)
show that if each agent exerts only a small informational effect on the posterior distribution over
states, their generalized VCG mechanism is approximately posterior incentive-compatible.14 In
the limit, as the informational size of all agents approaches zero, the mechanism achieves exact
implementation in posterior equilibrium.

Typically, however, we expect the signals of all agents to meaningfully influence predictions
about the state. Our broader goal is to design mechanisms that are robust to assumptions on
the underlying stochastic structure of signals and universally applicable across diverse settings.
To this end, we now turn our attention to data-driven mechanisms.

4 Data-Driven Mechanisms

The previous section showed that there are instances where no message-driven mechanism
can implement the efficient allocation in posterior equilibrium. In this section, we expand the
class of mechanisms and demonstrate that this broader class enables at least approximate imple-
mentation, as formally defined below. To achieve this, we relax the assumption that both allo-
cations and transfers depend solely on agents’ reports, following an approach similar to Mezzetti
(2004).15 Instead, we assume that additional information about ω becomes available after the
allocation is determined, allowing the designer to condition transfers on this information.

In practice, the designer acquires additional data about ω. For example, in the context of our
motivating examples, this data might include information on user preferences, demand, click-
through rates, or characteristics of an optimal output prompt in the context of LLMs. Such
data can be collected by the platform based on users’ interactions with the current environ-
ment, past and concurrent environments, or a combination thereof. This information might be
derived from ad clicks, experiments designed to reveal user preferences, or demand estimation
through revealed preference data sourced internally or externally. Moreover, in the context of

12McLean and Postlewaite (2015) refer to this as the nonexclusive information condition.
13In the generalized VCG (pivot) mechanism proposed by McLean and Postlewaite (2015), agent i pays the

externality they impose on the other agents under the assumption that these agents have access to i’s information
even if i were absent. In the next section, we extend the standard VCG mechanism along similar lines. However,
in our pivot mechanism, we account for two types of effects: first, the cost an agent imposes on others by
influencing the allocation in their favor, and second, the value they contribute to improving prediction accuracy
by sharing information about the state. For the latter, the agent is compensated, as illustrated in Example 2.

14The formalization of approximate posterior incentive compatibility by McLean and Postlewaite (2015) differs
from our Definition 7. In their framework, a mechanism is defined as weakly ϵ posterior incentive compatible if
truthful revelation is posterior incentive compatible up to an additive regret of ϵ, with a conditional probability
of at least 1− ϵ.

15See Subsection 4.2.2 for a comparison of Mezzetti (2004)’s approach with our framework.
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Figure 2: Timing of a data-driven direct revelation mechanism (Definition 4).

AI-generated content, user behaviors such as the time spent on specific prompts or follow-up
queries could serve as valuable signals. While this data may not fully uncover user preferences,
it still provides useful insights.

4.1 Mechanisms and Implementation

Let D represent the set of feasible datasets, transformations thereof, or any other form of
additional information about ω. We define data-driven mechanisms as follows.

Definition 4. (Data-driven direct revelation mechanism)
A data-driven direct revelation mechanism is a pair (x, t) where x : Θ× S → X is the outcome
function and t : Θ× S ×D → RN are the transfers.

We formalize the availability of additional data by assuming the designer possesses an es-
timator of the state, with a realization obtained after the final allocation but before the final
transfers are determined. With a slight abuse of notation, we denote by ω̂ both the estimator
and the estimate. The timeline is visualized in Figure 2.

Assumption 1. (Estimator)
The designer possesses an estimator ω̂ of ω, with a realization obtained after the allocation but
before final payments. The distribution of ω̂ | ω for any ω ∈ Ω is common knowledge.

The definition of posterior equilibrium (Definition 3) extends naturally to the current setting
by incorporating expected transfers, where the expectation is taken with respect to the additional
information. Since agents do not observe the realization of the estimator at the reporting stage
but know its data-generating process, they form beliefs about its realization.

Definition 5. (Posterior equilibrium with data-driven mechanisms)
A data-driven direct revelation mechanism (x, t) permits implementation in posterior equilibrium
if for each agent i ∈ N and true types θ ∈ Θ and s ∈ S:

vi(x(θ, s), θi, s) + ti(θ, s, s) ≥ vi(x(θ
′
i, θ−i, s

′
i, s−i), θi, s) + ti(θ

′
i, θ−i, s

′
i, s−i, s),∀s′i ∈ Si, θ

′
i ∈ Θi,

where ti(s
′, θ′, s) ≡ Eω̂|s[ti(θ

′, s′, ω̂)].

With these definitions in place, we define a class of data-driven VCG mechanisms by allowing
transfers to be conditioned on the realization of the estimator. This class of mechanisms will be
the central focus of our analysis in this section.

13



Definition 6. (Data-driven VCG)
A data-driven direct revelation mechanism (x∗, t) is a data-driven VCG mechanism if for each
i,

ti(θ, s, ω̂) ≡ hi(θ−i, s−i, ω̂) +
∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj),

for an arbitrary function hi of others’ reports and ω̂ that is integrable with respect to ω̂.

Any estimator ω̂ defines a class of data-driven VCG mechanisms. This class is characterized
by the specified transfer rule and the requirement that hi be integrable with respect to the
estimator’s data-generating process for each agent i. Notably, regardless of the specific choice of
the estimator, the class includes all transfer rules defined by functions hi that are independent of
the estimator for each agent i. Consequently, the intersection of these classes across all feasible
estimators is non-empty.

Before continuing, we emphasize a central property of data-driven VCG transfers: they
depend on the reported signals only through the resulting allocation. In other words, once
the allocation is determined, the designer can compute the transfers without any knowledge of
agents’ beliefs.

We examine various desirable properties of the estimator and explore their implications
for implementation in posterior equilibrium using data-driven VCG mechanisms. As a natural
benchmark, we consider the ex-post case where ω̂ = ω. If the designer ultimately observes the
true state, ex-post utilities based on the reported preference types can be used to construct VCG
payments, which are sufficient to achieve implementation in posterior equilibrium.

Proposition 1. (Ex-post)
If ω̂ = ω, every data-driven VCG mechanism permits implementation in posterior equilibrium.

Proof. Fix an arbitrary data-driven VCG mechanism. At the reporting stage, each agent i

evaluates the transfers in expectation. Toward achieving a posterior equilibrium at the reporting
stage, assuming other agents report truthfully, for any θ, s and reports θ′i and s′i, the expected
transfer is given by

ti(θ
′
i, θ−i, s

′
i, s−i) ≡

∫
Ω
ti(θ

′
i, θ−i, s

′
i, s−i, ω) dP (ω|si, s−i)

= hi(θ−i, s−i) +
∑
j ̸=i

vj(x
∗(θ′i, θ−i, s

′
i, s−i), θj , s),

where, with some abuse of notation, hi is an arbitrary function of (θ−i, s−i). The net utility of
agent i thus becomes

hi(θ−i, s−i) +

n∑
j=1

vj(x
∗(θ′i, θ−i, s

′
i, s−i), θj , s). (2)

By the efficiency of x∗, this expression is maximized at (θi, si).

We illustrate the transfer scheme under the construction of Example 1.
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Example 2. (Quadratic loss: data-driven VCG)
Example 1 continued. We also assume that the signals of the two agents are independent
conditional on ω.

Consider the data-driven VCG transfers where we define

hi(θ−i, s−i, ω) ≡ −uj(x
∗(θj , sj), ω, θj),

which corresponds to the pivot mechanism.
At the reporting stage, agent i evaluates the transfers in expectation. For any θ, s and reports

θ′i and s′i, the expected transfer is given by

ti(θ
′
i, θj , s

′
i, sj) = vj(x

∗(θ′i, θj , s
′
i, sj), θj , s)− vj(x

∗(θj , sj), θj , s)

= Eω|s

[
−
(
1

2
θ′i −

1

2
θj + Eω|s′i,sj [ω]− ω

)2

+
(
Eω|sj [ω]− ω

)2]
.

As shown in Proposition 1, there is a posterior equilibrium where all agents report truthfully.
In this case, the expected payment of agent i is

ti(θ, s) = −1

4
(θi − θj)

2 + Eω|s

[
(Eω|sj [ω]− ω)2 − (Eω|s[ω]− ω)2

]
= −1

4
(θi − θj)

2 +
(
Eω|s[ω]− Eω|sj [ω]

)2
.

We highlight the following properties of the payments.
Firstly, in expectation, the agent is paid for increasing the prediction accuracy. This is most

clearly seen if preferences are aligned. Then the transfer of agent i is given by (Eω|si,sj [ω] −
Eω|sj [ω])

2. This transfer is always non-negative and strictly positive if agent i’s signal induces
a different posterior mean when combined with agent j’s signal than when based on agent j’s
signal alone. A necessary condition for this to hold is i having a strictly positive informational
size in the terminology of McLean and Postlewaite (2002).

Secondly, the more accurate the information agent i provides, as measured by a reduction in
the expected residual variance E[Varω|si,sj [ω]|sj ]−Varω|sj [ω], the higher is the agent’s expected
compensation. Intuitively, (Eω|si,sj [ω] − Eω|sj [ω])

2 measures how much additional information
si provides about ω beyond sj ; the more informative the signal, the greater the deviation from
the prior mean. Formally, this follows from the law of total variance:

Var
[
Eω|si,sj [ω]|sj

]
= Varω|sj [ω]− E

[
Varω|si,sj [ω]|sj

]
,

noting that by the law of iterated expectations,

Var
[
Eω|si,sj [ω]|sj

]
= E

[(
Eω|s[ω]− Eω|sj [ω]

)2
|sj
]
.

Thus, a reduction in E[Varω|si,sj [ω]|sj ]−Varω|sj [ω] increases agent i’s expected payment.
Thirdly, the agent pays for introducing bias into the social decision, with the expected

payment for introducing bias given by (θi − θj)
2/4. When the bias is sufficiently large, the

agent’s total transfer becomes negative.
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While the ex-post case offers a useful benchmark, it is more likely that the designer has only
a noisy estimate of the state. We therefore consider estimators with two desirable properties
commonly emphasized in statistics and econometrics: unbiasedness and consistency.

With an unbiased estimator and linearity of agents’ utility functions in the state, data-driven
VCG mechanisms achieve implementation in posterior equilibrium. The proof follows the same
reasoning as in Proposition 1 and is omitted. By Jensen’s inequality, this result does not extend
universally beyond linear utilities.

Proposition 2. (Unbiased estimator)
If ω̂ is an unbiased estimator of ω and the utility function of each agent is linear in ω, every
data-driven VCG mechanism permits implementation in posterior equilibrium.

Next, we prove that data-driven VCG mechanisms with a consistent estimator of the state
achieve implementation in ϵ-posterior equilibrium (formally defined below), where ϵ can be made
arbitrarily small as the estimator converges in probability to the true state.

Definition 7. (ϵ-posterior equilibrium)
Fix ϵ ≥ 0. A data-driven direct revelation mechanism (x, t) permits implementation in ϵ-
posterior equilibrium if for each agent i ∈ N and true types θ ∈ Θ and s ∈ S:

vi(x(θ, s), θi, s)+ti(θ, s, s)+ϵ ≥ vi(x(θ
′
i, θ−i, s

′
i, s−i), θi, s)+ti(θ

′
i, θ−i, s

′
i, s−i, s), ∀s′i ∈ Si, θ

′
i ∈ Θi,

where ti(s
′, θ′, s) ≡ Eω̂|s[ti(θ

′, s′, ω̂)].

In words, once the uncertainty about others’ types is resolved, no agent regrets reporting
truthfully by more than ϵ units of the numeraire.

Truthful reporting constitutes an ϵ-posterior equilibrium in finite samples for sufficiently
large ϵ regardless of the estimator used. However, with a consistent estimator and under the
smoothness conditions stated below, ϵ can be made arbitrarily small as the dataset size grows.16

Theorem 2. (Consistent estimator)
Suppose ui is Lipschitz for each agent i and that the posterior P (·|s) is Lipschitz in the following
sense:

∃Ls > 0 such that ∀s, s′ ∈ S, δTV (P (·|s), P (·|s′)) ≤ Ls∥s− s′∥, (3)

where δTV denotes the total variation distance. Consider a consistent estimator ω̂m of ω, ω̂m →p

ω, conditional on any ω ∈ Ω. Then there is a sequence {ϵm}m with ϵm → 0 as m → ∞ such that
every data-driven VCG mechanism for ω̂m permits implementation in ϵm-posterior equilibrium
for every m ∈ N.

Proof. Fix an arbitrary m ∈ N, a data-driven VCG mechanism for ω̂m, and true types θ ∈ Θ

and s ∈ S. Let and i ∈ N be arbitrary. Suppose agents other than i report truthfully.
16Note that our result also subsumes the following Bayesian interpretation. Suppose the platform observes

signals ρ1, . . . , ρm about ω. Updating the prior using Bayes rule, consider the posterior ω|ρ1, . . . , ρm and ω̂m ≡
Eω|ρ1,...,ρm [ω] for each m ∈ N. Under posterior consistency of the signals ρ1, ρ2, . . . , ρm, . . . , ω̂m → ω almost
surely. Hence, ω̂m →p ω.

16



Using the law of iterated expectations, the expected transfer for agent i is

hi(θ−i, s−i) + Eω|s Eω̂m|ω

∑
j ̸=i

uj(x
∗(θ′i, θ−i, s

′
i, s−i), ω̂m, θj)


︸ ︷︷ ︸

≡tmi (x∗(θ′i,θ−i,s′i,s−i),θ−i,s)

,

where, with some abuse of notation, hi is an arbitrary function of (θ−i, s−i).
Let xm ∈ X be a maximizer of this expression. By Weierstrass’ theorem, this is well-

defined due to continuity of the objective function and compactness. To simplify notation,
define x ≡ x∗(θ, s).

Define ϵmi (θ, s) as the utility loss from reporting truthfully:

ϵmi (θ, s) ≡ vi(x
m, θi, s) + tmi (xm, θ−i, s)− vi(x, θi, s)− tmi (x, θ−i, s) ≥ 0.

Let ϵmi ≡ supθ,s ϵ
m
i (θ, s), and ϵm ≡ maxi∈N ϵmi . By construction, truthful reporting consti-

tutes an ϵm-posterior equilibrium. It remains to show that ϵm → 0 as m → ∞.
Observe that ϵmi (θ, s) can be expressed as

ϵmi (θ, s) =
n∑

j=1

vj(x
m, θj , s) + tmi (xm, θ−i, s)−

∑
j ̸=i

vj(x
m, θj , s)

−
n∑

j=1

vj(x, θj , s)− tmi (x, θ−i, s) +
∑
j ̸=i

vj(x, θj , s).

Moreover, by the efficiency of x,
n∑

j=1

vj(x
m, θj , s) ≤

n∑
j=1

vj(x, θj , s).

Therefore,

ϵmi = sup
θ,s

ϵmi (θ, s)

≤ sup
θ,s

tmi (xm, θ−i, s)−
∑
j ̸=i

vj(x
m, θj , s)− tmi (x, θ−i, s) +

∑
j ̸=i

vj(x, θj , s).

We obtain an upper bound:

ϵmi ≤ 2 sup
θ,s,x

∣∣∣∑
j ̸=i

vj(x, θj , s)− tmi (x, θ−i, s)
∣∣∣. (4)

That supθ,s,x
∣∣∑

j ̸=i vj(x, θj , s)− tmi (x, θ−i, s)
∣∣ converges to 0 follows by Lemma 1 in Appendix

A. Hence, ϵmi converges to 0. Since i was chosen arbitrarily, it follows that ϵm also converges to
0 as m → ∞.

Next, we show that under stronger uniform integrability conditions, the sequence {ϵm}m
can converge to zero at essentially the same rate as the sequence of estimators converges to the
true state: if rm(ω̂m − ω) converges to zero in probability for a non-negative sequence {rm}m,
rmϵm also converges to zero as m → ∞. Up to a constant factor, this result provides an upper
bound on the regret agents experience from reporting truthfully when others do the same, given
a convergence rate of the estimator.
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Proposition 3. (Rate of convergence)
Suppose ui is Lipschitz for each agent i and that the posterior P (·|s) satisfies condition (3).
Consider a sequence of estimators {ω̂m}m such that:17

ω̂m − ω = op

(
1

rm

)
.

Moreover, suppose {rm(ω̂m − ω)}m is a uniformly integrable sequence conditional on any ω ∈ Ω

and supω∈Ω supm∈N Eω̂m|ω[∥rm(ω̂m − ω)∥] < ∞. Then there is a sequence of non-negative real
numbers {ϵm}m with:18

ϵm = o

(
1

rm

)
,

such that every data-driven VCG mechanism for ω̂m permits implementation in ϵm-posterior
equilibrium for every m ∈ N.

Proof. The proof is in Appendix A.

4.2 Extensions and Discussion

4.2.1 Eliciting Additional Data from the Agents

Up to this point, we have assumed that the designer acquires additional information about
the state through user engagement, feedback, or third-party sources. Alternatively, consider a
different scenario: after the allocation is determined, each agent collects additional data or signals
about the state, and a second reporting stage is introduced to elicit this information. Based
on the reported data, we construct a leave-one-out estimator for each agent i, denoted by ω̂−i,
which is derived solely from the information reported by the other agents. The corresponding
data-driven VCG transfer for agent i is

ti(θ, s, ω̂−i) = hi(θ−i, s−i, ω̂−i) +
∑
j ̸=i

uj(x
∗(θ, s), ω̂−i, θj). (5)

Analogously to the two-stage mechanism of Mezzetti (2004), truthful reporting in this second
stage is a weakly dominant strategy for each agent: since an agent’s transfer is independent of
their own report, they are indifferent to their reporting choice. Working backward, given truthful
reporting in the second stage, the first stage inherits the incentive properties of the induced
games analyzed in this section, provided the corresponding leave-one-out estimators satisfy the
required properties.19 We state this as a result for the ex-post case.

17For a sequence of random variables Xn, we say Xn = op(an) if for any ϵ > 0, limn→∞ P
(
|Xn|
an

> ϵ

)
= 0.

18For a sequence of non-negative numbers xn, we say xn = o(an) if for every ϵ > 0, there is N ∈ N, such that
xn ≤ ϵan for all n ≥ N .

19There are alternative formulations of the adapted data-driven VCG transfers. For instance, it is not necessary
to aggregate the reported information from the second stage into a single leave-one-out estimator for each agent.
Instead, the mechanism could elicit a separate estimate of the state from each agent and use the estimate reported
by agent j in constructing the payments for all other agents. The key property remains that agent i’s transfer
does not depend on i’s own reported estimate. Nonetheless, by combining information from multiple agents, the
designer can accelerate the convergence of the corresponding estimator, enhancing its accuracy.
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Corollary 1. (Two-stage data-driven VCG in the ex-post case)
Suppose each agent observes the true state after the final allocation but before the final transfers
are determined. Consider a two-stage data-driven VCG mechanism: in the first stage, agents
report their types, and in the second stage, they report their information about the state. Trans-
fers are as in (5). Under this setup, truthfully reporting their type in the first stage and their
information about the state in the second stage constitutes a Perfect Bayesian Equilibrium.

4.2.2 Alternative Estimators and Information Requirements

We formalized the revelation of additional information about the state through an estimator
of the state. An alternative approach would be to base data-driven transfers on estimators of
agent utilities. With “perfect data,” a similar result is obtained if we assume that agents’ final
utilities, uj(x∗(θ′, s′), ω, θj), are observed for each j instead of ω, using

ti(θ
′, s′, u) ≡ hi(θ

′
−i, s

′
−i, u−i) +

∑
j ̸=i

uj(x
∗(θ′, s′), ω, θj).

Mezzetti (2004) assumes agents observe their payoffs and report them in a second stage.
With reports u′j for all j:

ti(θ
′, s′, u′) ≡ hi(θ

′
−i, s

′
−i, u

′
−i) +

∑
j ̸=i

u′j .

Reporting truthfully at both stages constitutes a Perfect Bayesian Equilibrium.
Our data-driven mechanisms require strictly less information for implementation. Specifi-

cally, the final payments do not depend on the knowledge of the agents’ true preference types
to align incentives. To illustrate, consider the transfer rules in the ex-post case. The “core” of
our data-driven VCG transfers for each agent i, based on the reports (θ′, s′), is given by:∑

j ̸=i

uj(x
∗(θ′, s′), ω, θ′j),

whereas the Mezzetti (2004)-style transfers rely on the knowledge of the agents’ true payoffs for
the chosen allocation. This distinction is further highlighted by comparing our Corollary 1 with
Proposition 1 of Mezzetti (2004), which explicitly requires such payoff information.

From a practical standpoint, our data-driven mechanisms also show implementation in poste-
rior equilibrium is possible in cases where a second reporting stage is impractical or prohibitively
costly. In such situations, we argue that it is more natural to use the approach developed in
this paper. Estimators of agents’ payoffs could be derived in the following scenario: the mecha-
nism is executed, the platform implements the chosen allocation, and the user interacts with the
output. Based on user engagement and the relative “prominence” of each agent in the output,
the platform can observe the user’s interaction with individual agents or at least obtain a noisy
estimate, potentially supplemented by off-platform data.20 Using this information, the platform
can estimate each agent’s resulting payoff. However, this interpretation relies on the assumption
that the platform has an estimate of user engagement—the unobserved component of agents’
payoffs. Therefore, it seems more natural to analyze estimators of the state rather than utilities.

20For example, the platform may not directly observe users’ purchasing behavior after clicking an ad, but could
access external indicators of such actions.
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4.2.3 State-Revealing Signals

The results in this and the previous section apply to scenarios where agents’ signals, when
combined, fully reveal the state (see Footnote 8 for a discussion in the context of Theorem 1).
This implies that the designer cannot rely solely on reported signals and preference types to
determine transfers. However, when an estimator with the properties discussed in this section
is available, the designer can condition transfers on it to align incentives. Importantly, even if
the estimator is noisy, it cannot simply be replaced by a state constructed directly from agents’
reports, as this would allow scope for manipulating transfers through reported signals.

4.2.4 Multiple Payments

All results presented in this section remain valid if we split the payment into multiple stages,
provided that the total payment matches the corresponding transfer schemes. For instance, at
the reporting stage, the designer could require a payment equal to the expected VCG payment
based on the reported preference type. Once ω̂ is observed, the final transfers would then be
adjusted to match the corresponding data-driven transfers.

4.2.5 Interdependent Preferences

The arguments presented in this section no longer hold if we introduce additional interde-
pendence into agents’ payoffs. Specifically, if the payoff function ui of each agent i depends on
the entire type profile θ ∈ Θ, such that

ui : X ×Θ× Ω → R,

the proofs no longer go through. Under these conditions, agent i’s report of θi influences the
expected data-driven VCG transfer not only indirectly, through its effect on the allocation, but
also directly, by entering others’ payoff functions. Consequently, the main results of this section
no longer hold. This failure is illustrated in Example 5 in Appendix A.

5 Applications

5.1 Click-Through Auctions

In this section, we apply our framework to a canonical model of click-through auctions
(Edelman et al., 2007; Varian, 2007). To keep the analysis simple, we consider an auction for a
single advertising slot. The space of feasible allocations is the probability simplex X = ∆N−1.
The state is given by the click-through rates (CTR) for each agent conditional on winning the
slot: Ω = [0, 1]N with a typical element ω = (ω1, . . . , ωN ).21 Each agent i’s preference type θi is
defined as i’s value per click, i.e., Θi ⊆ R+. Agents are assumed to be risk-neutral, with payoffs
given by:

ui(x, ω, θi) = θi · xi · ωi.

21Alternatively, we could define ωi to be the expected number of clicks without substantially changing the
analysis.
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We assume a stationary environment, where clicks on displayed ads are modeled as independent
draws from a Bernoulli distribution with parameters equal to the true click-through probabilities.

Recall that in message-driven direct revelation mechanisms, the allocation and transfers
depend only on the reported types. This class includes per-impression payments but excludes
per-click payments. By following steps similar to Example 1 and assuming the strictly positive
informational size condition (∗), we can show that no message-driven mechanism implements
the efficient allocation in posterior equilibrium in all instances.

Per-click payments belong to the broader class of mechanisms that employ data-driven trans-
fers, with clicks serving as proxies for user engagement and revealing valuable information. Under
the maintained assumptions, the observed sample click-through rate becomes an unbiased and
consistent estimator of the true click-through rate.

Implementation with per-click pivot (second-price) payments depends on whether the click-
through rates are common or individual. First, consider the case of a common click-through
rate, where ω = ωi = ωj for each i, j ∈ N . In an efficient allocation, the agent with the highest
value per click wins the slot; in the case of ties, any tie-breaker rule is efficient. Consider the
per-click pivot payment tpc for agent i: tpci (θ, s) = maxj ̸=i θj .

Corollary 2. (Common CTR pivot payments)
Suppose there is a common click-through rate. Then the mechanism (x∗, tpc) with the per-click
pivot payment tpc permits implementation in posterior equilibrium.

Proof. We show that the expected per-click pivot and data-driven pivot transfers with an esti-
mator given by the observed click-through rate coincide. Therefore, they must provide the same
incentives at the reporting stage. The result will then follow from Proposition 2.

Fix an arbitrary agent i and reports (θ′, s′). Agent i expects the ad to be clicked with prob-
ability Eω|s[ω] conditional on being allocated the slot, which happens with probability xi(θ

′, s′).
Thus, the expected per-click transfer is

max
j ̸=i

θ′j · x∗i (θ′, s′) · Eω|s[ω].

Now consider the data-driven pivot transfers:

max
j ̸=i

θ′j · x∗i (θ′, s′) · Eω̂|s[ω̂].

By the law of iterated expectations and the fact that the estimator is unbiased

Eω̂|s[ω̂] = Eω|s Eω̂|ω[ω̂] = Eω|s[ω].

Therefore, the expected data-driven pivot payment is

max
j ̸=i

θ′j · x∗i (θ′, s′) · Eω|s[ω].

The result follows.

Next, consider the case of individual click-through rates. The efficient allocation assigns the
slot to agent i if i’s expected payoff is the largest among agents, i.e.,

θi · Eωi|s[ωi] > max
j ̸=i

{
θj · Eωj |s[ωj ]

}
.
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In case of ties, any tie-breaking rule is efficient.
However, in this case, the per-click pivot payment does not align incentives. Indeed, fix

an arbitrary agent i and assume the other agents report truthfully. Under the per-click pivot
payment, i’s expected payment would be

max
j ̸=i

θj · x∗i (θ′i, θ−i, s
′
i, s−i) · Eωi|s[ωi].

Observe that the expected payment depends on the reported signals solely through the
allocation. Consequently, agent i may have an incentive to misreport signals, inflating her
own expected click-through rate while diminishing those of others. By doing so, agent i can
secure greater prominence by promising higher payment frequencies, even though, based on her
posterior beliefs, these payments are unlikely to materialize. We illustrate with the following
example.

Example 3. (Individual CTR pivot payments)
Consider two agents, and suppose that while the prior on ωi has non-zero variance, each agent
knows her own click-through rate, ωi = si, for each i. Assume further that θ1s1 < θ2s2, but
θ1 > θ2. If agent 2 reports truthfully and agent 1 reports (θ′1, s

′
1), the expected net utility of

agent 1 under the per-click pivot payment is given by

(θ1 − θ2)x
∗
1(θ

′
1, θ2, s

′
1, s2)s1 = (θ1 − θ2)1{θ′1s′1≥θ2s2}s1.

It follows that agent 1 optimally chooses to report s′1, θ
′
1 = 1. Truthful reporting by all agents

is not a posterior equilibrium.

With individual click-through rates, the corresponding expected data-driven pivot payment
for agent i would take the form

ti(θ
′, s′) = max

j ̸=i

{
θ′j · Eωj |s[ωj ]

}
· x∗i (θ′, s′). (6)

However, implementing such transfers as per-click payments based on agent i’s clicks is infeasible,
as it would require knowledge of the ratios ωj/ωi for each j ∈ N \{i} or an unbiased or consistent
estimator of them. If agent i is awarded the slot, the designer would not have a consistent or
unbiased estimator of other agents’ click-through rates from the user interaction with the current
environment, as other ads are not viewed. Nevertheless, the data-driven pivot mechanism can
be implemented if the platform has an estimator of ωj , potentially sourced from other auction
environments or third-party sources.22

22We could construct payments with expectations matching (6) based on clicks in the current auction envi-
ronment, though possibly at the expense of reducing efficiency. For instance, consider two agents and a lottery
that selects the efficient allocation with probability p ∈ (0, 1), assigning the slot randomly otherwise. Suppose
the efficient allocation gives the slot to agent i. Under the lottery, agent i receives the slot with probability 1+p

2
,

and agent j with probability 1−p
2

. Setting i’s payment as

2

1− p
θj , (7)

whenever agent j’s ad is clicked when assigned the slot (occurring with probability ωj), makes i’s expected
payment match (6). This method implements the inefficient allocation with probability 1−p

2
, which can be made

arbitrarily close to 0 as p approaches 1. However, note that as p approaches 1, the payment conditional on clicks
in (7) diverges to infinity.
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5.2 Mechanism Design for LLM-Generated Content

We now apply our framework and results to a mechanism design setting where content is
generated by an LLM. LLMs operate as autoregressive generation systems, sequentially predict-
ing the conditional probability of the next token based on the token sequence generated thus far
(Brown, 2020).23 These probabilities are modeled by neural networks trained to maximize the
likelihood of the observed text in the training data. For the purpose of our mechanism design
framework, we remain agnostic about the specific unit of text output by the LLM—whether it is
an individual token or a sequence of tokens forming an output prompt. We collectively refer to
this as the “output text”. An intrinsic aspect of our analysis is that output texts are randomly
generated.

In this context, each input prompt defines a unique mechanism design environment. The
output of the LLM is modeled as a unit of text that responds to this prompt. Let T denote the
set of feasible outputs, with a typical element t ∈ T . We assume this set is finite. Each agent
i ∈ N is endowed with a reward function ri, which depends on the generated output text t and
the relevant context or query-specific information ω ∈ Ω. The context captures elements such
as user intent or a hidden “ground truth” associated with the prompt. The reward functions
are assumed to be be continuous and common knowledge up to a finite-dimensional parameter
θi ∈ Θi, which represents the agent’s private preference type. Each agent i also possesses a
private signal si ∈ Si, which improves the accuracy and relevance of the LLM’s output. Signals
represent agents’ training data or knowledge bases in the context of the Retrieval-Augmented
Generation framework (Lewis et al., 2020). Such datasets may overlap, and information across
agents may be correlated, as advertisers may share segments of their customer base or source
data from the same providers. An important aspect of our model is that it allows for arbitrary
correlation among agents’ signals. The sets Ω,Θ,S follow our earlier specification.

The set of outcomes X corresponds to the set of generation distributions over output text
units, denoted by ∆(T ). For a given input prompt, architecture, rewards, and data, an LLM
produces a generation distribution x ∈ X. Define the ex-post utility of agent i from an LLM’s
generation distribution x as ui : X × Ω×Θi → R such that

ui(x, ω, θi) =
∑
t∈T

ri(t, ω, θi) · x(t).

This specification aligns directly with the general framework introduced earlier. We define vi

based on ui as in Section 2.
Finally, we extend the framework to include a reference LLM, x0(s), representing the plat-

form’s organic generation distribution, similarly to Soumalias et al. (2024). We let the reference
generation distribution condition on agents’ data. The reference LLM’s objective is to pro-
vide responses aligned with user queries and maximize their usefulness. However, the platform
permits deviations from the reference LLM’s output if the agents seeking to steer the output
according to their preferences make sufficiently high payments. These payments serve as a mech-

23Tokens, the fundamental units of LLM-generated text, can include subwords, words, phrases, symbols, or
numbers. LLMs generate text incrementally on a token-by-token basis.
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anism to balance the competing objectives of maintaining useful, high-quality responses while
accommodating agents’ influence, distorting the output.

We assume the designer aims to determine a central LLM generation distribution that max-
imizes the sum of agents’ payoffs while penalizing deviations from the reference LLM distri-
bution.24 An analogous objective was previously used by Soumalias et al. (2024) and follows
standard approaches for tuning LLMs towards human preferences, such as the Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022) and Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024).25

Definition 8. (α-regularized efficient generation distribution)
The LLM generation distribution x : Θ × S → X is α-regularized efficient if, for all θ ∈ Θ and
s ∈ S, it satisfies

x(θ, s) ∈ argmax
x∈X

Eω|s

[∑
t∈T

∑
i∈N

ri(t, ω, θi)x(t)

]
− αρ (x, x0(s)) (8)

= argmax
x∈X

∑
i∈N

vi(x, θi, s)− αρ (x, x0(s)) . (9)

where ρ : X ×X → R+ measures the deviation of x from x0.

Fixing α, we denote by x∗ an α-regularized efficient generation distribution.
Following the RLHF and DPO literature (Ouyang et al., 2022; Rafailov et al., 2024), Soumalias

et al. (2024) specify ρ as the Kullback-Leibler divergence DKL(x∥x0) =
∑

t∈T x(t) log
x(t)

x0(t)
. We

keep the framework general and return to this functional form in Example 4 below. We assume
throughout that ρ is continuous in x. Note that by continuity and compactness, the α-regularized
efficient generation distribution is always well-defined.

The designer’s goal is to implement an α-regularized efficient generation distribution in
posterior equilibrium. We assume the platform collects feedback from user engagement with the
central LLM’s output prompt and leverages it to construct an estimator of ω. Given an estimate
ω̂ of ω, the modified data-driven VCG transfers are defined as follows.

Definition 9. (α-regularized data-driven VCG)
A data-driven direct revelation mechanism (x∗, t) is an α-regularized data-driven VCG mecha-

24Another approach would be to specify the platform as an additional agent with a reward function r0. This
function, dependent on t and ω, is assumed to be common knowledge. The results below can be readily adapted
to incorporate this framework. Specifically, rather than introducing a regularization term for deviations from the
reference distribution in the social objective function, we could redefine the social objective as a weighted sum
of agents’ reward functions—including the reward function of the reference LLM agent. This redefinition would
remain subject to standard constraints imposed by the LLM architecture. The resulting objective would then
guide the specification of a generation distribution that maximizes the constrained social welfare. The data-driven
VCG mechanism could be adjusted accordingly by appropriately weighting the payoffs of agents other than the
focal agent. We decided to use the model presented in this section as it aligns closely with the discussed related
literature in computer science.

25Unlike in RLHF and DPO, we optimize the sum of many agents’ rewards under incentive conflicts, whereas
the focus of these papers is optimizing a single agent’s reward without considering incentives.
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nism if for each i:

ti(θ, s, ω̂) ≡ hi(θ−i, s−i, ω̂) +
∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj)− αρ (x∗(θ, s), x0(s)) .

for an arbitrary function hi of others’ reports and ω̂ that is integrable with respect to ω̂.

Under appropriate regularity conditions on the reward functions, all results from Section 4
can be readily extended to the current setting. This is formalized in the following corollary,
where the statements correspond to Proposition 1, Proposition 2, Theorem 2, and Proposition
3, respectively. For brevity, we omit the proof.

Corollary 3. (Implementation with α-regularized data-driven VCG)
The following holds:

1. If ω̂ = ω, every α-regularized data-driven VCG mechanism permits implementation in
posterior equilibrium.

2. If ω̂ is an unbiased estimator of ω and the reward function of each agent is linear in
ω, every α-regularized data-driven VCG mechanism permits implementation in posterior
equilibrium.

3. Suppose ri is Lipschitz for each agent i and that the posterior P (·|s) satisfies condition
(3). Consider a consistent estimator ω̂m of ω, ω̂m →p ω, conditional on any ω ∈ Ω.
Then there is a sequence {ϵm}m with ϵm → 0 as m → ∞ such that every α-regularized
data-driven VCG mechanism for ω̂m permits implementation in ϵm-posterior equilibrium
for every m ∈ N.

4. If, in addition to the conditions in 2., ω̂m − ω = op

(
1
qm

)
, {qm(ω̂m − ω)}m is a uniformly

integrable sequence conditional on any ω ∈ Ω, and supω∈Ω supm∈N Eω̂m|ω[∥qm(ω̂m−ω)∥] <
∞, the statement of part 2. holds with ϵm = o

(
1
qm

)
.

We illustrate the construction using DKL as the regularization function.

Example 4. (α-regularized data-driven VCG with KL regularization)
Let ρ = DKL. Following the derivation by Peters and Schaal (2007) and Rafailov et al. (2024),
among others, the α-regularized efficient generation distribution is given by

x∗(t|θ, s) = x0(t|s)
Z(θ, s)

exp

(
1

α

∑
i∈N

Eω|s[ri(t, ω, θi)]

)
,

for each t ∈ T , where

Z(θ, s) ≡
∑
t∈T

x0(t|s) exp

(
1

α

∑
i∈N

Eω|s[ri(t, ω, θi)]

)
is the partition function. As derived in Appendix A, the maximized social objective in (8) is
α log (Z(θ, s)) and the α-regularized data-driven pivot transfer of agent i is

ti(θ, s, ω̂) = α[log (Z(θ, s))− log (Z(θ−i, s−i)]− vi(x
∗(θ, s), θi, s)

+
∑
j ̸=i

[uj(x
∗(θ, s), ω̂, θj)− vj(x

∗(θ, s), θj , s)]−[uj(x
∗(θ−i, s−i), ω̂, θj)− vj(x

∗(θ−i, s−i), θj , s−i)] .
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Note that in the ex-post case, where ω̂ = ω, and assuming a posterior equilibrium in which all
agents report truthfully, the expected transfer to agent i simplifies to

ti(θ, s) =
∑
j ̸=i

vj(x
∗(θ, s), θj , s)− vj(x

∗(θ−i, s−i), θj , s−i)

+ α
(
DKL(x

∗(θ−i, s−i)∥x0(s−i))−DKL(x
∗(θ, s)∥x0(s))

)
= α[log (Z(θ, s))− log (Z(θ−i, s−i)]− vi(x

∗(θ, s), θi, s).

That is, agent i’s expected net payoff is the agent’s marginal contribution to the social objective
in (8). The intuition from Example 2 extends to this setting as well. Informally, if agents’ pref-
erence types are sufficiently aligned and agent i’s information is valuable for the joint prediction
problem, we expect that, ex-ante with respect to signal realizations, the expression∑

j ̸=i

vj(x
∗(θ, s), θj , s)− vj(x

∗(θ−i, s−i), θj , s−i)

is positive in expectation. Further, if the difference of the regularization terms

DKL(x
∗(θ, s)∥x0(s))−DKL(x

∗(θ−i, s−i)∥x0(s−i))

is relatively small compared to the welfare gain for the other agents, that is, if agent i does not
introduce substantial marginal bias into the output of the central LLM, agent i’s total transfer
is positive.26 We also note that the agent has to pay for introducing bias through two channels:
(i) by imposing an allocation externality on the other agents, and (ii) by steering the generation
distribution away from the reference LLM’s distribution.

6 Discussion and Conclusion

We offered an approach to mechanism design that harnesses the natural flow of information
in digital environments. By conditioning transfers on post-allocation data, we showed how to
achieve implementation even in challenging multidimensional settings. Our framework provides
a foundation for designing practical mechanisms in modern applications where rich feedback
data is readily available.

We also highlighted connections to the literature on efficient mechanism design with inter-
dependent values. In particular, with respect to Mezzetti (2004)’s results, our results provide
an insight into the kind and amount of post-allocation data necessary to ensure implementation
in at least approximate posterior equilibrium.

This work opens several promising directions for future research, two of which we highlight
here. First, although we focused on implementation in posterior equilibrium, exploring imple-
mentation in Bayesian equilibrium would be valuable. We anticipate that a similar impossibility
result for message-driven mechanisms would hold with independent types, following the results

26For instance, when the reward functions of all agents are perfectly aligned with the reward function of the
reference LLM, the α-regularized efficient generation distribution coincides with the reference LLM’s generation
distribution. Consequently, the difference between the two KL divergence terms becomes zero.
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of Maskin (1992), Dasgupta and Maskin (2000), and Jehiel and Moldovanu (2001). However,
there may be potential for implementing the efficient allocation with correlated types, using
constructions similar to the full-surplus-extraction mechanisms of Crémer and McLean (1988)
and McAfee and Reny (1992). These could be combined with a version of VCG payments if
at least one component of the types satisfies Crémer and McLean (1988)’s conditions on the
stochastic structure. In such cases, consistent with Neeman (2004)’s insight, agents would re-
tain some information rents. Yet, when these stochastic relevance conditions are not met, it
remains unclear whether standard message-driven mechanisms can effectively align incentives.

Second, we assumed a fixed information structure for agents. From a practical perspective,
incentivizing agents to acquire the socially optimal amount of costly information is an impor-
tant desideratum, as the central platform aggregates decentralized information from individual
agents. Modeling costly information acquisition as an additional stage in the induced game
and designing a mechanism that incentivizes the efficient level of information acquisition is an
important direction for future research.
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A Proofs and Further Results

Lemma 1. Suppose ui is Lipschitz for each agent i and that the posterior P (·|s) is Lipschitz in
the following sense: ∃Ls > 0 such that for any s, s′ ∈ S:

δTV (P (·|s), P (·|s′)) ≤ Ls∥s− s′∥,

where δTV denotes the total variation distance. Consider a consistent estimator ω̂m of ω condi-
tional on ω, i.e. ω̂m →p ω. Then for each i ∈ N :

lim
m→∞

sup
θi∈Θi,x∈X,s∈S

∣∣∣∣∣vi(x, θi, s)−
∫
ω
Eω̂m|ω

[
ui(x, ω̂m, θi)

]
dP (ω|s)

∣∣∣∣∣ = 0.

Proof. Fix arbitrary i ∈ N . First, note that since ui is continuous, by the continuous map-
ping theorem, ∀x ∈ X and θi ∈ Θi, ui(x, ω̂m, θi) →p ui(x, ω, θi). Moreover, the sequence of
ui(x, ω̂m, θi) is uniformly integrable for any x ∈ X, θi ∈ Θi, which follows from continuity and
compactness of Ω.27 Hence, for any ω ∈ Ω:

Eω̂m|ω

[
ui(x, ω̂m, θi)

]
L1−→ ui(x, ω, θi).

By the Bounded Convergence Theorem, for any θi ∈ Θi, x ∈ X, s ∈ S:

lim
m→∞

∫
Ω
Eω̂m|ω

[
ui(x, ω̂m, θi)

]
dP (ω|s) =

∫
Ω
ui(x, ω, θi)dP (ω|s) = vi(x, θi, s). (11)

We claim the convergence is uniform. To this end, we prove the following claims.
Fix an arbitrary m ∈ N. Define the mapping Ψm : X ×Θi × S → R by

(x, θi, s) 7→
∫
Ω
Eω̂m|ω

[
ui(x, ω̂m, θi)

]
dP (ω|s).

The family of functions {Ψm}m is uniformly equicontinuous.28 Indeed, let ϵ > 0 be arbitrary
and fix δ = ϵ√

2(MLs+Lu)
, where M = ∥ui∥∞, Ls is the Lipschitz constant on the posterior with

respect to s and Lu is the Lipschitz constant on ui.
27A sequence of random variables {Xn}n is uniformly integrable if

lim
λ→∞

lim sup
n→∞

E[|Xn|1|Xn|≥λ] = 0. (10)

28A family of functions F between metric spaces (X, dx) and (Y, dy) is uniformly equicontinuous if ∀ϵ > 0, ∃δ > 0

such that ∀f ∈ F and x1, x2 ∈ X with dx(x1, x2) < δ, dx(f(x1), f(x2)) < ϵ.
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Observe that for any m ∈ N,

|Ψm(x1, θi1, s1)−Ψm(x2, θi2, s2)|

=

∣∣∣∣∣
∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)

]
dP (ω|s1)−

∫
Ω
Eω̂m|ω

[
ui(x2, ω̂m, θi2)

]
dP (ω|s2)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)

]
dP (ω|s1)−

∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)

]
dP (ω|s2)

+

∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)

]
dP (ω|s2)−

∫
Ω
Eω̂m|ω

[
ui(x2, ω̂m, θi2)

]
dP (ω|s2)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)

][
dP (ω|s1)− dP (ω|s2)

]∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω
Eω̂m|ω

[
ui(x1, ω̂m, θi1)− ui(x2, ω̂m, θi2)

]
dP (ω|s2)

∣∣∣∣∣
≡ I + II.

To bound I, note that by out continuity and compactness assumptions, and by properties of
the total variation distance,

I ≤ ∥ui∥∞δTV (P (·|s1)− P (·|s2)) ≤ MLs∥s1 − s2∥.

To bound II, note that, since | · | is convex, by Jensen’s inequality:

II ≤
∫
Ω
Eω̂m|ω

[∣∣∣ui(x1, ω̂m, θi1)− ui(x2, ω̂m, θi2)
∣∣∣]dP (ω|s2).

Further, by Lipschitz continuity of ui and since probability measures integrate to 1:

II ≤ Lu∥(x1, θi1)− (x2, θi2)∥.

Combining the above,

I + II ≤ MLs∥s1 − s2∥+ Lu∥(x1, θi1)− (x2, θi2)∥

≤ (MLs + Lu) (∥s1 − s2∥+ ∥(x1, θi1)− (x2, θi2)∥)

≤
√
2(MLs + Lu)∥(x1, θi1, s1)− (x2, θi2, s2)∥,

which is smaller than ϵ by our assumptions. Moreover, this holds uniformly across m. Since
ϵ > 0 was arbitrary, it follows that {Ψm} is uniformly equicontinuous (hence, for each m ∈ N,
Ψm is continuous).

Further, define the mapping Ψ : X×Θi×S → R by (x, θi, s) 7→ vi(x, θi, s). By an analogous
argument to the preceding paragraph, Ψ is continuous.

Further, note that the sequence {Ψm}m is uniformly bounded by ∥ui∥∞.
As noted in (11), Ψm → Ψ pointwise. But since X × Θi × S is compact, {Ψm} and Ψ

belong to the set of continuous functions on X ×Θi × S, and the family of functions {Ψm}m is
uniformly equicontinuous and uniformly bounded, it follows by the Arzela–Ascoli theorem that
the convergence in (11) is uniform. Thus,

lim
m→∞

sup
θi∈Θi,x∈X,s∈S

∣∣∣∣∣vi(x, θi, s)−
∫
ω
Eω̂m|ω

[
ui(x, ω̂m, θi)

]
dP (ω|s)

∣∣∣∣∣ = 0.
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Since i ∈ N was arbitrary, the result follows.

Proof of Proposition 3

Proof. Fix an arbitrary data-driven VCG mechanism, agent i, and true θ ∈ Θ and s ∈ S.
Recall from (4) that for each i ∈ N and m ∈ N,

ϵmi ≤ 2 sup
θi,s,x

∣∣∣∑
j ̸=i

vj(x)− tmi (x)
∣∣∣ ≤ 2

∑
j ̸=i

sup
θi,s,x

∣∣∣Eω|s[uj(x, ω, θj)]− Eω̂m|s[uj(x, ω̂m, θj)]
∣∣∣.

For each j ∈ N , applying Jensen’s inequality and the law of iterated expectations,∣∣∣Eω|s[uj(x, ω, θj)]− Eω̂m|s[uj(x, ω̂m, θj)]
∣∣∣ = ∣∣∣Eω|s

[
uj(x, ω, θj)− Eω̂m|ω[uj(x, ω̂m, θj)]

] ∣∣∣
≤ Eω|s

[∣∣∣uj(x, ω, θj)− Eω̂m|ω[uj(x, ω̂m, θj)]
∣∣∣]

= Eω|s

[∣∣∣Eω̂m|ω[uj(x, ω, θj)− uj(x, ω̂m, θj)]
∣∣∣]

≤ Eω|s Eω̂m|ω

[∣∣∣uj(x, ω, θj)− uj(x, ω̂m, θj)
∣∣∣] .

By Lipschitz continuity of uj , it follows that uj is Lipschitz continuous in ω uniformly in x, θj :
there is Lj ≥ 0 such that for each x ∈ X and θj ∈ Θj ,

|uj(x, ω, θj)− uj(x, ω̂m, θj)| ≤ Lj∥ω − ω̂m∥.

Hence, ∣∣∣Eω|s[uj(x, ω, θj)]− Eω̂m|s[uj(x, ω̂m, θj)]
∣∣∣ ≤ Lj Eω|s Eω̂m|ω [∥ω − ω̂m∥]

and
sup
θj ,x

∣∣∣Eω|s[uj(x, ω, θj)]− Eω̂m|s[uj(x, ω̂m, θj)]
∣∣∣ ≤ Lj Eω|s Eω̂m|ω [∥ω − ω̂m∥] .

Finally,
ϵmi ≤ 2 sup

s

∑
j ̸=i

Lj E [∥ω − ω̂m∥|s] ,

and so
rmϵmi ≤ 2 sup

s

∑
j ̸=i

Lj E [∥rm(ω − ω̂m)∥|s] .

Since rm(ω− ω̂m) = op(1), {rm(ω− ω̂m)}m is a uniformly integrable sequence conditional on any
ω, supω∈Ωmaxm∈N Eω̂m|ω[∥rm(ω̂m − ω)∥] < ∞, it follows by the Bounded convergence theorem
that

lim
m→∞

E [∥rm(ω − ω̂m)∥|s] = 0,

for any s ∈ S. It remains to be show that this convergence is uniform. The proof proceeds
analogously to the proof of Theorem 2. In particular, it can be shown that the family of
mappings s 7→ E [∥rm(ω − ω̂m)∥|s] for all m ∈ N is uniformly equicontinuous, using that the
integrand is uniformly bounded and that the posterior is Lipschitz continuous in signals. We
omit the details for brevity.

It follows that ϵmi = o

(
1

rm

)
for every i ∈ N . Therefore, ϵm = maxi∈N ϵmi = o

(
1

rm

)
,

concluding the proof.
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Example 5. Suppose there are two agents and a single object to be allocated. The set of
allocations is the probability simplex ∆1. The state, preference types, and signals are single-
dimensional and all belonging to [0, 1]. Suppose there are no atoms in the priors on types.

Suppose the payoff of agent 1 is given by

u1(x, θ, ω) = θ1 · x1 · ω,

where x1 is the probability agent 1 obtains the object. The payoff of agent 2 is given by

u2(x, θ, ω) = (−θ1 + θ2) · x2 · ω.

The efficient allocation is as follows. It is efficient to allocate the object to agent 1 if 2θ1 > θ2.
If 2θ1 < θ2, it is efficient to allocate the object to agent 2. In the case of a tie, any feasible
allocation is efficient.

Consider the data-driven VCG expected transfer for the ex-post case:

t1(θ, s) = h1(θ2, s2) + Eω|s [u2(x
∗(θ, s), θ, ω)] .

Suppose agent 2 reports truthfully. Agent 1’s expected net utility when reporting (θ′1, s
′
1) thus

becomes
h1(θ2, s2) +

[
θ1x

∗
1(θ

′
1, θ2) + (−θ′1 + θ2)x

∗
2(θ

′
1, θ2)

]
Eω|s [ω] .

If θ1 < θ2 and Eω|s[ω] > 0, it is optimal for agent 1 to report θ′1 = 0, yielding a payoff of
h1(θ2, s2)+θ2 Eω|s[ω] Therefore, reporting truthfully for all agents is not a posterior equilibrium.

Derivations for Example 4

Recall the maximizer of (8) is

x∗(t|θ, s) = x0(t|s)
Z(θ, s)

exp

(
1

α

∑
i∈N

Eω|s[ri(t, ω, θi)]

)
.

To compress notation, define

R(t|θ, s) ≡ exp

(
1

α

∑
i∈N

Eω|s[ri(t, ω, θi)]

)
.

Plugging in x∗(θ, s) into the social objective in 8 yields∑
t∈T

∑
i∈N

Eω|s [ri(t, ω, θi)]
x0(t|s)
Z(θ, s)

R(t|θ, s)− α
∑
t∈T

x0(t|s)
Z(θ, s)

R(t|θ, s) log
(
R(t|θ, s)
Z(θ, s)

)
=
∑
t∈T

∑
i∈N

Eω|s [ri(t, ω, θi)]
x0(t|s)
Z(θ, s)

R(t|θ, s)−
∑
t∈T

∑
i∈N

Eω|s [ri(t, ω, θi)]
x0(t|s)
Z(θ, s)

R(t|θ, s)

+ α log (Z(θ, s))
∑
t∈T

x0(t|s)
Z(θ, s)

R(t|θ, s)

= α log (Z(θ, s)) .
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Now consider ∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj)− αDKL(x

∗(θ, s)∥x0(s)),

where, as just derived,

αDKL(x
∗(θ, s)∥x0(s)) =

∑
t∈T

∑
i∈N

Eω|s [ri(t, ω, θi)]
x0(t|s)
Z(θ, s)

R(t|θ, s)− α log (Z(θ, s))

=
∑
i∈N

vi(x
∗(θ, s), θi, s)− α log (Z(θ, s)) .

Also note that ∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj) =

∑
t∈T

∑
j ̸=i

rj(t, ω̂, θj)
x0(t|s)
Z(θ, s)

R(t|θ, s).

Thus, ∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj)− αDKL(x

∗(θ, s)∥x0(s))

= α log (Z(θ, s))− vi(x
∗(θ, s), θi, s) +

∑
j ̸=i

uj(x
∗(θ, s), ω̂, θj)− vj(x

∗(θ, s), θj , s).

Similarly, ∑
j ̸=i

uj(x
∗(θ−i, s−i), ω̂, θj)− αDKL(x

∗(θ−i, s−i)∥x0(s−i))

= α log (Z(θ−i, s−i)) +
∑
j ̸=i

uj(x
∗(θ−i, s−i), ω̂, θj)− vj(x

∗(θ−i, s−i), θj , s−i).

Therefore, the α-regularized data-driven pivot transfer of agent i is

α[log (Z(θ, s))− log (Z(θ−i, s−i)]− vi(x
∗(θ, s), θi, s)

+
∑
j ̸=i

[uj(x
∗(θ, s), ω̂, θj)− vj(x

∗(θ, s), θj , s)]−[uj(x
∗(θ−i, s−i), ω̂, θj)− vj(x

∗(θ−i, s−i), θj , s−i)] .
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